EP1429457A2 - Vorrichtung zur Frequenzabstimmung eines Hohlraumresonators oder dielektrischen Resonators - Google Patents

Vorrichtung zur Frequenzabstimmung eines Hohlraumresonators oder dielektrischen Resonators Download PDF

Info

Publication number
EP1429457A2
EP1429457A2 EP03025954A EP03025954A EP1429457A2 EP 1429457 A2 EP1429457 A2 EP 1429457A2 EP 03025954 A EP03025954 A EP 03025954A EP 03025954 A EP03025954 A EP 03025954A EP 1429457 A2 EP1429457 A2 EP 1429457A2
Authority
EP
European Patent Office
Prior art keywords
resonator
dielectric
cavity
metal layer
gap
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP03025954A
Other languages
English (en)
French (fr)
Other versions
EP1429457A3 (de
EP1429457B1 (de
Inventor
Norbert Dr. Klein
Soami Daya Krishnananda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Forschungszentrum Juelich GmbH
Original Assignee
Forschungszentrum Juelich GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Forschungszentrum Juelich GmbH filed Critical Forschungszentrum Juelich GmbH
Publication of EP1429457A2 publication Critical patent/EP1429457A2/de
Publication of EP1429457A3 publication Critical patent/EP1429457A3/de
Application granted granted Critical
Publication of EP1429457B1 publication Critical patent/EP1429457B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P7/00Resonators of the waveguide type
    • H01P7/06Cavity resonators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P7/00Resonators of the waveguide type
    • H01P7/10Dielectric resonators

