EP1427053A1 - Coupleur directif - Google Patents

Coupleur directif Download PDF

Info

Publication number
EP1427053A1
EP1427053A1 EP03300244A EP03300244A EP1427053A1 EP 1427053 A1 EP1427053 A1 EP 1427053A1 EP 03300244 A EP03300244 A EP 03300244A EP 03300244 A EP03300244 A EP 03300244A EP 1427053 A1 EP1427053 A1 EP 1427053A1
Authority
EP
European Patent Office
Prior art keywords
coupler
capacitors
lines
terminals
iso
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP03300244A
Other languages
German (de)
English (en)
Other versions
EP1427053B1 (fr
Inventor
Hilal Ezzeddine
François DUPONT
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
STMicroelectronics SA
Original Assignee
STMicroelectronics SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by STMicroelectronics SA filed Critical STMicroelectronics SA
Publication of EP1427053A1 publication Critical patent/EP1427053A1/fr
Application granted granted Critical
Publication of EP1427053B1 publication Critical patent/EP1427053B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P5/00Coupling devices of the waveguide type
    • H01P5/12Coupling devices having more than two ports
    • H01P5/16Conjugate devices, i.e. devices having at least one port decoupled from one other port
    • H01P5/18Conjugate devices, i.e. devices having at least one port decoupled from one other port consisting of two coupled guides, e.g. directional couplers
    • H01P5/184Conjugate devices, i.e. devices having at least one port decoupled from one other port consisting of two coupled guides, e.g. directional couplers the guides being strip lines or microstrips
    • H01P5/185Edge coupled lines
    • H01P5/186Lange couplers

