EP1428411B1 - Verfahren und vorrichtung zur steuerung der basswiedergabe von audiosignalen in elektroakustischen wandlern - Google Patents

Verfahren und vorrichtung zur steuerung der basswiedergabe von audiosignalen in elektroakustischen wandlern Download PDF

Info

Publication number
EP1428411B1
EP1428411B1 EP01980187A EP01980187A EP1428411B1 EP 1428411 B1 EP1428411 B1 EP 1428411B1 EP 01980187 A EP01980187 A EP 01980187A EP 01980187 A EP01980187 A EP 01980187A EP 1428411 B1 EP1428411 B1 EP 1428411B1
Authority
EP
European Patent Office
Prior art keywords
audio signal
bandpass
frequency components
filter
bpf
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP01980187A
Other languages
English (en)
French (fr)
Other versions
EP1428411A1 (de
EP1428411B2 (de
Inventor
Roland Aubauer
Stefano Ambrosius Klinke
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gigaset Communications GmbH
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=5648291&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP1428411(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP1428411A1 publication Critical patent/EP1428411A1/de
Publication of EP1428411B1 publication Critical patent/EP1428411B1/de
Application granted granted Critical
Publication of EP1428411B2 publication Critical patent/EP1428411B2/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R3/00Circuits for transducers, loudspeakers or microphones
    • H04R3/04Circuits for transducers, loudspeakers or microphones for correcting frequency response