Definitions

  • the invention relates to a device for frequency tuning a cavity resonator or dielectric Resonators and corresponding resonators with one Contraption.
  • Methods for frequency tuning known from the prior art of cavity resonators or dielectric Resonators are either based on motion of metallic or dielectric moldings macroscopic distances, such as B. from DE 198 41 078 C1 known, or on integrated controllable semiconductor components (e.g. varactor diodes). Allow the former relatively large tuning ranges at the same time high grades ( ⁇ 10,000). However, the switchover times are disadvantageous extreme between different positions slowly ( ⁇ 1 sec). The latter do allow frequency tuning in very short times ( ⁇ 10 microseconds). However, they lead disadvantageously due to high losses by heat dissipation in the semiconductor material used to a severe degradation of the grades ( ⁇ 1000).
  • the object of the invention is a device for electrical frequency tuning of a cavity resonator or a dielectric resonator make a high quality at the same time faster Tunability of the resonator enables. Further it is an object of the invention to provide a corresponding tunable To provide the resonator.
  • the inventive device for frequency tuning a cavity resonator or dielectric resonator includes a dielectric substrate Metal layer.
  • the metal layer is of at least interrupted a crack.
  • the gap is through bridges at least one micromechanical structural element.
  • the distance from the micromechanical structural element the metal layer can be varied.
  • the device forms a wall with electrically controllable Transparency for certain types of waves that the electrical frequency tuning of a shielded resonator serves.
  • the dielectric substrate is advantageous e.g. B. from Sapphire, aluminum oxide ceramic or high-resistance silicon available.
  • the metal layer applied to it has a particularly advantageous high conductivity on. It is e.g. B. available from gold, silver or copper. That or the micromechanical structural elements are designed in particular in the form of strips. they are preferably also made of a metal with high conductivity available.
  • the resonator is a dielectric resonator or a cavity resonator.
  • the device according to the invention is arranged in a metallic cavity in such a way that this device acts like a semitransparent wall, that is to say a wall with electrically controllable transparency for certain types of electromagnetic waves.
  • the tunable resonator is thus divided into two partial resonators.
  • the arrangement consists of a metal layer applied on a dielectric substrate, which is interrupted by at least one radially extending gap.
  • the micromechanical arrangement is formed by at least one metallic strip which is arranged at a certain distance above the gap or the metallic layer.
  • the capacitance can be varied continuously by continuously changing the distance.
  • a change in the distance in the micrometer range leads to a change in the resonance frequency in the percentage range. Due to these extremely low movement amplitudes, significantly shorter switching times can be achieved here compared to conventional mechanical tuning elements.
  • the distance between the strip and the gap or metal layer can be varied by actuators or actuation methods known in MEMS technology, e.g. B. by piezoelectric, electrostatic or thermal actuators, z. B. by the bimetal effect.
  • A, or having such a device dielectric resonator therefore has a high quality with quick tuning.
  • the device advantageously has a plurality of radially extending columns for frequency tuning of the TE 011 or TE 01 ⁇ wave type.
  • the columns are preferably each of a plurality of bridged micromechanical structural elements.
  • the more columns and micromechanical structural elements the device according to the invention comprises the larger is the number of through the columns and micromechanical Structural elements created metallized circular sectors on the device according to the invention.
  • the radial columns run advantageously starting from an opening.
  • the opening is in the Middle of the metallic layer. But it can also also in the dielectric substrate of the invention Device are present. This way it becomes advantageous the effect achieved by the individual sectors the metallic layer electrically separated from each other are and thus the control mentioned above individual sectors.
  • this is or the micromechanical structural elements on one their sides with that on the dielectric substrate applied metal layer of a sector connected.
  • the distance between the structural element and the neighboring one Sector can be varied. About the variation of the distance the frequency is tuned.
  • micromechanical or Structural elements part of another dielectric Are substrate.
  • the columns are in the metallic Surface of a dielectric substrate arranged and are structured by means of the structural elements bridged second substrate.
  • the Effect achieved that the distance between all micromechanical Structural elements and the metal layer of the first dielectric substrate varies uniformly can be (analog frequency tuning).
  • the variation the distance between the micromechanical structural elements of the columns can be made by piezoelectric Actuators take place.
  • a resonator with a device for frequency tuning according to the invention can be used in particular for the TE 011 or TE 01 ⁇ wave type.
  • Figure 1 Arrangement of a shielded dielectric Resonators with a semi-transparent wall comprising micromechanical Structural elements.
  • Figure 4 Tunable resonator with piezoelectric Actuators.
  • Figure 1 shows an example of a resonator according to the invention consisting of a dielectric cylinder 4, the one in a cylindrical metallic shield housing 2 is arranged.
  • the micromechanical structural elements comprehensive semi-transparent wall 3, is in one certain distance parallel to the end face 1a of the cylinder 1 'arranged above the dielectric cylinder 4.
  • the device forms a partition between two partial resonators.
  • the lower partial resonator 1 '' is a metallic cavity resonator with dielectric filling 4 (shielded dielectric resonator) and the upper partial resonator a metallic cavity resonator 1 ', the transparency for certain types of electromagnetic waves micromechanical movements can be controlled.
  • FIG. 2 shows a possible construction of a semitransparent wall comprising micromechanical structural elements. It is an example of an arrangement for the TE 011 or TE 01 ⁇ wave type of a shielded cavity or dielectric resonator.
  • the structure in Fig. 2 is a metallic wall, e.g. B. a metallic layer 24, shown in the figure dark gray, which is arranged on a dielectric carrier substrate 28 shown in black.
  • the arrangement of the device in a metallic shield housing 22, which corresponds to shield 2 in FIG. 1, is also indicated.
  • Four radially extending columns 25 are arranged in the metallic layer 24.
  • the columns 25 are z. B. produced lithographically and represent areas without metallization.
  • the metallic layer 24 is divided into four separately controllable sectors, of which only the sector is provided at the top right with reference numeral 24.
  • the four columns 25 extend from an opening 26 arranged in the middle of the metallic layer.
  • the opening 26 has a small diameter compared to the resonator diameter.
  • each gap 25 forms an interruption in the current lines, which leads to an effective radiation of electromagnetic energy into an upper partial resonator 1 ', as in FIG Figure 1 shown leads. In this way, a coupling of the two partial resonators 1 ′ and 1 ′′, as shown in FIG. 1, is realized.
  • the micromechanical Structural elements 27 are metallic Stripes, each with one of their sides the metallic layer 24 are connected.
  • the micromechanical Structural elements 27 each bridge one Gap 25 locally at this point. Only the one on the right Micromechanical structural element 27 is identified by reference numerals Mistake.
  • a minor Distance between stripes 27 and metal layer 24 results from the overlap between strips 27 and metallic layer 24 one parallel to the gap capacity switched capacity, its variation through Distance change also to a frequency change and thus leads to frequency tuning.
  • the simulation for one results from commercial available microwave ceramics existing dielectric resonator with a resonance frequency of 1.9 GHz, a frequency change of approx. 20 MHz at one Change the distance between four strips 27 on four columns 25 between zero and ten micrometers (Strips 2 x 5 mm, gap 2 mm diameter).
  • the resonator quality of about 30,000 is compared to a corresponding one Resonator hardly changed without tuning device.
  • the strips 37 are about as floating Cantilever designed with one side each the metallic layer 34 are anchored, so lets a desired movement of the strips z. B. by Bend the strips 37.
  • actuation methods such as. B.
  • Figure 4 shows a possible arrangement for analog uniform movement of all strips 11b, which as structured metal layer on a dielectric Substrate 9b are applied using piezoelectric Actuators 10.
  • the substrate 9a comprises the gap arrangement 11a as a structured metal layer.
  • Only two piezo actuators 10 are shown in the image plane only the actuator on the left in the image plane with reference numerals is provided.
  • the illustrated devices for frequency tuning are based on the geometry of a circular cylindrical cavity resonator or adapted dielectric resonators. Basically, the device is also different Geometry conceivable as a circular to the To achieve frequency tuning of a resonator.
  • a tunable filter structure includes several together coupled cavity resonators and / or dielectric Resonators with the device according to the invention for frequency tuning.
  • a tunable oscillator includes a semiconductor amplifier and a cavity or dielectric Resonator with a device for frequency tuning according to the invention.

Landscapes

  • Control Of Motors That Do Not Use Commutators (AREA)
  • Inductance-Capacitance Distribution Constants And Capacitance-Resistance Oscillators (AREA)

Abstract

Die Erfindung betrifft eine Vorrichtung zur elektrischen Frequenzabstimmung eines Hohlraumresonators oder dielektrischen Resonators. Die Vorrichtung ist gekennzeichnet durch eine auf einem dielektrischen Substrat aufgebrachten Metallschicht (24), die von mindestens einem Spalt (25) unterbrochen ist, wobei der Spalt durch mindestens ein mikromechanisches Strukturelement (27) überbrückt wird, dessen Abstand zur Metallschicht elektrisch variiert werden kann. Dadurch bildet die Vorrichtung eine Wand mit elektrisch steuerbarer Transparenz für bestimmte Wellentypen.