Definitions

  • the present invention relates to the field of couplers which are used to take part of a transmitted signal by a transmission line for, inter alia, measurement or enslavement.
  • the invention relates more particularly the domain of radio frequency couplers between an amplifier transmitter and antenna, especially applied to telephony mobile.
  • Figure 1 illustrates very schematically the general structure of a distributed coupler 1, i.e. transmission lines of the type to which this applies invention as opposed to localized element couplers inductive and capacitive.
  • the coupler 1 is inserted between an amplifier 2 (PA) for amplifying a Tx signal to be transmitted, and an antenna 3 resignation.
  • the role of the coupler 1 is to extract, between CPLD and ISO terminals of a secondary line 12, a proportional signal to the signal passing on a main line 11 of transmission, i.e. between IN and DIR terminals, respectively connected at the output of amplifier 2 and at the input of antenna 3.
  • the signal G extracted by the coupler 1 is used by a circuit 4 (DET), for example to control the power of amplifier 2 or to switch it off if necessary protection, for example if the antenna disappears 3.
  • DET a circuit 4
  • LNA low noise amplifier
  • the coupler in Figure 1 is a bidirectional coupler in that it detects a signal on the line transmission 11 in both directions: a direct signal (FWD) transiting from IN to DIR will be coupled to the CPLD output and a reverse signal (REV) flowing from DIR to IN will be coupled to ISO output.
  • FWD direct signal
  • REV reverse signal
  • a distributed coupler of the type shown in Figure 1 is characterized by its coupling and its directivity.
  • the coupling characterizes the difference between the amplitude of the signal main running on line 11 and the signal amplitude taken from line 12.
  • the directivity characterizes the difference between the amplitude of the FWD signal which results in a signal coming out of the CPLD terminal, and the amplitude of the REV signal flowing from DIR to IN which results in a signal coming out of the ISO terminal.
  • the greater the difference in amplitudes between the terminals CPLD and ISO the higher the directivity of the coupler high and the easier it is to detect a possible problem of antenna 3 resulting in a reflection of the signal carried by line 11.
  • the maximum amplitude of the coupled line would be present on the CPLD terminal and zero potential would be present on the ISO terminal.
  • the potential of the ISO terminal is not zero, but is generally attenuated in the range of -30 dB by compared to the potential of the DIR terminal.
  • the CPLD terminal reproduces an attenuated signal in the range of -15 to -20 dB by relative to the signal passing from the IN terminal to the DIR terminal.
  • the directivity of a conventional coupler is in the range of -10 to -15 dB (-30 - (- 20)) to -30 - (- 15)).
  • FIG. 2 represents a classic example of a coupler 10 with improved directivity.
  • This distributed type coupler has two conductive lines 11 and 12 and two capacitors Cp connecting the IN and CPLD terminals respectively and the terminals DIR and ISO.
  • Such capacitors increase the directivity of the coupler by bringing the values of the line impedances from each other.
  • one drawback prohibitive of such a solution is that at frequencies of several hundred MHz, the values of the capacitors are very weak, (around femtofarad). In practice, such values make realization almost impossible in the measurement where the values of the capacitors Cp approach the parasitic capacitance values which cannot then be neglected.
  • the characteristics of the coupler deteriorate strongly as soon as we deviate from the chosen values, depending of the coupler bandwidth, for capacitors Cp.
  • the present invention aims to provide a coupler with distributed lines with improved directivity.
  • the invention aims in particular to propose a coupler radio frequencies not requiring the use of capacitors very low values (of the order of fF).
  • the invention also aims to propose a coupler whose space is minimized.
  • this invention provides a distributed type coupler comprising a first conductive line carrying a main signal between two end terminals, a second coupled conductive line at the first and between two terminals from which a signal flows sampled, proportional to the main signal, and two capacitors connecting the two terminals of each of the lines.
  • the lines are the same length.
  • the capacitors have the same values.
  • the lines are dimensioned in ⁇ / 4 for a central frequency of band higher than the frequency band for which is intended for the coupler.
  • each conductive line consists of at least two sections parallel between its end terminals, the sections of the two lines being intertwined.
  • the capacitor electrodes are made in the same two metallization levels than those in which are made the conductive lines.
  • the capacitors have values between 0.1 and 10 pF, the center frequency of the coupler being between a few tens of MHz and a few tens of GHz.
  • a feature of the present invention is provide capacitors, no longer to connect the ends respective one line at the ends of the other line but to connect the respective ends of the same line.
  • capacitors have values appreciably higher makes the coupler (including its directivity) less sensitive compared to variations in values of capacitors following technological dispersions or reason for the presence of parasitic capacities which in turn remain of the order of femtofarad.
  • FIG. 3 represents a coupler 20 according to a first embodiment of the present invention.
  • Line 11 constitutes the line main of IN and DIR terminals.
  • Line 12 corresponds to the line coupled with CPLD and ISO terminals.
  • a first capacitor Cs connects the IN and DIR terminals while a second capacitor Cs connects the CPLD and ISO terminals.
  • Lines 11 and 12 have the same lengths and the capacitors Cs both have the same value.
  • conductive lines and capacitors depends on the application and more particularly of the center frequency of the desired bandwidth for the coupler.
  • sections 11 and 12 have lengths corresponding to ⁇ / 4, where ⁇ represents the length of the central frequency of the band.
  • capacitors Cs reduces the width of the strip but already improves the directivity.
  • they allow undersize ⁇ due to the offset they bring on the center frequency.
  • Figure 4 shows a second embodiment preferred of a coupler 30 distributed according to the invention.
  • a structure is used known as the Lange coupler in which the two conductive sections 11 'and 12' are prohibited.
  • sections are provided each comprising two branches 111 and 112, respectively 121 and 122 parallel and nested with the branches of the other line.
  • each section is, from an electrical point of view, consisting of two parallel sections 111 and 112, respectively 121 and 122, between terminals IN and DIR, respectively CPLD and ISO.
  • 114 and 124 perpendicular extensions of the runways conductive connect one end of sections 112 and 122, by example at terminals IN and ISO, respectively.
  • Sections (bridges) conductors 113 and 123 connect the free ends respective sections 112 and 122 at terminals DIR and CPLD respectively.
  • connections 113 and 123 are made by vias (not shown) and conductive tracks in a second level of metallization in relation to the metallization level in which tracks 111, 112, 114, 121, 122 and 124 are produced.
  • the terminals IN and DIR are linked to each other by capacitors Cs.
  • An advantage of this embodiment is that the realization of the capacitors takes advantage of the fact that the lines conductive are already carried out in two metallization levels distinct. Therefore, one can use these two metallization levels and the dielectric that separates them for forming the integrated capacitors Cs specific to the invention.
  • the dimensioning corresponds to individual sections 111, 112, 121 and 122 of length ⁇ / 4 for a center frequency corresponding to the wavelength ⁇ .
  • Such a coupler is generally used to increase the coupling by reducing parasitic capacities.
  • the Lange coupler for a frequency substantially greater (i.e. with a length ⁇ / 4 substantially lower), and find the operating frequency desired. In this case, the coupling is reduced and the directivity of the coupler.
  • a coupler according to the invention is chosen according to the application. To account for this that the capacitors Cs must have higher values with parasitic capacities, a coupler of the invention is more particularly dedicated to frequencies between a few tens of MHz and a few tens of GHz. The capacitors They then have values between 0.1 and 10 picofarads.
  • An advantage of the present invention is that the addition of capacitors Cs slightly increases the coupling while considerably increasing the directivity (by more than 10 dB). In addition, insulation is improved and losses only slightly increase (less than 0.5 dB).
  • the surface occupied by such a coupler is substantially the same as for a conventional coupler, the surface necessary for the realization of the capacitors being compensated by reducing the lengths of the conductive sections.
  • the present invention is capable of various variations and modifications that will appear to humans art.
  • the dimensions to be given to the different conductive sections of the coupler as well as to the capacitors are within the reach of the skilled person depending on the application to from the functional indications given above.

