EP1421402A2 - Sensor device - Google Patents

Sensor device

Info

Publication number
EP1421402A2
EP1421402A2 EP02760119A EP02760119A EP1421402A2 EP 1421402 A2 EP1421402 A2 EP 1421402A2 EP 02760119 A EP02760119 A EP 02760119A EP 02760119 A EP02760119 A EP 02760119A EP 1421402 A2 EP1421402 A2 EP 1421402A2
Authority
EP
European Patent Office
Prior art keywords
light beam
scanning device
deflection prism
deflection
motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP02760119A
Other languages
German (de)
French (fr)
Inventor
Holger Schanz
Wilfried Mehr
Udo Baumann
Fritz Schmider
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebm Papst St Georgen GmbH and Co KG
ADC Automotive Distance Control Systems GmbH
Original Assignee
ADC Automotive Distance Control Systems GmbH
Papst Motoren GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE10144130A external-priority patent/DE10144130A1/en
Application filed by ADC Automotive Distance Control Systems GmbH, Papst Motoren GmbH and Co KG filed Critical ADC Automotive Distance Control Systems GmbH
Publication of EP1421402A2 publication Critical patent/EP1421402A2/en
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4817Constructional features, e.g. arrangements of optical elements relating to scanning
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4811Constructional features, e.g. arrangements of optical elements common to transmitter and receiver
    • G01S7/4813Housing arrangements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/93Lidar systems specially adapted for specific applications for anti-collision purposes
    • G01S17/931Lidar systems specially adapted for specific applications for anti-collision purposes of land vehicles

Definitions

  • the invention relates to a scanning device according to the preamble of patent claim 1.
  • Such a scanning device is known for example from DE 41 15 747 C2.
  • the known device has three plane-parallel deflection prisms, each of which is rotated about its own drive axis.
  • the first of these deflection prisms is located both in the beam path of a light beam emitted to a scene and in the beam path of a reflection beam resulting from the light beam. It is rotated around a vertical drive axis and thus causes a horizontal deflection of the light beam and the reflection beam.
  • the deflection results from the refraction of the light entering the deflection prism and exiting from the deflection prism.
  • the two other deflection prisms are each located in the beam path of the light beam or the reflection beam.
  • the invention has for its object to provide a scanning device according to the preamble of claim 1, which can be produced with little effort and thus inexpensive.
  • the scanning device comprises a transmission-side deflection prism for deflecting a light beam emitted to a scene to be scanned, a receiver-side deflection prism for deflection of a reflection beam resulting from the light beam and a rotatably mounted drive axis.
  • the deflection prisms are each rigidly connected to the drive axle at one axle end and are thus rotated synchronously with one another by rotating the drive axle. The structural separation of the deflection prisms provides good signal separation between the transmitting and receiving sides.
  • the drive axis is designed as a rotor axis of a motor and is therefore driven directly by the motor.
  • the deflection prisms are preferably made of a material that is transparent to the light beam and reflection beam.
  • the light beam is deflected by the transmission-side deflection prism and the reflection beam by the reception-side deflection prism is preferably carried out by total reflection in the interior of the respective deflection prism.
  • a lens device for focusing the light beam or the reflection beam is preferably provided between the deflection prisms and the scene to be scanned.
  • a radiation source for emitting the light beam and a photodetector for detecting the reflection beam resulting from the light beam are preferably provided, the radiation source being positioned with respect to the transmission-side deflection prism and the photodetector with respect to the reception-side deflection prism such that the reflection beam is directed onto the Photo detector hits.
  • the radiation source is advantageously designed as a laser diode.
  • the scanning device according to the invention is ideally suited for use in an optical distance radar for motor vehicles. In such an application, the scanning device is used for signal detection.
  • FIG. 1 shows a basic illustration of the scanning device according to the invention
  • FIG. 2 shows a sectional view of a motor of the scanning device from FIG. 1.
  • the scanning device comprises a transmitting part 1 with a radiation source 11, for example an infrared laser diode, a transmitting-side deflection prism 10 with a triangular cross section and a lens device 12 designed as a Fresnel lens.
  • the scanning device also has a receiving part 2, which is constructed analogously to the transmitting part 1.
  • the receiving part 2 thus has a receiving-side deflecting prism 20 corresponding to the transmitting-side deflecting prism 10 and a receiving-side lens device 22 corresponding to the lens device 12 of the transmitting part 1.
  • the deflection prisms 10, 20 and the lens devices 12, 22 are each designed identically.
  • the difference between the transmitting part 1 and the receiving part 2 is that instead of the radiation source 11, the receiving part 2 has a photodetector 21, for example a PiN diode.
  • the scanning device also has a motor designed as an electric motor 40 with a rotor axis, which functions as the drive axis 4 of the deflection prisms 10, 20.
  • One deflection prism 10 is rigidly connected to the drive axis 4 at one axis end of the drive axis 4 and the other deflection prism 20 at the opposite axis end of the drive axis 4.
  • the drive axle 4 has at its two axle ends because a receiving divider for receiving the respective deflecting prism 10, 20.