Description

Die Erfindung betrifft eine Vorrichtung zur Frequenzabstimmung eines Hohlraumresonators oder dielektrischen Resonators und entsprechende Resonatoren mit einer solchen Vorrichtung.
Bedingt durch die intensive Nutzung verfügbarer Frequenzbänder in der Mikrowellenkommunikation, ist für zukünftige Generationen von Kommunikationssystemen eine möglichst flexible, d. h. zeitlich variable Nutzung von Teilbändern für bestimmte Zwecke unerläßlich. Beispielsweise werden bei intensivem Internetverkehr über mobile Kommunikationseinrichtungen die notwendigen Bandbreiten für den "uplink" vom mobilen Terminal zur Basisstation und den "downlink" umgekehrt zeitlich stark schwanken, so daß eine zeitlich variable, Software gesteuerte Zuordnung von Frequenzintervallen zur Steigerung der übertragbaren Datenraten, führen kann. Für solche Aufgaben sind schnell abstimmbare Mikrowellenfilter, auf der Basis schnell abstimmbarer Resonatoren mit hoher Güte, eine wichtige Voraussetzung. Neben vielen möglichen Filteranwendungen sind abstimmbare Resonatoren mit hoher Güte für spannungsgesteuerte Oszillatoren (VCOs), die bei zahlreichen Anwendungen der Mikrowellen-Kommunkations-, Sensor- und Meßtechnik zum Einsatz kommen, von Bedeutung.
Aus dem Stand der Technik bekannte Verfahren zur Frequenzabstimmung von Hohlraumresonatoren bzw. dielektrischen Resonatoren basieren entweder auf der Bewegung von metallischen bzw. dielektrischen Formkörpern über makroskopische Distanzen, wie z. B. aus DE 198 41 078 C1 bekannt, oder auf integrierten steuerbaren Halbleiterbauelementen (z. B. Varaktordioden). Erstere erlauben zwar relativ große Abstimmbereiche bei gleichzeitig hohen Güten (≈ 10.000). Nachteilig sind aber die Umschaltzeiten zwischen verschiedenen Positionen extrem langsam (≈ 1 sec). Letztere erlauben zwar eine Frequenzabstimmung in sehr kurzen Zeiten (≈ 10 Mikrosekunden). Nachteilig führen sie aber aufgrund hoher Verluste durch Wärmedissipation in dem verwendeten Halbleitermaterial zu einer starken Degradation der Güten (≈1000).
Aus Brown et al., 1999 (A. R. Brown, P. Blondy and G. M. Rebeiz (1999). Microwave and millimeter-wave high-Q micromachined resonators. Int. J. of RF and Microwave Computer-Aided Engineering, Vol. 9, pp. 326-337) ist bekannt, verlustarme Schalter mit kurzen Schaltzeiten im Mikrowellen- bzw. Millimeterbereich mit der sogenannten MEMS-Technologie (Micromachined Electromechanical Systems) herzustellen.
Aufgrund der Kleinheit der MEMS-Strukturen werden diese bislang in Verbindung mit planaren Mikrowellen-Leitungsstrukturen eingesetzt. Diese weisen nachteilig aufgrund von Verlusten durch Wärmedissipation in den metallischen Komponenten keine besonders hohen Güten auf.
Aufgabe der Erfindung ist es eine Vorrichtung zur elektrischen Frequenzabstimmung eines Hohlraumresonators bzw. eines dielektrischen Resonators bereit zu stellen, welche eine hohe Güte bei gleichzeitig schneller Abstimmbarkeit des Resonators ermöglicht. Ferner ist es Aufgabe der Erfindung, einen entsprechenden abstimmbaren Resonator bereit zu stellen.
Die Aufgabe wird durch eine Vorrichtung mit der Gesamtheit der Merkmale des Patentanspruchs 1 gelöst. Vorteilhafte Ausgestaltungen ergeben sich aus den jeweils darauf rückbezogenen Patentansprüchen.
Die erfindungsgemäße Vorrichtung zur Frequenzabstimmung eines Hohlraumresonators oder dielektrischen Resonators umfaßt eine, auf einem dielektrischen Substrat aufgebrachte, Metallschicht. Die Metallschicht ist von mindestens einem Spalt unterbrochen. Der Spalt wird durch mindestens ein mikromechanisches Strukturelement überbrückt. Der Abstand vom mikromechanischen Strukturelement zur Metallschicht kann variiert werden. Dadurch bildet die Vorrichtung eine Wand mit elektrisch steuerbarer Transparenz für bestimmte Wellentypen, die der elektrischen Frequenzabstimmung eines abgeschirmten Resonators dient.
Das dielektrische Substrat ist vorteilhaft z. B. aus Saphir, Aluminiumoxidkeramik oder hochohmigem Silizium erhältlich. Die hierauf aufgebrachte Metallschicht weist besonders vorteilhaft eine hohe Leitfähigkeit auf. Sie ist z. B. aus Gold, Silber oder Kupfer erhältlich. Das oder die mikromechanischen Strukturelemente sind insbesondere streifenförmig ausgestaltet. Sie sind vorzugsweise ebenfalls aus einem Metall hoher Leitfähigkeit erhältlich.
Bei dem Resonator handelt es sich um einen dielektrischen Resonator oder um einen Hohlraumresonator. Dabei wird in einem metallischen Hohlraum die erfindungsgemäße Vorrichtung so arrangiert, daß diese Vorrichtung wie eine semitransparente Wand, das heißt eine Wand mit elektrisch steuerbarer Transparenz für bestimmte elektromagnetische Wellentypen, zur Wirkung kommt. Der abstimmbare Resonator ist dadurch in zwei Teilresonatoren unterteilt. Für den gebräuchlichen TE011 bzw. TE01δ Wellentyp eines zylinderförmigen Hohlraumresonators bzw. eines dielektrischen Resonators besteht die Anordnung aus einer auf einem dielektrischen Substrat aufgebrachten Metallschicht, die von mindestens einem radial verlaufenden Spalt unterbrochen wird. Die mikromechanische Anordnung wird in diesem Fall durch mindestens einen metallischen Streifen ausgebildet, der in einem gewissen Abstand oberhalb des Spaltes bzw. der metallischen Schicht angeordnet ist. Durch Variation dieses Abstandes kann entweder zwischen einer kapazitiven Spaltüberbrückung, bei endlichem Abstand zwischen Streifen und Metallschicht, und einer resistiven Spaltüberbrückung, wenn kein Abstand zwischen Streifen und Metallschicht vorliegt, umgeschaltet oder die Kapazität durch kontinuierliche Änderung des Abstandes kontinuierlich variiert werden. Eine Änderung des Abstandes im Mikrometerbereich führt dabei zu einer Änderung der Resonanzfrequenz im Prozentbereich. Aufgrund dieser extrem geringen Bewegungsamplituden lassen sich hier im Vergleich zu konventionellen mechanischen Abstimmelementen deutlich kürzere Schaltzeiten realisieren. Gegenüber konventionellen elektronischen Abstimmverfahren wie z. B. mittels Halbleiter-Varaktordioden, sind die Verluste durch Wärmedissipation deutlich geringer, so daß die so hergestellten abstimmbaren Resonatoren erheblich höhere Güten aufweisen. Der Abstand zwischen Streifen und Spalt bzw. Metallschicht kann durch in der MEMS-Technologie bekannte Aktuatoren bzw. Aktuationsmethoden variiert werden, z. B. durch piezoelektrische, elektrostatische oder thermische Aktuatorik, z. B. durch den Bimetalleffekt.