Definitions

  • FIGURE 1 shows a typical frequency response of a small loudspeaker.
  • Electronic audio equipment in which such small electro-acoustic transducers are used and in which consequently the bass reproduction is unsatisfactory, are primarily audio devices (devices for outputting and / or reproducing audio signals) of the communication and information technology as well as consumer electronics and consumer goods, such as Cellular and cordless telephone handsets, notebooks, personal digital assistants, mini-radios, clock radios, portable music players, etc.
  • the perception of a fundamental frequency can be simulated by a combination of harmonics. Therefore, the perception of a low frequency can be simulated with the appropriate combination of its harmonics.
  • the object underlying the invention is to control the bass reproduction of audio signals in electroacoustic transducers based on the psychoacoustic principle referred to as “virtual pitch” or as “residual hearing (hearing of missing fundamental)" such that the perception of the virtual bass reproduction of the audio signals is improved over the prior art.
  • the idea of the invention is to control the reproduction of the low frequencies or basses emitted in the electroacoustic transducer by amplifying the harmonic harmonics already contained in the audio signal in the sense of a simulation that the listener perceives or perceives improved bass reproduction.
  • the control or simulation can be both digitally (claim 1), by a program module in the digital signal processor DSP of the electronic device for output and / or playback of audio signals with the electroacoustic transducer, as well as analog (claim 9), by a Hardware circuit between the digital / analog converter and the power amplifier of the electronic device for output and / or playback of audio signals with the electro-acoustic transducer, done.
  • the program module and the hardware circuitry amplify only the harmonic waves that are above the resonant frequency of the electroacoustic transducer, particularly the loudspeaker, to simulate the perception of the fundamental frequency.
  • Harmonic harmonic extraction is achieved in the program module by bandpass filtering and hardware switching by means of a bandpass filter, while the harmonic gain is controlled by a gain factor in the program module and in the hardware circuitry in a correspondingly designed gain controlled amplifier (English: Gain Controlled Amplifier) expires.
  • the amplification factor is preferably of frequency components of the audio signal is controlled below the resonance frequency or cut-off frequency of the electroacoustic transducer.
  • the advantage of the method according to claim 1 lies in the fact that the amplification of the harmonic original harmonics present in the audio signal ensures a significantly better quality of the modified audio signal generated in the digital signal processor. As a result, in particular distortions of the audio signal are avoided.
  • the inventive method has lower requirements in terms of computer performance and memory requirements in the digital signal processor.
  • the modified audio signal is filtered to amplify selected frequencies.
  • FIG. 2 shows, as a second exemplary embodiment in the form of a functional or block diagram, the speech processing path in a radio FG for outputting and / or reproducing audio signals, in particular speech signals, in which the invention is implemented in a program module PGM of a digital signal processor DSP (digital Implementation).
  • the radio FG receives via an antenna ANT an analog radio signal FS, on which a coded voice information is modulated.
  • a digital demodulated signal DDS is generated from the modulated coded analog radio signal FS.
  • This digital demodulated signal DDS is then supplied to a speech decoder SDK of the digital signal processor DSP.
  • a speech signal or, generally speaking, an audio signal AS is generated from the digital demodulated signal DDS.
  • This audio signal AS is then the program module for controlling the bass reproduction of Audio signals in electroacoustic transducers PGM supplied to the digital signal processor DSP.
  • a modified audio signal MAS is generated from the audio signal AS, which is then further filtered by a filter FIL of the digital signal processor DSP.
  • the filtered modified audio signal MAS is finally applied to a digital-to-analogue converter DAW and then amplified in a power amplifier EVS before the voice information contained in the modified audio signal MAS is output by an electroacoustic transducer EAS, which is preferably designed as a loudspeaker.
  • EAS electroacoustic transducer
  • FIG. 3 shows the speech processing path in the radio FG, in which the invention, unlike FIG. 2, outside the digital signal processor DSP in the analog part of the radio FG in a device for controlling the bass reproduction of audio signals is implemented in electroacoustic transducers STV (analog implementation).
  • the voice signal processing in the radio FG begins with the analogue radio signal FS, on which coded voice information is modulated, being fed via the antenna ANT to the receiver EMP.
  • the digital demodulated signal DDS is again generated by the microprocessor MP and the analog-to-digital converter ADW from the analog radio signal FS.
  • This digital demodulated signal DDS is then fed back to the speech decoder SDK in the digital signal processor DSP.
  • the decoded speech signal or, more generally, the decoded audio signal AS is recovered from the digital demodulated signal DDS.
  • This audio signal AS is then filtered in the filter FIL of the digital signal processor DSP before the filtered audio signal in the digital-to-analog converter DAW is converted accordingly.
  • the converted audio signal AS then becomes the device for controlling the bass reproduction of audio signals in electroacoustic transducers STV supplied, where from the audio signal AS, a modified audio signal MAS is generated.
  • the modified audio signal MAS is subsequently amplified in the power amplifier EVS before the voice information contained in the modified audio signal MAS is output via the electroacoustic converter EAW, which is again preferably designed as a loudspeaker.
  • FIG. 4 shows a first realization form of the program module PGM according to FIG. 2.
  • the audio signal AS is band-pass filtered to isolate a first frequency component FK with a software implemented bandpass filter BPF and low-pass filtered to isolate a second frequency component FK 'with a software implemented low-pass filter TPF. While the first frequency component FK is being amplified, the second frequency component FK 'generates a gain factor VF which determines the gain of the first frequency component FK.
  • the bandpass filter BPF is preferably designed as a finite impulse response (FIR) filter FIR-F or alternatively as an infinite impulse response (IIR) filter IIR-F. If the bandpass filter BPF is a finite impulse response. Filter FIR-F formed, the program module PGM for buffering the audio signal AS a buffer ZWS. This buffer ZWS is not required if the bandpass filter BPF is designed as an Infinite Impulse Response filter IIR-F. To illustrate this in FIGURE 4, the buffer ZWS is shown as a dashed block.
  • the band-pass filtered audio signal FK or the frequency component FK isolated with the bandpass filter BPF is applied to amplify it to the input of a software-implemented amplifier VS controllable by the gain factor VF.
  • a software-implemented amplifier VS controllable by the gain factor VF.
  • software implemented means for calculating signal envelope and / or signal energy MBSE are present in the program module PGM, which supply an input variable for the likewise implemented by software means for calculating the amplification factor MBVF of the program module PGM from the low-pass filtered audio signal FK ' ,
  • the calculation means MBVF then supply the amplification factor VF with which the amplifier VS can be controlled.
  • the modified audio signal MAS is produced, which is preferably filtered to improve the signal quality with a software implemented presence filter PRF.
  • the modified audio signal MAS is supplied to the filter FIL without further filtering by the presence filter PRF.
  • FIG. 5 shows a second embodiment of the program module PGM according to FIG. 2 to isolate the first frequency component FK. While the first frequency component FK is again amplified, the gain of the second frequency component FK 'is again increased first gain FK determining gain factor VF generated.
  • the bandpass filter BPF is again preferably designed as a finite impulse response (FIR) filter FIR-F or alternatively as an infinite impulse response (IIR) filter IIR-F. If the bandpass filter BPF is a finite impulse response. Filter FIR-F formed, the program module PGM again for buffering the audio signal AS the buffer ZWS. This buffer ZWS is not required again when the band-pass filter BPF is designed as an Infinite Impulse Response filter IIR-F. To illustrate this in FIGURE 5, the buffer ZWS is shown as a dashed block.
  • the band-pass filtered audio signal FK or the frequency component FK isolated with the bandpass filter BPF is, as in FIG. 4, applied to its gain to the input of an amplifier VS which can be controlled by the amplification factor VF.
  • the program module PGM again has the means for calculating signal envelope and / or signal energy MBSE, which again supply an input from the low-pass filtered audio signal FK 'to the means for calculating the amplification factor MBVF of the program module PGM.
  • the calculation means MBVF is supplied with a further input variable which originates from further means for calculating signal envelope and / or signal energy MBSE.
  • the further input quantity is calculated by the calculation means MBSE from the unfiltered audio signal AS.
  • the calculation means MBVF then supply from these two input variables the amplification factor VF with which the amplifier VS can be controlled again.
  • the output of the amplifier VS is thus again connected to the band-pass filtered audio signal VSFK amplified by the amplification factor VF.
  • This amplified bandpass filtered audio signal VSFK and the audio signal AS which may have been temporarily stored, are subsequently combined or added again with the aid of the combination means KM of the program module PGM, which are preferably designed again as addition means.
  • the modified audio signal MAS is produced, which is preferably filtered again with the presence filter PRF in order to improve the signal quality.
  • the modified audio signal MAS as explained in the description of FIG. 2, to be supplied to the filter FIL without further filtering by the presence filter PRF.
  • FIG. 6 shows starting from FIG. 4 a third embodiment of the program module PGM according to FIG. 2.
  • the audio signal AS is bandpass filtered again to isolate the first frequency component FK with the bandpass filter BPF and lowpass filtered again to isolate the second frequency component FK 'with the lowpass filter TPF. While the first frequency component FK is again amplified, the amplification factor VF determining the amplification of the first frequency component FK is generated again with the second frequency component FK '.
  • the bandpass filter BPF is again preferably designed as a finite impulse response (FIR) filter FIR-F or alternatively as an infinite impulse response (IIR) filter IIR-F. If the bandpass filter BPF is a finite impulse response. Filter FIR-F formed, the program module PGM again to buffer the audio signal AS the buffer ZWS. This buffer ZWS is not necessary again when the bandpass filter BPF is designed as an Infinite Impulse Response filter IIR-F. To illustrate this in FIGURE 6, the buffer ZWS is shown as a dashed block.
  • the band-pass filtered audio signal FK or the frequency component FK isolated with the bandpass filter BPF is applied to the input of the amplifier VS which can be controlled by the amplification factor VF as shown in FIGS. 4 and 5 for amplification thereof.
  • the program module PGM again has the means for calculating signal envelope and / or signal energy MBSE, which supply an input quantity for means for calculating the amplification factor MBVF of the program module PGM from the low-pass filtered audio signal FK '.
  • the calculation means MBVF is supplied with a further input variable which originates from further means for calculating signal envelope and / or signal energy MBSE.
  • the further input variable is calculated by the calculation means MBSE from the bandpass-filtered audio signal FK.
  • the calculation means MBVF then supply from these two input variables the amplification factor VF with which the amplifier VS can be controlled.
  • the band-pass filtered audio signal VSFK amplified by the amplification factor VF is applied again.
  • This reinforced Bandpass-filtered audio signal VSFK and the audio signal AS which may have been temporarily stored, are subsequently combined or added again with the aid of the combination means KM of the program module PGM, which are preferably designed as addition means.
  • the modified audio signal MAS again arises, which is preferably filtered again to improve the signal quality with the presence filter PRF.
  • the modified audio signal MAS as explained in the description of FIG. 2, to be supplied to the filter FIL without further filtering by the presence filter PRF.
  • FIG. 7 shows an embodiment of the control device STV according to FIG. 3.
  • the audio signal AS is band-pass filtered to isolate the first frequency component FK with a bandpass filter BPF1 designed as a hardware component and to isolate the second frequency component FK 'with a lowpass filter TPF1 designed as a hardware component low-pass filtered. While the first frequency component FK is amplified, the amplification factor VF determining the gain of the first frequency component FK is generated with the second frequency component FK '.
  • the band-pass filtered audio signal FK or the frequency component FK isolated with the bandpass filter BPF1 is applied to amplify it to the input of an amplifier VS1 which can be controlled by the amplification factor VF and is designed as a hardware component.
  • means formed in the control device STV as a hardware module for calculating the signal envelope and / or the signal energy MBSE1 are preferably present consist of the series circuit of a rectifier GLR and another low-pass filter TPF2 and provide from the low-pass filtered audio signal FK 'an input for also designed as a hardware module means for calculating the gain MBVF1 the control device STV.
  • the calculating means MBVF1 then supply the amplification factor VF with which the amplifier VS1 can be controlled.
  • a band-pass filtered audio signal VSFK amplified by the amplification factor VF.
  • This amplified bandpass filtered audio signal VSFK and the audio signal AS are further combined or added with the aid of combination means KM1 of the control device STV, which are preferably designed as an addition means and as a hardware component.
  • the modified audio signal MAS is produced, which is preferably filtered to improve the signal quality with a presence filter PRF1 embodied as a hardware component. But it is also possible that the modified audio signal MAS, as explained in the description of FIGURE 3, without further filtering by the presence filter PRF is supplied to the power amplifier EVS.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Tone Control, Compression And Expansion, Limiting Amplitude (AREA)
  • Circuit For Audible Band Transducer (AREA)