  • the deflection prisms 10, 20 are rotated synchronously with one another by the electric motor 40. Due to their structural separation, there is good channel separation between the transmitting part 1 and the receiving part 2.
  • An electronically commutated DC motor is used as the electric motor 40. This ensures that the entire arrangement runs smoothly during operation.
  • the scanning device is therefore ideally suited for installation in vehicle cabins.
  • the electric motor 40 is designed as an external rotor motor. It thus comprises a permanent magnetic rotor 401 which is firmly connected to the drive axle 4 on one side and which surrounds a stator 402 which is permanently connected to a base plate 403.
  • the stator 402 has a plurality of windings which are supplied with current in a cyclical order and as a function of the angular position of the rotor 401 via a motor printed circuit board 404.
  • the outer edge of the rotor 401 acts as an indicator disc, which enables the angular position of the rotor 401 to be determined.
  • the rotor 401 has a support 40 ⁇ b on which the deflection prism 20 shown in dashed lines is placed.
  • the rotor 401 thus functions as a receiving plate for receiving the deflection prism 20.
  • the rotor 401 also has a fixing pin 409, which acts as a driver and engages in the deflection prism 20.
  • the deflection prism 20 is thus firmly connected to the one end of the drive shaft 4 via the support 406 and the rotor 401.
  • At the opposite end of the drive axle 4 there is a receiving plate 405 which is fixedly connected to this end of the drive axle 4 and which likewise has a support 406a.
  • the deflection prism 10 - this is also shown in broken lines - is firmly connected to the receiving plate 405 and thus to the drive axis 4 via the support 406a.
  • the Base plate 403 has a bearing support tube which is provided for receiving two bearings 408a, 408b spaced apart from one another by a bush 408c, bearings 408a, 408b in turn being provided for mounting the drive axle 4.
  • the drive shaft 4 and the rotor 401 are held in a stable axial position by a spring 407.
  • the type of storage described is advantageous since the drive axle 4 can thus be made short and the unit of deflection prisms 10, 20, drive axle 4 and motor 40 is therefore very rigid and less susceptible to vibration.
  • a high synchronism of the electric motor 40 is particularly advantageous for operation. This is achieved through a three-phase winding structure, a large rotor flywheel mass and a shape of the stator plates that is optimized for small jerk torques.
  • the actual speed is output with very small fluctuations six times per revolution using a sensorless three-phase motor driver.
  • a multi-pole tachometer generator is used to record the actual speed.
  • the motor printed circuit board 404 is provided with a meandering winding and the rotor magnet is magnetized on the front side with a high number of poles.
  • the radiation source 11 emits a light beam T in the direction of the deflection prism 10 from a position that is fixed with respect to the deflection prism 10 and the lens device 12.
  • the deflection prism 10 is designed to be transparent to the light from the radiation source 11, so that the light beam T penetrates into the deflection prism 10, is deflected in the deflection prism 10 on one of its side walls by total reflection and then emerges again from the deflection prism 10.
  • the light beam T may be refracted. After exiting, the light beam T is imaged onto a scene 3 to be scanned via the lens device 12.
  • the radiation source 11 thus illuminates a delimited area 30 of the scene 3.
  • Steering prism 10 changes the reflection angle of the light beam T inside the deflection prism 10.
  • the light beam T is moved across the scene 3 transversely to the drive axis 4, in the present exemplary embodiment in a horizontal direction.
  • the photodetector 21 is positioned with respect to the deflection prism 20 on the reception side such that a part of the light beam T, which is reflected at the area 30 on an object of scene 3, is focused as a reflection beam R via the lens device 22 and the reception-side deflection prism 20 on the photodetector 21 ,
  • the reflection beam R is deflected in the deflection prism 20, which is transparent for the reflection beam R, as is the light beam T in the transmission-side deflection prism 10 by total reflection.
  • the deflection angles by which the light beam T and the reflection beam R are deflected are the same size and they change due to the rotation of the deflection prisms 10, 20 by the same values.
  • the deflection prisms 10, 20 have side surfaces aligned parallel to the drive axis 4. However, they can also have side surfaces which are inclined at different angles with respect to the drive axis 4. This additionally achieves a deflection of the light beam T in the direction of the drive axis 4, that is to say a vertical deflection in the present exemplary embodiment. Scene 3 is then scanned in several lines one above the other.
  • the scanning device is therefore ideally suited for use in a system for assisting the driver of a motor vehicle, in particular in a distance control system for motor vehicles or in a system for recognizing objects from the surroundings of a motor vehicle.
  • the surroundings of the motor vehicle are scanned with the scanning device in order to recognize objects, in particular vehicles in front, and to determine the distances to these objects. Based on the determined distances, it is then checked whether the safety distance from a vehicle in front is being maintained and, if necessary, a warning signal is sent to the driver, or an automatic distance control of the distance from the vehicle in front is carried out.
  • the scanning device can also be used to scan the lane area on the side of the motor vehicle in order to recognize lane markings which are intended to delimit the lanes on the lane and to warn the driver of leaving the lane or to ensure automatic lane maintenance.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Optical Radar Systems And Details Thereof (AREA)
  • Mechanical Optical Scanning Systems (AREA)