Ein, eine solche Vorrichtung aufweisender, Hohlraumoder dielektrischer Resonator weist daher eine hohe Güte bei gleichzeitig schneller Abstimmbarkeit auf.
Vorteilhaft weist die Vorrichtung eine Vielzahl an radial verlaufenden Spalten zur Frequenzabstimmung des TE011 bzw. TE01δ Wellentyps auf.
In einer weiteren Ausgestaltung der Erfindung werden die Spalten vorzugsweise jeweils von einer Vielzahl von mikromechanischen Strukturelementen überbrückt. Je mehr Spalten und mikromechanische Strukturelemente die erfindungsgemäße Vorrichtung umfaßt, um so größer ist die Anzahl der durch die Spalten und mikromechanischen Strukturelemente erzeugten metallisierten Kreissektoren auf der erfindungsgemäßen Vorrichtung. Durch separate elektrische Ansteuerung einzelner Segmente wird eine digitale Frequenzabstimmung über eine große Anzahl von Frequenzintervallen ermöglicht.
Die radial verlaufenden Spalten verlaufen vorteilhaft ausgehend von einer Öffnung. Die Öffnung liegt in der Mitte der metallischen Schicht. Sie kann aber zusätzlich auch im dielektrischen Substrat der erfindungsgemäßen Vorrichtung vorliegen. Auf diese Weise wird vorteilhaft die Wirkung erzielt, daß die einzelnen Sektoren der metallischen Schicht elektrisch voneinander getrennt sind und somit die oben erwähnte Ansteuerung einzelner Sektoren möglich wird.
In einer weiteren Ausgestaltung der Erfindung ist das oder die mikromechanischen Strukturelemente an einer ihrer Seiten mit der auf dem dielektrischen Substrat aufgebrachten Metallschicht eines Sektors verbunden. Der Abstand zwischen Strukturelement und benachbartem Sektor kann variiert werden. Über die Variation des Abstandes erfolgt die Frequenzabstimmung.
Es ist auch möglich, daß das oder die mikromechanischen Strukturelemente Bestandteil eines weiteren dielektrischen Substrats sind. Die Spalten sind in der metallischen Oberfläche eines dielektrischen Substrats angeordnet und werden mittels der Strukturelemente eines zweiten Substrats überbrückt. Auf diese Weise wird die Wirkung erzielt, daß der Abstand zwischen allen mikromechanischen Strukturelementen und der Metallschicht des ersten dielektrischen Substrats gleichmäßig variiert werden kann (analoge Frequenzabstimmung). Die Variation des Abstands der mikromechanischen Strukturelemente von den Spalten kann durch piezoelektrische Aktuatoren erfolgen.
Ein Resonator mit erfindungsgemäßer Vorrichtung zur Frequenzabstimmung kann insbesondere für den TE011 oder TE01δ Wellentyp verwendet werden.
Im weiteren wird die Erfindung an Hand einiger Ausführungsbeispiele und der beigefügten Figuren 1 bis 5 näher beschrieben.
Figur 1: Anordnung eines abgeschirmten dielektrischen Resonators mit semitransparenter Wand umfassend mikromechanische Strukturelemente.
Figur 2: Beispiel für den Aufbau einer erfindungsgemäßen semitransparenten Wand (N = 4, k = 1) für den TE011 / TE01δ Wellentyp, wobei die Spalte mittels streifenförmiger mikromechanischer Strukturelemente überbrückt werden (k = 1).
Figur 3: Erfindungsgemäße Vorrichtung mit radial verlaufenden Spalten (N = 12), wobei die Spalte mittels streifenförmiger mikromechanischer Strukturelemente überbrückt werden (k = 11).
Figur 4: Abstimmbarer Resonator mit piezoelektrischer Aktuatorik.
Figur 1 zeigt beispielhaft einen erfindungsgemäßen Resonator bestehend aus einem dielektrischen Zylinder 4, der in einem zylinderförmigen metallischen Abschirmgehäuse 2 angeordnet ist. Die mikromechanische Strukturelemente umfassende semitransparente Wand 3, ist in einem gewissen Abstand parallel zur Stirnseite 1a des Zylinders 1' oberhalb des dielektrischen Zylinders 4 angeordnet. Dadurch bildet die Vorrichtung eine Trennwand zwischen zwei Teilresonatoren. Im vorliegenden Fall ist der untere Teilresonator 1'' ein metallischer Hohlraumresonator mit dielektrischer Füllung 4 (abgeschirmter dielektrischer Resonator) und der obere Teilresonator ein metallischer Hohlraumresonator 1', dessen Transparenz für bestimmte elektromagnetische Wellentypen durch mikromechanische Bewegungen steuerbar ist.
Figur 2 zeigt einen möglichen Aufbau einer semitransparenten Wand umfassend mikromechanische Strukturelemente. Es handelt sich beispielhaft um eine Anordnung für den TE011 bzw. TE01δ Wellentyp eines abgeschirmten Hohlraum- bzw. dielektrischen Resonators.
Bei dem Aufbau in Fig. 2 handelt es sich um eine metallische Wand, z. B. eine metallische Schicht 24, in der Figur dunkelgrau dargestellt, die auf einem schwarz dargestellten dielektrischem Trägersubstrat 28 angeordnet ist. Angedeutet ist weiter die Anordnung der Vorrichtung in einem metallischen Abschirmgehäuse 22, die der Abschirmung 2 der Figur 1 entspricht. In der metallischen Schicht 24 sind vier radial verlaufende Spalten 25 angeordnet. Die Spalten 25 werden z. B. lithographisch hergestellt und stellen Bereiche ohne Metallisierung dar. Hierdurch wird die metallische Schicht 24 in vier separat ansteuerbare Sektoren unterteilt, von denen nur der Sektor rechts oben mit Bezugszeichen 24 versehen ist. Die vier Spalten 25 verlaufen ausgehend von einer in der Mitte der metallischen Schicht angeordneten Öffnung 26. Die Öffnung 26 weist einen im Vergleich zum Resonatordurchmesser kleinen Durchmesser auf. Da die vom Resonatorfeld des TE011 bzw. TE01δ Wellentyps in die metallische Schicht 24 induzierten hochfrequenten Wechselströme in azimuthaler Richtung verlaufen, bildet jeder Spalt 25 eine Unterbrechung der Stromlinien, die zu einer effektiven Abstrahlung elektromagnetischer Energie in einen oberen Teilresonator 1', wie in Figur 1 dargestellt, führt. Auf diese Weise wird eine Verkopplung beider Teil-Resonatoren 1' und 1'', wie in Fig. 1 dargestellt, realisiert.
