JP3507088B2 - Optical scanning device - Google Patents

Optical scanning device

Info

Publication number
JP3507088B2
JP3507088B2 JP25840692A JP25840692A JP3507088B2 JP 3507088 B2 JP3507088 B2 JP 3507088B2 JP 25840692 A JP25840692 A JP 25840692A JP 25840692 A JP25840692 A JP 25840692A JP 3507088 B2 JP3507088 B2 JP 3507088B2
Authority
JP
Japan
Prior art keywords
optical
reflecting
lens
mirror
rotating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP25840692A
Other languages
Japanese (ja)
Other versions
JPH06110006A (en
Inventor
隆史 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP25840692A priority Critical patent/JP3507088B2/en
Publication of JPH06110006A publication Critical patent/JPH06110006A/en
Application granted granted Critical
Publication of JP3507088B2 publication Critical patent/JP3507088B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Mechanical Optical Scanning Systems (AREA)
  • Facsimile Scanning Arrangements (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はレーザービームプリン
タ、デジタル複写機、ファクシミリ、レーザーディスプ
レイ等に用いられる光走査装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical scanning device used in laser beam printers, digital copying machines, facsimiles, laser displays and the like.

【0002】[0002]

【従来の技術】従来用いられているレーザービームプリ
ンタ等に用いられる光走査装置を図8を用いて説明す
る。半導体レーザー等の光源11から出射し、コリメー
タレンズ12によって平行ビームとされた光ビームを回
転多面鏡13で偏向走査し、結像レンズ15によって感
光体面16上に走査スポットを形成する。回転多面鏡1
3が等速回転すると、光ビームは等角速度で走査される
が、感光体面15上で結像スポットを等速度で走査する
には、結像レンズ15に、レンズの光軸と光ビームのな
す角度をθ、レンズの焦点距離をf、像高をyとする
と、 y=f・θ となる歪曲特性を与えれば等速走査が実現される。
2. Description of the Related Art An optical scanning device used in a conventional laser beam printer or the like will be described with reference to FIG. A light beam emitted from a light source 11 such as a semiconductor laser and collimated by a collimator lens 12 is deflected and scanned by a rotary polygon mirror 13, and a scanning spot is formed on a photosensitive member surface 16 by an imaging lens 15. Rotating polygon mirror 1
When 3 rotates at a constant speed, the light beam is scanned at a constant angular velocity, but in order to scan the imaging spot on the photoconductor surface 15 at a constant speed, the imaging lens 15 is formed by the optical axis of the lens and the light beam. When the angle is θ, the focal length of the lens is f, and the image height is y, constant-speed scanning can be realized by giving a distortion characteristic of y = f · θ.

【0003】ところで、回転多面鏡13には、通常、多
面鏡の製作過程で生じる各面の平行度の誤差および回転
軸と多面鏡の取り付け誤差があり、反射された光ビーム
の進行方向が偏向面に垂直な面内で変化して、走査ピッ
チむらが生じてしまう。このピッチむらが問題ないよう
な高精度の偏向装置は極めて高価になる。そこで、従
来、これを補正するための方法、いわゆる面倒れ補正光
学系が種々考案されている。以下にそれらの方式を説明
する。
By the way, the rotating polygon mirror 13 usually has an error in parallelism of each surface and an error in mounting the rotating shaft and the polygon mirror, which occur during the manufacturing process of the polygon mirror, and the traveling direction of the reflected light beam is deflected. The variation occurs in the plane perpendicular to the plane, resulting in uneven scanning pitch. A highly accurate deflection device that does not cause this pitch unevenness becomes extremely expensive. Therefore, conventionally, various methods for correcting this, so-called misalignment correction optical systems have been devised. The methods will be described below.

【0004】(共役型倒れ補正方式)特開昭48−49
315号、特開昭56−36622号に示されるよう
に、偏向面(以下主走査面と記す)と偏向面に垂直な面
(以下副走査面と記す)のパワーの異なるアナモルフィ
ックな走査光学系を用い、副走査面では回転多面鏡の反
射面に光束を結像させ、反射面と感光体面が光学的に共
役となるようにしたものである。
(Conjugate tilt correction method) Japanese Patent Laid-Open No. 48-49
No. 315 and JP-A-56-36622, anamorphic scanning in which the deflecting surface (hereinafter referred to as the main scanning surface) and the surface perpendicular to the deflecting surface (hereinafter referred to as the sub-scanning surface) have different powers. An optical system is used to form an image of a light beam on the reflection surface of the rotary polygon mirror on the sub-scanning surface so that the reflection surface and the photoconductor surface are optically conjugate.