Description

  • Die Erfindung betrifft ein Verfahren zur Steuerung der Basswiedergabe von Audiosignalen in elektroakustischen Wandlern gemäß dem Oberbegriff des Patentanspruches 1 und eine Vorrichtung zur Steuerung der Basswiedergabe von Audiosignalen in elektroakustischen Wandlern gemäß dem Oberbegriff des Patentanspruches 9.
  • Die Basswiedergabe von Audiosignalen in einem elektroakustischen Wandler, insbesondere einem Lautsprecher oder einer Hörkapsel, ist durch die Größe des elektroakustischen Wandlers, des Lautsprechers bzw. der Hörkapsel bedingt. Je kleiner die Lautsprecher-Membrane und deren maximale Auslenkung sind, desto höher ist die untere Resonanzfrequenz.
  • In FIGUR 1 ist ein typischer Frequenzgang eines kleinen Lautsprechers dargestellt. Elektronische Audiogeräte, in denen solche kleinen elektroakustischen Wandler zum Einsatz kommen und in denen folglich die Basswiedergabe unbefriedigend ist, sind in erster Linie Audiogeräte (Geräte zur Aus- und/oder Wiedergabe von Audiosignalen) der Kommunikations- und Informationstechnik sowie der Unterhaltungs- und Konsumgüterelektronik, wie z.B. Mobilfunk- und Schnurlostelefon-Handapparate, Notebooks, Personal Digital Assistants, Mini-Radios, Radiowecker, tragbare Musikabspielgeräte etc.
  • Um die Basswiedergabe mit einem kleinen Lautsprecher zu verbessern, kann ein bekannter psychoakustisches Prinzip benutzt werden. Dieses Prinzip wird als "Residual Hearing (Hearing of Missing Fundamentals)" oder als "Virtual Pitch" bezeichnet.
  • Nach diesem Prinzip kann die Wahrnehmung einer Grundfrequenz durch eine Kombination von Oberwellen simuliert werden. Daher kann auch die Wahrnehmung einer tiefen Frequenz mit der entsprechenden Kombination ihrer Oberwellen simuliert werden.
  • Eine detaillierte Beschreibung des Virtual Pitch"-Prinzips ist in der Publikation "Psychoakustik" von E. Zwicker; H.Fastl; Springer Verlag , 2nd. Edition, 1999 zu finden.
  • Aus der US 6,111,960 und der US 5,930,373 sind auf dem psychoakustischen Prinzip beruhende Verfahren bekannt, die anhand des Audiosignals eine entsprechende Reihe von Oberwellen erzeugen, um die Frequenzen unterhalb der Grenzfrequenz zu simulieren.
  • Aus der WO 00/15003 ist ein auf dem psychoakustischen Prinzip beruhendes Verfahren bekannt, bei dem die in dem Audiosignal vorhandenen Oberwellen verstärkt werden. Dabei werden zur Verbesserung der Basswiedergabe der Audiosignale in elektroakustischen Wandlern tiefe Frequenzkomponenten des Audiosignals zu einem tieffrequenten Audiosignal isoliert, die isolierten tiefen Frequenzkomponenten mit einer Vielzahl von Bandpassfiltern gefiltert, die bandpassgefilterten Frequenzkomponenten in einem bezüglich des Verstärkungsfaktors steuerbaren Verstärker verstärkt, wobei der Verstärkungsfaktor aus der Einhüllenden der bandpassgefilterten Frequenzkomponenten gewonnen wird, und ein simuliertes tieffrequentes Audiosignal durch Kombinieren des ursprünglichen Audiosignals mit den verstärkten Frequenzkomponenten erzeugt.
  • Die der Erfindung zugrundeliegende Aufgabe besteht darin, die Basswiedergabe von Audiosignalen in elektroakustischen Wandlern basierend auf dem als "virtual pitch" oder als "residual hearing (hearing of missing fundamental)" bezeichneten psychoakustischen Prinzip so zu steuern, dass die Wahrnehmung der virtuellen Basswiedergabe der Audiosignale gegenüber dem Stand der Technik verbessert ist.
  • Diese Aufgabe wird sowohl ausgehend von dem im Oberbegriff des Patentanspruches 1 definierten Verfahren durch die im Kennzeichen des Patentanspruches 1 angegebenen Merkmale als auch ausgehend von der im Oberbegriff des Patentanspruches 9 definierten Vorrichtung durch die im Kennzeichen des Patentanspruches 9 angegebenen Merkmale gelöst.
  • Die die Erfindung ausmachende Idee besteht darin, die Wiedergabe der in dem elektroakustischen Wandler abgegebenen tiefen Frequenzen bzw. Bässe durch das Verstärken der schon im Audiosignal enthaltenen harmonischen Oberwellen so im Sinne einer Simulation zu steuern, dass der Hörer eine verbesserte Basswiedergabe empfindet bzw. wahrnimmt. Die Steuerung bzw. Simulation kann dabei sowohl digital (Anspruch 1), durch ein Programmmodul im Digitalen Signal-Prozessor DSP des elektronischen Gerätes zur Aus- und/oder Wiedergabe von Audiosignalen mit dem elektroakustischen Wandler, als auch analog (Anspruch 9), durch eine Hardware-Schaltung zwischen dem Digital/Analog-Wandler und dem Endverstärker des elektronischen Gerätes zur Aus- und/oder Wiedergabe von Audiosignalen mit dem elektroakustischen Wandler, erfolgen.
  • Mit dem Programmmodul und der Hardware-Schaltung werden nur die harmonischen Oberwellen verstärkt, die sich oberhalb der Resonanzfrequenz des elektroakustischen Wandlers, insbesondere des Lautsprechers, befinden, um die Wahrnehmung der Grundfrequenz zu simulieren. Die Extraktion bzw. Isolierung der harmonischen Oberwellen wird beim Programmmodul durch Bandpassfilterung und bei der Hardware-Schaltung mittels eines Bandpassfilters erreicht, während die Verstärkung der Oberwellen gesteuert durch einen Verstärkungsfaktor in dem Programmmodul softwaregestützt und in der Hardware-Schaltung in einem dafür entsprechend ausgebildeten verstärkungsfaktorgesteuerten Verstärker (engl.: Gain Controlled Amplifier) abläuft. Der Verstärkungsfaktor wird vorzugsweise von Frequenzkomponenten des Audiosignals unterhalb der Resonanzfrequenz bzw. Grenzfrequenz des elektroakustischen Wandlers gesteuert.
  • Der Vorteil des Verfahrens gemäß Anspruch 1 liegt darin, dass die Verstärkung der im Audiosignal vorhandenen harmonischen Original-Oberwellen eine deutliche bessere Qualität des im Digitalen Signal-Prozessor erzeugten modifizierten Audiosignals gewährleistet. Dadurch werden insbesondere Verzerrungen des Audiosignals vermieden. Außerdem stellt das erfindungsgemäße Verfahren geringere Anforderungen hinsichtlich der Rechnerleistung und des Speicherbedarfs im Digitalen Signal-Prozessor.
  • Vorteilhafte Weiterbildungen der Erfindung sind in den Unteransprüchen angegeben.
  • So ist es nach Anspruch 2 iVm Anspruch 4 von Vorteil, wenn bei der Verwendung eines "Finite Impulse Response"-Filters - im Unterschied zu der Verwendung eines "Infinite Impulse Response"-Filter gemäß Anspruch 3 - das mit den verstärkten Frequenzkomponenten zu kombinierende Audiosignal gepuffert wird, um für die Kombination aufgrund der Verwendung des FIR-Filters vorhandene Phasenverschiebungen zwischen der verstärkten Frequenzkomponenten und dem Audiosignal zu kompensieren.
  • Nach den Ansprüchen 7 und 10 ist es vorteilhaft, wenn zur Verbesserung der Qualität des vom elektroakustischen Wandler abgegebenen modifizierten Audiosignals das modifizierte Audiosignal zur Verstärkung von ausgewählten Frequenzen gefiltert wird.
  • Zwei Ausführungsbeispiele der Erfindung werden anhand der FIGUREN 2 bis 7 erläutert. Es zeigen:
    • FIGUR 2 die digitale Implementierung des erfindungsgemäßen Verfahrens in Form eines Programmmoduls in einem Digitalen Signal-Prozessor eines elektronischen Funkgerätes zur Aus- und/oder Wiedergabe von Audiosignalen,
    • FIGUR 3 die analoge Implementierung der erfindungsgemäßen Vorrichtung in das Hardware-Konzept eines elektronischen Funkgerätes zur Aus- und/oder Wiedergabe von Audiosignalen,
    • FIGUR 4 eine erste Realisierungsform des Programmmoduls nach FIGUR 2,
    • FIGUR 5 eine zweite Realisierungsform des Programmmoduls nach FIGUR 2,
    • FIGUR 6 eine dritte Realisierungsform des Programmmoduls nach FIGUR 2,
    • FIGUR 7 eine Realisierungsform der Steuerungsvorrichtung nach FIGUR 3.