Bei den im Beispiel dargestellten vier mikromechanischen Strukturelementen 27 handelt es sich um metallische Streifen, die an jeweils einer ihrer Seiten mit der metallischen Schicht 24 verbunden sind. Die mikromechanischen Strukturelemente 27 überbrücken je einen Spalt 25 lokal an dieser Stelle. Nur das rechts angeordnete mikromechanische Strukturelement 27 ist mit Bezugszeichen versehen. Besteht kein Abstand zwischen den Metallstreifen 27 und der Metallschicht 24, so wird der Spalt 25 resistiv überbrückt. In diesem Fall wird an dieser Stelle die Strahlungsankopplung an einen oberen Teilresonator 1', wie in Fig. 1 dargestellt, reduziert, was zu einer Änderung gegenüber einem endlichen Abstand zwischen Metallstreifen 27 und Metallschicht 24, und damit zur Frequenzabstimmung führt. Im Falle eines geringen Abstands zwischen Steifen 27 und Metallschicht 24 ergibt sich durch den Überlapp zwischen Streifen 27 und metallischer Schicht 24 eine zur Spaltkapazität parallel geschaltete Kapazität, dessen Variation durch Abstandsänderung ebenfalls zu einer Frequenzänderung und damit zur Frequenzabstimmung führt.
Beispielhaft ergibt die Simulation für einen aus kommerziell erhältlich Mikrowellenkeramiken bestehenden dielektrischen Resonator mit einer Resonanzfrequenz von 1,9 GHz, eine Frequenzänderung von ca. 20 MHz bei einer Änderung des Abstands zwischen vier Streifen 27 auf vier Spalten 25 zwischen null und zehn Mikrometern (Streifen 2 x 5 mm, Spalt 2 mm Durchmesser). Die Resonatorgüte von ca. 30000 ist dabei gegenüber einem entsprechenden Resonator ohne Abstimmvorrichtung kaum verändert.
Figur 3 zeigt beispielhaft eine erfindungsgemäße Vorrichtung für N = 12 Spalten 35 und k = 11 Streifen 37 als mikromechanische Strukturelemente je Spalt 35. Die Spalten 35 verlaufen radial ausgehend von einer kreisförmigen Öffnung 36 ohne Metallisierung. Die Öffnung 36 ist im Zentrum der metallischen Schicht angeordnet. Jeweils nur ein Spalt und ein Streifen sind aus Platzgründen mit Bezugszeichen versehen. Dadurch wird die metallische Schicht 34 in zwölf elektrisch voneinander getrennte und separat ansteuerbare Sektoren unterteilt. Werden die Streifen 37 etwa als freischwebende Cantilever ausgelegt, die an jeweils einer Seite mit der metallischen Schicht 34 verankert sind, so läßt sich eine gewünschte Bewegung der Streifen z. B. durch Verbiegen der Streifen 37 erzeugen. Durch in der MEMS-Technologie bekannte Aktuationsmethoden, wie z. B. elektrostatische Anziehung oder piezoelektrische Verbiegung, läßt sich die gewünschte Abstandsänderung mit extrem schnellen Schaltzeiten von 10 Mikrosekunden bis 10 Millisekunden erreichen. Hier würde z. B. eine sektorweise elektrische Vorspannung zur Betätigung des jeweiligen Aktuationsmechnismus aller mikromechanischen Strukturelemente 37 eines Spaltes 35 führen, so daß der Resonator eine inhärente digitale Spannungs-Frequenz-Charakteristik aufweisen würde.
Figur 4 zeigt eine mögliche Anordnung zur analogen gleichförmigen Bewegung aller Streifen 11b, die als strukturierte Metallschicht auf einem dielektrischen Substrat 9b aufgebracht sind, mit Hilfe piezoelektrischer Aktuatoren 10. Das Substrat 9a umfaßt die Spaltanordnung 11a als strukturierte Metallschicht. Dabei wird ein bestehender Luftspalt 8 zwischen den dielektrischen Substraten 9a und 9b, welche mit den strukturierten Metallisierungen 11a und 11b auf den jeweils zueinander gewandten Seiten versehen sind, mit Hilfe von mindestens drei Piezoaktuatoren 10 variiert. In der Bildebene sind nur zwei Piezoaktuatoren 10 gezeigt, von denen nur der in der Bildebene linke Aktuator mit Bezugszeichen versehen ist.
Auf diese technologisch leicht zu realisierende Weise können besonders hohe Resonatorgüten erreicht werden, da hier Metallisierungen mit geringen Verlusten (z. B. Silberschichten) verwendet werden können, die in der MEMS-Technologie schwierig zu realisieren sind. Diese Variante eignet sich auch für Metallisierungen aus supraleitenden Metallen, so daß auf diese Weise abstimmbare kryogene Resonatoren mit extrem hoher Güte realisierbar sind. Des weiteren ist für diese Realisierung keine MEMS-Technologie erforderlich. Statt dessen können kommerziell erhältliche piezoelektrische Aktuatoren verwendet werden. Es sind weiterhin gezeigt, der abgeschirmte dielektrische Resonator 41'' als unterer Teilresonator mit dielektrischer Füllung 44, sowie der obere Teilresonator 41'.
Die dargestellten Vorrichtungen zur Frequenzabstimmung sind an die Geometrie eines kreiszylindrischen Hohlraumresonators bzw. dielektrischen Resonators angepaßt. Grundsätzlich ist für die Vorrichtung auch eine andere Geometrie als eine kreisförmige vorstellbar, um die Frequenzabstimmung eines Resonators zu erzielen.
Eine abstimmbare Filterstruktur umfaßt mehrere miteinander verkoppelte Hohlraumresonatoren und/oder dielektrische Resonatoren mit erfindungsgemäßer Vorrichtung zur Frequenzabstimmung.
Ein abstimmbarer Oszillator umfaßt einen Halbleiterverstärker und einen Hohlraumresonator oder dielektrischen Resonator mit erfindungsgemäßer Vorrichtung zur Frequenzabstimmung.