【0005】(緩和型倒れ補正方式)特開昭52−15
3456号、特開昭58−134618号に示されるよ
うに、感光体面近傍に長尺の円筒レンズを配して、面倒
れによる副走査面の偏向方向変化を緩和するようにした
ものである。
(Relaxation type tilt correction system) Japanese Patent Laid-Open No. 52-15
As disclosed in Japanese Patent No. 3456 and Japanese Patent Laid-Open No. 58-134618, a long cylindrical lens is arranged in the vicinity of the surface of the photosensitive member so as to alleviate a change in the deflection direction of the sub-scanning surface due to surface tilt.

【0006】(ポリゴン割り出し補正方式)特開平3−
100620に示されるように、2面の多面鏡で各面の
相対面倒れ量がほぼゼロになるように回転多面鏡取り付
け位置を設定するものである。
(Polygon indexing correction method)
As indicated by reference numeral 100620, the rotary polygon mirror mounting position is set so that the relative surface tilt amount of each surface of the two-sided polygon mirror becomes substantially zero.

【0007】[0007]

【発明が解決しようとする課題】ところが、上述の従来
例はいずれも以下に示すような課題を有する。すなわ
ち、共役型においては、球面レンズに比べて特殊な製造
方法を要するトロイダルレンズを用いねばならなかった
り、円筒レンズを用いる場合にはレンズ枚数を多数要し
たりして高価にならざるを得ず、また装置の大型化をま
ねいていた。緩和型の場合は、長尺の円筒レンズを必要
とするため高価であったり、また倒れ補正倍率が低いと
いう課題を有していた。ポリゴン割りだし方式において
は光学系自身は何等特別なものを必要としないものの、
2面の反射面の平行度が高精度でなければならず、製造
コストが高価であった。
However, all the above-mentioned conventional examples have the following problems. That is, in the conjugate type, it is necessary to use a toroidal lens that requires a special manufacturing method as compared with a spherical lens, and if a cylindrical lens is used, a large number of lenses are required, which is inevitably expensive. Also, it was trying to increase the size of the device. In the case of the relaxation type, there is a problem that it is expensive because a long cylindrical lens is required and the tilt correction magnification is low. In the polygon indexing method, the optical system itself does not require anything special,
The parallelism between the two reflecting surfaces must be highly accurate, and the manufacturing cost was high.

【0008】本発明は上述の課題を解決するためになさ
れたもので、小型化、低価格化と高性能化を同時に実現
する光走査装置を提供するものである。
The present invention has been made to solve the above-mentioned problems, and provides an optical scanning device which simultaneously realizes miniaturization, cost reduction and high performance.

【0009】[0009]

【課題を解決するための手段】本発明は、 (1)各々が互いに独立した面として形成された、反射
面と、入射面と、射出面とが一体に形成された光学素子
を2個備えてなり、前記入射面と前記射出面は所定の収
差補正を行うごとく定められた面形状をなし、かつ前記
光学素子の前記反射面が互いに接するように固定されて
おり、前記反射面上にある回転軸を中心に前記2個の光
学素子を回転させることによって光束を偏向走査するこ
とを特徴とする光走査装置。 (2)各々が互いに独立した面として形成された、反射
面と、入射面と、射出面とが一体に形成された光学素子
を2個備えてなり、前記入射面と前記射出面は所定の収
差補正を行うごとく定められた面形状をなし、かつ前記
光学素子を回転駆動するモーターの軸に対して前記反射
面が接するように固定されており、前記2個の光学素子
を回転させることによって光束を偏向走査することを特
徴とする光走査装置。
The present invention comprises (1) two optical elements each having a reflecting surface, an entrance surface, and an exit surface, which are formed as independent surfaces. The entrance surface and the exit surface have a predetermined surface shape so as to perform a predetermined aberration correction, and the reflecting surfaces of the optical element are fixed so as to be in contact with each other, and are on the reflecting surface. An optical scanning device which deflects and scans a light beam by rotating the two optical elements about a rotation axis. (2) Two optical elements each having a reflecting surface, an entrance surface, and an exit surface formed integrally as independent surfaces are provided, and the entrance surface and the exit surface have a predetermined shape. It has a predetermined surface shape so as to correct aberrations, and is fixed so that the reflecting surface is in contact with the axis of a motor that rotationally drives the optical element. By rotating the two optical elements, An optical scanning device which deflects and scans a light beam.