  • FIGUR 2 zeigt als zweites Ausführungsbeispiel in Form eines Funktions- oder Blockschaltbildes die Sprachverarbeitungsstrecke in einem Funkgerät FG zur Aus- und/oder Wiedergabe von Audiosignalen, insbesondere Sprachsignalen, bei dem die Erfindung in einem Programmmodul PGM eines Digitalen Signal-Prozessors DSP implementiert ist (digitale Implementierung). Das Funkgerät FG empfängt über eine Antenne ANT ein analoges Funksignal FS, auf dem eine kodierte Sprachinformation aufmoduliert ist. In einem Empfänger EMP unterstützt von einem Mikroprozessor MP und einem Analog-Digital-Wandler ADW wird aus dem modulierten codierten analogen Funksignal FS ein digitales demoduliertes Signal DDS erzeugt. Dieses digitale demodulierte Signal DDS wird danach einem Sprachdekodierer SDK des Digitalen Signal-Prozessors DSP zugeführt. In dem Sprachdekodierer SDK wird aus dem digitalen demodulierten Signal DDS ein Sprachsignal oder - ganz allgemein formuliert - ein Audiosignal AS erzeugt. Dieses Audiosignal AS wird anschließend dem Programmmodul zur Steuerung der Basswiedergabe von Audiosignalen in elektroakustischen Wandlern PGM des Digitalen Signal-Prozessors DSP zugeführt. In dem Programmmodul PGM des digitalen Signal-Prozessors DSP wird aus dem Audiosignal AS ein modifiziertes Audiosignal MAS generiert, das dann im weiteren von einem Filter FIL des Digitalen Signal-Prozessors DSP gefiltert wird. Das gefilterte modifizierte Audiosignal MAS wird schließlich auf einen Digital-Analog-Wandler DAW gegeben und danach in einem Endverstärker EVS verstärkt, bevor die in dem modifizierten Audiosignal MAS enthaltene Sprachinformation von einem elektroakustischen Wandler EAS, der vorzugsweise als Lautsprecher ausgebildet ist, ausgegeben wird.
  • FIGUR 3 zeigt als zweites Ausführungsbeispiel in Form eines Funktions- oder Blockschaltbildes die Sprachverarbeitungsstrecke in dem Funkgerät FG, bei dem die Erfindung im Unterschied zu FIGUR 2 außerhalb des Digitalen Signal-Prozessors DSP im Analogteil des Funkgerätes FG in einer Vorrichtung zur Steuerung des Basswiedergabe von Audiosignalen in elektroakustischen Wandlern STV implementiert ist (analoge Implementierung). Die Sprachsignalverarbeitung in dem Funkgerät FG beginnt wiederum damit, dass das analoge Funksignal FS, auf dem eine kodierte Sprachinformation aufmoduliert ist, über die Antenne ANT dem Empfänger EMP zugeführt wird. In dem Empfänger EMP wird wiederum unterstützt durch den Mikroprozessor MP und den Analog-Digital-Wandler ADW aus dem analogen Funksignal FS wiederum das digitale demodulierte Signal DDS erzeugt. Dieses digitale demodulierte Signal DDS wird anschließend wieder dem Sprachdekodierer SDK in dem Digitalen Signal-Prozessor DSP zugeführt. In dem Sprachdecodierer SDK wird aus dem digitalen demodulierten Signal DDS wieder das dekodierte Sprachsignal oder ganz allgemein das dekodierte Audiosignal AS gewonnen. Dieses Audiosignal AS wird anschließend in dem Filter FIL des Digitalen Signal-Prozessors DSP gefiltert, bevor das gefilterte Audiosignal in dem Digital-Analog-Wandler DAW entsprechend gewandelt wird. Das gewandelte Audiosignal AS wird anschließend der Vorrichtung zur Steuerung der Basswiedergabe von Audiosignalen in elektroakustischen Wandlern STV zugeführt, wo aus dem Audiosignal AS ein modifiziertes Audiosignal MAS generiert wird. Das modifizierte Audiosignal MAS wird im Anschluss daran in dem Endverstärker EVS verstärkt, bevor die in dem modifizierten Audiosignal MAS enthaltene Sprachinformation über den elektroakustischen Wandler EAW, der wieder vorzugsweise als Lautsprecher ausgebildet ist, ausgegeben wird.
  • FIGUR 4 zeigt eine erste Realisierungsform des Programmmoduls PGM gemäß der FIGUR 2. Das Audiosignal AS wird zur Isolation einer ersten Frequenzkomponente FK mit einem mittels Software realisierten Bandpassfilter BPF bandpassgefiltert und zur Isolation einer zweiten Frequenzkomponente FK' mit einem mittels Software realisierten Tiefpassfilter TPF tiefpassgefiltert. Während die erste Frequenzkomponente FK verstärkt wird, wird mit der zweiten Frequenzkomponente FK' ein die Verstärkung der ersten Frequenzkomponente FK bestimmender Verstärkungsfaktor VF erzeugt.
  • Anstelle des Tiefpassfilters TPF kann alternativ auch ein weiteres mittels Software realisiertes Bandpassfilter oder sogar das die erste Frequenzkomponente FK erzeugende Bandpassfilter BPF verwendet werden. Im letztgenannten Fall wären die beiden Frequenzkomponenten FK, FK' gleich (FK=FK').
  • Das Bandpassfilter BPF ist vorzugsweise als Finite Impulse Response"-Filter (FIR-Filter) FIR-F oder alternativ als "Infinite Impulse Response "-Filter (IIR-Filter) IIR-F ausgebildet. Ist das Bandpassfilter BPF als Finite Impulse Response"-Filter FIR-F ausgebildet, enthält das Programmmodul PGM zur Pufferung des Audiosignals AS einen Zwischenspeicher ZWS. Dieser Zwischenspeicher ZWS ist dann, wenn das Bandpassfilter BPF als Infinite Impulse Response"-Filter IIR-F ausgebildet ist, nicht erforderlich. Um dieses zu in der FIGUR 4 darzustellen, ist der Zwischenspeicher ZWS als gestrichelter Block dargestellt.
  • Das bandpassgefilterte Audiosignal FK bzw. die mit dem Bandpassfilter BPF isolierte Frequenzkomponente FK wird zur deren Verstärkung an den Eingang eines mit dem Verstärkungsfaktor VF steuerbaren mittels Software realisierten Verstärker VS gelegt. Für die Ermittlung des Verstärkungsfaktor VF sind in dem Programmmodul PGM mittels Software realisierte Mittel zur Berechnung von Signaleinhüllende und/oder Signalenergie MBSE vorhanden, die aus dem tiefpassgefilterten Audiosignal FK' eine Eingangsgröße für ebenfalls mittels Software realisierte Mittel zur Berechnung des Verstärkungsfaktors MBVF des Programmmoduls PGM liefern. Die Berechnungsmittel MBVF liefern dann den Verstärkungsfaktor VF, mit dem der Verstärker VS steuerbar ist. Am Ausgang des Verstärkers VS liegt somit ein mit dem Verstärkungsfaktor VF verstärktes bandpassgefiltertes Audiosignal VSFK an. Dieses verstärkte bandpassgefilterte Audiosignal VSFK und das Audiosignal AS, das gegebenenfalls zwischengespeichert worden ist, werden im weiteren mit Hilfe von vorzugsweise als Additionsmittel ausgebildeten, mittels Software realisierten Kombinationsmittel KM des Programmmoduls PGM kombiniert bzw. addiert. Infolge dieser Operation entsteht das modifizierte Audiosignal MAS, das vorzugsweise zur Verbesserung der Signalqualität mit einem mittels Software realisierten Präsenzfilter PRF gefiltert wird. Es ist aber auch möglich, dass das modifizierte Audiosignal MAS, wie bei der Beschreibung der FIGUR 2 erläutert, ohne weitere Filterung durch das Präsenzfilter PRF dem Filter FIL zugeführt wird.
  • FIGUR 5 zeigt ausgehend von FIGUR 4 eine zweite Realisierungsform des Programmmoduls PGM gemäß der FIGUR 2. Das Audiosignal AS wird zur Isolation der ersten Frequenzkomponente FK wieder mit dem Bandpassfilter BPF bandpassgefiltert und zur Isolation der zweiten Frequenzkomponente FK' mit dem Tiefpassfilter TPF tiefpassgefiltert. Während die erste Frequenzkomponente FK wieder verstärkt wird, wird mit der zweiten Frequenzkomponente FK' wieder der die Verstärkung der ersten Frequenzkomponente FK bestimmende Verstärkungsfaktor VF erzeugt.
  • Anstelle des Tiefpassfilters TPF kann wiederum alternativ auch ein weiteres Bandpassfilter oder sogar das die erste Frequenzkomponente FK erzeugende Bandpassfilter BPF verwendet werden. Im letztgenannten Fall wären die beiden Frequenzkomponenten FK, FK' dann wieder gleich (FK=FK').
  • Das Bandpassfilter BPF ist wieder vorzugsweise als Finite Impulse Response "-Filter (FIR-Filter) FIR-F oder alternativ als "Infinite Impulse Response "-Filter (IIR-Filter) IIR-F ausgebildet. Ist das Bandpassfilter BPF als Finite Impulse Response "-Filter FIR-F ausgebildet, enthält das Programmmodul PGM wieder zur Pufferung des Audiosignals AS den Zwischenspeicher ZWS. Dieser Zwischenspeicher ZWS ist dann wieder, wenn das Bandpassfilter BPF als Infinite Impulse Response"-Filter IIR-F ausgebildet ist, nicht erforderlich. Um dieses zu in der FIGUR 5 darzustellen, ist der Zwischenspeicher ZWS als gestrichelter Block dargestellt.