Abstract

A conventional optical sensor device has two deflection prisms, one for deflecting a light beam that is emitted to sense an area and the other for deflecting a reflected beam resulting from the light beam. The deflection prisms are rotated synchronously in relation to one another during the sensing operation about parallel drive axes. The disadvantage of this device is the high degree of complexity required to synchronize the deflection prisms. The aim of the invention is to produce the novel device in a simple, cost-effective manner. The novel sensor device comprises a rotatably mounted drive shaft with two shaft ends. The two deflection prisms are rigidly connected to the drive shaft at the respective shaft ends. The drive shaft is preferably configured as a rotor shaft of a motor. The device is suitable for use as an optical distance radar for motor vehicles.

Description

Besehreibung Besehreibung
Abtastvorrichtungscanning
Die Erfindung betrifft eine Abtastvorrichtung gemäß dem Oberbegriff des Patentanspruchs 1.The invention relates to a scanning device according to the preamble of patent claim 1.
Eine derartige Abtastvorrichtung ist beispielsweise aus der DE 41 15 747 C2 bekannt. Die bekannte Vorrichtung weist drei planparallele Ablenkprismen auf, die jeweils um eine eigenen Antriebsachse rotiert werden. Das erste dieser Ablenkprismen befindet sich sowohl im Strahlengang eines zu einer Szene ausgesendeten Lichtstrahls als auch im Strahlengang eines aus dem Lichtstrahl resultierenden Reflexionsstrahls. Es wird um eine vertikale Antriebsachse rotiert und bewirkt somit eine horizontale Ablenkung des Lichtstrahls und des Reflexionsstrahls. Die Ablenkung resultiert dabei aus der Brechung des in das Ablenkprisma eintretenden und aus dem Ablenkprisma austretenden Lichts. Die beiden anderen Ablenkprismen befinden sich jeweils im Strahlengang des Lichtstrahls bzw. des Reflexionsstrahls . Sie werden synchron zueinander um zueinander parallele horizontale Antriebsachsen rotiert und bewirken durch Lichtbrechung eine vertikale Ablenkung des Lichtstrahls bzw. des Reflexionsstrahls . Die Synchronisation der Drehbewegung wird dabei durch einen aufwendigen Antrieb mit Zahnrädern und einem zugehörigen Zahnriemen gewährleistet.Such a scanning device is known for example from DE 41 15 747 C2. The known device has three plane-parallel deflection prisms, each of which is rotated about its own drive axis. The first of these deflection prisms is located both in the beam path of a light beam emitted to a scene and in the beam path of a reflection beam resulting from the light beam. It is rotated around a vertical drive axis and thus causes a horizontal deflection of the light beam and the reflection beam. The deflection results from the refraction of the light entering the deflection prism and exiting from the deflection prism. The two other deflection prisms are each located in the beam path of the light beam or the reflection beam. They are rotated synchronously to each other around horizontal drive axes parallel to each other and cause a vertical deflection of the light beam or the reflection beam by light refraction. The synchronization of the rotary movement is ensured by a complex drive with gears and an associated toothed belt.
Der Erfindung liegt die Aufgabe zugrunde, eine Abtastvorrichtung gemäß dem Oberbegriff des Patentanspruchs 1 anzugeben, die mit geringem Aufwand und somit kostengünstig herstellbar ist .The invention has for its object to provide a scanning device according to the preamble of claim 1, which can be produced with little effort and thus inexpensive.
Die Aufgabe wird durch die Merkmale des Patentanspruchs 1 gelöst. Vorteilhafte Ausgestaltungen und Weiterbildungen ergeben sich aus den weiteren Ansprüchen. Die erfindungsgemäße Abtastvorrichtung umfasst ein sendesei- tiges Ablenkprisma zur Ablenkung eines zu einer abzutastenden Szene ausgesendeten Lichtstrahls, ein e pfangsseitiges Ablenkprisma zur Ablenkung eines aus dem Lichtstrahl resultierenden ReflexionsStrahls und eine drehbar gelagerte Antriebsachse. Die Ablenkprismen sind dabei jeweils an einem Achsende der Antriebsachse mit dieser starr verbunden und werden somit durch Drehung der Antriebsachse synchron zueinander rotiert. Durch die bauliche Trennung der Ablenkprismen erhält man eine gute Signaltrennung zwischen der Sende- und Empfangsseite .The object is achieved by the features of patent claim 1. Advantageous refinements and developments result from the further claims. The scanning device according to the invention comprises a transmission-side deflection prism for deflecting a light beam emitted to a scene to be scanned, a receiver-side deflection prism for deflection of a reflection beam resulting from the light beam and a rotatably mounted drive axis. The deflection prisms are each rigidly connected to the drive axle at one axle end and are thus rotated synchronously with one another by rotating the drive axle. The structural separation of the deflection prisms provides good signal separation between the transmitting and receiving sides.
In einer vorteilhaften Weiterbildung ist die Antriebsachse als Rotorachse eines Motors ausgeführt und wird somit durch den Motor direkt angetrieben.In an advantageous development, the drive axis is designed as a rotor axis of a motor and is therefore driven directly by the motor.
Die Ablenkprismen sind vorzugsweise aus einem für den Lichtstrahl und Reflexionsstrahl transparenten Material gefertigt. Die Ablenkung des Lichtstrahls durch das sendeseitige Ablenkprisma und des Reflexionsstrahl durch das e pfangsseitige Ablenkprisma erfolgt dabei vorzugsweise durch Totalreflexion im Inneren des jeweiligen Ablenkprismas.The deflection prisms are preferably made of a material that is transparent to the light beam and reflection beam. The light beam is deflected by the transmission-side deflection prism and the reflection beam by the reception-side deflection prism is preferably carried out by total reflection in the interior of the respective deflection prism.