Landscapes

  • Near-Field Transmission Systems (AREA)
  • Microwave Amplifiers (AREA)
  • Transmitters (AREA)
  • Transceivers (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

L'invention concerne un coupleur de type distribué comprenant une première ligne conductrice (111) véhiculant un signal principal entre deux bornes d'extrémité (IN, DIR), une deuxième ligne conductrice (121) couplée à la première et entre deux bornes (CPLD, ISO) de laquelle circule un signal prélevé, proportionnel au signal principal, et deux condensateurs (Cs) reliant respectivement les deux bornes de chacune des lignes. <IMAGE>

Description

La présente invention concerne le domaine des coupleurs qui servent à prélever une partie d'un signal véhiculé par une ligne de transmission à des fins, notamment, de mesure ou d'asservissement. L'invention concerne plus particulièrement le domaine des coupleurs radiofréquences entre un amplificateur d'émission et une antenne, notamment appliqués à la téléphonie mobile.
La figure 1 illustre de façon très schématique la structure générale d'un coupleur 1 distribué, c'est-à-dire à lignes de transmission du type auquel s'applique la présente invention, par opposition à des coupleurs à éléments localisés inductifs et capacitifs.
Le coupleur 1 est intercalé entre un amplificateur 2 (PA) d'amplification d'un signal Tx à émettre, et une antenne 3 d'émission. Le rôle du coupleur 1 est d'extraire, entre des bornes CPLD et ISO d'une ligne secondaire 12, un signal proportionnel au signal transitant sur une ligne principale 11 de transmission, c'est-à-dire entre des bornes IN et DIR, respectivement reliées en sortie de l'amplificateur 2 et en entrée de l'antenne 3.
Le signal G extrait par le coupleur 1 est exploité par un circuit 4 (DET), par exemple pour asservir la puissance de l'amplificateur 2 ou pour l'éteindre en cas de besoin de protection, par exemple en cas de disparition de l'antenne 3.
Il s'agit là d'un exemple d'application à la téléphonie mobile où la consommation la plus importante provient de la chaíne d'émission et où on souhaite généralement minimiser la consommation des circuits. En réception, un téléphone mobile exploite un amplificateur à faible bruit (LNA), dont le gain est généralement fixe et pour lequel un coupleur n'est par conséquent pas nécessaire.
Le coupleur de la figure 1 est un coupleur bidirectionnel en ce sens qu'il détecte un signal présent sur la ligne de transmission 11 dans les deux sens : un signal direct (FWD) transitant de IN vers DIR sera couplé vers la sortie CPLD et un signal inverse (REV) transitant de DIR vers IN sera couplé vers la sortie ISO. En pratique, on redresse les tensions présentes sur les bornes CPLD et ISO pour générer le signal G de correction de gain.
Un coupleur distribué du type de celui représenté en figure 1 est caractérisé par son couplage et sa directivité. Le couplage caractérise la différence entre l'amplitude du signal principal circulant sur la ligne 11 et l'amplitude du signal prélevé sur la ligne 12. La directivité caractérise la différence entre l'amplitude du signal FWD qui se traduit par un signal sortant de la borne CPLD, et l'amplitude du signal REV circulant de DIR vers IN qui se traduit par un signal sortant de la borne ISO. Plus la différence d'amplitudes entre les bornes CPLD et ISO est élevée, plus la directivité du coupleur est élevée et plus il est alors facile de détecter un éventuel problème de l'antenne 3 se traduisant par une réflexion du signal véhiculé par la ligne 11. En effet, en cas de problème sur l'antenne (par exemple, de disparition de celle-ci), la puissance qui ne peut pas sortir est réfléchie, ce qui entraíne une augmentation du signal sur la borne ISO. En détectant le potentiel de la borne ISO par rapport à un seuil, on peut détecter un problème sur l'antenne et couper alors l'amplificateur d'émission pour éviter de l'endommager, celui-ci ne supportant généralement pas de recevoir une puissance réfléchie.
Dans un coupleur idéal et en fonctionnement normal, le maximum d'amplitude de la ligne couplée serait présent sur la borne CPLD et un potentiel nul serait présent sur la borne ISO. Toutefois, en pratique, le potentiel de la borne ISO n'est pas nul, mais il est généralement atténué de l'ordre de -30 dB par rapport au potentiel de la borne DIR.
Par ailleurs, on cherche généralement un couplage faible pour éviter de prélever une trop grande partie de la puissance utile pour la détection. Généralement, la borne CPLD reproduit un signal atténué de l'ordre de -15 à -20 dB par rapport au signal transitant de la borne IN vers la borne DIR.
Par conséquent, la directivité d'un coupleur classique est de l'ordre de -10 à -15 dB (-30-(-20)) à -30-(-15)).
Or, notamment pour faciliter la détection d'un problème sur l'antenne, on recherche une directivité plus élevée.
Pour améliorer la directivité, on peut agrandir le coupleur en rendant les tronçons conducteurs 11 et 12 proches d'une longueur de λ/4, où λ représente la longueur d'onde correspondant à la fréquence centrale de la bande passante souhaitée pour le coupleur. Toutefois, développer un coupleur distribué à une longueur de λ/4 conduit à un coupleur très encombrant et accroít les pertes d'insertion.