  • Das bandpassgefilterte Audiosignal FK bzw. die mit dem Bandpassfilter BPF isolierte Frequenzkomponente FK wird wie in der FIGUR 4 zur deren Verstärkung an den Eingang eines mit dem Verstärkungsfaktor VF steuerbaren Verstärker VS gelegt. Für die Ermittlung des Verstärkungsfaktor VF sind in dem Programmmodul PGM wieder die Mittel zur Berechnung von Signaleinhüllende und/oder Signalenergie MBSE vorhanden, die aus dem tiefpassgefilterten Audiosignal FK' wieder eine Eingangsgröße für die Mittel zur Berechnung des Verstärkungsfaktors MBVF des Programmmoduls PGM liefern.
  • In der Realisierungsform des Programmmoduls PGM gemäß der FIGUR 5 wird im Unterschied zu der gemäß der FIGUR 4 den Berechnungsmitteln MBVF eine weitere Eingangsgröße zugeführt, die von weiteren Mitteln zur Berechnung von Signaleinhüllende und/oder Signalenergie MBSE stammt. Die weitere Eingangsgröße wird von den Berechnungsmitteln MBSE aus dem ungefilterten Audiosignal AS berechnet.
  • Die Berechnungsmittel MBVF liefern dann aus diesen beiden Eingangsgrößen den Verstärkungsfaktor VF, mit dem der Verstärker VS wieder steuerbar ist. Am Ausgang des Verstärkers VS liegt somit wieder das mit dem Verstärkungsfaktor VF verstärkte bandpassgefilterte Audiosignal VSFK an. Dieses verstärkte bandpassgefilterte Audiosignal VSFK und das Audiosignal AS, das gegebenenfalls zwischengespeichert worden ist, werden im weiteren wieder mit Hilfe der vorzugsweise wieder als Additionsmittel ausgebildeten Kombinationsmittel KM des Programmmoduls PGM kombiniert bzw. addiert. Infolge dieser Operation entsteht das modifizierte Audiosignal MAS, das vorzugsweise zur Verbesserung der Signalqualität wieder mit dem Präsenzfilter PRF gefiltert wird. Es ist aber auch wieder möglich, dass das modifizierte Audiosignal MAS, wie bei der Beschreibung der FIGUR 2 erläutert, ohne weitere Filterung durch das Präsenzfilter PRF dem Filter FIL zugeführt wird.
  • FIGUR 6 zeigt ausgehend von FIGUR 4 eine dritte Realisierungsform des Programmmoduls PGM gemäß der FIGUR 2. Das Audiosignal AS wird zur Isolation der ersten Frequenzkomponente FK erneut mit dem Bandpassfilter BPF bandpassgefiltert und zur Isolation der zweiten Frequenzkomponente FK' erneut mit dem Tiefpassfilter TPF tiefpassgefiltert. Während die erste Frequenzkomponente FK wieder verstärkt wird, wird mit der zweiten Frequenzkomponente FK' erneut der die Verstärkung der ersten Frequenzkomponente FK bestimmende Verstärkungsfaktor VF erzeugt.
  • Anstelle des Tiefpassfilters TPF kann erneut alternativ auch ein weiteres Bandpassfilter oder sogar das die erste Frequenzkomponente FK erzeugende Bandpassfilter BPF verwendet werden. Im letztgenannten Fall wären die beiden Frequenzkomponenten FK, FK' gleich (FK=FK').
  • Das Bandpassfilter BPF ist erneut vorzugsweise als Finite Impulse Response"-Filter (FIR-Filter) FIR-F oder alternativ als "Infinite Impulse Response"-Filter (IIR-Filter) IIR-F ausgebildet. Ist das Bandpassfilter BPF als Finite Impulse Response"-Filter FIR-F ausgebildet, enthält das Programmmodul PGM erneut zur Pufferung des Audiosignals AS den Zwischenspeicher ZWS. Dieser Zwischenspeicher ZWS ist dann erneut, wenn das Bandpassfilter BPF als Infinite Impulse Response "-Filter IIR-F ausgebildet ist, nicht erforderlich. Um dieses zu in der FIGUR 6 darzustellen, ist der Zwischenspeicher ZWS als gestrichelter Block dargestellt.
  • Das bandpassgefilterte Audiosignal FK bzw. die mit dem Bandpassfilter BPF isolierte Frequenzkomponente FK wird wie in den FIGUREN 4 und 5 zur deren Verstärkung an den Eingang des mit dem Verstärkungsfaktor VF steuerbaren Verstärker VS gelegt. Für die Ermittlung des Verstärkungsfaktor VF sind in dem Programmmodul PGM erneut die Mittel zur Berechnung von Signaleinhüllende und/oder Signalenergie MBSE vorhanden, die aus dem tiefpassgefilterten Audiosignal FK' eine Eingangsgröße für Mittel zur Berechnung des Verstärkungsfaktors MBVF des Programmmoduls PGM liefern.
  • In der Realisierungsform des Programmmoduls PGM gemäß der FIGUR 6 wird im Unterschied zu der gemäß der FIGUR 4 den Berechnungsmitteln MBVF eine weitere Eingangsgröße zugeführt, die von weiteren Mitteln zur Berechnung von Signaleinhüllende und/oder Signalenergie MBSE stammt. Die weitere Eingangsgröße wird im Unterschied zu der gemäß der FIGUR 5 von den Berechnungsmitteln MBSE aus dem bandpassgefilterten Audiosignal FK berechnet.
  • Die Berechnungsmittel MBVF liefern dann aus diesen beiden Eingangsgrößen den Verstärkungsfaktor VF, mit dem der Verstärker VS steuerbar ist. Am Ausgang des Verstärkers VS liegt somit erneut das mit dem Verstärkungsfaktor VF verstärkte bandpassgefilterte Audiosignal VSFK an. Dieses verstärkte bandpassgefilterte Audiosignal VSFK und das Audiosignal AS, das gegebenenfalls zwischengespeichert worden ist, werden im weiteren erneut mit Hilfe der vorzugsweise als Additionsmittel ausgebildeten Kombinationsmittel KM des Programmmoduls PGM kombiniert bzw. addiert. Infolge dieser Operation entsteht erneut das modifizierte Audiosignal MAS, das vorzugsweise erneut zur Verbesserung der Signalqualität mit dem Präsenzfilter PRF gefiltert wird. Es ist aber auch erneut möglich, dass das modifizierte Audiosignal MAS, wie bei der Beschreibung der FIGUR 2 erläutert, ohne weitere Filterung durch das Präsenzfilter PRF dem Filter FIL zugeführt wird.
  • FIGUR 7 zeigt eine Realisierungsform des Steuerungsvorrichtung STV gemäß der FIGUR 3. Das Audiosignal AS wird zur Isolation der ersten Frequenzkomponente FK mit einem als Hardware-Baustein ausgebildeten Bandpassfilter BPF1 bandpassgefiltert und zur Isolation der zweiten Frequenzkomponente FK' mit einem als Hardware-Baustein ausgebildeten Tiefpassfilter TPF1 tiefpassgefiltert. Während die erste Frequenzkomponente FK verstärkt wird, wird mit der zweiten Frequenzkomponente FK' der die Verstärkung der ersten Frequenzkomponente FK bestimmender Verstärkungsfaktor VF erzeugt.
  • Anstelle des Tiefpassfilters TPF1 kann alternativ auch ein weiteres als Hardware-Baustein ausgebildetes Bandpassfilter oder sogar das die erste Frequenzkomponente FK erzeugende Bandpassfilter BPF1 verwendet werden. Im letztgenannten Fall wären die beiden Frequenzkomponenten FK, FK' gleich (FK=FK').
  • Das bandpassgefilterte Audiosignal FK bzw. die mit dem Bandpassfilter BPF1 isolierte Frequenzkomponente FK wird zur deren Verstärkung an den Eingang eines mit dem Verstärkungsfaktor VF steuerbaren als Hardware-Baustein ausgebildeten Verstärker VS1 gelegt. Für die Ermittlung des Verstärkungsfaktor VF sind in der Steuerungsvorrichtung STV als Hardware-Baustein ausgebildete Mittel zur Berechnung von Signaleinhüllende und/oder Signalenergie MBSE1 vorhanden, die vorzugsweise aus der Serienschaltung von einem Gleichrichter GLR und einem weiteren Tiefpassfilter TPF2 bestehen und die aus dem tiefpassgefilterten Audiosignal FK' eine Eingangsgröße für ebenfalls als Hardware-Baustein ausgebildete Mittel zur Berechnung des Verstärkungsfaktors MBVF1 der Steuerungsvorrichtung STV liefern. Die Berechnungsmittel MBVF1 liefern dann den Verstärkungsfaktor VF, mit dem der Verstärker VS1 steuerbar ist. Am Ausgang des Verstärkers VS1 liegt somit ein mit dem Verstärkungsfaktor VF verstärktes bandpassgefiltertes Audiosignal VSFK an. Dieses verstärkte bandpassgefilterte Audiosignal VSFK und das Audiosignal AS werden im weiteren mit Hilfe von vorzugsweise als Additionsmittel und als Hardware-Baustein ausgebildeten Kombinationsmittel KM1 der Steuerungsvorrichtung STV kombiniert bzw. addiert. Infolge dieser Operation entsteht das modifizierte Audiosignal MAS, das vorzugsweise zur Verbesserung der Signalqualität mit einem als Hardware-Baustein ausgebildeten Präsenzfilter PRF1 gefiltert wird. Es ist aber auch möglich, dass das modifizierte Audiosignal MAS, wie bei der Beschreibung der FIGUR 3 erläutert, ohne weitere Filterung durch das Präsenzfilter PRF dem Endverstärker EVS zugeführt wird.