Vorzugsweise sind zwischen den Ablenkprismen und der abzutastenden Szene jeweils eine Linsenvorrichtung zur Bündelung des Lichtstrahls bzw. des Reflexionsstrahls vorgesehen.A lens device for focusing the light beam or the reflection beam is preferably provided between the deflection prisms and the scene to be scanned.
Vorzugsweise sind des weiteren eine Strahlungsquelle zum Aussenden des Lichtstrahls und ein Photodetektor zur Detektion des aus dem Lichtstrahl resultierenden Reflexionsstrahls vorgesehen, wobei die Strahlungsquelle bezüglich dem sendeseiti- gen Ablenkprisma und der Photodetektor bezüglich dem emp- fangsseitigen Ablenkprisma derart positioniert sind, dass der Reflexionsstrahl auf den Photodetektor auftrifft. Die Strahlungsquelle ist vorteilhafterweise als Laserdiode ausgeführt. Die erfindungsgemäße Abtastvorrichtung eignet sich bestens für den Einsatz in einem optischen Abstandsradar für Kraftfahrzeuge. Bei einem derartigen Anwendungsfall wird die Ab- tastvorrichtung zur Signalerfassung eingesetzt.Furthermore, a radiation source for emitting the light beam and a photodetector for detecting the reflection beam resulting from the light beam are preferably provided, the radiation source being positioned with respect to the transmission-side deflection prism and the photodetector with respect to the reception-side deflection prism such that the reflection beam is directed onto the Photo detector hits. The radiation source is advantageously designed as a laser diode. The scanning device according to the invention is ideally suited for use in an optical distance radar for motor vehicles. In such an application, the scanning device is used for signal detection.
Die Erfindung wird nachfolgend anhand eines Ausführungsbei- spiels und anhand von Figuren näher erläutert. Es zeigen:The invention is explained in more detail below on the basis of an exemplary embodiment and on the basis of figures. Show it:
Figur 1 eine Prinzipdarstellung der erfindungsgemäßen Ab- tastvorrichtung,FIG. 1 shows a basic illustration of the scanning device according to the invention,
Figur 2 ein Schnittbild eines Motors der Abtastvorrichtung aus Figur 1.FIG. 2 shows a sectional view of a motor of the scanning device from FIG. 1.
Gemäß Figur 1 umfasst die erfindungsgemäße Abtastvorrichtung einen Sendeteil 1 mit einer beispielsweise als Infrarot- Laserdiode ausgeführten Strahlungsquelle 11, einem sendesei- tigen Ablenkprisma 10 mit dreieckigem Querschnitt und einer als Fresnellinse ausgeführten Linsenvorrichtung 12. Die Ab- tastvorrichtung weist des weiteren einen Empfangsteil 2 auf, der analog zum Sendeteil 1 aufgebaut ist. So weist der Empfangsteil 2 ein dem sendeseitigen Ablenkprisma 10 entsprechendes empfangsseitiges Ablenkprisma 20 und eine der Linsenvorrichtung 12 des Sendeteils 1 entsprechende empfangsseitige Linsenvorrichtung 22 auf. Die Ablenkprismen 10, 20 und die Linsenvorrichtungen 12, 22 sind dabei jeweils gleich ausgeführt. Der Unterschied zwischen dem Sendeteil 1 und dem Empfangsteil 2 besteht darin, dass der Empfangsteil 2 statt der Strahlungsquelle 11 einen beispielsweise als PiN-Diode ausgeführten Photodetektor 21 aufweist. Die Abtastvorrichtung weist des weiteren einen als Elektromotor 40 ausgeführten Motor mit einer Rotoracb.se auf, welche als Antriebsachse 4 der Ablenkprismen 10, 20 fungiert. Das eine Ablenkprisma 10 ist dabei an einem Achsende der Antriebsachse 4 und das andere Ablenkprisma 20 am gegenüberliegenden Achsende der Antriebsachse 4 mit der Antriebsachse 4 starr verbunden. Die Antriebsachse 4 weist hierzu an seinen beiden Achsenden je- weils einen Aufnähmeteiler zur Aufnahme des jeweiligen Ablenkprismas 10, 20 auf.According to FIG. 1, the scanning device according to the invention comprises a transmitting part 1 with a radiation source 11, for example an infrared laser diode, a transmitting-side deflection prism 10 with a triangular cross section and a lens device 12 designed as a Fresnel lens. The scanning device also has a receiving part 2, which is constructed analogously to the transmitting part 1. The receiving part 2 thus has a receiving-side deflecting prism 20 corresponding to the transmitting-side deflecting prism 10 and a receiving-side lens device 22 corresponding to the lens device 12 of the transmitting part 1. The deflection prisms 10, 20 and the lens devices 12, 22 are each designed identically. The difference between the transmitting part 1 and the receiving part 2 is that instead of the radiation source 11, the receiving part 2 has a photodetector 21, for example a PiN diode. The scanning device also has a motor designed as an electric motor 40 with a rotor axis, which functions as the drive axis 4 of the deflection prisms 10, 20. One deflection prism 10 is rigidly connected to the drive axis 4 at one axis end of the drive axis 4 and the other deflection prism 20 at the opposite axis end of the drive axis 4. For this purpose, the drive axle 4 has at its two axle ends because a receiving divider for receiving the respective deflecting prism 10, 20.
Die Ablenkprismen 10, 20 werden durch den Elektromotor 40 synchron zueinander rotiert . Durch ihre bauliche Trennung erhält man eine gute Kanaltrennung zwischen dem Sendeteil 1 und dem Empfangsteil 2.The deflection prisms 10, 20 are rotated synchronously with one another by the electric motor 40. Due to their structural separation, there is good channel separation between the transmitting part 1 and the receiving part 2.
Als Elektromotor 40 wird ein elektronisch kommutierter Gleichstrommotor verwendet. Damit wird während des Betriebs eine hohe Laufruhe der gesamten Anordnung gewährleistet. Die Abtastvorrichtung ist daher bestens für den Einbau in Fahrzeugkabinen geeignet .An electronically commutated DC motor is used as the electric motor 40. This ensures that the entire arrangement runs smoothly during operation. The scanning device is therefore ideally suited for installation in vehicle cabins.