【0010】[0010]

【実施例】本発明の第1の実施例を、図1の斜視図を用
いて説明する。
EXAMPLE A first example of the present invention will be described with reference to the perspective view of FIG.

【0011】回転鏡3は、ガラス、PMMA(ポリメチ
ルメタクリレート)やPC(ポリカーボネート)などの
樹脂等の透明部材からなるプリズム30、30の反射面
R、Rを互いに密着させて固着したものであり、モータ
ー4に取り付け板40を介して固着されている。プリズ
ム30、30の反射面R、Rはアルミニウムや金等の蒸
着面にしても良いし、全反射を利用しても良い。また、
プリズム30、30は入射面S1、出射面S2をそれぞ
れ有する。半導体レーザー等の光源1より出射した光は
コリメータレンズ2によって細い光ビームとされる。光
ビームは、モーター4によりほぼ反射面R上にある回転
軸(点O)を中心に回転する回転鏡3の入射面S1に入
射した後、反射面R1で反射され、出射面S2から出射
する。回転鏡3が回転することによって光ビームは偏向
される。偏向された光ビームは結像レンズ5に入射し、
感光体6上にスポットを形成する。
The rotating mirror 3 is formed by adhering the reflecting surfaces R, R of the prisms 30, 30 made of a transparent member such as glass or resin such as PMMA (polymethylmethacrylate) or PC (polycarbonate) so as to be in close contact with each other. , Is fixed to the motor 4 via a mounting plate 40. The reflecting surfaces R, R of the prisms 30, 30 may be vapor-deposited surfaces of aluminum, gold or the like, or total reflection may be used. Also,
The prisms 30 and 30 have an entrance surface S1 and an exit surface S2, respectively. The light emitted from the light source 1 such as a semiconductor laser is made into a thin light beam by the collimator lens 2. The light beam is incident on the incident surface S1 of the rotating mirror 3 rotating about the rotation axis (point O) substantially on the reflecting surface R by the motor 4, is then reflected by the reflecting surface R1, and is emitted from the emitting surface S2. . The light beam is deflected by the rotation of the rotating mirror 3. The deflected light beam enters the imaging lens 5,
A spot is formed on the photoconductor 6.

【0012】さて、前述したように面倒れ誤差を生じる
要因は、反射面間の平行度誤差と、モーター4の回転軸
方向と反射面R、Rの平行度誤差であるが、前者に付い
ては回転鏡3は2個のプリズム30の反射面Rが直接密
着されているため2面の反射面R、Rはほぼ同一平面と
みなしてよく、高価な製造方法を必要とせずに十分な平
行度が達成される。また後者に付いては、前述の従来例
のポリゴン割り出し方式で開示されているような調整方
法などを用いることによって容易に補正することができ
る。
As described above, the factors that cause the surface tilt error are the parallelism error between the reflecting surfaces and the parallelism error between the rotation axis direction of the motor 4 and the reflecting surfaces R, R. In the rotating mirror 3, since the reflecting surfaces R of the two prisms 30 are in direct contact with each other, the two reflecting surfaces R, R may be regarded as substantially the same plane, and the two parallel reflecting surfaces R, R are sufficiently parallel without requiring an expensive manufacturing method. Degree is achieved. The latter can be easily corrected by using the adjusting method disclosed in the above-mentioned conventional polygon indexing method.

【0013】プリズム30、30の固定方法は、接着、
融着、バネ部材による圧接等が可能である。接着の場
合、接着剤が反射面R、Rの間に多量に流れ込んで平行
度を狂わせるのを防止するため、圧接下で接着を行う。
接着剤としては、エポキシ樹脂、ポリエステル樹脂等が
望ましい。
The prisms 30 and 30 are fixed by adhesion,
Fusing, pressure contact with a spring member, etc. are possible. In the case of adhesion, in order to prevent a large amount of adhesive from flowing between the reflecting surfaces R and disturbing the parallelism, the adhesion is performed under pressure contact.
As the adhesive, epoxy resin, polyester resin or the like is desirable.