La figure 2 représente un exemple classique de coupleur 10 à directivité améliorée. Ce coupleur de type distribué comporte deux lignes 11 et 12 conductrices et deux condensateurs Cp reliant respectivement les bornes IN et CPLD et les bornes DIR et ISO. De tels condensateurs permettent d'accroítre la directivité du coupleur en rapprochant les valeurs des impédances de lignes l'une de l'autre. Toutefois, un inconvénient rédhibitoire d'une telle solution est qu'à des fréquences de plusieurs centaines de MHz, les valeurs des condensateurs sont très faibles, (de l'ordre du femtofarad). En pratique, de telles valeurs rendent la réalisation quasi impossible dans la mesure où les valeurs des condensateurs Cp se rapprochent des valeurs de capacités parasites qui ne peuvent alors pas être négligées. Or, les caractéristiques du coupleur se dégradent fortement dès que l'on s'écarte des valeurs choisies, en fonction de la bande passante du coupleur, pour les condensateurs Cp.
Des exemples de coupleur du type de celui décrit en relation avec la figure 2 sont décrits dans le brevet américain 4937541 et dans la demande de brevet allemand 19749912.
La présente invention vise à proposer un coupleur à lignes distribuées de directivité améliorée.
L'invention vise en particulier à proposer un coupleur radiofréquences ne nécessitant pas le recours à des condensateurs de valeurs très faibles (de l'ordre du fF).
L'invention vise également à proposer un coupleur dont l'encombrement est minimisé.
Pour atteindre ces objets et d'autres, la présente invention prévoit un coupleur de type distribué comprenant une première ligne conductrice véhiculant un signal principal entre deux bornes d'extrémité, une deuxième ligne conductrice couplée à la première et entre deux bornes de laquelle circule un signal prélevé, proportionnel au signal principal, et deux condensateurs reliant respectivement les deux bornes de chacune des lignes.
Selon un mode de réalisation de la présente invention, les lignes sont de même longueur.
Selon un mode de réalisation de la présente invention, les condensateurs sont de mêmes valeurs.
Selon un mode de réalisation de la présente invention, les lignes sont dimensionnées en λ/4 pour une fréquence centrale de bande supérieure à la bande de fréquences pour laquelle est destiné le coupleur.
Selon un mode de réalisation de la présente invention, chaque ligne conductrice est constituée d'au moins deux tronçons parallèles entre ses bornes d'extrémité, les tronçons des deux lignes étant entrelacés.
Selon un mode de réalisation de la présente invention, les électrodes des condensateurs sont réalisées dans les mêmes deux niveaux de métallisation que ceux dans lesquels sont réalisées les lignes conductrices.
Selon un mode de réalisation de la présente invention, les condensateurs ont des valeurs comprises entre 0,1 et 10 pF, la fréquence centrale du coupleur étant comprise entre quelques dizaines de MHz et quelques dizaines de GHz.
Ces objets, caractéristiques et avantages, ainsi que d'autres de la présente invention seront exposés en détail dans la description suivante de modes de réalisation particuliers faite à titre non-limitatif en relation avec les figures jointes parmi lesquelles :
  • la figure 1 décrite précédemment représente, de façon schématique, un coupleur bidirectionnel du type auquel s'applique la présente invention dans un environnement de chaíne d'émission radiofréquence ;
  • la figure 2 décrite précédemment représente un exemple classique de coupleur radiofréquences directif ;
  • la figure 3 représente un mode de réalisation d'un coupleur directif selon la présente invention ; et
  • la figure 4 représente un autre mode de réalisation préféré d'un coupleur directif selon la présente invention.
  • Les mêmes éléments ont été désignés par les mêmes références aux différentes figures. Pour des raisons de clarté, seuls les éléments qui sont nécessaires à la compréhension de l'invention ont été représentés aux figures et seront décrits par la suite. En particulier, les signaux traversant le coupleur ainsi que l'exploitation faite des mesures par la ligne couplée n'ont pas été détaillés et ne font pas l'objet de la présente invention, celle-ci pouvant être mise en oeuvre quelle que soit l'application faite des signaux issus du coupleur.
    Une caractéristique de la présente invention est de prévoir des condensateurs, non plus pour relier les extrémités respectives d'une ligne aux extrémités de l'autre ligne, mais pour relier les extrémités respectives d'une même ligne.
    Une telle disposition permet, pour une même bande de fréquences, d'améliorer la directivité tout en utilisant des condensateurs de valeurs plus élevées que dans le cas classique de la figure 2.
    Le fait que les condensateurs aient des valeurs sensiblement plus élevées rend le coupleur (notamment sa directivité) moins sensible par rapport à des variations de valeurs des condensateurs suite à des dispersions technologiques ou en raison de présence de capacités parasites qui quant à elles restent de l'ordre du femtofarad.
    La figure 3 représente un coupleur 20 selon un premier mode de réalisation de la présente invention. On retrouve deux lignes conductrices 11, 12 parallèles comme dans le mode de réalisation de la figure 2. La ligne 11 constitue la ligne principale de bornes IN et DIR. La ligne 12 correspond à la ligne couplée de bornes CPLD et ISO.
    Selon la présente invention, un premier condensateur Cs relie les bornes IN et DIR tandis qu'un deuxième condensateur Cs relie les bornes CPLD et ISO.