Gemäß Figur 2 ist der Elektromotor 40 als Außenläufermotor ausgeführt. Er umfasst somit einen permanentmagnetischen Rotor 401, der an einer Seite der Antriebsachse 4 mit dieser fest verbunden ist und der einen mit einer Grundplatte 403 fest verbundenen Stator 402 umschließt. Der Stator 402 weist mehreren Wicklungen auf, die in zyklischer Reihenfolge und in Abhängigkeit der Winkellage des Rotors 401 über eine Motorleiterplatte 404 bestromt werden. Der äußere Rand des Rotors 401 wirkt als IndikatorScheibe, die die Ermittlung der Winkellage des Rotors 401 ermöglicht. Der Rotor 401 weist eine Auflage 40βb auf, auf die das gestrichelt dargestellte Ab- lenkpris a 20 aufgesetzt ist. Der Rotor 401 fungiert somit als Aufnahmeteller zur Aufnahme des Ablenkprismas 20. Der Rotor 401 weist ferner noch einen als Mitnehmer wirkenden und in das Ablenkprisma 20 hineingreifenden Fixierstift 409 auf. Das Ablenkprisma 20 ist somit über die Auflage 406 und den Rotor 401 mit dem einen Ende der Antriebsachse 4 fest verbunden. Am gegenüberliegenden Ende der Antriebsachse 4 ist ein mit diesem Ende der Antriebsachse 4 fest verbundener Aufnahmeteller 405 vorgesehen, der ebenfalls eine Auflage 406a aufweist. Über die Auflage 406a ist das Ablenkprisma 10 — dieses ist ebenfalls gestrichelt dargestellt — mit dem Aufnahmeteller 405 und somit mit der Antriebsachse 4 fest verbunden. Die Grundplatte 403 weist ein Lagertragrohr auf, das für die Aufnahme zweier durch eine Buchse 408c voneinander beabstandeter Lager 408a, 408b vorgesehen ist, wobei die Lager 408a, 408b ihrerseits zur Lagerung der Antriebsachse 4 vorgesehen sind. Die Antriebsachse 4 und der Rotor 401 werden durch eine Feder 407 in einer stabilen axialen Position gehalten. Die beschriebene Art der Lagerung ist vorteilhaft, da die Antriebsachse 4 somit kurz ausgeführt sein kann und die Einheit aus Ablenkprismen 10, 20, Antriebsachse 4 und Motor 40 damit sehr starr und wenig schwingungsanfällig ist.According to Figure 2, the electric motor 40 is designed as an external rotor motor. It thus comprises a permanent magnetic rotor 401 which is firmly connected to the drive axle 4 on one side and which surrounds a stator 402 which is permanently connected to a base plate 403. The stator 402 has a plurality of windings which are supplied with current in a cyclical order and as a function of the angular position of the rotor 401 via a motor printed circuit board 404. The outer edge of the rotor 401 acts as an indicator disc, which enables the angular position of the rotor 401 to be determined. The rotor 401 has a support 40βb on which the deflection prism 20 shown in dashed lines is placed. The rotor 401 thus functions as a receiving plate for receiving the deflection prism 20. The rotor 401 also has a fixing pin 409, which acts as a driver and engages in the deflection prism 20. The deflection prism 20 is thus firmly connected to the one end of the drive shaft 4 via the support 406 and the rotor 401. At the opposite end of the drive axle 4 there is a receiving plate 405 which is fixedly connected to this end of the drive axle 4 and which likewise has a support 406a. The deflection prism 10 - this is also shown in broken lines - is firmly connected to the receiving plate 405 and thus to the drive axis 4 via the support 406a. The Base plate 403 has a bearing support tube which is provided for receiving two bearings 408a, 408b spaced apart from one another by a bush 408c, bearings 408a, 408b in turn being provided for mounting the drive axle 4. The drive shaft 4 and the rotor 401 are held in a stable axial position by a spring 407. The type of storage described is advantageous since the drive axle 4 can thus be made short and the unit of deflection prisms 10, 20, drive axle 4 and motor 40 is therefore very rigid and less susceptible to vibration.
Für den Betrieb ist ein hoher Gleichlauf des Elektromotors 40 besonders vorteilhaft. Dies wird durch einen dreiphasigen Wicklungsaufbau, eine große Rotorschwungmasse, sowie eine auf kleine Ruckmomente optimierte Form der Statorbleche erreicht. Die Istdrehzahlausgabe erfolgt mit sehr kleinen Schwankungen sechs mal pro Umdrehung mittels eines sensorlosen Dreiphasen- Motortreibers. In einer weiteren Antriebsausführung wird zur Istdrehzahlerfassung ein hochpoliger Tachogenerator verwendet. Dazu ist die Motorleiterplatte 404 mit einer mäanderför- igen Wicklung versehen und der Rotormagnet stirnseitig hoch- polig magnetisiert .A high synchronism of the electric motor 40 is particularly advantageous for operation. This is achieved through a three-phase winding structure, a large rotor flywheel mass and a shape of the stator plates that is optimized for small jerk torques. The actual speed is output with very small fluctuations six times per revolution using a sensorless three-phase motor driver. In a further drive version, a multi-pole tachometer generator is used to record the actual speed. For this purpose, the motor printed circuit board 404 is provided with a meandering winding and the rotor magnet is magnetized on the front side with a high number of poles.
Während des Abtastvorgangs sendet die Strahlungsquelle 11 von einer bezüglich dem Ablenkprisma 10 und der Linsenvorrichtung 12 festen Position aus einen Lichtstrahl T in Richtung des Ablenkprismas 10 aus. Das Ablenkprisma 10 ist für das Licht der Strahlungsquelle 11 transparent ausgeführt, so dass der Lichtstrahl T in das Ablenkprisma 10 eindringt, im Ablenkprisma 10 an einer seiner Seitenwände durch Totalreflexion abgelenkt wird und anschließend aus dem Ablenkprisma 10 wieder austritt. Beim Eindringen in das Ablenkprisma 10 und Austritt aus dem Ablenkprisma 10 wird der Lichtstrahl T ggf. gebrochen. Nach dem Austritt wird der Lichtstrahl T über die Linsenvorrichtung 12 auf eine abzutastende Szene 3 abgebildet. Die Strahlungsquelle 11 beleuchtet somit einen abgegrenzten Bereich 30 der Szene 3. Durch die Rotation des Ab- lenkprismas 10 ändert sich der Reflexionswinkel des Lichtstrahls T im Inneren Ablenkprisma 10. Hierdurch wird der Lichtstrahl T quer zur Antriebsachse 4, im vorliegenden Ausführungsbeispiel also in horizontaler