Claims (11)

  1. Verfahren zur Steuerung der Basswiedergabe von Audiosignalen in elektroakustischen Wandlern, bei dem
    a) Frequenzkomponenten (FK, FK') des Audiosignals (AS) isoliert und mit einem auf der Basis des Audiosignales (AS) berechneten Verstärkungsfaktor (VF) verstärkt werden (VS, VS1),
    b) die verstärkten Frequenzkomponenten (VSFK) des Audiosignals (AS) und das Audiosignal (AS) derart kombiniert werden (KM, KM1), dass ein modifiziertes Audiosignal (MAS) entsteht,
    c) das modifizierte Audiosignal (MAS) dem elektroakustischen Wandler (EAW) zugeführt wird,
    dadurch gekennzeichnet, dass
    d) das Audiosignal (AS) zur Isolation und Verstärkung von ersten Frequenzkomponenten (FK) bandpassgefiltert wird (BPF, BPF1),
    e) zur Berechnung (MBVF, MBVF1) des Verstärkungsfaktors (VF)
    e1) das Audiosignal (AS) zur Isolation von zweiten Frequenzkomponenten (FK') tiefpass- und/oder bandpassgefiltert wird (BPF, BPF1, TPF, TPF1),
    e2) die Einhüllende und/oder die Energie des ungefilterten, tiefpassgefilterten und/oder bandpassgefilterten Audiosignals (AS, FK') berechnet wird (MBSE, MBSE1).
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass
    die Bandpassfilterung mit einem "Finite Impulse Response"-Filter (FIR-F) durchgeführt wird.
  3. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass
    die Bandpassfilterung mit einem "Infinite Impulse Response"-Filter (IIR-F) durchgeführt wird.
  4. Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass
    das mit den verstärkten Frequenzkomponenten (VFK) zu kombinierende Audiosignal (AS) gepuffert wird (ZWS).
  5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass
    die Bandpassfilterung für die Isolierung und Verstärkung der Frequenzkomponenten und für die Berechnung des Verstärkungsfaktors mit einem einzigen Bandpassfilter (BPF, BPF1) vorgenommen wird.
  6. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass
    die Bandpassfilterung für die Isolierung und Verstärkung der Frequenzkomponenten mit einem Bandpassfilter (BPF, BPF1) und die Bandpassfilterung für die Berechnung des Verstärkungsfaktors mit einem weiteren Bandpassfilter vorgenommen wird.
  7. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass
    das modifizierte Audiosignal (MAS) zur Verstärkung von ausgewählten Frequenzen gefiltert wird (PRF, PRF1).
  8. Verfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass
    das Verfahren in einem elektronischen Gerät zur Aus- und/oder Wiedergabe von Audiosignalen abläuft.
  9. Vorrichtung zur Steuerung der Basswiedergabe in elektroakustischen Wandlern, bei der
    (a) Isoliermittel (BPF, BPF1, TPF, TPF1) vorhanden sind, bei denen am Eingang das Audiosignal (AS) anliegt und die Frequenzkomponenten (FK, FK') des Audiosignals (AS) isolieren,
    (b) Berechnungsmittel (MBVF, MBVF1) vorhanden sind, die auf der Basis des Audiosignals (AS) einen Verstärkungsfaktor (VF) berechnen,
    (c) ein Verstärker (VS, VS1) vorhanden ist, der mit den Isolier- und Berechnungsmitteln derart verbunden ist, dass die Frequenzkomponenten (FK, FK') des Audiosignals (AS) mit dem berechneten Verstärkungsfaktor (VF) verstärkt werden,
    (d) Kombinationsmittel (KM, KM1) vorhanden sind, bei denen am Eingang das Audiosignal (AS) und die verstärkten Frequenzkomponenten (VSFK) des Audiosignals (AS) anliegen und die das Audiosignal (AS) und die verstärkten Frequenzkomponenten (VSFK) des Audiosignals (AS) derart kombinieren, dass am Ausgang der Kombinationsmittel (KM, KM1) ein für den elektroakustischen Wandler (EAW) bestimmtes modifiziertes Audiosignal (MAS) anliegt,
    dadurch gekennzeichnet, dass
    (e) mindestens ein Bandpassfilter (BPF, BPF1) oder jeweils mindestens ein Bandpassfilter (BPF, BPF1) und Tiefpassfilter (TPF, TPF1) zur Isolation einer ersten Frequenzkomponenten (FK) und einer zweiten Frequenzkomponente (FK') des Audiosignals (AS) vorhanden ist,
    (f) von den Bandpassfiltern (BPF, BPF1) ein Bandpassfilter zur Isolation der ersten Frequenzkomponente (FK) ausgangsseitig mit dem Verstärker (VS, VS1) verbunden ist
    (g) Mittel zur Berechnung von Signaleinhüllende und/oder Signalenergie (MBSE, MBSE1) vorhanden sind, bei denen eingangsseitig das ungefilterte, tiefpassgefilterte und/oder bandpassgefilterte Audiosignal (AS, FK') anliegt,
    (h) die Berechnungsmittel (MBVF, MBVF1) zur Berechnung des Verstärkungsfaktors (VF) eingangsseitig mit den Mitteln zur Berechnung der Signaleinhüllende und/oder Signalenergie (MBSE, MBSE1) und ausgangsseitig zur Einstellung des Verstärkungsfaktors (VF) mit dem Verstärker (VS, VS1) verbunden sind.
  10. Vorrichtung nach Anspruch 9, dadurch gekennzeichnet, dass
    ein Präsenzfilter (PRF, PRF1) zur Verstärkung von ausgewählten Frequenzen des modifizierten Audiosignals (MAS) vorhanden ist.
  11. Vorrichtung nach Anspruch 9 oder 10, dadurch gekennzeichnet, dass
    die Vorrichtung in einem elektronischen Gerät zur Aus- und/oder Wiedergabe von Audiosignalen integriert oder enthalten ist.
EP01980187A 2001-09-21 2001-09-21 Verfahren und vorrichtung zur steuerung der basswiedergabe von audiosignalen in elektroakustischen wandlern Expired - Lifetime EP1428411B2 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/DE2001/003653 WO2003028405A1 (de) 2001-09-21 2001-09-21 Verfahren und vorrichtung zur steuerung der basswiedergabe von audiosignalen in elektroakustischen wandlern