Claims (13)

  1. Vorrichtung zur Frequenzabstimmung eines Hohlraumresonators oder dielektrischen Resonators, umfassend eine auf einem dielektrischen Substrat aufgebrachte Metallschicht (24, 34), welche wenigstens einen Spalt (25, 35) aufweist, wobei der Spalt (25, 35) durch mindestens ein mikromechanisches Strukturelement (27, 37) überbrückt wird, dessen Abstand zur Metallschicht (24, 34) variiert werden kann.
  2. Vorrichtung nach vorhergehendem Anspruch,
    gekennzeichnet durch,
    eine Vielzahl an Spalten (25, 35).
  3. Vorrichtung nach einem der vorhergehenden Ansprüche,
    gekennzeichnet durch
    wenigstens einen radial verlaufenden Spalt (25, 35).
  4. Vorrichtung nach einem der vorhergehenden Ansprüche,
    gekennzeichnet durch
    eine Vielzahl an mikromechanischen Strukturelementen (27, 37).
  5. Vorrichtung nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet, daß
    mindestens ein mikromechanisches Strukturelement (27, 37) an einer Seite mit der auf dem dielektrischen Substrat aufgebrachten Metallschicht (24, 34) verbunden ist.
  6. Vorrichtung nach einem der vorhergehenden Ansprüche,
    gekennzeichnet durch,
    eine im Vergleich zum Resonatordurchmesser kleine Öffnung (26, 36), welche insbesondere in der Mitte der Metallschicht (24, 34) angeordnet ist.
  7. Vorrichtung nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet, daß
    das oder die mikromechanischen Strukturelemente (11b) Bestandteile eines weiteren dielektrischen Substrats (9b) sind.
  8. Vorrichtung Anspruch 7,
    dadurch gekennzeichnet, daß
    die mikromechanischen Strukturelemente (11b) des weiteren dielektrischen Substrats (9b) die Spalte(n) der metallischen Schicht (11a) eines dielektrischen Substrats (9a) überbrücken.
  9. Hohlraumresonator oder dielektrischer Resonator, umfassend eine Vorrichtung zur Frequenzabstimmung nach einem der vorhergehenden Ansprüche.
  10. Hohlraumresonator oder dielektrischer Resonator nach Anspruch 9 mit weiteren Elementen zur Ankopplung.
  11. Abstimmbare Filterstruktur umfassend mehrere miteinander verkoppelte Hohlraumresonatoren und/oder dielektrische Resonatoren nach Anspruch 9 oder 10.
  12. Abstimmbarer Oszillator umfassend einen Halbleiterverstärker und einen Hohlraumresonator oder dielektrischen Resonator nach Anspruch 9 oder 10.
  13. Verwendung eines Hohlraumresonators oder dielektrischen Resonators nach Anspruch 9 oder 10 zur Frequenzabstimmung eines TE011 oder TE01δ Wellentyps.
EP03025954A 2002-12-10 2003-11-13 Vorrichtung zur Frequenzabstimmung eines Hohlraumresonators oder dielektrischen Resonators Expired - Lifetime EP1429457B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10257822A DE10257822B3 (de) 2002-12-10 2002-12-10 Vorrichtung zur Frequenzabstimmung eines Hohlraumresonators oder dielektrischen Resonators
DE10257822 2002-12-10