Richtung, über die Szene 3 bewegt .During the scanning process, the radiation source 11 emits a light beam T in the direction of the deflection prism 10 from a position that is fixed with respect to the deflection prism 10 and the lens device 12. The deflection prism 10 is designed to be transparent to the light from the radiation source 11, so that the light beam T penetrates into the deflection prism 10, is deflected in the deflection prism 10 on one of its side walls by total reflection and then emerges again from the deflection prism 10. When entering the deflection prism 10 and exiting from the deflection prism 10, the light beam T may be refracted. After exiting, the light beam T is imaged onto a scene 3 to be scanned via the lens device 12. The radiation source 11 thus illuminates a delimited area 30 of the scene 3. Steering prism 10 changes the reflection angle of the light beam T inside the deflection prism 10. As a result, the light beam T is moved across the scene 3 transversely to the drive axis 4, in the present exemplary embodiment in a horizontal direction.
Der Photodetektor 21 ist bezüglich dem empfangsseitigen Ablenkprisma 20 derart positioniert, dass ein Teil des Lichtstrahls T, der am Bereich 30 an einem Objekt der Szene 3 reflektiert wird, als Reflexionsstrahl R über die Linsenvorrichtung 22 und das empfangsseitige Ablenkprisma 20 auf den Photodetektor 21 fokussiert wird. Der Reflexionsstrahl R wird dabei in dem für den Reflexionsstrahl R transparenten Ablenkprisma 20 ebenso wie der Lichtstrahl T im sendeseitigen Ablenkprisma 10 durch Totalreflexion abgelenkt. Die Ablenkwinkel, um die der Lichtstrahl T und der Reflexionsstrahl R abgelenkt werden, sind gleich groß und sie ändern sich infolge der Rotation der Ablenkprismen 10, 20 jeweils um gleiche Werte.The photodetector 21 is positioned with respect to the deflection prism 20 on the reception side such that a part of the light beam T, which is reflected at the area 30 on an object of scene 3, is focused as a reflection beam R via the lens device 22 and the reception-side deflection prism 20 on the photodetector 21 , The reflection beam R is deflected in the deflection prism 20, which is transparent for the reflection beam R, as is the light beam T in the transmission-side deflection prism 10 by total reflection. The deflection angles by which the light beam T and the reflection beam R are deflected are the same size and they change due to the rotation of the deflection prisms 10, 20 by the same values.
Die Ablenkprismen 10, 20 weisen im vorliegenden Ausführungs- beispiel parallel zur Antriebsachse 4 ausgerichtete Seitenflächen auf. Sie können aber auch Seitenflächen aufweisen, die gegenüber der Antriebsachse 4 um unterschiedliche Winkel geneigt sind. Hierdurch erreicht man zusätzlich eine Auslenkung des Lichtstrahls T in Richtung der Antriebsachse 4, im vorliegenden Ausführungsbeispiel also eine vertikale Auslenkung. Die Szene 3 wird dann in mehreren übereinanderliegenden Zeilen abgetastet.In the present exemplary embodiment, the deflection prisms 10, 20 have side surfaces aligned parallel to the drive axis 4. However, they can also have side surfaces which are inclined at different angles with respect to the drive axis 4. This additionally achieves a deflection of the light beam T in the direction of the drive axis 4, that is to say a vertical deflection in the present exemplary embodiment. Scene 3 is then scanned in several lines one above the other.
Durch Auswertung der Signallaufzeit des als Lichtstrahl T ausgesendeten und als Reflexionsstrahl R reflektierten Signals lässt sich der Abstand zwischen der Abtastvorrichtung und dem Ort, an dem der Lichtstrahl T reflektiert wird, ermitteln. Die Abtastvorrichtung eignet sich daher bestens zum Einsatz in einem System zur Unterstützung des Fahrers eines Kraftfahrzeugs, insbesondere in einem AbstandsregelSystem für Kraftfahrzeuge oder in einem System zur Erkennung von Objekten aus der Umgebung eines Kraftfahrzeugs. Bei einem derartigen Anwendungsfall wird die Umgebung des Kraftf hrzeugs mit der Abtastvorrichtung abgetastet, um Objekte, insbesondere vorausfahrende Fahrzeuge, zu erkennen und die Abstände zu diesen Objekten zu ermitteln. Anhand der ermittelten Abstände wird dann geprüft, ob der Sicherheitsabstand zu einem vorausfahrenden Fahrzeug eingehalten wird und ggf. ein Warnsignal an den Fahrer abgegeben, oder es wird eine automatische Abstandsregelung des Abstands zum vorausfahrenden Fahrzeug vorgenommen .By evaluating the signal transit time of the signal emitted as light beam T and reflected as reflection beam R, the distance between the scanning device and the location at which the light beam T is reflected can be determined. The scanning device is therefore ideally suited for use in a system for assisting the driver of a motor vehicle, in particular in a distance control system for motor vehicles or in a system for recognizing objects from the surroundings of a motor vehicle. In such an application, the surroundings of the motor vehicle are scanned with the scanning device in order to recognize objects, in particular vehicles in front, and to determine the distances to these objects. Based on the determined distances, it is then checked whether the safety distance from a vehicle in front is being maintained and, if necessary, a warning signal is sent to the driver, or an automatic distance control of the distance from the vehicle in front is carried out.
Mit der Abtastvorrichtung lässt sich auch der bezüglich dem Kraftfahrzeug seitliche Fahrbahnbereich abtasten, um Fahrbahnmarkierungen, die zur Abgrenzung der Fahrspuren auf der Fahrbahn vorgesehen sind, zu erkennen und den Fahrer vor einem Verlassen der Fahrspur zu warnen oder eine automatisch Fahrspurhaltung zu gewährleisten. The scanning device can also be used to scan the lane area on the side of the motor vehicle in order to recognize lane markings which are intended to delimit the lanes on the lane and to warn the driver of leaving the lane or to ensure automatic lane maintenance.