【0014】図2にバネ部材による圧接での固定状態を
示す。図2a)は平面図、b)は正面図である。板ばね
部材31は光路を遮らないようプリズムの頂点近傍に設
けられたばね部32、32、32、32で、プリズム3
0、30を互いに圧接する方向に付勢し、さらに板ばね
部材31に対してプリズム30、30が移動しないよう
2方向で抱えるように付勢している。
FIG. 2 shows a fixed state by pressure contact with a spring member. 2a) is a plan view and b) is a front view. The leaf spring member 31 includes spring portions 32, 32, 32, 32 provided near the apex of the prism so as not to block the optical path.
0 and 30 are urged in a direction in which they are pressed against each other, and are further urged so as to hold the prisms 30 and 30 in two directions with respect to the leaf spring member 31 so as not to move.

【0015】上述したように本発明は容易な構成で面倒
れ補正が行えるという効果を有するが、さらに、回転鏡
で光束を偏向する偏向点の移動による光学性能の劣化が
生じないという予想外の効果を有することも発見され
た。なぜなら、図7に示すように回転多面鏡の場合には
回転中心が反射面上にないため、多面鏡面の中央部と端
部を比べると端部の方がより回転円の外周側で光束を反
射することになる。これは、画角の変化により入射瞳位
置が左右非対称に変動する事を意味しており、それによ
る像面湾曲収差、歪曲収差が現れる。特に高密度記録を
行うよう結像スポットを小さくしていった場合、たとえ
ばスポットサイズが50μm以下の場合に大きく影響す
る。これに対し、本発明の回転鏡を使えば回転中心を反
射面上に設定することができ、入射瞳位置の変動はなく
なる。従って高記録密度の走査光学系が実現できるわけ
である。
As described above, the present invention has the effect that the surface tilt can be corrected with a simple structure, but further, it is unexpected that the optical performance does not deteriorate due to the movement of the deflection point that deflects the light beam by the rotating mirror. It was also found to have an effect. This is because, as shown in FIG. 7, in the case of the rotating polygon mirror, the center of rotation is not on the reflecting surface, so when comparing the center portion and the end portion of the polygon mirror surface, the end portion produces a light beam on the outer peripheral side of the rotation circle. Will be reflected. This means that the entrance pupil position fluctuates asymmetrically due to changes in the angle of view, and field curvature aberration and distortion aberration appear due to it. In particular, when the image forming spot is made smaller so that high density recording is performed, for example, when the spot size is 50 μm or less, it has a great influence. On the other hand, if the rotating mirror of the present invention is used, the center of rotation can be set on the reflecting surface, and the fluctuation of the entrance pupil position is eliminated. Therefore, a scanning optical system with high recording density can be realized.

【0016】次に本発明の第2の実施例を図3を用いて
説明する。図3は回転鏡付近の構造を示す斜視図であ
る。本実施例は、回転鏡13を、ガラス、PMMAやP
Cなどの樹脂等の透明部材からなる平行平面板130、
130を、反射面R、Rを互いに密着させて固着したも
のである。本実施例においては入射面と出射面は同一平
面Sとなる。その他の部分の構成は前述の第1の実施例
と同様である。本実施例においても前述の第1の実施例
と同様に面倒れ補正を容易に行うことができる。さら
に、本実施例においては平行平面板を用いるため、素子
自身が製造容易であるという特徴を有する。
Next, a second embodiment of the present invention will be described with reference to FIG. FIG. 3 is a perspective view showing the structure near the rotating mirror. In this embodiment, the rotating mirror 13 is made of glass, PMMA or P.
A plane parallel plate 130 made of a transparent member such as resin such as C,
The reflecting surface R is fixed to the surface 130 by bringing the reflecting surfaces R and R into close contact with each other. In this embodiment, the entrance surface and the exit surface are on the same plane S. The configuration of the other parts is the same as that of the first embodiment described above. In this embodiment as well, similar to the above-described first embodiment, the face tilt correction can be easily performed. Further, in this embodiment, since the plane parallel plate is used, the element itself is easy to manufacture.