Publications (3)

Publication Number Publication Date
EP1429457A2 true EP1429457A2 (de) 2004-06-16
EP1429457A3 EP1429457A3 (de) 2008-11-05
EP1429457B1 EP1429457B1 (de) 2009-11-04

Family

ID=32319043

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03025954A Expired - Lifetime EP1429457B1 (de) 2002-12-10 2003-11-13 Vorrichtung zur Frequenzabstimmung eines Hohlraumresonators oder dielektrischen Resonators

Country Status (3)

Country Link
EP (1) EP1429457B1 (de)
AT (1) ATE447793T1 (de)
DE (2) DE10257822B3 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010148405A3 (en) * 2009-06-19 2011-04-07 Qualcomm Incorporated Mems tunable resonator in a cavity
EP2395599A1 (de) * 2010-06-02 2011-12-14 Com Dev International Limited TE011 Hohlraumfilter und Verfahren

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4030051A (en) * 1976-07-06 1977-06-14 Hughes Aircraft Company N-section microwave resonator having rotary joint for variable coupling
US4692727A (en) * 1985-06-05 1987-09-08 Murata Manufacturing Co., Ltd. Dielectric resonator device
JPS63299604A (ja) * 1987-05-29 1988-12-07 Murata Mfg Co Ltd 誘電体共振器装置
JPH05110337A (ja) * 1991-10-14 1993-04-30 Nec Corp マイクロ波発振器
WO2002022492A2 (en) * 2000-09-14 2002-03-21 Mcnc Microelectromechanical flexible membrane electrostatic valve device and related fabrication methods

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4030051A (en) * 1976-07-06 1977-06-14 Hughes Aircraft Company N-section microwave resonator having rotary joint for variable coupling
US4692727A (en) * 1985-06-05 1987-09-08 Murata Manufacturing Co., Ltd. Dielectric resonator device
JPS63299604A (ja) * 1987-05-29 1988-12-07 Murata Mfg Co Ltd 誘電体共振器装置
JPH05110337A (ja) * 1991-10-14 1993-04-30 Nec Corp マイクロ波発振器
WO2002022492A2 (en) * 2000-09-14 2002-03-21 Mcnc Microelectromechanical flexible membrane electrostatic valve device and related fabrication methods