Claims

Patentansprüche claims
1. Abtastvorrichtung mit einem sendeseitigen Ablenkprisma (10) zur Ablenkung eines zu einer abzutastenden Szene (3) ausgesendeten Lichtstrahls (T) und einem empfangsseitigen Ablenkprisma (20) zur Ablenkung eines aus dem Lichtstrahl (T) resultierenden Reflexionsstrahls (R) , dadurch gekennzeichnet, dass die Ablenkprismen (10, 20) jeweils an einem von zwei Achsenden einer drehbar gelagerten Antriebsachse (4) mit der Antriebsachse (4) starr verbunden sind.1. Scanning device with a transmission-side deflection prism (10) for deflecting a light beam (T) emitted to a scene (3) to be scanned and a reception-side deflection prism (20) for deflection of a reflection beam (R) resulting from the light beam (T), characterized in that that the deflection prisms (10, 20) are each rigidly connected to the drive axis (4) on one of two axis ends of a rotatably mounted drive axis (4).
2. Abtastvorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass die Antriebsachse (4) als Rotorachse eines Motors (40) ausgeführt ist.2. Scanning device according to claim 1, characterized in that the drive axis (4) is designed as a rotor axis of a motor (40).
3. Abtastvorrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Ablenkprismen (10, 20) für den Lichtstrahl (T) und den Reflexionsstrahl (R) transparent sind.3. Scanning device according to claim 1 or 2, characterized in that the deflecting prisms (10, 20) for the light beam (T) and the reflection beam (R) are transparent.
4. Abtastvorrichtung nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass zwischen den Ablenkprismen (10, 20) und der abzutastenden Szene (3) jeweils eine Linsenvorrichtung (12, 22) zur Bündelung des Lichtstrahls (T) bzw. des Reflexionsstrahls (R) vorgesehen ist.4. Scanning device according to one of the preceding claims, characterized in that between the deflecting prisms (10, 20) and the scene (3) to be scanned in each case a lens device (12, 22) for focusing the light beam (T) or the reflection beam (R) is provided.
5. Abtastvorrichtung nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass eine Strahlungsquelle (11) zum Aussenden des Lichtstrahls (T) und ein Photodetektor (21) zur Detektion des Reflexionsstrahls (R) vorgesehen sind und dass die Strahlungsquelle (11) bezüglich dem sendeseitigen Ablenkprisma (10) und der Photodetektor (21) bezüglich dem empfangsseitigen Ablenkprisma (20) derart positioniert sind, dass der Reflexionsstrahl (R) auf den Photodetektor (21) auftrifft. 5. Scanning device according to one of the preceding claims, characterized in that a radiation source (11) for emitting the light beam (T) and a photodetector (21) for detecting the reflection beam (R) are provided and that the radiation source (11) with respect to the transmission side Deflection prism (10) and the photodetector (21) are positioned with respect to the reception-side deflection prism (20) such that the reflection beam (R) strikes the photodetector (21).
6. Abtastvorrichtung nach Anspruch 5, dadurch gekennzeichnet, dass die Strahlungsquelle (11) bezüglich dem sendeseitigen Ablenkprisma (10) und der Photodetektor (21) bezüglich dem empfangsseitigen Ablenkprisma (22) derart positioniert sind, dass der Lichtstrahl (T) und der Reflexionsstrahl (R) während des Abtastens der Szene (3) im sendeseitigen Ablenkprisma (10) bzw. im empfangsseitigen Ablenkprisma (20) durch Totalreflexion abgelenkt werden.6. Scanning device according to claim 5, characterized in that the radiation source (11) with respect to the transmission-side deflection prism (10) and the photodetector (21) with respect to the reception-side deflection prism (22) are positioned such that the light beam (T) and the reflection beam ( R) during the scanning of the scene (3) in the transmission-side deflection prism (10) or in the reception-side deflection prism (20) are deflected by total reflection.
7. Abtastvorrichtung nach Anspruch 5 oder 6, dadurch gekennzeichnet, dass die Strahlungsquelle (11) als Laserdiode ausgeführt ist.7. Scanning device according to claim 5 or 6, characterized in that the radiation source (11) is designed as a laser diode.
8. Abtastvorrichtung nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass der Motor (40) als elektronisch kommutierter, mehrphasiger Gleichstrommotor ausgeführt ist.8. Scanning device according to one of the preceding claims, characterized in that the motor (40) is designed as an electronically commutated, multi-phase DC motor.
9. Verwendung der Abtastvorrichtung nach einem der vorherigen Ansprüche zur Signalerfassung in einem optischen Abstandsradar für Kraftfahrzeuge. 9. Use of the scanning device according to one of the preceding claims for signal detection in an optical distance radar for motor vehicles.
EP02760119A 2001-08-31 2002-08-09 Sensor device Withdrawn EP1421402A2 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
DE10142458 2001-08-31
DE10142458 2001-08-31
DE10144130A DE10144130A1 (en) 2001-08-31 2001-09-07 Optical scanner with transmitter, receiver and optical path guiding light beams, includes two deflection prisms on rotary mounting
DE10144130 2001-09-07
PCT/DE2002/003027 WO2003025620A2 (en) 2001-08-31 2002-08-09 Sensor device

Publications (1)

Publication Number Publication Date
EP1421402A2 true EP1421402A2 (en) 2004-05-26

Family

ID=26010025

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02760119A Withdrawn EP1421402A2 (en) 2001-08-31 2002-08-09 Sensor device

Country Status (4)

Country Link
US (1) US20040233491A1 (en)
EP (1) EP1421402A2 (en)
JP (1) JP2005502897A (en)
WO (1) WO2003025620A2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7187445B2 (en) * 2001-07-19 2007-03-06 Automotive Distance Control Systems Gmbh Method and apparatus for optically scanning a scene
DE10139237A1 (en) * 2001-08-09 2003-03-06 Conti Temic Microelectronic Distance measuring device
DE10142425A1 (en) * 2001-08-31 2003-04-17 Adc Automotive Dist Control scanning
US7880888B2 (en) * 2009-03-17 2011-02-01 Rockwell Automation Technologies, Inc. Photoelectric sensor for sensing a target
JP6672715B2 (en) * 2015-11-05 2020-03-25 船井電機株式会社 measuring device
DE102015226773A1 (en) * 2015-12-29 2017-06-29 Robert Bosch Gmbh scanning device
KR102430667B1 (en) * 2017-03-24 2022-08-09 주식회사 히타치엘지 데이터 스토리지 코리아 Distance measuring apparatus
DE102018204708A1 (en) * 2018-03-28 2019-10-02 Robert Bosch Gmbh Macroscopic lidar device
US10928488B2 (en) * 2018-12-13 2021-02-23 Baidu Usa Llc LIDAR 3D design using a polygon mirror
CN112098972A (en) * 2019-06-17 2020-12-18 宁波舜宇车载光学技术有限公司 Laser radar system and different light path scanning device thereof
WO2021128023A1 (en) * 2019-12-24 2021-07-01 深圳市大疆创新科技有限公司 Driving electric motor, scanning module, and laser radar
CN117805781A (en) * 2024-02-28 2024-04-02 安徽瑞控信光电技术股份有限公司 High-speed quick reflection mirror for laser ranging