【0017】本発明の第3の実施例を図4、図5を用い
て説明する。図4は回転鏡付近の構造を示す斜視図、図
5は走査光学系の光路図である。本実施例は、回転鏡2
3を本出願人による特願平4−166042号に開示さ
れる回転レンズ鏡230、230を、反射面R、Rを互
いに密着させて固着したものである。特願平4−166
042号に詳述されているように、回転レンズ鏡230
の入射面S1と出射面S2とは所定の収差補正を行うご
とく形状を定められており、極めて小型、低価格の走査
光学系を構成することができる。なぜなら、通常のレー
ザービームプリンタ等の場合に必要とされる像面湾曲収
差、非点収差、歪曲収差を補正するためには、安価な軸
対称形状を用いて構成する光学系においては、小型化の
ために走査角度を十分にとった場合、結像レンズは2枚
以上必要であるが、前出の回転レンズ鏡230によれ
ば、収差除去のための自由度をそれと同等にもたせ、か
つ高価な光学部品の点数を増やさない様に、レンズ作用
と偏向鏡の機能を1部品で果たしているからである。と
ころが、特願平4−166042号の記述のみで光走査
装置を構成した場合、回転レンズ鏡230の1回転に対
し1本の走査しか行えず、高速機には不向きであった。
それに対し、本発明を適用すれば2倍の走査速度を得る
ことができるため、本発明と特願平4−166042号
との組み合わせは極めて好適であるといえる。
A third embodiment of the present invention will be described with reference to FIGS. FIG. 4 is a perspective view showing the structure near the rotating mirror, and FIG. 5 is an optical path diagram of the scanning optical system. In this embodiment, the rotating mirror 2
No. 3 is a rotary lens mirror 230, 230 disclosed in Japanese Patent Application No. 4-166042 by the present applicant, and the reflecting surfaces R, R are closely attached to each other and fixed. Japanese Patent Application 4-166
Rotating lens mirror 230, as detailed in No. 042.
The entrance surface S1 and the exit surface S2 are shaped so as to perform predetermined aberration correction, and an extremely small-sized and low-cost scanning optical system can be configured. This is because in order to correct the field curvature aberration, astigmatism, and distortion that are required in the case of ordinary laser beam printers, etc., it is necessary to reduce the size of an optical system that uses an inexpensive axisymmetric shape. Therefore, if the scanning angle is sufficiently large, two or more imaging lenses are required. However, according to the above-mentioned rotary lens mirror 230, the degree of freedom for aberration removal is equivalent to that, and it is expensive. This is because the lens function and the function of the deflecting mirror are fulfilled by one component so that the number of optical components is not increased. However, when the optical scanning device is configured only by the description of Japanese Patent Application No. 4-166042, only one scanning can be performed for one rotation of the rotary lens mirror 230, which is not suitable for a high speed machine.
On the other hand, if the present invention is applied, a double scanning speed can be obtained, so it can be said that the combination of the present invention and Japanese Patent Application No. 4-166042 is very suitable.

【0018】本発明の第4の実施例を図6を用いて説明
する。図6a)は、回転鏡付近の構造を示す平面図、
b)は正面図である。本実施例は、上述の第3の実施例
と同様の回転レンズ鏡230、230の反射面R、R
を、モーター4の回転軸42に密着させて固着したもの
である。その他の部分の構成は前述の第1の実施例と同
様である。モーター4の回転軸42は図示しない玉軸受
けなどのベアリングで回転可能に支持されているわけで
あるが、旋盤などを用いて、容易に回転軸の周面の円筒
度を高精度に仕上げることが可能である。従って、ベア
リングで支持された周面と同じ面に回転レンズ鏡23
0、230の反射面R、Rを密着させることによって、
回転軸中心と、反射面R、Rをすべて高精度に平行にす
ることができる。前述したように面倒れ誤差を生じる要
因は、反射面間の平行度誤差と、モーター4の回転軸方
向と反射面R、Rの平行度誤差であるが、このように本
実施例によれば、取り付け時に何等調整することなく、
両者同時に補正することが可能である。
A fourth embodiment of the present invention will be described with reference to FIG. FIG. 6a) is a plan view showing the structure near the rotating mirror,
b) is a front view. This embodiment is similar to the above-mentioned third embodiment in that the rotary lens mirrors 230, 230 have reflecting surfaces R, R.
Is closely attached to and fixed to the rotary shaft 42 of the motor 4. The configuration of the other parts is the same as that of the first embodiment described above. The rotating shaft 42 of the motor 4 is rotatably supported by a bearing such as a ball bearing (not shown), but it is possible to easily finish the cylindricity of the peripheral surface of the rotating shaft with high accuracy by using a lathe or the like. It is possible. Therefore, the rotary lens mirror 23 is formed on the same surface as the peripheral surface supported by the bearing.
By bringing the reflecting surfaces R and R of 0 and 230 into close contact,
The center of the rotation axis and the reflecting surfaces R, R can all be made parallel to each other with high accuracy. As described above, the factors that cause the surface tilt error are the parallelism error between the reflecting surfaces and the parallelism error between the rotation axis direction of the motor 4 and the reflecting surfaces R, R. Thus, according to the present embodiment, , Without any adjustment at the time of installation,
Both can be corrected at the same time.