    Les lignes 11 et 12 ont les mêmes longueurs et les condensateurs Cs ont tous deux la même valeur.
    Le dimensionnement des lignes conductrices et des condensateurs dépend de l'application et plus particulièrement de la fréquence centrale de la bande passante souhaitée pour le coupleur. Dans un exemple simple, les tronçons 11 et 12 ont des longueurs correspondantes à λ/4, où λ représente la longueur d'onde de la fréquence centrale de la bande. Dans ce cas, l'adjonction des condensateurs Cs réduit la largeur de la bande mais améliore déjà la directivité. De plus, ils permettent de sous-dimensionner le λ en raison du décalage qu'ils apportent sur la fréquence centrale.
    Selon un mode de réalisation préféré de l'invention, on profite de la présence des condensateurs pour diminuer la longueur des tronçons conducteurs 11 et 12 par rapport à la taille qu'ils auraient en λ/4 par rapport à la fréquence centrale de la bande passante souhaitée. Un tel mode de réalisation permet de diminuer le couplage (qui est maximum à λ/4), donc de réduire l'amplitude du signal mesuré sur la ligne couplée par rapport à la ligne principale. Cela minimise donc la consommation d'énergie (partie de signal) non directement utile à la transmission.
    La figure 4 représente un deuxième mode de réalisation préféré d'un coupleur 30 distribué selon l'invention.
    Selon ce mode de réalisation, on utilise une structure connue sous le nom de coupleur de Lange dans laquelle les deux tronçons conducteurs 11' et 12' sont interdigités. Dans l'exemple de la figure 4, on a prévu des tronçons comprenant chacun deux branches 111 et 112, respectivement 121 et 122 parallèles et imbriquées avec les branches de l'autre ligne. Dans une telle structure, chaque tronçon est, du point de vue électrique, constitué de deux tronçons parallèles 111 et 112, respectivement 121 et 122, entre les bornes IN et DIR, respectivement CPLD et ISO. Des prolongements 114 et 124 perpendiculaires des pistes conductrices relient une extrémité des tronçons 112 et 122, par exemple aux bornes IN et ISO, respectivement. Des tronçons (ponts) conducteurs 113 et 123 relient les extrémités libres respectives des tronçons 112 et 122 aux bornes DIR et CPLD respectivement.
    Dans une réalisation sous forme de circuit intégré, les liaisons 113 et 123 sont réalisées par des vias (non représentés) et des pistes conductrices dans un deuxième niveau de métallisation par rapport au niveau de métallisation dans lequel sont réalisées les pistes 111, 112, 114, 121, 122 et 124.
    Selon l'invention, les bornes IN et DIR, respectivement CPLD et ISO, sont reliées l'une à l'autre par les condensateurs Cs.
    Un avantage de ce mode de réalisation est que la réalisation des condensateurs tire profit du fait que les lignes conductrices sont déjà effectuées dans deux niveaux de métallisation distincts. Par conséquent, on peut utiliser ces deux niveaux de métallisation et le diélectrique qui les sépare pour former les condensateurs intégrés Cs propres à l'invention.
    Dans un coupleur de Lange classique, c'est-à-dire dépourvu des condensateurs Cs, le dimensionnement correspond à des tronçons individuels 111, 112, 121 et 122 de longueur λ/4 pour une fréquence centrale correspondant à la longueur d'onde λ. Un tel coupleur est généralement utilisé pour accroítre le couplage en diminuant les capacités parasites.
    Selon l'invention, grâce aux condensateurs Cs, on peut dimensionner le coupleur de Lange pour une fréquence sensiblement supérieure (c'est-à-dire avec une longueur λ/4 sensiblement inférieure), et retrouver la fréquence de fonctionnement souhaitée. Dans ce cas, on diminue le couplage et on accroít la directivité du coupleur.
    Les dimensions d'un coupleur selon l'invention sont choisies en fonction de l'application. Pour tenir compte de ce que les condensateurs Cs doivent avoir des valeurs supérieures aux capacités parasites, un coupleur de l'invention est plus particulièrement dédié à des fréquences comprises entre quelques dizaines de MHz et quelques dizaines de GHz. Les condensateurs Cs ont alors des valeurs comprises entre 0,1 et 10 picofarads.
    A titre de comparaison, on a réalisé sur carte de circuit imprimé un coupleur de Lange sans condensateur, et un coupleur de Lange selon l'invention avec des condensateurs Cs d'une capacité de 3,3 pF, avec des longueurs de tronçons adaptées à une fréquence de 820 MHz. On a obtenu des directivités respectives de 7 et 28 dB.
    Un avantage de la présente invention est que l'ajout des condensateurs Cs augmente légèrement le couplage tout en augmentant considérablement (de plus de 10 dB) la directivité. De plus, l'isolation s'en trouve améliorée et les pertes d'insertion n'augmentent que très légèrement (moins de 0,5 dB).
    Dans une réalisation intégrée de la structure de la figure 4, la surface occupée par un tel coupleur est sensiblement la même que pour un coupleur classique, la surface nécessaire à la réalisation des condensateurs étant compensée par la diminution de longueurs des tronçons conducteurs.
    Bien entendu, la présente invention est susceptible de diverses variantes et modifications qui apparaítront à l'homme de l'art. En particulier, les dimensions à donner aux différents tronçons conducteurs du coupleur ainsi qu'aux condensateurs sont à la portée de l'homme du métier en fonction de l'application à partir des indications fonctionnelles données ci-dessus.