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2857816A (en) * 1956-07-23 1958-10-28 Clayton T Deal Auto-collimated stereoscopic range finder incorporating a ballistic computing mechanism
US4023083A (en) * 1975-04-14 1977-05-10 General Electric Company Torque regulating induction motor system
JPS5279640U (en) * 1975-12-12 1977-06-14
JPS5546712A (en) * 1978-09-29 1980-04-02 Nippon Kokan Kk <Nkk> Scanner of laser beam
US4606601A (en) * 1982-09-24 1986-08-19 Xerox Corporation Single facet wobble free scanner
DE3423536C2 (en) * 1984-06-26 1986-09-11 Erwin Sick Gmbh Optik-Elektronik, 7808 Waldkirch Photoelectric protection zone device on a vehicle
JPS6123986A (en) * 1984-07-11 1986-02-01 West Electric Co Ltd Body detecting device
DE3707023A1 (en) * 1987-03-05 1988-09-15 Rodenstock Optik G DEVICE FOR DEFLECTING A BEAM
US4907879A (en) * 1988-01-15 1990-03-13 Webb James B Remote controlled land surveying assistance device for path response alignment to beam energy
US5189545A (en) * 1989-05-18 1993-02-23 Mitsubishi Denki Kabushiki Kaisha Optical deflector and display unit using the same
US5227784A (en) * 1990-12-10 1993-07-13 Mazda Motor Corporation System for detecting and determining range of target vehicle
DE4115747C2 (en) * 1991-05-14 1998-02-26 Hipp Johann F Device and method for situation, obstacle and object detection
DE4132025C2 (en) * 1991-09-26 1994-07-21 Hell Ag Linotype Beam deflector
US5367399A (en) * 1992-02-13 1994-11-22 Holotek Ltd. Rotationally symmetric dual reflection optical beam scanner and system using same
US5223956A (en) * 1992-03-30 1993-06-29 Holotek Ltd. Optical beam scanners for imaging applications
JP3131487B2 (en) * 1992-02-17 2001-01-31 株式会社ソキア Distance measuring angle measuring device, flat linear surveying method and flat linear surveying device
US5293162A (en) * 1992-03-09 1994-03-08 Bachalo William D Laser based tracking device for detecting the distance between a vehicle and a roadway marker
US5309212A (en) * 1992-09-04 1994-05-03 Yaskawa Electric Corporation Scanning rangefinder with range to frequency conversion
JP3507088B2 (en) * 1992-09-28 2004-03-15 セイコーエプソン株式会社 Optical scanning device
JPH08122060A (en) * 1994-10-21 1996-05-17 Mitsubishi Electric Corp Vehicle surrounding monitoring system
DE19530281C2 (en) * 1995-08-17 1999-01-07 Johann Hipp Device for optically detecting obstacles in front of vehicles
US5682230A (en) * 1995-11-01 1997-10-28 United States Golf Association Test range for determining the aerodynamic characteristics of a ball in flight
JP3446466B2 (en) * 1996-04-04 2003-09-16 株式会社デンソー Reflection measuring device for inter-vehicle distance control device and inter-vehicle distance control device using the same
JPH1010233A (en) * 1996-06-24 1998-01-16 Mitsui Eng & Shipbuild Co Ltd Method for laser obstruction detection and sensor therefor
DE19704340A1 (en) * 1997-02-05 1998-08-06 Sick Ag Rangefinder
JPH1164518A (en) * 1997-08-12 1999-03-05 Mitsubishi Electric Corp Optical radar device for vehicle
DE50008899D1 (en) * 1999-11-27 2005-01-13 Ebm Papst St Georgen Gmbh & Co Electronically commutated DC motor
US7187445B2 (en) * 2001-07-19 2007-03-06 Automotive Distance Control Systems Gmbh Method and apparatus for optically scanning a scene
DE10139237A1 (en) * 2001-08-09 2003-03-06 Conti Temic Microelectronic Distance measuring device
DE10142425A1 (en) * 2001-08-31 2003-04-17 Adc Automotive Dist Control scanning

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO03025620A2 *

Also Published As

Publication number Publication date
JP2005502897A (en) 2005-01-27
WO2003025620A2 (en) 2003-03-27
US20040233491A1 (en) 2004-11-25
WO2003025620A3 (en) 2003-10-09

Similar Documents

Publication Publication Date Title
DE19733491B4 (en) Goal finding method for geodetic devices
EP2124069B1 (en) Omnidirectional Lidar system
WO2003025620A2 (en) Sensor device
EP2637057B1 (en) Light source for a sensor and distance measuring optoelectronic sensor
DE102014100301B3 (en) Opto-electronic sensor for detecting objects in a surveillance area
WO2011023484A1 (en) Device for optical distance measurement and method for adjusting such a device
EP0235184B1 (en) Device for determining and monitoring changes in the position of shafts
DE10146692A1 (en) Hybrid distance image sensor uses rotation of polygonal deflection rod for simultaneous deflection of transmission and reception surfaces for electromagnetic waves
WO2018054512A1 (en) Lidar sensor of compact construction
WO2006069857A1 (en) Optical short-range sensor
WO2019214973A1 (en) Lidar measuring system and method for assembling a lidar measuring system
DE3932844C2 (en)
WO2017001038A1 (en) Sensor device for detecting surroundings and method for recognising a zero position of a rotatable unit of such a sensor device
DE10144130A1 (en) Optical scanner with transmitter, receiver and optical path guiding light beams, includes two deflection prisms on rotary mounting
DE102016011328A1 (en) LIDAR scanner with pentaprism
EP1795868A2 (en) Optoelectronic device for recording the rotation of a rotary element and method for evaluating the signals of such a device
EP3173815A1 (en) Antriebseinrichtung zum antreiben wenigstens eines spiegels eine umlenkspie-gelanordnung, optische messvorrichtung, fahrerassistenzsystem, verfahren zum betreiben einer optischen messvorrichtung
DE10153977B4 (en) System for generating a distance image with electromagnetic pulses
DE102020206118A1 (en) Detection device for the detection of objects in a surrounding area
DE19623060C1 (en) Geodetic tacheometer and theodolite for coarse object seeking
EP4004585A1 (en) Transmission device for an optical measurement apparatus for detecting objects, light signal deflection device, measurement apparatus and method for operating a measurement apparatus
DE102021108318B4 (en) Photoelectronic sensor
DE102016011329A1 (en) LiDAR sensor with optics arranged in a rotor body
WO2018234070A1 (en) Macroscopic lidar device
DE102017001613A1 (en) Electro-optical two-dimensional distance measuring device with more than one distance measuring module

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20031105

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: EBM-PAPST ST. GEORGEN GMBH & CO. KG

Owner name: AUTOMOTIVE DISTANCE CONTROL SYSTEMS GMBH

17Q First examination report despatched

Effective date: 20070525

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20071205