Publications (3)

Publication Number Publication Date
EP1428411A1 EP1428411A1 (de) 2004-06-16
EP1428411B1 true EP1428411B1 (de) 2007-06-20
EP1428411B2 EP1428411B2 (de) 2011-11-30

Family

ID=5648291

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01980187A Expired - Lifetime EP1428411B2 (de) 2001-09-21 2001-09-21 Verfahren und vorrichtung zur steuerung der basswiedergabe von audiosignalen in elektroakustischen wandlern

Country Status (6)

Country Link
US (1) US7574009B2 (de)
EP (1) EP1428411B2 (de)
CN (1) CN1274184C (de)
DE (1) DE50112650D1 (de)
HK (1) HK1069705A1 (de)
WO (1) WO2003028405A1 (de)

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1665878A1 (de) * 2003-09-16 2006-06-07 Koninklijke Philips Electronics N.V. Hocheffizienter audiowandler
WO2005027569A1 (en) * 2003-09-16 2005-03-24 Koninklijke Philips Electronics N.V. High efficiency audio reproduction
KR101104920B1 (ko) * 2003-09-16 2012-01-12 코닌클리케 필립스 일렉트로닉스 엔.브이. 오디오 주파수 범위 적응
EP1519619B1 (de) * 2003-09-25 2010-11-03 Sony Ericsson Mobile Communications AB Lautsprecherempfindliches Tonwiedergabesystem
US7826626B2 (en) * 2004-09-07 2010-11-02 Audyssey Laboratories, Inc. Cross-over frequency selection and optimization of response around cross-over
US7720237B2 (en) * 2004-09-07 2010-05-18 Audyssey Laboratories, Inc. Phase equalization for multi-channel loudspeaker-room responses
CN101375629A (zh) * 2006-01-27 2009-02-25 皇家飞利浦电子股份有限公司 用于使音频信号适配于换能器单元的设备和方法
JP2008263583A (ja) * 2007-03-16 2008-10-30 Sony Corp 低域増強方法、低域増強回路および音響再生システム
US7991171B1 (en) * 2007-04-13 2011-08-02 Wheatstone Corporation Method and apparatus for processing an audio signal in multiple frequency bands
CN101262662B (zh) * 2007-06-29 2011-02-09 浙江华立通信集团有限公司 用于3g和4g终端的音调生成方法及装置
US20100189283A1 (en) * 2007-07-03 2010-07-29 Pioneer Corporation Tone emphasizing device, tone emphasizing method, tone emphasizing program, and recording medium
US20090216352A1 (en) * 2008-02-22 2009-08-27 Sony Ericsson Mobile Communications Ab Method for providing an improved music experience
CN101505443B (zh) * 2009-03-13 2013-12-11 无锡中星微电子有限公司 一种虚拟重低音增强方法及系统
US20130114816A1 (en) * 2010-01-04 2013-05-09 Noel Lee Audio Coupling System
US8705764B2 (en) 2010-10-28 2014-04-22 Audyssey Laboratories, Inc. Audio content enhancement using bandwidth extension techniques
EP2777296A4 (de) 2011-11-10 2015-06-03 Zound Ind Int Ab Audiozubehör mit einem kopfhörer mit getrennten steckdosen
US9379777B2 (en) * 2012-05-07 2016-06-28 Nokia Technologies Oy Near field communication circuitry used for hearing aid compatibility
US20140372110A1 (en) * 2013-02-15 2014-12-18 Max Sound Corporation Voic call enhancement
US20150006180A1 (en) * 2013-02-21 2015-01-01 Max Sound Corporation Sound enhancement for movie theaters
US9247342B2 (en) 2013-05-14 2016-01-26 James J. Croft, III Loudspeaker enclosure system with signal processor for enhanced perception of low frequency output
US9794688B2 (en) 2015-10-30 2017-10-17 Guoguang Electric Company Limited Addition of virtual bass in the frequency domain
US10405094B2 (en) * 2015-10-30 2019-09-03 Guoguang Electric Company Limited Addition of virtual bass
US9794689B2 (en) 2015-10-30 2017-10-17 Guoguang Electric Company Limited Addition of virtual bass in the time domain
US10893362B2 (en) 2015-10-30 2021-01-12 Guoguang Electric Company Limited Addition of virtual bass
GB2555842A (en) 2016-11-11 2018-05-16 Eartex Ltd Auditory device assembly
DE102017212431A1 (de) * 2017-07-20 2019-01-24 Robert Bosch Gmbh Verfahren und Vorrichtung zur Verarbeitung eines Signals
CN109996151A (zh) * 2019-04-10 2019-07-09 上海大学 一种基于瞬稳态信号分离混合虚拟低音增强处理方法
CN110536216B (zh) * 2019-09-05 2021-04-06 长沙市回音科技有限公司 一种基于插值处理的均衡参数匹配方法、装置、终端设备及存储介质