【0019】回転レンズ鏡230、230の回転軸42
への固定方法は、前述の第1の実施例と同様に接着、融
着、ばね部材による圧接等が可能である。図6の実施例
はばね部材231による固定の場合を示している。この
とき、回転軸42と回転レンズ鏡230の圧接面積が非
常に小さく圧接圧力が高くなってしまい反射面Rが局所
変形を起こしてしまう可能性がある。そこで回転レンズ
鏡230、230の間にゴム等の弾性部材232を介在
させることによって圧接力を分散させることができ反射
面Rの局所変形を解消することができる。
The rotary shaft 42 of the rotary lens mirrors 230, 230
As for the method of fixing to, the same as in the above-described first embodiment, adhesion, fusion, pressure contact with a spring member, or the like is possible. The embodiment of FIG. 6 shows a case of fixing by the spring member 231. At this time, the pressure contact area between the rotary shaft 42 and the rotary lens mirror 230 is very small, and the pressure contact pressure becomes high, so that the reflective surface R may be locally deformed. Therefore, by interposing an elastic member 232 such as rubber between the rotating lens mirrors 230, 230, the pressure contact force can be dispersed and the local deformation of the reflecting surface R can be eliminated.

【0020】[0020]

【発明の効果】以上説明したように本発明によれば、高
価なレンズや多面鏡を必要とした面倒れ補正光学系を不
要にできる。さらに、組み立て時の調整が不要で小型低
価格な走査光学系を提供できる。
As described above, according to the present invention, it is possible to eliminate the need for a plane tilt correction optical system which requires an expensive lens or polygonal mirror. Further, it is possible to provide a small-sized and low-cost scanning optical system that does not require adjustment during assembly.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の第1の実施例を示す斜視図。FIG. 1 is a perspective view showing a first embodiment of the present invention.

【図2】 a)は本発明の実施例におけるプリズム固定
方法の一例を示す平面図、b)は正面図。
2A is a plan view showing an example of a prism fixing method according to an embodiment of the present invention, and FIG. 2B is a front view.

【図3】 本発明の第2の実施例を示す斜視図。FIG. 3 is a perspective view showing a second embodiment of the present invention.

【図4】 本発明の第3の実施例を示す斜視図。FIG. 4 is a perspective view showing a third embodiment of the present invention.

【図5】 本発明の第3の実施例をの光路図。FIG. 5 is an optical path diagram of a third embodiment of the present invention.

【図6】 a)は本発明の第4の実施例を示す平面図、
b)は正面図。
FIG. 6A is a plan view showing a fourth embodiment of the present invention,
b) is a front view.

【図7】 従来の回転多面鏡の反射点移動を示す図。FIG. 7 is a diagram showing movement of a reflection point of a conventional rotary polygon mirror.

【図8】 従来の走査光学系の構成を示す図。FIG. 8 is a diagram showing a configuration of a conventional scanning optical system.