    Claims (7)

    1. Coupleur de type distribué comprenant :
      une première ligne conductrice (11, 111) véhiculant un signal principal entre deux bornes d'extrémité (IN, DIR) ;
      une deuxième ligne conductrice (12, 121) couplée à la première et entre deux bornes (CPLD, ISO) de laquelle circule un signal prélevé, proportionnel au signal principal,
         caractérisé en ce qu'il comporte en outre deux condensateurs (Cs) reliant respectivement les deux bornes de chacune des lignes.
    2. Coupleur selon la revendication 1, dans lequel les lignes (11, 12 ; 111, 112, 121, 122) sont de même longueur.
    3. Coupleur selon la revendication 1, dans lequel les condensateurs (Cs) sont de mêmes valeurs.
    4. Coupleur selon la revendication 1, dans lequel les lignes (11, 12 ; 111, 112, 121, 122) sont dimensionnées en λ/4 pour une fréquence centrale de bande supérieure à la bande de fréquences pour laquelle est destiné le coupleur.
    5. Coupleur selon la revendication 1, dans lequel chaque ligne conductrice est constituée d'au moins deux tronçons parallèles (111, 112 ; 121, 122) entre ses bornes d'extrémité (IN, DIR ; CPLD, ISO), les tronçons des deux lignes étant entrelacés.
    6. Coupleur selon la revendication 5, dans lequel les électrodes des condensateurs sont réalisées dans les mêmes deux niveaux de métallisation que ceux dans lesquels sont réalisées les lignes conductrices.
    7. Coupleur selon la revendication 1, dans lequel les condensateurs (Cs) ont des valeurs comprises entre 0,1 et 10 pF, la fréquence centrale du coupleur étant comprise entre quelques dizaines de MHz et quelques dizaines de GHz.
    EP03300244A 2002-12-06 2003-12-08 Coupleur directif Expired - Lifetime EP1427053B1 (fr)

    Applications Claiming Priority (2)

    Application Number Priority Date Filing Date Title
    FR0215477 2002-12-06
    FR0215477 2002-12-06

    Publications (2)

    Publication Number Publication Date
    EP1427053A1 true EP1427053A1 (fr) 2004-06-09
    EP1427053B1 EP1427053B1 (fr) 2009-04-01

    Family

    ID=32310032

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP03300244A Expired - Lifetime EP1427053B1 (fr) 2002-12-06 2003-12-08 Coupleur directif

    Country Status (4)

    Country Link
    US (1) US7394333B2 (fr)
    EP (1) EP1427053B1 (fr)
    JP (1) JP2004289797A (fr)
    DE (1) DE60326917D1 (fr)

    Cited By (1)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    WO2014050623A1 (fr) * 2012-09-26 2014-04-03 太陽誘電株式会社 Dispositif de circuit coupleur directionnel

    Families Citing this family (29)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    EP1753071A1 (fr) 2005-08-04 2007-02-14 Mitsubishi Electric Information Technology Centre Europe B.V. Bancs de filtres de micro-ondes
    EP1950828A1 (fr) 2007-01-25 2008-07-30 Mitsubishi Electric Information Technology Centre Europe B.V. (Dé)multiplexeur passif à micro-ondes
    FR2933540B1 (fr) * 2008-07-01 2011-12-02 St Microelectronics Tours Sas Coupleur directif integre
    JP5169844B2 (ja) * 2009-01-06 2013-03-27 三菱電機株式会社 方向性結合器
    US7961064B2 (en) * 2009-01-30 2011-06-14 Tdk Corporation Directional coupler including impedance matching and impedance transforming attenuator
    US8965454B2 (en) * 2009-03-04 2015-02-24 Andrew Llc Amplifier system for cell sites and other suitable applications
    JP5455662B2 (ja) * 2010-01-13 2014-03-26 三菱電機株式会社 方向性結合器
    EP2360776B1 (fr) * 2010-02-16 2017-07-12 Whirlpool Corporation Coupleur directionnel à micro-ondes
    US8299871B2 (en) * 2010-02-17 2012-10-30 Analog Devices, Inc. Directional coupler
    KR101119910B1 (ko) * 2010-05-03 2012-02-29 한국과학기술원 모바일 rfid 리더 송수신 시스템
    CN103038937B (zh) * 2010-08-03 2015-02-11 株式会社村田制作所 定向耦合器
    JP5609574B2 (ja) 2010-11-12 2014-10-22 三菱電機株式会社 方向性結合器
    US8928428B2 (en) * 2010-12-22 2015-01-06 Rfaxis, Inc. On-die radio frequency directional coupler
    US8981873B2 (en) * 2011-02-18 2015-03-17 Hittite Microwave Corporation Absorptive tunable bandstop filter with wide tuning range and electrically tunable all-pass filter useful therein
    WO2012124374A1 (fr) 2011-03-14 2012-09-20 株式会社村田製作所 Coupleur directionnel
    JP2013030904A (ja) * 2011-07-27 2013-02-07 Tdk Corp 方向性結合器および無線通信装置
    JP5435309B2 (ja) * 2011-08-25 2014-03-05 Tdk株式会社 方向性結合器および無線通信装置
    US20130027273A1 (en) 2011-07-27 2013-01-31 Tdk Corporation Directional coupler and wireless communication device
    US9048805B2 (en) 2011-10-04 2015-06-02 Rf Micro Devices, Inc. Tunable duplexer architecture
    US9042275B2 (en) 2012-02-07 2015-05-26 Rf Micro Devices, Inc. Tunable duplexer architecture
    US9190979B2 (en) * 2012-02-07 2015-11-17 Rf Micro Devices, Inc. Hybrid coupler
    US9406991B2 (en) 2012-07-27 2016-08-02 Telefonaktiebolaget Lm Ericsson (Publ) Quadrature hybrid
    US20150042412A1 (en) * 2013-08-07 2015-02-12 Qualcomm Incorporated Directional coupler circuit techniques
    GB2528278B (en) 2014-07-16 2020-12-16 Technetix Bv Cable tap
    GB201520975D0 (en) * 2015-11-27 2016-01-13 Technetix Bv Cable tap
    CN109845029B (zh) * 2016-10-27 2021-03-09 株式会社村田制作所 定向耦合器内置基板、高频前端电路以及通信装置
    US10735045B2 (en) 2018-04-23 2020-08-04 Qorvo Us, Inc. Diplexer circuit
    CN112164852A (zh) * 2020-10-27 2021-01-01 深圳振华富电子有限公司 微带型兰格耦合器
    CN115377640B (zh) * 2022-08-07 2023-07-28 西安电子工程研究所 一种具有跨接电容的微带定向耦合器

    Citations (5)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    JPS5662402A (en) * 1979-10-26 1981-05-28 Fujitsu Ltd Directional coupler
    US4937541A (en) * 1989-06-21 1990-06-26 Pacific Monolithics Loaded lange coupler
    JPH05259717A (ja) * 1991-12-20 1993-10-08 Nec Corp マイクロストリップ結合器
    US5629654A (en) * 1996-05-06 1997-05-13 Watkins-Johnson Company Coplanar waveguide coupler
    JP2002299922A (ja) * 2001-03-30 2002-10-11 Kyocera Corp 高周波モジュール

    Family Cites Families (9)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US3593208A (en) * 1969-03-17 1971-07-13 Bell Telephone Labor Inc Microwave quadrature coupler having lumped-element capacitors
    US4027254A (en) * 1975-02-11 1977-05-31 The Secretary Of State For Defence In Her Britannic Majesty's Government Of The United Kingdom Of Great Britain And Northern Ireland Directional coupler having interdigital comb electrodes
    US4375054A (en) * 1981-02-04 1983-02-22 Rockwell International Corporation Suspended substrate-3 dB microwave quadrature coupler
    IT1248035B (it) * 1991-06-11 1995-01-05 For Em S P A Sistema per realizzare accoppiatori a microonde con direttivita' ed adattamento massimi, e relativi accoppiatori in microstriscia.
    FI103614B (fi) * 1997-03-20 1999-07-30 Nokia Mobile Phones Ltd Vaiheistus- ja balansointielin
    KR100339373B1 (ko) * 1998-10-13 2002-07-18 구자홍 마이크로스트립카플러및그의제조방법
    US6483415B1 (en) * 2001-05-21 2002-11-19 Industrial Technology Research Institute Multi-layer LC resonance balun
    US6683512B2 (en) * 2001-06-21 2004-01-27 Kyocera Corporation High frequency module having a laminate board with a plurality of dielectric layers
    US6825738B2 (en) * 2002-12-18 2004-11-30 Analog Devices, Inc. Reduced size microwave directional coupler

    Patent Citations (5)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    JPS5662402A (en) * 1979-10-26 1981-05-28 Fujitsu Ltd Directional coupler
    US4937541A (en) * 1989-06-21 1990-06-26 Pacific Monolithics Loaded lange coupler
    JPH05259717A (ja) * 1991-12-20 1993-10-08 Nec Corp マイクロストリップ結合器
    US5629654A (en) * 1996-05-06 1997-05-13 Watkins-Johnson Company Coplanar waveguide coupler
    JP2002299922A (ja) * 2001-03-30 2002-10-11 Kyocera Corp 高周波モジュール

    Non-Patent Citations (5)

    * Cited by examiner, † Cited by third party
    Title
    CHEN J-L ET AL: "A HIGH-DIRECTIVITY MICROSTRIP DIRECTIONAL COUPLER WITH FEEBACK COMPENSATION", 2002 IEEE MTT-S INTERNATIONAL MICROWAVE SYMPOSIUM DIGEST.(IMS 2002). SEATTLE, WA, JUNE 2 - 7, 2002, IEEE MTT-S INTERNATIONAL MICROWAVE SYMPOSIUM, NEW YORK, NY: IEEE, US, vol. 1 OF 3, 2 June 2002 (2002-06-02), pages 101 - 104, XP001099454, ISBN: 0-7803-7239-5 *
    OJHA S ET AL: "Reduced size RF coupler design for specialized load requirements", CIRCUITS AND SYSTEMS, 1997. PROCEEDINGS OF THE 40TH MIDWEST SYMPOSIUM ON SACRAMENTO, CA, USA 3-6 AUG. 1997, NEW YORK, NY, USA,IEEE, US, 3 August 1997 (1997-08-03), pages 595 - 598, XP010272537, ISBN: 0-7803-3694-1 *
    PATENT ABSTRACTS OF JAPAN vol. 005, no. 125 (E - 069) 12 August 1981 (1981-08-12) *
    PATENT ABSTRACTS OF JAPAN vol. 018, no. 022 (E - 1490) 13 January 1994 (1994-01-13) *
    PATENT ABSTRACTS OF JAPAN vol. 2003, no. 02 5 February 2003 (2003-02-05) *

    Cited By (1)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    WO2014050623A1 (fr) * 2012-09-26 2014-04-03 太陽誘電株式会社 Dispositif de circuit coupleur directionnel

    Also Published As

    Publication number Publication date
    DE60326917D1 (de) 2009-05-14
    US7394333B2 (en) 2008-07-01
    US20040113716A1 (en) 2004-06-17
    JP2004289797A (ja) 2004-10-14
    EP1427053B1 (fr) 2009-04-01

    Similar Documents

    Publication Publication Date Title
    EP1427053B1 (fr) Coupleur directif
    EP1863116B1 (fr) Coupleur directif large bande
    EP2483965B1 (fr) Amelioration de la selectivite d&#39;un coupleur bi-bande
    EP1172929B1 (fr) Dispositif d&#39;amplification à faible bruit, en particulier pour un téléphone mobile cellulaire
    FR2778272A1 (fr) Dispositif de radiocommunication et antenne bifrequence realisee selon la technique des microrubans
    FR2877163A1 (fr) Reglage du rapport d&#39;impedances d&#39;un balun
    EP2184803A1 (fr) Ligne à retard bi-ruban différentielle coplanaire, filtre différentiel d&#39;ordre supérieur et antenne filtrante munis d&#39;une telle ligne
    FR2887665A1 (fr) Entite electronique a antenne magnetique
    EP2466684B1 (fr) Système d&#39;antenne en diversité
    FR2933540A1 (fr) Coupleur directif integre
    EP1367714A1 (fr) Coupleur haute frequence
    FR3008238A1 (fr) Filtre rejecteur de bande
    EP3671955B1 (fr) Antenne fil-plaque monopolaire pour connexion differentielle
    EP1178500B1 (fr) Structure intégrée d&#39;inductances à valeurs partagées sur un substrat semiconducteur
    EP2404348B1 (fr) Procédé de réalisation d&#39;une antenne fonctionnant dans une bande de fréquences donnée a partir d&#39;une antenne bi-bande
    EP0015610B1 (fr) Filtre de réflexion de fréquence image en hyperfréquence et récepteur hyperfréquence comprenant un tel filtre
    EP3619815B1 (fr) Procédé de contrôle de l&#39;adaptation d&#39;une antenne à un chemin de transmission, et dispositif correspondant
    FR2831734A1 (fr) Dispositif pour la reception et/ou l&#39;emission de signaux electromagnetiques a diversite de rayonnement
    FR2806534A1 (fr) Dispositif a circuit non reciproque et appareil a circuit haute frequence l&#39;incorporant
    FR2925233A1 (fr) Antenne active tres large bande pour radar passif.
    EP2147478B1 (fr) Coupleur de signaux hyperfrequences en technologie microruban
    FR2967537A1 (fr) Antenne compacte adaptable en impedance
    EP3301751B1 (fr) Dispositif électronique à antenne isolée
    FR2690019A1 (fr) Circuit et mélangeur harmoniques.
    EP1431772B1 (fr) Limiteur de puissance pour radar

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    AK Designated contracting states

    Kind code of ref document: A1

    Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

    AX Request for extension of the european patent

    Extension state: AL LT LV MK

    17P Request for examination filed

    Effective date: 20041208

    AKX Designation fees paid

    Designated state(s): DE FR GB IT

    17Q First examination report despatched

    Effective date: 20071213

    GRAP Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOSNIGR1

    GRAS Grant fee paid

    Free format text: ORIGINAL CODE: EPIDOSNIGR3

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    AK Designated contracting states

    Kind code of ref document: B1

    Designated state(s): DE FR GB IT

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: FG4D

    Free format text: NOT ENGLISH

    REF Corresponds to:

    Ref document number: 60326917

    Country of ref document: DE

    Date of ref document: 20090514

    Kind code of ref document: P

    PLBE No opposition filed within time limit

    Free format text: ORIGINAL CODE: 0009261

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

    26N No opposition filed

    Effective date: 20100105

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: IT

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20090401

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: GB

    Payment date: 20131125

    Year of fee payment: 11

    Ref country code: DE

    Payment date: 20131121

    Year of fee payment: 11

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: FR

    Payment date: 20131219

    Year of fee payment: 11

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R119

    Ref document number: 60326917

    Country of ref document: DE

    GBPC Gb: european patent ceased through non-payment of renewal fee

    Effective date: 20141208

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: ST

    Effective date: 20150831

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: DE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20150701

    Ref country code: GB

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20141208

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: FR

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20141231