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2403684A1 (fr) * 1977-09-01 1979-04-13 Serac Sa Separateur amplificateur de registre grave pour systemes audio
US4182930A (en) 1978-03-10 1980-01-08 Dbx Inc. Detection and monitoring device
US4454609A (en) * 1981-10-05 1984-06-12 Signatron, Inc. Speech intelligibility enhancement
EP0546619B1 (de) 1991-12-09 1998-09-23 Koninklijke Philips Electronics N.V. Schaltung zur Mischung und Verdoppelung von niedrigen Tonfrequenzen
US6885752B1 (en) * 1994-07-08 2005-04-26 Brigham Young University Hearing aid device incorporating signal processing techniques
US6072885A (en) * 1994-07-08 2000-06-06 Sonic Innovations, Inc. Hearing aid device incorporating signal processing techniques
US5661808A (en) * 1995-04-27 1997-08-26 Srs Labs, Inc. Stereo enhancement system
TW343417B (en) * 1996-05-08 1998-10-21 Philips Eloctronics N V Circuit, audio system and method for processing signals, and a harmonics generator
US5930373A (en) * 1997-04-04 1999-07-27 K.S. Waves Ltd. Method and system for enhancing quality of sound signal
US6285767B1 (en) 1998-09-04 2001-09-04 Srs Labs, Inc. Low-frequency audio enhancement system
DE69919506T3 (de) 1998-09-08 2008-06-19 Koninklijke Philips Electronics N.V. Mittel zur hervorhebung der bassfrequenz in einem audiosystem
DE19928420A1 (de) 1999-06-23 2000-12-28 Micronas Gmbh Verfahren zur Verarbeitung eines Audiosignals
IT1313298B1 (it) * 1999-09-28 2002-07-17 Italtel Spa Metodo di calcolo dei coefficienti di un filtro fir che integra lefunzioni di interpolazione, di passa banda, e di equalizzazione della
WO2001056157A1 (en) * 2000-01-26 2001-08-02 Acoustic Technologies, Inc. Band pass filter from two filters

Also Published As

Publication number Publication date
EP1428411A1 (de) 2004-06-16
US20050002534A1 (en) 2005-01-06
US7574009B2 (en) 2009-08-11
EP1428411B2 (de) 2011-11-30
CN1274184C (zh) 2006-09-06
CN1550121A (zh) 2004-11-24
WO2003028405A1 (de) 2003-04-03
HK1069705A1 (en) 2005-05-27
DE50112650D1 (de) 2007-08-02

Similar Documents

Publication Publication Date Title
EP1428411B1 (de) Verfahren und vorrichtung zur steuerung der basswiedergabe von audiosignalen in elektroakustischen wandlern
DE112012006458B4 (de) Signalverarbeitungsvorrichtung
US6115475A (en) Capacitor-less crossover network for electro-acoustic loudspeakers
DE69922940T2 (de) Vorrichtung und verfahren zur kombinierung von audiokompression und rückkopplungsunterdrückung in einem hörgerät
DE69919506T2 (de) Mittel zur hervorhebung der bassfrequenz in einem audiosystem
US8565448B2 (en) Dynamic bass equalization with modified Sallen-Key high pass filter
EP1192837B1 (de) Verfahren zur verarbeitung eines audiosignales
WO2007119362A1 (ja) オーディオ回路
US20100266141A1 (en) Processing an Audio Signal
US6792115B1 (en) Apparatus for generating harmonics in an audio signal
WO1996031082A3 (en) Audio bass speaker driver circuit
DE10134927C1 (de) Filterschaltung und Verfahren zur Verarbeitung eines Audiosignals
US11638095B2 (en) Method and apparatus for improving effective signal-to-noise ratio of analog to digital conversion for multi-band digital signal processing devices
DE19832472A1 (de) Vorrichtung und Verfahren zur Beeinflussung eines Audiosignals in Abhängigkeit von Umgebungsgeräuschen
JP2000022473A (ja) 音声処理装置
EP1440603A2 (de) Gerät zur verstärkung von bass frequenzen
GB1579571A (en) Signal processing method and apparatus
RU2267867C2 (ru) Способ и устройство для управления воспроизведением басов аудиосигналов в электроакустических преобразователях
JPS5883415A (ja) 振幅制限装置
JP2001245399A (ja) 重低音補正システム及びこれを用いた音響装置
DE19601786C2 (de) Verfahren und Vorrichtung zur pneumatischen Gehörkurven-Linearisierung bei der Wiedergabe von Musik
JPS58103215A (ja) 振幅制御装置
EP1258169A2 (de) Infrabass
DE10139954A1 (de) Adaptives Filter gegen mechanische Schwingungen
DE19524843A1 (de) Verfahren und Vorrichtung zum Anpassen der Übertragungsfunktion einer elektroakustischen Wiedergabeanlage an die menschliche Gehörcharakteristik

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20040218

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

RIN1 Information on inventor provided before grant (corrected)

Inventor name: AUBAUER, ROLAND

Inventor name: KLINKE, STEFANO, AMBROSIUS

RIN1 Information on inventor provided before grant (corrected)

Inventor name: KLINKE, STEFANO, AMBROSIUS

Inventor name: AUBAUER, ROLAND

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT NL

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20070620

REF Corresponds to:

Ref document number: 50112650

Country of ref document: DE

Date of ref document: 20070802

Kind code of ref document: P

ET Fr: translation filed
PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

26 Opposition filed

Opponent name: MICRONAS GMBH

Effective date: 20080320

NLR1 Nl: opposition has been filed with the epo

Opponent name: MICRONAS GMBH

PLAF Information modified related to communication of a notice of opposition and request to file observations + time limit

Free format text: ORIGINAL CODE: EPIDOSCOBS2

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: GIGASET COMMUNICATIONS GMBH

NLT2 Nl: modifications (of names), taken from the european patent patent bulletin

Owner name: GIGASET COMMUNICATIONS GMBH

Effective date: 20090715

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

R26 Opposition filed (corrected)

Opponent name: MICRONAS GMBH

Effective date: 20080320

PLAY Examination report in opposition despatched + time limit

Free format text: ORIGINAL CODE: EPIDOSNORE2

PLBC Reply to examination report in opposition received

Free format text: ORIGINAL CODE: EPIDOSNORE3

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20101028 AND 20101103

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20100924

Year of fee payment: 10

PUAH Patent maintained in amended form

Free format text: ORIGINAL CODE: 0009272

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT MAINTAINED AS AMENDED

27A Patent maintained in amended form

Effective date: 20111130

AK Designated contracting states

Kind code of ref document: B2

Designated state(s): DE FR GB IT NL

REG Reference to a national code

Ref country code: DE

Ref legal event code: R102

Ref document number: 50112650

Country of ref document: DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R102

Ref document number: 50112650

Country of ref document: DE

Effective date: 20111130

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120921

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 50112650

Country of ref document: DE

Representative=s name: MICHALSKI HUETTERMANN & PARTNER PATENTANWAELTE, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 50112650

Country of ref document: DE

Owner name: GIGASET COMMUNICATIONS GMBH, DE

Free format text: FORMER OWNER: GIGASET COMMUNICATIONS GMBH, 81379 MUENCHEN, DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 16

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 17

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20180924

Year of fee payment: 18

Ref country code: DE

Payment date: 20180920

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20180919

Year of fee payment: 18

Ref country code: GB

Payment date: 20180919

Year of fee payment: 18

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50112650

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20191001

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200401

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191001

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20190921

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190930

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190921