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
GHOSH I S ET AL: "Temperature compensated high-Q dielectric resonators for long term stable low phase noise oscillators" FREQUENCY CONTROL SYMPOSIUM, 1997., PROCEEDINGS OF THE 1997 IEEE INTER NATIONAL ORLANDO, FL, USA 28-30 MAY 1997, NEW YORK, NY, USA,IEEE, US, 28. Mai 1997 (1997-05-28), Seiten 1024-1029, XP010257402 ISBN: 978-0-7803-3728-2 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010148405A3 (en) * 2009-06-19 2011-04-07 Qualcomm Incorporated Mems tunable resonator in a cavity
US8362853B2 (en) 2009-06-19 2013-01-29 Qualcomm Incorporated Tunable MEMS resonators
US8981875B2 (en) 2009-06-19 2015-03-17 Qualcomm Incorporated Tunable MEMS resonators
EP2395599A1 (de) * 2010-06-02 2011-12-14 Com Dev International Limited TE011 Hohlraumfilter und Verfahren
US8884723B2 (en) 2010-06-02 2014-11-11 Com Dev International Ltd. TE011 cavity filter assembly

Also Published As

Publication number Publication date
DE50312086D1 (de) 2009-12-17
DE10257822B3 (de) 2004-08-12
EP1429457A3 (de) 2008-11-05
ATE447793T1 (de) 2009-11-15
EP1429457B1 (de) 2009-11-04

Similar Documents

Publication Publication Date Title
EP1224675B1 (de) Durchstimmbarer hochfrequenz-kondensator
DE69909313T2 (de) Spannungsgesteuerte varaktoren und abstimmbare geräte mit derartigen varaktoren
EP1151446B1 (de) Mikroschaltkontakt
KR20070089631A (ko) 가변 필터
DE60115086T2 (de) Kontaktstruktur für mikro-relais für rf-anwendungen
EP0255068B1 (de) In der Art vom Kammleitungs- bzw. Interdigitalleitungsfiltern ausgebildetes Filter für kurze elektromagnetische Wellen
DE69925027T2 (de) Ferroelektrischer varaktor mit eingebauter gleichstromblockierung
DE4005184C2 (de)
DE60007736T2 (de) Mikromechanischer schalter und entsprechendes herstellungsverfahren
DE102007035633B4 (de) Verfahren zur Herstellung mikromechanischer Strukturen sowie mikromechanische Struktur
DE102007024901A1 (de) Kondensatorstruktur mit veränderbarer Kapzität und Verwendung der Kondensatorstruktur
EP1307398B1 (de) Anordnung mit variabler kapazität
DE10257822B3 (de) Vorrichtung zur Frequenzabstimmung eines Hohlraumresonators oder dielektrischen Resonators
EP1319260B1 (de) Koplanarer wellenleiterschalter
DE102014117599B4 (de) MEMS-Bauelement mit Dünnschicht-Abdeckung mit verbesserter Stabilität und Verfahren zur Herstellung
DE112004002785T5 (de) Variabler Kondensator und Herstellungsverfahren davon
DE102013202806A1 (de) Schaltung auf dünnem Träger für den Einsatz in Hohlleitern und Herstellungsverfahren
EP1024508A2 (de) Elektrostatisch durchstimmbare Kapazität
DE10009453A1 (de) Phasenschieber und Anordnung aus mehreren Phasenschiebern
DE102005027457A1 (de) In der Frequenz abstimmbares SAW-Bauelement und Verfahren zur Frequenzabstimmung
DE19723286A1 (de) Vorrichtung zur Filterung von Hochfrequenzsignalen
EP1719144B1 (de) Hochfrequenz-mems-schalter mit gebogenem schaltelement und verfahren zu seiner herstellung
Mirebrahimi et al. High‐quality coplanar waveguide tunable band‐stop filter using defected ground structure and comb‐line resonator with radio frequency microelectromechanical system varactors
DE10100296A1 (de) Vorrichtung mit einem Kondensator mit veränderbarer Kapazität, insbesondere Hochfrequenz-Mikroschalter
WO2005059932A1 (de) Kondensator mit veränderbarer kapazität, verfahren zum herstellen des kondensators und verwendung des kondensators

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

RIN1 Information on inventor provided before grant (corrected)

Inventor name: KLEIN, NORBERT, DR.

Inventor name: KRISHNANANDA, SOAMI DAYAC/O MR. S. KRISHNANANDA

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

17P Request for examination filed

Effective date: 20090409

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 50312086

Country of ref document: DE

Date of ref document: 20091217

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100215

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091104

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100304

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091104

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

BERE Be: lapsed

Owner name: FORSCHUNGSZENTRUM JULICH G.M.B.H.

Effective date: 20091130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091104

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091104

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091104

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091104

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091104

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091104

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100204

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091104

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091104

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20100805

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091130

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100205

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20101119

Year of fee payment: 8

Ref country code: FR

Payment date: 20101130

Year of fee payment: 8

Ref country code: NL

Payment date: 20101123

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20101124

Year of fee payment: 8

Ref country code: DE

Payment date: 20101019

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091104

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20101123

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091113

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100505

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091104

REG Reference to a national code

Ref country code: NL

Ref legal event code: V1

Effective date: 20120601

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20111113

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120601

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111130

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111130

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20120731

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50312086

Country of ref document: DE

Effective date: 20120601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111113

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 447793

Country of ref document: AT

Kind code of ref document: T

Effective date: 20111113

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111113

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120601