【符号の説明】[Explanation of symbols]

1、11 光源 2、12 コリメータレンズ 3、13 回転鏡 4 モーター 5、15 結像レンズ 6、16 感光体 30 プリズム 31 板ばね部材 40 取り付け板 42 回転軸 130 平行平面板 230 回転レンズ鏡 231 ばね部材 232 弾性部材 1, 11 light source 2,12 Collimator lens 3,13 rotating mirror 4 motor 5, 15 Imaging lens 6, 16 photoconductor 30 prisms 31 leaf spring member 40 mounting plate 42 rotation axis 130 parallel plate 230 rotating lens mirror 231 spring member 232 Elastic member

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) G02B 26/10 ─────────────────────────────────────────────────── ─── Continuation of the front page (58) Fields surveyed (Int.Cl. 7 , DB name) G02B 26/10

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 各々が互いに独立した面として形成され
た、反射面と、入射面と、射出面とが一体に形成された
光学素子を2個備えてなり、前記入射面と前記射出面
所定の収差補正を行うごとく定められた面形状をなし
かつ前記光学素子の前記反射面が互いに接するように固
定されており、前記反射面上にある回転軸を中心に前記
2個の光学素子を回転させることによって光束を偏向走
査することを特徴とする光走査装置。
1. An optical element comprising two optical elements each integrally formed with a reflecting surface, an entrance surface and an exit surface, each of which is formed as an independent surface, wherein the entrance surface and the exit surface are provided.
Make a predetermined surface shape so as to perform predetermined aberration correction ,
In addition, the reflecting surfaces of the optical element are fixed so as to be in contact with each other, and the two optical elements are rotated about a rotation axis on the reflecting surface to deflect and scan the light beam. Optical scanning device.
【請求項2】 各々が互いに独立した面として形成され
た、反射面と、入射面と、射出面とが一体に形成された
光学素子を2個備えてなり、前記入射面と前記射出面
所定の収差補正を行うごとく定められた面形状をなし
かつ前記光学素子を回転駆動するモーターの軸に対して
前記反射面が接するように固定されており、前記2個の
光学素子を回転させることによって光束を偏向走査する
ことを特徴とする光走査装置。
Wherein each of which is formed as an independent facing each other, a reflecting surface, the incident surface, and the exit surface is provided with two optical elements formed integrally with the exit surface and the entrance surface
Make a predetermined surface shape so as to perform predetermined aberration correction ,
Further, the optical scanning device is fixed so that the reflecting surface is in contact with an axis of a motor that rotationally drives the optical element, and deflects and scans a light beam by rotating the two optical elements. .
JP25840692A 1992-09-28 1992-09-28 Optical scanning device Expired - Fee Related JP3507088B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25840692A JP3507088B2 (en) 1992-09-28 1992-09-28 Optical scanning device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25840692A JP3507088B2 (en) 1992-09-28 1992-09-28 Optical scanning device

Publications (2)

Publication Number Publication Date
JPH06110006A JPH06110006A (en) 1994-04-22
JP3507088B2 true JP3507088B2 (en) 2004-03-15

Family

ID=17319789

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25840692A Expired - Fee Related JP3507088B2 (en) 1992-09-28 1992-09-28 Optical scanning device

Country Status (1)

Country Link
JP (1) JP3507088B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003025620A2 (en) * 2001-08-31 2003-03-27 Automotive Distance Control Systems Gmbh Sensor device

Also Published As

Publication number Publication date
JPH06110006A (en) 1994-04-22

Similar Documents

Publication Publication Date Title
JPH03116112A (en) Scanning type optical device
JP2928552B2 (en) Scanning optical device
US5757535A (en) Optical scanner
JPH08122685A (en) Reflection type scanning optical device
US5257138A (en) Optical unit for use in an image forming apparatus
EP0629891B1 (en) Beam scanning apparatus
US5124830A (en) Optical deflector device for deflecting laser beam
JP3271995B2 (en) Optical device
US5600495A (en) Structure for attaching scanning optical system
JPH03179420A (en) Optical apparatus
JP3507088B2 (en) Optical scanning device
JPH03177811A (en) Optical deflector
JP2763148B2 (en) Scanning optical device
JP3432054B2 (en) Optical scanning optical device
JP3255543B2 (en) Reflective scanning optical system
JP2626708B2 (en) Scanning optical system
JP3385678B2 (en) Optical scanning device
JP3411661B2 (en) Scanning optical system
JP3016496B2 (en) Scanning optical device
JP3110816B2 (en) Optical scanning device
JP2749850B2 (en) Optical deflection device
JP2003029184A (en) Optical scanner and imaging device
JP3464847B2 (en) Optical scanning device
JP3507089B2 (en) Optical scanning device
JPH0387809A (en) Scanning type optical device

Legal Events

Date Code Title Description
A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20031218

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081226

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091226

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101226

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101226

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111226

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees