EP1419262A2 - Method used for the enzymatic reduction of substrates by molecular hydrogen - Google Patents
Method used for the enzymatic reduction of substrates by molecular hydrogenInfo
- Publication number
- EP1419262A2 EP1419262A2 EP02767065A EP02767065A EP1419262A2 EP 1419262 A2 EP1419262 A2 EP 1419262A2 EP 02767065 A EP02767065 A EP 02767065A EP 02767065 A EP02767065 A EP 02767065A EP 1419262 A2 EP1419262 A2 EP 1419262A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- reaction
- hydrogenase
- hydrogen
- nadph
- enzyme
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 238000000034 method Methods 0.000 title claims abstract description 40
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 title claims abstract description 31
- 230000009467 reduction Effects 0.000 title claims abstract description 15
- 239000000758 substrate Substances 0.000 title claims abstract description 12
- 230000002255 enzymatic effect Effects 0.000 title claims abstract description 7
- 108010020056 Hydrogenase Proteins 0.000 claims abstract description 37
- 102000004190 Enzymes Human genes 0.000 claims abstract description 22
- 108090000790 Enzymes Proteins 0.000 claims abstract description 22
- 239000001257 hydrogen Substances 0.000 claims abstract description 22
- 229910052739 hydrogen Inorganic materials 0.000 claims abstract description 22
- 241000205156 Pyrococcus furiosus Species 0.000 claims abstract description 15
- 238000006243 chemical reaction Methods 0.000 claims description 38
- 230000000694 effects Effects 0.000 claims description 12
- 239000012528 membrane Substances 0.000 claims description 10
- 230000008569 process Effects 0.000 claims description 10
- 238000000108 ultra-filtration Methods 0.000 claims description 10
- 108010021809 Alcohol dehydrogenase Proteins 0.000 claims description 6
- 102000007698 Alcohol dehydrogenase Human genes 0.000 claims description 5
- 239000007789 gas Substances 0.000 claims description 5
- 150000002576 ketones Chemical class 0.000 claims description 4
- -1 Janus Green Chemical compound 0.000 claims description 3
- FVTCRASFADXXNN-SCRDCRAPSA-N flavin mononucleotide Chemical compound OP(=O)(O)OC[C@@H](O)[C@@H](O)[C@@H](O)CN1C=2C=C(C)C(C)=CC=2N=C2C1=NC(=O)NC2=O FVTCRASFADXXNN-SCRDCRAPSA-N 0.000 claims description 3
- 239000000203 mixture Substances 0.000 claims description 3
- RBTBFTRPCNLSDE-UHFFFAOYSA-N 3,7-bis(dimethylamino)phenothiazin-5-ium Chemical compound C1=CC(N(C)C)=CC2=[S+]C3=CC(N(C)C)=CC=C3N=C21 RBTBFTRPCNLSDE-UHFFFAOYSA-N 0.000 claims description 2
- 239000012736 aqueous medium Substances 0.000 claims description 2
- 229910052786 argon Inorganic materials 0.000 claims description 2
- 229910052734 helium Inorganic materials 0.000 claims description 2
- 229910052743 krypton Inorganic materials 0.000 claims description 2
- 230000014759 maintenance of location Effects 0.000 claims description 2
- 229960000907 methylthioninium chloride Drugs 0.000 claims description 2
- 229910052757 nitrogen Inorganic materials 0.000 claims description 2
- FBWADIKARMIWNM-UHFFFAOYSA-N N-3,5-dichloro-4-hydroxyphenyl-1,4-benzoquinone imine Chemical compound C1=C(Cl)C(O)=C(Cl)C=C1N=C1C=CC(=O)C=C1 FBWADIKARMIWNM-UHFFFAOYSA-N 0.000 claims 1
- XJLXINKUBYWONI-NNYOXOHSSA-O NADP(+) Chemical compound NC(=O)C1=CC=C[N+]([C@H]2[C@@H]([C@H](O)[C@@H](COP(O)(=O)OP(O)(=O)OC[C@@H]3[C@H]([C@@H](OP(O)(O)=O)[C@@H](O3)N3C4=NC=NC(N)=C4N=C3)O)O2)O)=C1 XJLXINKUBYWONI-NNYOXOHSSA-O 0.000 claims 1
- 238000001311 chemical methods and process Methods 0.000 claims 1
- 230000008878 coupling Effects 0.000 claims 1
- 238000010168 coupling process Methods 0.000 claims 1
- 238000005859 coupling reaction Methods 0.000 claims 1
- 239000011261 inert gas Substances 0.000 claims 1
- 239000007791 liquid phase Substances 0.000 claims 1
- 239000012071 phase Substances 0.000 claims 1
- 239000011541 reaction mixture Substances 0.000 claims 1
- XJLXINKUBYWONI-DQQFMEOOSA-N [[(2r,3r,4r,5r)-5-(6-aminopurin-9-yl)-3-hydroxy-4-phosphonooxyoxolan-2-yl]methoxy-hydroxyphosphoryl] [(2s,3r,4s,5s)-5-(3-carbamoylpyridin-1-ium-1-yl)-3,4-dihydroxyoxolan-2-yl]methyl phosphate Chemical compound NC(=O)C1=CC=C[N+]([C@@H]2[C@H]([C@@H](O)[C@H](COP([O-])(=O)OP(O)(=O)OC[C@@H]3[C@H]([C@@H](OP(O)(O)=O)[C@@H](O3)N3C4=NC=NC(N)=C4N=C3)O)O2)O)=C1 XJLXINKUBYWONI-DQQFMEOOSA-N 0.000 abstract description 53
- 229930027945 nicotinamide-adenine dinucleotide Natural products 0.000 abstract description 30
- 238000002360 preparation method Methods 0.000 abstract description 7
- 239000003054 catalyst Substances 0.000 abstract description 5
- 239000000126 substance Substances 0.000 abstract description 4
- 239000006227 byproduct Substances 0.000 abstract description 3
- 230000001172 regenerating effect Effects 0.000 abstract 2
- 238000000746 purification Methods 0.000 abstract 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 abstract 1
- 229940088598 enzyme Drugs 0.000 description 15
- 230000008929 regeneration Effects 0.000 description 15
- 238000011069 regeneration method Methods 0.000 description 15
- 238000006722 reduction reaction Methods 0.000 description 13
- 239000000243 solution Substances 0.000 description 13
- 210000004027 cell Anatomy 0.000 description 12
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 7
- KWOLFJPFCHCOCG-UHFFFAOYSA-N Acetophenone Chemical compound CC(=O)C1=CC=CC=C1 KWOLFJPFCHCOCG-UHFFFAOYSA-N 0.000 description 6
- 238000002474 experimental method Methods 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 6
- 102000004169 proteins and genes Human genes 0.000 description 6
- 108090000623 proteins and genes Proteins 0.000 description 6
- 101000950981 Bacillus subtilis (strain 168) Catabolic NAD-specific glutamate dehydrogenase RocG Proteins 0.000 description 5
- 102000016901 Glutamate dehydrogenase Human genes 0.000 description 5
- 239000012298 atmosphere Substances 0.000 description 5
- 239000000047 product Substances 0.000 description 5
- 230000003252 repetitive effect Effects 0.000 description 5
- 238000012360 testing method Methods 0.000 description 5
- OWXMKDGYPWMGEB-UHFFFAOYSA-N HEPPS Chemical compound OCCN1CCN(CCCS(O)(=O)=O)CC1 OWXMKDGYPWMGEB-UHFFFAOYSA-N 0.000 description 4
- 102000004160 Phosphoric Monoester Hydrolases Human genes 0.000 description 4
- 108090000608 Phosphoric Monoester Hydrolases Proteins 0.000 description 4
- 239000012300 argon atmosphere Substances 0.000 description 4
- 239000000872 buffer Substances 0.000 description 4
- 238000004817 gas chromatography Methods 0.000 description 4
- 235000002639 sodium chloride Nutrition 0.000 description 4
- 239000011780 sodium chloride Substances 0.000 description 4
- LWIHDJKSTIGBAC-UHFFFAOYSA-K tripotassium phosphate Chemical compound [K+].[K+].[K+].[O-]P([O-])([O-])=O LWIHDJKSTIGBAC-UHFFFAOYSA-K 0.000 description 4
- QKNYBSVHEMOAJP-UHFFFAOYSA-N 2-amino-2-(hydroxymethyl)propane-1,3-diol;hydron;chloride Chemical compound Cl.OCC(N)(CO)CO QKNYBSVHEMOAJP-UHFFFAOYSA-N 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 3
- WHUUTDBJXJRKMK-VKHMYHEASA-N L-glutamic acid Chemical compound OC(=O)[C@@H](N)CCC(O)=O WHUUTDBJXJRKMK-VKHMYHEASA-N 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 239000003638 chemical reducing agent Substances 0.000 description 3
- 229930195712 glutamate Natural products 0.000 description 3
- 238000011065 in-situ storage Methods 0.000 description 3
- UICBCXONCUFSOI-UHFFFAOYSA-N n'-phenylacetohydrazide Chemical class CC(=O)NNC1=CC=CC=C1 UICBCXONCUFSOI-UHFFFAOYSA-N 0.000 description 3
- 239000012466 permeate Substances 0.000 description 3
- 230000002829 reductive effect Effects 0.000 description 3
- RXGJTUSBYWCRBK-UHFFFAOYSA-M 5-methylphenazinium methyl sulfate Chemical compound COS([O-])(=O)=O.C1=CC=C2[N+](C)=C(C=CC=C3)C3=NC2=C1 RXGJTUSBYWCRBK-UHFFFAOYSA-M 0.000 description 2
- 241000894006 Bacteria Species 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- 108010050375 Glucose 1-Dehydrogenase Proteins 0.000 description 2
- DFPAKSUCGFBDDF-UHFFFAOYSA-N Nicotinamide Chemical compound NC(=O)C1=CC=CN=C1 DFPAKSUCGFBDDF-UHFFFAOYSA-N 0.000 description 2
- 102000004316 Oxidoreductases Human genes 0.000 description 2
- 108090000854 Oxidoreductases Proteins 0.000 description 2
- 102000004861 Phosphoric Diester Hydrolases Human genes 0.000 description 2
- 108090001050 Phosphoric Diester Hydrolases Proteins 0.000 description 2
- 241001147775 Thermoanaerobacter brockii Species 0.000 description 2
- BFNBIHQBYMNNAN-UHFFFAOYSA-N ammonium sulfate Chemical compound N.N.OS(O)(=O)=O BFNBIHQBYMNNAN-UHFFFAOYSA-N 0.000 description 2
- 229910052921 ammonium sulfate Inorganic materials 0.000 description 2
- 235000011130 ammonium sulphate Nutrition 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000018109 developmental process Effects 0.000 description 2
- 229940079919 digestives enzyme preparation Drugs 0.000 description 2
- 238000006911 enzymatic reaction Methods 0.000 description 2
- 235000019162 flavin adenine dinucleotide Nutrition 0.000 description 2
- 239000011714 flavin adenine dinucleotide Substances 0.000 description 2
- VWWQXMAJTJZDQX-UYBVJOGSSA-N flavin adenine dinucleotide Chemical compound C1=NC2=C(N)N=CN=C2N1[C@@H]([C@H](O)[C@@H]1O)O[C@@H]1CO[P@](O)(=O)O[P@@](O)(=O)OC[C@@H](O)[C@@H](O)[C@@H](O)CN1C2=NC(=O)NC(=O)C2=NC2=C1C=C(C)C(C)=C2 VWWQXMAJTJZDQX-UYBVJOGSSA-N 0.000 description 2
- 239000011768 flavin mononucleotide Substances 0.000 description 2
- 229940013640 flavin mononucleotide Drugs 0.000 description 2
- FVTCRASFADXXNN-UHFFFAOYSA-N flavin mononucleotide Natural products OP(=O)(O)OCC(O)C(O)C(O)CN1C=2C=C(C)C(C)=CC=2N=C2C1=NC(=O)NC2=O FVTCRASFADXXNN-UHFFFAOYSA-N 0.000 description 2
- 229940093632 flavin-adenine dinucleotide Drugs 0.000 description 2
- 229910000160 potassium phosphate Inorganic materials 0.000 description 2
- 235000011009 potassium phosphates Nutrition 0.000 description 2
- 238000004886 process control Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 235000019231 riboflavin-5'-phosphate Nutrition 0.000 description 2
- 239000006228 supernatant Substances 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- SZEBDPDKSSZLMR-UHFFFAOYSA-N 1-(1,6-dihydroxycyclohexa-2,4-dien-1-yl)propan-2-one Chemical compound OC1(C(C=CC=C1)O)CC(C)=O SZEBDPDKSSZLMR-UHFFFAOYSA-N 0.000 description 1
- KPGXRSRHYNQIFN-UHFFFAOYSA-N 2-oxoglutaric acid Chemical compound OC(=O)CCC(=O)C(O)=O KPGXRSRHYNQIFN-UHFFFAOYSA-N 0.000 description 1
- NUHFQRCBVYYWOT-UHFFFAOYSA-N 2-phenylethanol;1-phenylethanone Chemical compound CC(=O)C1=CC=CC=C1.OCCC1=CC=CC=C1 NUHFQRCBVYYWOT-UHFFFAOYSA-N 0.000 description 1
- 241000590020 Achromobacter Species 0.000 description 1
- 208000035404 Autolysis Diseases 0.000 description 1
- BTBUEUYNUDRHOZ-UHFFFAOYSA-N Borate Chemical compound [O-]B([O-])[O-] BTBUEUYNUDRHOZ-UHFFFAOYSA-N 0.000 description 1
- 206010057248 Cell death Diseases 0.000 description 1
- 101710088194 Dehydrogenase Proteins 0.000 description 1
- 108020005199 Dehydrogenases Proteins 0.000 description 1
- 102000016911 Deoxyribonucleases Human genes 0.000 description 1
- 108010053770 Deoxyribonucleases Proteins 0.000 description 1
- 241000589232 Gluconobacter oxydans Species 0.000 description 1
- 102000013460 Malate Dehydrogenase Human genes 0.000 description 1
- 108010026217 Malate Dehydrogenase Proteins 0.000 description 1
- 241000202974 Methanobacterium Species 0.000 description 1
- 241001302042 Methanothermobacter thermautotrophicus Species 0.000 description 1
- 239000004909 Moisturizer Substances 0.000 description 1
- 101710104378 Putative malate oxidoreductase [NAD] Proteins 0.000 description 1
- 101900224819 Pyrococcus furiosus Glutamate dehydrogenase Proteins 0.000 description 1
- 102000006382 Ribonucleases Human genes 0.000 description 1
- 108010083644 Ribonucleases Proteins 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- 239000007983 Tris buffer Substances 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 241000617156 archaeon Species 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000036983 biotransformation Effects 0.000 description 1
- 238000005251 capillar electrophoresis Methods 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000005515 coenzyme Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000000875 corresponding effect Effects 0.000 description 1
- 238000010580 coupled enzyme reaction Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 239000000386 donor Substances 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 239000000975 dye Substances 0.000 description 1
- 239000002360 explosive Substances 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 239000012847 fine chemical Substances 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 238000005194 fractionation Methods 0.000 description 1
- 239000005350 fused silica glass Substances 0.000 description 1
- 150000002371 helium Chemical class 0.000 description 1
- 238000004128 high performance liquid chromatography Methods 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 239000000852 hydrogen donor Substances 0.000 description 1
- 238000003424 hydrogenase reaction Methods 0.000 description 1
- 238000005984 hydrogenation reaction Methods 0.000 description 1
- 210000001822 immobilized cell Anatomy 0.000 description 1
- 238000000338 in vitro Methods 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 238000004255 ion exchange chromatography Methods 0.000 description 1
- 230000004060 metabolic process Effects 0.000 description 1
- 229960003966 nicotinamide Drugs 0.000 description 1
- 235000005152 nicotinamide Nutrition 0.000 description 1
- 239000011570 nicotinamide Substances 0.000 description 1
- BOPGDPNILDQYTO-NNYOXOHSSA-N nicotinamide-adenine dinucleotide Chemical compound C1=CCC(C(=O)N)=CN1[C@H]1[C@H](O)[C@H](O)[C@@H](COP(O)(=O)OP(O)(=O)OC[C@@H]2[C@H]([C@@H](O)[C@@H](O2)N2C3=NC=NC(N)=C3N=C2)O)O1 BOPGDPNILDQYTO-NNYOXOHSSA-N 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 239000008057 potassium phosphate buffer Substances 0.000 description 1
- 229920001592 potato starch Polymers 0.000 description 1
- 150000003222 pyridines Chemical class 0.000 description 1
- 238000011867 re-evaluation Methods 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 238000006268 reductive amination reaction Methods 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 230000028043 self proteolysis Effects 0.000 description 1
- JVBXVOWTABLYPX-UHFFFAOYSA-L sodium dithionite Chemical compound [Na+].[Na+].[O-]S(=O)S([O-])=O JVBXVOWTABLYPX-UHFFFAOYSA-L 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 238000011916 stereoselective reduction Methods 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- LENZDBCJOHFCAS-UHFFFAOYSA-N tris Chemical compound OCC(N)(CO)CO LENZDBCJOHFCAS-UHFFFAOYSA-N 0.000 description 1
- 230000007306 turnover Effects 0.000 description 1
- 108010084723 uptake hydrogenase Proteins 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P19/00—Preparation of compounds containing saccharide radicals
- C12P19/26—Preparation of nitrogen-containing carbohydrates
- C12P19/28—N-glycosides
- C12P19/30—Nucleotides
- C12P19/36—Dinucleotides, e.g. nicotineamide-adenine dinucleotide phosphate
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P13/00—Preparation of nitrogen-containing organic compounds
- C12P13/04—Alpha- or beta- amino acids
- C12P13/14—Glutamic acid; Glutamine
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P7/00—Preparation of oxygen-containing organic compounds
- C12P7/02—Preparation of oxygen-containing organic compounds containing a hydroxy group
- C12P7/22—Preparation of oxygen-containing organic compounds containing a hydroxy group aromatic
Definitions
- the invention relates to a method for the enzymatic reduction of substrates with molecular hydrogen.
- oxidoreductases have found their way into the production of fine chemicals and pharmaceuticals. If these are enzymatic, stereoselective reductions, a cofactor (hydrogen donor) in the form of NADH or NADPH is usually required. Since these cofactors are also now very high price, especially NADPH, s there is a need for a method by which it is possible to produce NADPH especially particularly inexpensive. Furthermore, a process that enables the regeneration of NADPH is of the highest interest, whereby the individual NADPH molecule should be able to go through as many cycles as possible (high total turn-over number). The latter is particularly important since these cofactors are far too expensive to be used stoichiometrically.
- the glucose dehydrogenase from Gl conobacter suboxidans (Izumi Y, Nath PK, Yamamoto H, Yamada H. NADPH production from NADP + with a glucose dehydrogenase system involving whole cells and immobilized cells of Gluconobacter suboxydans were used here.
- the process is particularly inexpensive because of the inexpensive hydrogen as an agent.
- the removal of the reducing agent is not difficult since hydrogen is gaseous.
- the enzymes used according to the invention are less labile and go through more reaction cycles. Quantitative conversions can be achieved with the method according to the invention.
- the process can preferably be carried out in situ.
- a mediator is implemented with molecular hydrogen by means of a hydrogenesis.
- the hydrogenase is preferably from the hyperthermophilic strain of the archaebacterium Pyrococcus furiosus (DSM 3638).
- the hydrogenases can be used in situ.
- a mediator is a substance that can transfer hydride ions or electrons to substances. These compounds, when naturally occurring in organisms, are called cofactors. Other substances that are functionally equivalent to these natural cofactors are called mediators.
- mediators is intended to mean all known mediators, including the natural cofactors, so that both types of action having the same effect should be included in the term. Examples of mediators are flavin mononucleotide (FMN), phenazine methosulfate (PMS), 2,6 dichlorophenolinophenol (DCPIP), Janus Grün, methylene blue, flavin adenine dinucleotide (FAD) but especially NADP + . However, NAD + is excluded from the invention.
- the mediators are converted into their reduced form by means of the hydrogenase in the presence of hydrogen. The products are known to the person skilled in the art.
- the reaction preferably takes place in an aqueous medium.
- the reaction can be carried out in a pH range from 6-10, but preferably takes place in a pH range from 7 to 9, preferably from 7.5 to 8.5, since the enzyme activity and the stability of NADPH are greatest here is.
- the reaction can be carried out in a temperature range from -10 ° C. to 150 ° C., preferably in a range from 0 ° C. to 100 ° C., particularly preferably from 20 ° C. to 80 ° C.
- the pressure range in which the reaction can be carried out is preferably between 0 to 300 bar, particularly preferably between 0 and 20 bar.
- the solubility of hydrogen is higher, so that more molecules are available for the hydrogenation in the solution.
- the pressure ranges below 20 bar reactors are required which cannot withstand such high pressures, so that the technical outlay here is lower.
- the boundaries of the specified areas are fluid.
- the gas phase can be composed differently over the reaction solution. There should be no oxygen in the gas phase or at least so little that there is no explosive mixture.
- the hydrogen can be present in pure form or in a mixture of a gas inert to the process, for example with at least one component from the group consisting of N 2 , CO 2 , Ar, He and Kr.
- the hydrogen content can be between> 0 to 100%.
- a hydrogen content of between 50 and 100% is preferred.
- a further enzyme is added to the reaction solution, which converts a substrate.
- the mediator converted by the hydrogenase can serve as a cofactor or more generally as a mediator, which is regenerated by the subsequent repeated reaction with the hydrogenase by being hydrogenated with hydrogen.
- the enzyme 2 can be, for example, an alcohol dehydrogenase, which converts a ketone to an alcohol.
- NADP + is converted by means of the hydrogenase to NADPH, which serves as an H - donor for the reduction of the ketone to an alcohol. This in turn produces NADP + , which is regenerated again by the hydrogenase.
- acetophenone or acetone can be mentioned as substrates for the second reduction.
- Further enzymes E2 are available, for example, from Thermoanaerobium brockii (ADH), (Pyrococcus furiosus (GDH).
- ADH Thermoanaerobium brockii
- GDH Panococcus furiosus
- the process of mediator regeneration according to the invention can be carried out with any further enzyme reaction tion that the regenerated mediator needs.
- the hydrogenase reaction is thus coupled with a further enzymatic reaction.
- Typical examples of reactions of enzyme 2, which can be coupled with the regeneration of the mediator are described in “Wong, C.-H .; Whitesides, G.M. ; 1994 Enzymes in synthetic organic chemistry "Baldwin, J.E.; Magnus, P.D .; Tetrahedron organic chemistry series; Oxford; Elsevier Science Ltd.; Vol 12; 370 pages”.
- the method according to the invention can therefore be used both for the production of mediators and for their in situ regeneration in coupled systems.
- the coupled enzyme reaction with enzyme 2 is not disturbed by the hydrogen, rather the hydrogen even represents an inert atmosphere for the reaction.
- the process control can take place in a batch reactor. Furthermore, the reaction according to the invention can be carried out in a membrane reactor, as described, for example, in German Patent 44 36 149, which is equipped with an ultrafiltration membrane which enables the retention of the hydrogenase.
- the membrane reactor can be used as a repetitive batch or as a continuous reactor. The process control in the continuously operated membrane reactor is particularly preferred.
- the hydrogenase from Pyrococcus furiosus is used repeatedly in a 'repetitive batch' process to obtain NADPH to produce. This results in low catalyst consumption rates and high productivity.
- a maximum space-time yield of 10 gL "1 d " 1 was achieved.
- a catalyst consumption of less than 0.1 mg protein / gNADPH and a maximum space-time yield of 74 g / L "1 d ⁇ 1 is achieved.
- the hydrogenase from Pyrococcus furiosus for the cofactor regeneration of NADPH in the asymmetrical reduction of prochiral ketones by means of a dehydrogenase In the experiment shown in example 6, a cycle number of 100, in example 1 of 320, is achieved.
- the hydrogenase from Pyrococcus furiosus used here is a particularly stable enzyme which, as shown by the repetitive batch experiments, can be reused many times.
- the catalyst can be used both in coupled and alone.
- the implementation of the pyrodine nucleotides according to the invention is not subject to any thermodynamic limitation. This is surprising and particularly advantageous since higher sales are achieved than in the case of regeneration systems coupled with cosubstrates.
- Fig.l Sales-time curve for the reaction acetophenone - phenylethanol examples
- Fig. 2 Repetitive batch tests for the reaction from Fig. 1 (Example 6).
- Fig. 3 Yield of NADPH for repetitive batch tests according to Example 7.
- Fig. 4 Dependence of the NADPH formation on the temperature.
- bio-moisturizer 100 g of bio-moisturizer were added 400 mL 50 mM Tris-HCl pH 8.0 suspended, and 10 ⁇ g / mL DNase and RNase added. After 4 h at room temperature, the cell extract was centrifuged for 1 h at 30,000 g. 3 different preparations were prepared from the cell supernatant obtained in this way (diluted, cell-free extract, 5 - 10 mg protein / mL):
- the hydrogenase activity (H 2 formation) is measured at 40 ° C (Silva PJ; Van den Ban ECD; Wassink H.; Haaker H .; De Castro B .; Robb FT; Hagen WR Enzymes of hydrogen metabolism in Pyrococcus furiosus, Eur. J. Biochem., 2000, 267, 6541-6551). If one of the enzyme preparations described above is to be used for the preparation or the cofactor regeneration of NADPH, any phosphatase activity still present which catalyzes the dephosphorilation of NADP + to NAD + must first be removed. The corresponding activities on hydrogenase and phosphatase are given in Table 1 for the three enzyme preparations described above.
- the rate of dephosphorilation of NADP + was determined under the following conditions: 50 mM EPPS pH 8.0, 0.5 mM NADPH, protein sample, 40 ° C., total volume 1.5 ml. No phosphodiesterase activity could be detected.
- Table 1 Specific activities of hydrogenase and phosphatase. All activities were determined at 40 ° C.
- the hydrogenase is only highly stable if anaerobic conditions are present.
- the reduction of NADP + is only carried out in the presence of hydrogen. Appropriate precautions have been taken to exclude disruptive components.
- the reaction stability was tested using a fed-batch experiment. 1.6 units of hydrogenase are incubated in 3 ml of 200 mM EPPS, pH 8.0 at 80 ° C. for 5 minutes. After the addition of 8 mM (24 ⁇ mol), the solution was incubated at 40 ° C. under a hydrogen atmosphere for 24 h. After each addition of NADP + , quantitative conversion with respect to the fresh substrate was achieved after one hour. However, it was found that the NADPH produced was more unstable than the metered te NADP + is. The decay of NADPH is not enzyme-catalyzed. The half-life of NADPH in the different experiments was on average 20 h. Similar half-lives for NADPH at 41 ° C are described in the literature. An HPLC analysis after a reaction time of 2 and 48 h showed no decay products which could be caused by phosphatase or by phosphodiesterase activity.
- the standard oxidation and reduction potentials of H + -H 2 and a NADP + -NADPH at pH 8 differ by 133 mV. Assuming that there is no inhibition of the hydrogenase by one of its starting materials or products, the enzyme must be capable of completely reducing the pyrodine nucleotide cofactors. A potential difference of 133 mV at pH 8.0 and a hydrogen atmosphere shifts the balance from NADPH / NADP + to 24,000 / 1 (Clark, WM, etc.). This means that there is no thermodynamic limitation for the reduction of pyrodine nucleotides by H 2 .
- GDH glutamate dehydrogenase
- the hydrogenase from Pyrococcus furiosus was used for regeneration.
- the reaction solution consisted of 50 mM Tris / HCL buffer, pH 7.5, 50 mM NH 4 CL, 0.2 units GDH and 0.06 units hydrogenase from a cell-free extract.
- Purified Pyrococcus furiosus glutamate dehydrogenase was used as a test system for reductive cofactor regeneration. As can be seen in Table 2, sufficient NADPH could be regenerated at 50 C within 16 h in order to achieve 100% conversion of 2-keto-gluterate to glutamate, which had a cycle number (TTN) of 100 under the aforementioned reaction conditions equivalent.
- TTN cycle number
- Table 2 Conversion of 50 mM 2-ketoglutarate to glutamate by P. furiosus GDH with NADPH regeneration by hydrogenase in a cell-free extract from P. furiosus.
- a solution of 10 mM acetophenone in 50 mM aqueous potassium phosphate buffer (pH8) with 0.5 mM oxidized cofactor NADP + and a NADP + -dependent alcohol dehydrogenase (ADHM) is degassed by flowing the solution through with water-saturated helium.
- 20 ⁇ L of an activated enzyme preparation (5 minutes at 80 ° C. under a hydrogen atmosphere) from Pyrococcus furiosus are added to this solution, so that the protein concentration corresponds to 0. lmg / mL. It is added through a gas-tight septum using a suitable syringe.
- the solution is kept at 40 ° C.
- the inert argon atmosphere is replaced by hydrogen.
- GC gas chromatography
- the substrate was changed from acetophenone to (S) -2-hydroxy-l-phenyl-propanone. 1, 2-Dihydroxyphenylpropanon with high enantiomeric excess was obtained as product.
- a modified ultrafiltration cell (Amicon, Germany), which is equipped with an ultrafiltration membrane (YM10, Amicon), 3 ml of 200 mM EPPS, pH 8.0, 12 mM NADP + are filled in under an argon atmosphere.
- the cell outlet is opened periodically and the permeate of the ultrafiltration cell is analyzed for conversion and yield by capillary electrophoresis. The outlet was checked for protein content with a negative result. After more than 95% of the conversion had been achieved (with respect to NADP + ), the cell contents were filtered to a minimal residual volume (approx. 0.2 ml) and again filled with the same solution.
- Various hydrogen pressures were applied.
Landscapes
- Organic Chemistry (AREA)
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Microbiology (AREA)
- General Chemical & Material Sciences (AREA)
- Biotechnology (AREA)
- Biochemistry (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Molecular Biology (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
- Enzymes And Modification Thereof (AREA)
Abstract
Description
B e s c h r e i b u n g Description
Verfahren zur enzymatischen Reduktion von Substraten mit molekularem WasserstoffProcess for the enzymatic reduction of substrates with molecular hydrogen
Die Erfindung betrifft ein Verfahren zur enzymatischen Reduktion von Substraten mit molekularem Wasserstoff .The invention relates to a method for the enzymatic reduction of substrates with molecular hydrogen.
In neuerer Zeit finden immer mehr Oxidoreduktasen den Eingang in die Produktion von Feinchemikalien und Pharmazeutika. Wenn es sich hierbei um enzymatische, ste- reoselektive Reduktionen handelt, wird zumeist ein Co- faktor (Wasserstoffdonor) in Form von NADH oder NADPH benötigt. Da diese Cofaktoren auch heutzutage sehr hochpreisig sind, insbesondere NADPH, sbesteht der Bedarf für ein Verfahren, mit dem es möglich ist, NADPH im speziellen besonders preiswert zu produzieren. Des Weiteren ist vom höchsten Interesse auch ein Verfahren, welches es ermöglicht, NADPH zu regenerieren, wobei das einzelne NADPH-Molekül möglichst viele Zyklen durchlaufen können sollte (hohe total turn-over number) . Letz- teres ist besonders wichtig, da diese Cofaktoren deutlich zu teuer sind, um sie stöchiometrisch einzusetzen. Die derzeitige Methode der chemischen Reduktion von NADP+ benutzt zwar kostengünstige und kommerziell erhältliche Reagenzien, wie z.B. Natriumdithionit (Peters J. Dehydrogenases - characteristics, design of reaction conditions, and applications . In: Biotechnology, biotransformations I. Kelly Dr, Editor, ed. 8a, Weinheim: Wiley-VCH, 1998. p. 391-473), jedoch sind hier insbesondere die aufwendige Produktaufarbeitung, die Bildung von Nebenprodukten und geringe Ausbeuten die großen Nachteile (Chenault H, Whitesides G. Regeneration of nicotinamide cofactors for use in organic synthe- sis. Appl Biochem Biotech 1987, 14: 147-197). Die enzy- matische Produktion von NADPH ist ebenfalls in verschiedenen Veröffentlichungen bereits beschrieben worden. Zum Einsatz kamen hier die Glucosedehydrogenase aus Gl conobacter suboxidans (Izumi Y, Nath PK, Yamamoto H, Yamada H. NADPH production from NADP+ with a glucose dehydrogenase System involving whole cells and immobilized cells of Gluconobacter suboxydans .Recently, more and more oxidoreductases have found their way into the production of fine chemicals and pharmaceuticals. If these are enzymatic, stereoselective reductions, a cofactor (hydrogen donor) in the form of NADH or NADPH is usually required. Since these cofactors are also now very high price, especially NADPH, s there is a need for a method by which it is possible to produce NADPH especially particularly inexpensive. Furthermore, a process that enables the regeneration of NADPH is of the highest interest, whereby the individual NADPH molecule should be able to go through as many cycles as possible (high total turn-over number). The latter is particularly important since these cofactors are far too expensive to be used stoichiometrically. The current method of chemical reduction of NADP + uses inexpensive and commercially available reagents such as sodium dithionite (Peters J. Dehydrogenases - characteristics, design of reaction conditions, and applications. In: Biotechnology, biotransformations I. Kelly Dr, Editor, ed. 8a, Weinheim: Wiley-VCH, 1998. p. 391-473), but here, in particular, the elaborate product processing is the Formation of by-products and low yields have the major disadvantages (Chenault H, Whitesides G. Regeneration of nicotinamide cofactors for use in organic synthesis. Appl Biochem Biotech 1987, 14: 147-197). The enzymatic production of NADPH has also been described in various publications. The glucose dehydrogenase from Gl conobacter suboxidans (Izumi Y, Nath PK, Yamamoto H, Yamada H. NADPH production from NADP + with a glucose dehydrogenase system involving whole cells and immobilized cells of Gluconobacter suboxydans were used here.
Appl. Microbiol. Biotechnol . 1989, 30: 337-342), dieAppl. Microbiol. Biotechnol. 1989, 30: 337-342)
Alkoholdehydrogenase aus Thermoanaerobium brockiiAlcohol dehydrogenase from Thermoanaerobium brockii
(Lamed RJ, Keinan E, Zeikus JG. Potential applications of an alcohol-aldehyde/ketone oxidoreductase from ther- mophilic bacteria. Enzyme Microb. Technol . 1981, 3: 144-148) und die Malatdehydrogenase aus Äcromobacter parvulus (Suye S, Yokohama S. NADPH production from NADP+ using malic enzyme of Achromobacter parvulus IFO- 13182. Enz. Microbiol. Technol. 1985, 7: 418-424). In der wissenschaftlichen Literatur findet sich ebenfalls bereits der Einsatz verschiedener Hydrogenasen: So zum Beispiel die Hydrogenase aus Alkanigines eutrophus (Klibanov A, Puglisi A. The regeneration of coenzymes using immobilized hydrogenase. Biotech. Lett . 1980, 2: 445-450) und die Hydrogenase aus Methanobacterium ther- moautotrophicum (Wong C-H, Daniels L, Orme-Johnson WH, Whitesides GM. Enzyme-catalyzed organic synthesis: NAD(P)H regeneration using dihydrogen and the hydroge- nase from Methanobacterium thermoautotrophicu . J . Am. Chem. Soc. 1981, 103: 6227-6228). Alle Veröffentlichungen die bisher Hydrogenasen zum Einsatz der Cofaktorre- generierung beschreiben, tun dieses entweder auf die direkte Reduktion von NAD+ bezogen, oder auf die indirekte Reduktion von NADP+ mittels eines weiteren Mediators. Die nach dem Stand der Technik eingesetzten Enzy- me sind relativ labil, durchlaufen wenige Zyklen und haben für die Reaktionen eine geringe thermodynamische Triebkraft .(Lamed RJ, Keinan E, Zeikus JG. Potential applications of an alcohol-aldehyde / ketone oxidoreductase from thermophilic bacteria. Enzyme Microb. Technol. 1981, 3: 144-148) and the malate dehydrogenase from Äcromobacter parvulus (Suye S, Yokohama S. NADPH production from NADP + using malic enzyme of Achromobacter parvulus IFO- 13182. Enz. Microbiol. Technol. 1985, 7: 418-424). The use of various hydrogenases is also already to be found in the scientific literature: for example the hydrogenase from Alkanigines eutrophus (Klibanov A, Puglisi A. The regeneration of coenzymes using immobilized hydrogenase. Biotech. Lett. 1980, 2: 445-450) and the Hydrogenase from Methanobacterium thermoautotrophicum (Wong CH, Daniels L, Orme-Johnson WH, Whitesides GM. Enzyme-catalyzed organic synthesis: NAD (P) H regeneration using dihydrogen and the hydrogenase from Methanobacterium thermoautotrophicu. J. Am. Chem. Soc. 1981, 103: 6227-6228). All publications that have been using hydrogenases for the use of cofactor describe generation, do this either related to the direct reduction of NAD + , or to the indirect reduction of NADP + using another mediator. The enzymes used according to the prior art are relatively unstable, go through a few cycles and have a low thermodynamic driving force for the reactions.
Es ist die Aufgabe der Erfindung, ein einfaches Verfah- ren zur direkten Reduktion von Mediatoren, insbesondere von NADP+ ohne die Benutzung eines zusätzlichen, anderen Mediators zu schaffen, welche für die Produktion von NADPH bzw. der hydrierten Form der Mediatoren und die Cofaktorregenerierung von NADPH, sowie die Regene- rierung von weiteren Mediatoren eingesetzt werden kann.It is the object of the invention to provide a simple process for the direct reduction of mediators, in particular of NADP +, without the use of an additional, other mediator, which is used for the production of NADPH or the hydrogenated form of the mediators and the cofactor regeneration of NADPH, and the regeneration of other mediators can be used.
Ausgehend vom Oberbegriff des Anspruchs 1 wird die Aufgabe erfindungsgemäß gelöst mit dem im kennzeichnenden Teil des Anspruchs 1 angegebenen Merkmalen.Starting from the preamble of claim 1, the object is achieved according to the invention with the features specified in the characterizing part of claim 1.
Mit dem erfindungsgemäßen Verfahren ist es nunmehr möglich, Mediatoren, insbesondere NADP+ zu hydrieren und somit zu regenerieren. Das Verfahren ist wegen des preiswerten Wasserstoffes als Agens besonders kosten- günstig. Die Abtrennung des Reduktionsmittels bereitet keine Schwierigkeiten, da Wasserstoff gasförmig ist. Die erfindungemäß eingesetzten Enzyme sind weniger labil und durchlaufen mehr Reaktionszyklen. Mit dem erfindungsgemäßen Verfahren können quantitative Umsätze erzielt werden. Der Prozeß kann vorzugsweise in situ durchgeführt werden.With the method according to the invention it is now possible to hydrogenate and thus regenerate mediators, in particular NADP + . The process is particularly inexpensive because of the inexpensive hydrogen as an agent. The removal of the reducing agent is not difficult since hydrogen is gaseous. The enzymes used according to the invention are less labile and go through more reaction cycles. Quantitative conversions can be achieved with the method according to the invention. The process can preferably be carried out in situ.
Vorteilhafte Weiterbildungen der Erfindung sind in den Unteransprüchen angegeben.Advantageous developments of the invention are specified in the subclaims.
Im Folgenden soll die Erfindung erläutert werden.The invention is to be explained below.
Erfindungsgemäß wird ein Mediator mittels einer Hydro- genäse mit molekularem Wasserstoff umgesetzt.According to the invention, a mediator is implemented with molecular hydrogen by means of a hydrogenesis.
Vorzugsweise ist die Hydrogenase aus dem hyperther- mophilen Stamm des Archaebakteriums Pyrococcus furiosus (DSM 3638) .The hydrogenase is preferably from the hyperthermophilic strain of the archaebacterium Pyrococcus furiosus (DSM 3638).
Die Hydrogenasen können in situ eingesetzt werden.The hydrogenases can be used in situ.
Als Mediator wird erfindungsgemäß eine Substanz bezeichnet, die Hydridionen oder Elektronen auf Substan- zen übertragen kann. Diese Verbindungen werden, wenn sie in Organismen natürlich vorkommen, als Cofaktoren bezeichnet. Andere Substanzen, die funktioneil mit diesen natürlichen Cofaktoren gleichwirkend sind, werden als Mediatoren bezeichnet. Im Sinne der Erfindung soll der Begriff Mediatoren alle bekannten Mediatoren einschließlich der natürlichen Cofaktoren bedeuten, so daß beide gleichwirkenden Arten von dem Begriff umfaßt sein sollen. Beispielhaft können als Mediatoren Flavin mononukleotid (FMN) , Phenazin methosulfat (PMS) , 2,6 Dichlorphenolin- dophenol (DCPIP) , Janus Grün, Methylenblau, Flavin adenin dinukleotid (FAD) aber insbesondere NADP+ genannt werden. NAD+ ist jedoch von der Erfindung ausgenommen. Die Mediatoren werden erfindungemäß mittels der Hydrogenase in Anwesenheit von Wasserstoff in ihre reduzierte Form überführt. Die Produkte sind dem Fachmann bekannt .According to the invention, a mediator is a substance that can transfer hydride ions or electrons to substances. These compounds, when naturally occurring in organisms, are called cofactors. Other substances that are functionally equivalent to these natural cofactors are called mediators. For the purposes of the invention, the term mediators is intended to mean all known mediators, including the natural cofactors, so that both types of action having the same effect should be included in the term. Examples of mediators are flavin mononucleotide (FMN), phenazine methosulfate (PMS), 2,6 dichlorophenolinophenol (DCPIP), Janus Grün, methylene blue, flavin adenine dinucleotide (FAD) but especially NADP + . However, NAD + is excluded from the invention. According to the invention, the mediators are converted into their reduced form by means of the hydrogenase in the presence of hydrogen. The products are known to the person skilled in the art.
Die Reaktion findet vorzugsweise in wäßrigem Medium statt .The reaction preferably takes place in an aqueous medium.
Die Reaktion kann in einem pH-Bereich von 6-10 durchgeführt werden, findet aber vorzugsweise in einem pH- Bereich von 7 bis 9, vorzugsweise von 7,5 bis 8,5 statt, da die Enzymaktivität und die Stabilität von NADPH hier am größten ist.The reaction can be carried out in a pH range from 6-10, but preferably takes place in a pH range from 7 to 9, preferably from 7.5 to 8.5, since the enzyme activity and the stability of NADPH are greatest here is.
Die Umsetzung kann in einem Temperaturbereich von -10°C bis 150 °C, vorzugsweise in einem Bereich von 0°C bis 100°C besonders bevorzugt von 20°C bis 80°C durchge- führt werden.The reaction can be carried out in a temperature range from -10 ° C. to 150 ° C., preferably in a range from 0 ° C. to 100 ° C., particularly preferably from 20 ° C. to 80 ° C.
Der Druckbereich, in dem die Reaktion durchgeführt werden kann liegt vorzugsweise zwischen 0 bis 300 bar, besonders bevorzugt zwischen 0 und 20 bar. In den hohen Druckbereichen > 20 bar ist die Löslichkeit von Wasserstoff höher, so daß in der Lösung mehr Moleküle für die Hydrierung zur Verfügung stehen. In den Druckbereichen unterhalb 20 bar werden Reaktoren benötigt, welche nicht so hohen Drucken standhalten können müssen, so daß der technische Aufwand hier geringer ist. Die Grenzen der angegeben Bereiche sind jedoch fließend. Bei den genannten Drucken kann sich die Gasphase über der Reaktionslδsung verschieden zusammensetzen. Es sollte kein Sauerstoff in der Gasphase sein oder jedenfalls so wenig, daß kein explosives Gemisch vorliegt. Der Wasserstoff kann in reiner Form, oder in einem Gemisch eines für den Prozeß inerten Gases beispielsweise mit mindestens einer Komponente aus der Gruppe von N2, C02, Ar, He und Kr vorliegen. Der Wasserstoffanteil kann dabei zwischen >0 bis 100 % liegen. Bevorzugt wird ein Wasserstoffanteil zwischen 50 und 100%.The pressure range in which the reaction can be carried out is preferably between 0 to 300 bar, particularly preferably between 0 and 20 bar. In the high pressure ranges> 20 bar, the solubility of hydrogen is higher, so that more molecules are available for the hydrogenation in the solution. In the pressure ranges below 20 bar, reactors are required which cannot withstand such high pressures, so that the technical outlay here is lower. However, the boundaries of the specified areas are fluid. At the pressures mentioned, the gas phase can be composed differently over the reaction solution. There should be no oxygen in the gas phase or at least so little that there is no explosive mixture. The hydrogen can be present in pure form or in a mixture of a gas inert to the process, for example with at least one component from the group consisting of N 2 , CO 2 , Ar, He and Kr. The hydrogen content can be between> 0 to 100%. A hydrogen content of between 50 and 100% is preferred.
In einer Weiterbildung der Erfindung ist der Reaktionslösung ein weiteres Enzym zugegeben, welches ein Substrat umsetzt. Für diese zweite Umsetzung mit diesem Enzym 2 kann der, durch die Hydrogenase umgesetzte, Mediator als Cofaktor oder allgemeiner als Mediator dienen, der durch die anschließende wiederholte Umsetzung mit der Hydrogenase, wieder regeneriert wird, indem er mit Wasserstoff hydriert wird. Das Enzym 2 kann beispielsweise eine Alkoholdehydroge- nase sein, welche ein Keton zu einem Alkohol umsetzt. In einem derartigen Cyclus wird beispielsweise NADP+ mittels der Hydrogenase zu NADPH umgesetzt, welches als H~-Donor für die Reduktion des Ketons zu einem Alkohol dient. Hierbei entsteht wiederum NADP+, welches durch die Hydrogenase erneut regeneriert wird. Als Substrate für die zweite Reduktion können in diesem Beispiel Ace- tophenon oder Aceton genannt werden. Weitere Enzyme E2 sind beispielsweise aus Thermoanaero- bium brockii (ADH) , (Pyrococcus furiosus (GDH) erhältlich. Grundsätzlich kann der erfindungsgemäße Prozeß der Mediatorregenerierung mit jeder weiteren Enzymreak- tion gekoppelt werden, die den regenerierten Mediator benötigt .In a further development of the invention, a further enzyme is added to the reaction solution, which converts a substrate. For this second reaction with this enzyme 2, the mediator converted by the hydrogenase can serve as a cofactor or more generally as a mediator, which is regenerated by the subsequent repeated reaction with the hydrogenase by being hydrogenated with hydrogen. The enzyme 2 can be, for example, an alcohol dehydrogenase, which converts a ketone to an alcohol. In such a cycle, for example, NADP + is converted by means of the hydrogenase to NADPH, which serves as an H - donor for the reduction of the ketone to an alcohol. This in turn produces NADP + , which is regenerated again by the hydrogenase. In this example, acetophenone or acetone can be mentioned as substrates for the second reduction. Further enzymes E2 are available, for example, from Thermoanaerobium brockii (ADH), (Pyrococcus furiosus (GDH). In principle, the process of mediator regeneration according to the invention can be carried out with any further enzyme reaction tion that the regenerated mediator needs.
Somit wird die Hydrogenasereaktion mit einer weiteren enzymatischen Reaktion gekoppelt. Typische Beispiele für Reaktionen des Enzyms 2, welche mit der Regenerierung des Mediators gekoppelt werden können, sind in „ Wong, C.-H.; Whitesides, G.M. ; 1994 Enzymes in synthe- tic organic chemistry" Baldwin, J.E . ; Magnus, P.D.; Tetrahedron organic chemistry series; Oxford; Elsevier Science Ltd. ; Vol 12; 370 Seiten" beschrieben.The hydrogenase reaction is thus coupled with a further enzymatic reaction. Typical examples of reactions of enzyme 2, which can be coupled with the regeneration of the mediator, are described in “Wong, C.-H .; Whitesides, G.M. ; 1994 Enzymes in synthetic organic chemistry "Baldwin, J.E.; Magnus, P.D .; Tetrahedron organic chemistry series; Oxford; Elsevier Science Ltd.; Vol 12; 370 pages".
Das erfindungsgemäße Verfahren kann also sowohl zur Produktion von Mediatoren, als auch zu deren in situ Regenerierung in gekoppelten Systemen eingesetzt werden. Die angekoppelte Enzymreaktion mit dem Enzym 2 wird durch den Wasserstoff nicht gestört, vielmehr stellt der Wasserstoff sogar eine Inertatmosphäre für die Reaktion dar.The method according to the invention can therefore be used both for the production of mediators and for their in situ regeneration in coupled systems. The coupled enzyme reaction with enzyme 2 is not disturbed by the hydrogen, rather the hydrogen even represents an inert atmosphere for the reaction.
■ Die Prozessführung kann in einem Satzreaktor erfolgen. Weiterhin kann die erfindungsgemäße Reaktion in einem Membranreaktor, wie er beispielhaft im deutschen Patent 44 36 149 beschrieben ist, durchgeführt werden, welcher mit einer Ultrafiltrationsmembran ausgestattet ist, die die Retention der Hydrogenase ermöglicht. Der Membran- reaktor kann als repetitiv batch oder als kontinuierlicher Reaktor eingesetzt werden. Die Prozeßführung im kontinuierlich betriebenen Membranreaktor ist besonders bevorzugt . ■ The process control can take place in a batch reactor. Furthermore, the reaction according to the invention can be carried out in a membrane reactor, as described, for example, in German Patent 44 36 149, which is equipped with an ultrafiltration membrane which enables the retention of the hydrogenase. The membrane reactor can be used as a repetitive batch or as a continuous reactor. The process control in the continuously operated membrane reactor is particularly preferred.
In einer vorteilhaften Ausgestaltung der Methode wird die Hydrogenase aus Pyrococcus furiosus wiederholt in einem 'repetitiv batch' Verfahren eingesetzt, um NADPH zu produzieren. Hierdurch ergeben sich geringe Katalysatorverbrauchsraten und hohe Produktivitäten. Bei dem in Beispiel 6 dargestellten Experiment wurde eine maximale Raum-Zeit-Ausbeute von 10gL"1d"1 erreicht. Bei dem in Beispiel 7 angeführten Experiment wird ein Katalysatorverbrauch von weniger als 0,1 mg Protein/gNADPH und eine maximale Raum-Zeitausbeute von 74g/L"1d^1 erzielt. In einer weiteren vorteilhaften Ausgestaltung der Methode wird die Hydrogenase aus Pyrococcus furiosus zur Cofaktorregenerierung von NADPH bei der asymmetrischen Reduktion von prochiralen Ketone mittels einer Dehydro- genäse eingesetzt. Bei dem in Beispiel 6 angeführten Experiment wird eine Zyklenzahl von 100, bei Beispiel 1 von 320 erreicht.In an advantageous embodiment of the method, the hydrogenase from Pyrococcus furiosus is used repeatedly in a 'repetitive batch' process to obtain NADPH to produce. This results in low catalyst consumption rates and high productivity. In the experiment shown in Example 6, a maximum space-time yield of 10 gL "1 d " 1 was achieved. In the experiment given in Example 7, a catalyst consumption of less than 0.1 mg protein / gNADPH and a maximum space-time yield of 74 g / L "1 d ^ 1 is achieved. In a further advantageous embodiment of the method, the hydrogenase from Pyrococcus furiosus for the cofactor regeneration of NADPH in the asymmetrical reduction of prochiral ketones by means of a dehydrogenase In the experiment shown in example 6, a cycle number of 100, in example 1 of 320, is achieved.
Folgende Vorteile ergeben sich aus dem hier vorgestellten Verfahren:The following advantages result from the procedure presented here:
• Bei der hier verwendeten Hydrogenase aus Pyrococcus furiosus handelt es sich um ein besonders stabiles Enzym, welches wie durch die repetitiv batch Experimente gezeigt, vielfach wiederverwendet werden kann. • Der Katalysator kann sowohl in gekoppelten als auch alleinig eingesetzt werden. • Da die Hydrogenase aus einem thermophilen Stamm kommt, kann sie wie in den Ansprüchen beschrieben, über einen weiten Temperaturbereich eingesetzt werden. Die erfindungsgemäße Umsetzung der Pyrodinnucleotide unterliegt keiner thermodynamisehen Limitierung. Dies ist überraschend und besonders vorteilhaft, da höhere Umsätze als bei mit Cosubstraten gekoppelten Regene- riersystemen erreicht werden.• The hydrogenase from Pyrococcus furiosus used here is a particularly stable enzyme which, as shown by the repetitive batch experiments, can be reused many times. • The catalyst can be used both in coupled and alone. • Since the hydrogenase comes from a thermophilic strain, it can be used over a wide temperature range as described in the claims. The implementation of the pyrodine nucleotides according to the invention is not subject to any thermodynamic limitation. This is surprising and particularly advantageous since higher sales are achieved than in the case of regeneration systems coupled with cosubstrates.
Die Figuren zeigen Versuchsergebnisse: Es zeigt :The figures show test results: It shows:
Fig.l: Umsatz-Zeit-Verlauf für die Reaktion Acetophenon — Phenylethanol BeispieleFig.l: Sales-time curve for the reaction acetophenone - phenylethanol examples
4 und 5. Fig.2: Repetitive Batch-Versuche für die Reaktion aus Fig. 1 (Beispiel 6) . Fig.3: Ausbeute von NADPH für Repetitive Batch-Versuche gemäß Beispiel 7.4 and 5. Fig. 2: Repetitive batch tests for the reaction from Fig. 1 (Example 6). 3: Yield of NADPH for repetitive batch tests according to Example 7.
Fig.4: Abhängigkeit der NADPH-Bildung von der Temperatur .Fig. 4: Dependence of the NADPH formation on the temperature.
Beschreibung der KatalysatorpräparationDescription of the catalyst preparation
In der hier dargestellten Erfindung wird eine in vi tro Methode beschrieben, welche molekularen Wasserstoff als reduzierendes Agens für die Darstellung von Pyridin- Nukleotiden und Farbstoffen mittels einer löslichen Hydrogenase ermöglicht. Pyrococcus furiosus (DSM 3638) wurde entsprechend der in der Literatur angegebenen Vorschrift kultiviert, unter Zusatz von Tafelsalz und Kartoffelstärke (Hagedoorn, P-L. , M. C. P. F. Driessen, M. van den Bosch, I. Landa, and W. R. Hagen. 1998. Hy- perthermophilic redox chemistry: a re-evaluation. FEBS Lett. 440: 311-314). Die Zellen wurden durch Autolyse aufgeschlossen. Hierzu wurden 100 g Biofeuchtmasse in 400 mL 50 mM Tris-HCl pH 8,0 suspendiert, und 10 μg/mL DNase und RNase zugegeben. Nach 4 h bei Raumtemperatur wurde das Zellextrakt für 1 h bei 30.000 g abzentrifu- giert . Aus dem so gewonnenen Zeilüberstand (verdünntes, zellfreies Extrakt, 5 - 10 mg Protein/mL) wurden 3 verschiedene Präparationen hergestellt:In the invention presented here, an in vitro method is described which enables molecular hydrogen as a reducing agent for the preparation of pyridine nucleotides and dyes by means of a soluble hydrogenase. Pyrococcus furiosus (DSM 3638) was cultivated according to the instructions given in the literature, with the addition of table salt and potato starch (Hagedoorn, PL., MCPF Driessen, M. van den Bosch, I. Landa, and WR Hagen. 1998. Hyperthermophilic redox chemistry: a re-evaluation. FEBS Lett. 440: 311-314). The cells were disrupted by autolysis. For this purpose, 100 g of bio-moisturizer were added 400 mL 50 mM Tris-HCl pH 8.0 suspended, and 10 μg / mL DNase and RNase added. After 4 h at room temperature, the cell extract was centrifuged for 1 h at 30,000 g. 3 different preparations were prepared from the cell supernatant obtained in this way (diluted, cell-free extract, 5 - 10 mg protein / mL):
1) Zellfreies Extrakt wurde mittels Ultrafiltration (Amicon YM 10 Membran) auf 30 mg/mL aufkonzentriert und über Nacht mit 50 mM Tris-HCl pH 8,0 Puffer dialysiert.1) Cell-free extract was concentrated to 30 mg / ml by means of ultrafiltration (Amicon YM 10 membrane) and dialyzed overnight with 50 mM Tris-HCl pH 8.0 buffer.
2) Zu dem zellfreien Extrakt wurde Ammoniumsulfat hinzugesetzt, bis zu 10%iger Sättigung. Die so erhaltene Suspension wird für 15 min. bei 30.000 g und 4°C zentrifugiert und der Überstand mit Ammo- niumsulfat bis zu 60% gesättigt. Nach einem weiteren Zentrifugationsschritt , wird das Pellet resuspendiert und gegen 50 mM Tris-HCl-Puffer pH 8 dialysiert. Die Proteinkonzentration beträgt 30 mg/mL. 3) Das zellfreie Extrakt wird auf eine Source 15Q- Säule (Pharmacia) aufgetragen und mit 250 mM NaCl eluiert . Die Fraktionen, welche Hydrogenase- aktivität enthalten, werden mittels Ultrafiltration (Amicon YM 30 Membran) bis 30 - 50 mg Pro- tein/mL aufkonzentriert .2) Ammonium sulfate was added to the cell-free extract, up to 10% saturation. The suspension thus obtained is for 15 min. Centrifuged at 30,000 g and 4 ° C and the supernatant saturated with ammonium sulfate up to 60%. After a further centrifugation step, the pellet is resuspended and dialyzed against 50 mM Tris-HCl buffer pH 8. The protein concentration is 30 mg / mL. 3) The cell-free extract is applied to a Source 15Q column (Pharmacia) and eluted with 250 mM NaCl. The fractions which contain hydrogenase activity are concentrated by ultrafiltration (Amicon YM 30 membrane) up to 30-50 mg protein / mL.
In der löslichen zellfreien Fraktion des hypother- mophilen Archae-Bakteriums Pyrococcus furiosus liegen zwei verschiedene Hydrogenasen vor (Ma, K. , Weiss, R. and Adams, M.W.W. Characterization of hy- drogenase II from the hyperthermophilc archaeon Pyrococcus furiosus and assessment of its role in sulfur reduction. J. Bacteriol . , 2000, 1864-1871). Die Hydrogenase 1 (90% der Gesamtaktivität) eluiert bei 0,25 M NaCl von der Ionenaustausc chroma- tographiesäule und die Hydrogenase 2 bei 0,4 M NaCl (10% der Gesamtaktivität) . Die Fraktionierung erfolgte unter einer Argonatmosphäre und die Fraktionen werden bei -80°C gelagert. Die Hydrogenaseakti- vität (H2-Bil-dung) wird bei 40°C gemessen (Silva P.J.; Van den Ban E.C.D.; Wassink H. ; Haaker H.; De Castro B.; Robb F.T.; Hagen W.R. Enzymes of hydrogen metabolism in Pyrococcus furiosus . Eur. J. Biochem. , 2000. 267, 6541-6551) . Wenn eine der zuvor beschriebenen Enzympräparationen für die Darstellung oder die Kofaktorregenerierung von NADPH benutzt werden soll, uss zuvor eine noch anwesende Phosphataseak- tivität, welche die Dephosphorilierung von NADP+ zu NAD+ katalysiert, entfernt werden. Für die drei zuvor beschriebenen Enzympräparationen sind in Tabelle 1 die entsprechenden Aktivitäten an Hydrogenase und Phosphatase angegeben. Hierbei wurde die Geschwindigkeit der Dephosphorilierung von NADP+ unter folgenden Bedingungen bestimmt: 50 mM EPPS pH 8,0, 0,5 mM NADPH, Proteinprobe, 40°C, Gesamtvolumen 1,5 ml. Es konnte keine Phophodiesteraseaktivität detektiert werden . Tabelle 1 : Spezifische Aktivitäten der Hydrogenase und Phosphatase . Alle Aktivitäten wurden bei 40°C bestimmt.Two different hydrogenases are present in the soluble cell-free fraction of the hypothermophilic archae bacterium Pyrococcus furiosus (Ma, K., Weiss, R. and Adams, MWW Characterization of hydrogenase II from the hyperthermophilc archaeon Pyrococcus furiosus and assessment of its role in sulfur reduction. J. Bacteriol. , 2000, 1864-1871). Hydrogenase 1 (90% of the total activity) elutes from the ion exchange chromatography column at 0.25 M NaCl and hydrogenase 2 at 0.4 M NaCl (10% of the total activity). The fractionation was carried out under an argon atmosphere and the fractions are stored at -80 ° C. The hydrogenase activity (H 2 formation) is measured at 40 ° C (Silva PJ; Van den Ban ECD; Wassink H.; Haaker H .; De Castro B .; Robb FT; Hagen WR Enzymes of hydrogen metabolism in Pyrococcus furiosus, Eur. J. Biochem., 2000, 267, 6541-6551). If one of the enzyme preparations described above is to be used for the preparation or the cofactor regeneration of NADPH, any phosphatase activity still present which catalyzes the dephosphorilation of NADP + to NAD + must first be removed. The corresponding activities on hydrogenase and phosphatase are given in Table 1 for the three enzyme preparations described above. The rate of dephosphorilation of NADP + was determined under the following conditions: 50 mM EPPS pH 8.0, 0.5 mM NADPH, protein sample, 40 ° C., total volume 1.5 ml. No phosphodiesterase activity could be detected. Table 1: Specific activities of hydrogenase and phosphatase. All activities were determined at 40 ° C.
Eine hohe Stabilität der Hydrogenase ist nur gegeben, wenn anaerobe Bedingungen vorliegen. Die Reduktion von NADP+ wird nur in Gegenwart von Wasserstoff durchgeführt. Entsprechende Vorkehrungen zum Ausschluss von störenden Komponenten wurden getroffen.The hydrogenase is only highly stable if anaerobic conditions are present. The reduction of NADP + is only carried out in the presence of hydrogen. Appropriate precautions have been taken to exclude disruptive components.
Beispiel 1example 1
Die Reaktionsstabilität wurde mittels eines fed-batch Experimentes getestet. 1,6 Units Hydrogenase werden in 3 ml 200 mM EPPS, pH 8,0 bei 80°C für 5 Minuten inkubiert. Nach der Zugabe von 8 mM (24μmol) wurde die Lösung bei 40°C unter Wasserstoffatmosphäre für 24 h in- kubiert. Nach jeder NADP+-Zugabe wurde quantitativer Umsatz bezüglich des frischen Substrats nach einer Stunde erzielt. Allerdings wurde hierbei festgestellt, dass das produzierte NADPH instabiler als das zudosier- te NADP+ ist. Der Zerfall von NADPH ist nicht enzymka- talysiert. Die Halbwertszeit von NADPH in den verschiedenen Experimenten war durchschnittlich 20 h. Ähnliche Halbwertszeiten für NADPH bei 41°C sind in der Literatur beschrieben. Eine HPLC-Analyse nach Reaktionszeit von 2 und 48 h zeigte keine Zerfallsprodukte, die durch Phosphatase oder durch Phospordiesteraseaktivität hervorgerufen sein könnten.The reaction stability was tested using a fed-batch experiment. 1.6 units of hydrogenase are incubated in 3 ml of 200 mM EPPS, pH 8.0 at 80 ° C. for 5 minutes. After the addition of 8 mM (24 μmol), the solution was incubated at 40 ° C. under a hydrogen atmosphere for 24 h. After each addition of NADP + , quantitative conversion with respect to the fresh substrate was achieved after one hour. However, it was found that the NADPH produced was more unstable than the metered te NADP + is. The decay of NADPH is not enzyme-catalyzed. The half-life of NADPH in the different experiments was on average 20 h. Similar half-lives for NADPH at 41 ° C are described in the literature. An HPLC analysis after a reaction time of 2 and 48 h showed no decay products which could be caused by phosphatase or by phosphodiesterase activity.
Beispiel 2 :Example 2:
Die Standardoxidations- und Reduktionspotentiale von H+-H2 und einer NADP+-NADPH bei pH 8 unterscheiden sich um 133 mV. Unter der Annahme, dass keine Inhibierung der Hydrogenase durch eines ihrer Edukte oder Produkte vorliegt, muß das Enzym befähigt sein, die Pyrodin- nukleotidcofaktoren komplett zu reduzieren. Eine Potentialdifferenz von 133 mV bei pH 8.0 und einer Wasser- stoff-Atmosphäre verschiebt das Gleichgewicht von NADPH/NADP+ zu 24.000/1 (Clark, W.M. usw.). Dieses heißt, das es keine thermodynamisehe Limitierung für die Reduktion von Pyrodinnukleotiden durch H2 gibt. Dieses wurde nachgewiesen, in dem der folgende Testan- satz durchgeführt wurde: 3,9 Units Hydrogenase wurden unter Wasserstoffatmosphäre in einem Volumen von 3mL 1 M EPPS-Puffer, pH 8.0, 110 mM NADP+ inkubiert. Nach 240 Minuten war quantitativer Umsatz erreicht. Beispiel 3 :The standard oxidation and reduction potentials of H + -H 2 and a NADP + -NADPH at pH 8 differ by 133 mV. Assuming that there is no inhibition of the hydrogenase by one of its starting materials or products, the enzyme must be capable of completely reducing the pyrodine nucleotide cofactors. A potential difference of 133 mV at pH 8.0 and a hydrogen atmosphere shifts the balance from NADPH / NADP + to 24,000 / 1 (Clark, WM, etc.). This means that there is no thermodynamic limitation for the reduction of pyrodine nucleotides by H 2 . This was demonstrated by carrying out the following test batch: 3.9 units of hydrogenase were incubated under a hydrogen atmosphere in a volume of 3 ml 1 M EPPS buffer, pH 8.0, 110 mM NADP + . Quantitative conversion was achieved after 240 minutes. Example 3:
Die reduktive Aminierung von zwei Ketogluterat zu Glutamat wird durch die Glutamatdehydrogenase (GDH) kata- lysiert, welche NADPH abhängig ist. Zur Regenerierung wurde hier die Hydrogenase aus Pyrococcus furiosus eingesetzt. Die Reaktionslösung bestand aus 50 mM Tris/HCL-Puffer, pH 7,5, 50 mM NH4CL, 0,2 Units GDH und 0,06 Units Hydrogenase aus einem zellfreien Extrakt. Aufgereinigte Glutamatdehydrogenase von Pyrococcus furiosus wurde als Testsystem der reduktiven Kofaktorre- generierung benutzt. Wie der Tabelle 2 zu entnehmen ist, konnte bei 50 C innerhalb von 16 h genügend NADPH regeneriert werden, um zu 100 % Umsatz von 2-Keto- gluterat zu Glutamat zu gelangen, welches unter den zuvor genannten Reaktionsbedingungen einer Zyklenzahl (TTN) von 100 entspricht.The reductive amination of two ketogluterates to glutamate is catalyzed by glutamate dehydrogenase (GDH), which is dependent on NADPH. The hydrogenase from Pyrococcus furiosus was used for regeneration. The reaction solution consisted of 50 mM Tris / HCL buffer, pH 7.5, 50 mM NH 4 CL, 0.2 units GDH and 0.06 units hydrogenase from a cell-free extract. Purified Pyrococcus furiosus glutamate dehydrogenase was used as a test system for reductive cofactor regeneration. As can be seen in Table 2, sufficient NADPH could be regenerated at 50 C within 16 h in order to achieve 100% conversion of 2-keto-gluterate to glutamate, which had a cycle number (TTN) of 100 under the aforementioned reaction conditions equivalent.
Tabelle 2: Umsetzung von 50 mM 2-Ketoglutarat zu Glutamat durch P. furiosus GDH mit NADPH Regenerierung durch Hydrogenase in einem zellfreien Extrakt aus P. furiosus .Table 2: Conversion of 50 mM 2-ketoglutarate to glutamate by P. furiosus GDH with NADPH regeneration by hydrogenase in a cell-free extract from P. furiosus.
Beispiel 4 : Example 4:
Eine Lösung von lOmM Acetophenon in 50mM wäßrigem Kaliumphosphatpuffer (pH8) mit 0,5mM oxidiertem Kofaktor NADP+ und eine NADP+-abhängige Alkoholdehydrogenase (ADHM) wird mit Durchströmen der Lösung mit wassergesättigtem Helium entgast. Zu dieser Lösung werden 20μL einer aktivierten Enzympräparation (5 Minuten bei 80°C unter Wasserstoffatmosphäre) aus Pyrococcus furiosus gegeben, so daß die Proteinkonzentration 0. lmg/mL entspricht . Die Zugabe erfolgt durch ein gasdichtes Septum mittels einer geeigneten Spritze. Die Lösung wird bei 40°C gehalten. Die inerte Argonatmosphäre wird durch Wasserstoff ersetzt. Von der gerührten Reaktionslösung werden Proben genommen und ohne weitere Aufarbeitung per Gaschromatographie (GC) hinsichtlich Umsatz und Enantiomerenüberschuß bzw. -Verhältnis analysiert. Es wurde quantitativer Umsatz nach 3 Stunden bei einem Enantiomerenüberschuß größer als 99.5% erreicht. GC: Agilent 6890GC mit einer Kapillarsäule Chirasil-Dex (Chrompack-Varian, Deutschland) Umsatz-Zeit-Kurve zeigt die Figur 1 (Kreise) . Die Zyklenzahl (TTN) bezüglich NADP+ entspricht 20.A solution of 10 mM acetophenone in 50 mM aqueous potassium phosphate buffer (pH8) with 0.5 mM oxidized cofactor NADP + and a NADP + -dependent alcohol dehydrogenase (ADHM) is degassed by flowing the solution through with water-saturated helium. 20 μL of an activated enzyme preparation (5 minutes at 80 ° C. under a hydrogen atmosphere) from Pyrococcus furiosus are added to this solution, so that the protein concentration corresponds to 0. lmg / mL. It is added through a gas-tight septum using a suitable syringe. The solution is kept at 40 ° C. The inert argon atmosphere is replaced by hydrogen. Samples are taken from the stirred reaction solution and analyzed without further processing by gas chromatography (GC) with regard to conversion and enantiomeric excess or ratio. Quantitative conversion was achieved after 3 hours with an enantiomeric excess greater than 99.5%. GC: Agilent 6890GC with a Chirasil-Dex capillary column (Chrompack-Varian, Germany) Figure 1 (circles) shows the turnover-time curve. The number of cycles (TTN) with respect to NADP + corresponds to 20.
Beispiel 5Example 5
Konzentrationen wie in Beispiel 4, die Kofaktorkon- zentration wurde auf 0,lmM erniedrigt. Die Umsatz-Zeitkurven sind für beide Kofaktorkonzentra- tionen in der Figur 1 gezeigt (Dreiecke) . Es wurde quantitativer Umsatz nach 3.5 Stunden bei einem Enantiomerenüberschuß größer als 99.5% erreicht. Die Zyklenzahl (TTN) bezüglich NADP+ entspricht 100.Concentrations as in Example 4, the cofactor concentration was reduced to 0.1 mm. The turnover-time curves for both cofactor concentrations are shown in FIG. 1 (triangles). Quantitative conversion was achieved after 3.5 hours with an enantiomeric excess greater than 99.5%. The number of cycles (TTN) with respect to NADP + corresponds to 100.
Beispiel 6:Example 6:
In einer modifizierten Ultrafiltrationszelle (Amicon, Deutschland) , die mit einer Ultrafiltrationsmembran (YM10, Amicon) ausgestattet ist, werden die oben beschriebenen Lösungen unter Argonatmosphäre eingefüllt. Der Auslauf der Zelle wird periodisch geöffnet und das Permeat der Ultrafiltrationszelle mittels GC auf Umsatz und Ausbeute analysiert. Der Auslauf wurde mit negati- vem Ergebnis auf Proteingehalt überprüft. Nachdem mehr als 95% des Umsatzes erreicht wurden, wurde der Zelleninhalt bis auf ein minimales Restvolumen filtriert, und wieder mit der gleichen Lösung befüllt. Bei der Befül- lung wurde nur Alkoholdehydrogenase (ADHM) zu den Zeit- punkten nachdosiert, die in der Figur 2 kenntlich gemacht wurden.In a modified ultrafiltration cell (Amicon, Germany), which is equipped with an ultrafiltration membrane (YM10, Amicon), the solutions described above are introduced under an argon atmosphere. The cell outlet is opened periodically and the permeate of the ultrafiltration cell is analyzed by GC for conversion and yield. The outlet was checked for protein content with a negative result. After more than 95% of the conversion had been reached, the cell contents were filtered to a minimal residual volume and again filled with the same solution. When filling, only alcohol dehydrogenase (ADHM) was replenished at the times which were identified in FIG. 2.
Beginnend mit dem sechsten Zyklus wurde das Substrat von Acetophenon auf (S) -2-Hydroxy-l-phenhyl-propanon gewechselt. Als Produkt wurde 1 , 2-Dihydroxyphenylpro- panon mit hohem Enantiomerenüberschuß erhalten.Starting with the sixth cycle, the substrate was changed from acetophenone to (S) -2-hydroxy-l-phenyl-propanone. 1, 2-Dihydroxyphenylpropanon with high enantiomeric excess was obtained as product.
Der Zyklus wurde achtmal wiederholt . Die Ergebnisse der ersten sechs Zyklen sind in Figur 2 gezeigt . Beispiel 7 :The cycle was repeated eight times. The results of the first six cycles are shown in Figure 2. Example 7:
In einer modifizierten Ultrafiltrationszelle (Amicon, Deutschland) , die mit einer Ultrafiltrationsmembran (YM10, Amicon) ausgestattet ist, werden 3 ml 200 mM EPPS, pH 8,0, 12mM NADP+ unter Argonatmosphäre eingefüllt . Der Auslauf der Zelle wird periodisch geöffnet und das Permeat der Ultrafiltrationszelle mittels Ca- pillarelectrophorese auf Umsatz und Ausbeute analy- siert. Der Auslauf wurde mit negativem Ergebnis auf Proteingehalt überprüft. Nachdem mehr als 95% des Umsatzes erreicht wurden (bzgl . NADP+) , wurde der Zelleninhalt bis auf ein minimales Restvolumen (ca. 0.2mL) filtriert, und wieder mit der gleichen Lösung befüllt. Dabei wurden verschiedene Wasserstoffdrücke beaufschlagt .In a modified ultrafiltration cell (Amicon, Germany), which is equipped with an ultrafiltration membrane (YM10, Amicon), 3 ml of 200 mM EPPS, pH 8.0, 12 mM NADP + are filled in under an argon atmosphere. The cell outlet is opened periodically and the permeate of the ultrafiltration cell is analyzed for conversion and yield by capillary electrophoresis. The outlet was checked for protein content with a negative result. After more than 95% of the conversion had been achieved (with respect to NADP + ), the cell contents were filtered to a minimal residual volume (approx. 0.2 ml) and again filled with the same solution. Various hydrogen pressures were applied.
Der Zyklus wurde achtmal wiederholt . Dabei wurde ab dem 7. Zyklus der Druck auf 7.5bar Wasserstoff erhöht. Es wurde keine Hydrogenasepräparation zudosiert. Das Per- meat wurde mittels Kapillarelektrophrese untersucht. (Beckmann PACE MDQ, Kapillare: fused silica, 24°C, U=20 kV, c (Total) =100 mM, 50\% Kaliumphosphat (50 mM Kaliumphosphat + 50 mM Borat) , pH=6) Die Ergebnisse sind in Figur 3 dargestellt . The cycle was repeated eight times. The pressure was increased to 7.5 bar hydrogen from the 7th cycle. No hydrogenase preparation was added. The permeate was examined by capillary electrophresis. (Beckmann PACE MDQ, capillary: fused silica, 24 ° C, U = 20 kV, c (total) = 100 mM, 50% potassium phosphate (50 mM potassium phosphate + 50 mM borate), pH = 6) The results are shown in FIG 3 shown.
Claims
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE10139958 | 2001-08-21 | ||
DE2001139958 DE10139958A1 (en) | 2001-08-21 | 2001-08-21 | Process for the enzymatic reduction of substrates with molecular hydrogen |
PCT/DE2002/002775 WO2003018824A2 (en) | 2001-08-21 | 2002-07-27 | Method used for the enzymatic reduction of substrates by molecular hydrogen |
Publications (1)
Publication Number | Publication Date |
---|---|
EP1419262A2 true EP1419262A2 (en) | 2004-05-19 |
Family
ID=7695450
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP02767065A Withdrawn EP1419262A2 (en) | 2001-08-21 | 2002-07-27 | Method used for the enzymatic reduction of substrates by molecular hydrogen |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP1419262A2 (en) |
DE (1) | DE10139958A1 (en) |
WO (1) | WO2003018824A2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102004007029A1 (en) * | 2004-02-12 | 2005-09-08 | Consortium für elektrochemische Industrie GmbH | Process for the enantioselective reduction of keto compounds by enzymes |
US20070190596A1 (en) * | 2006-01-20 | 2007-08-16 | Jones Gerald S Jr | Synthesis of (6S)-5-methyl-5,6,7,8-tetrahydrofolic acid |
CN102791876B (en) * | 2009-11-30 | 2016-06-08 | 细胞制药有限公司 | Novel 7 beta-hydroxysteroid dehydrogenases and their use |
-
2001
- 2001-08-21 DE DE2001139958 patent/DE10139958A1/en not_active Withdrawn
-
2002
- 2002-07-27 EP EP02767065A patent/EP1419262A2/en not_active Withdrawn
- 2002-07-27 WO PCT/DE2002/002775 patent/WO2003018824A2/en not_active Application Discontinuation
Non-Patent Citations (1)
Title |
---|
See references of WO03018824A3 * |
Also Published As
Publication number | Publication date |
---|---|
WO2003018824A2 (en) | 2003-03-06 |
WO2003018824A3 (en) | 2003-10-02 |
DE10139958A1 (en) | 2003-03-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE69812420T2 (en) | ENZYMATIC PRODUCTION OF HOMOGENTISIC ACID | |
DE69905051T2 (en) | ELECTROCHEMICAL METHOD FOR GENERATING A BIOLOGICAL PROTON DRIVE AND REGENERATION OF THE PYRIDINE-NUCLEOTID COFACTOR | |
EP2788493B1 (en) | Use of an alkb alkane 1-monooxygenase for the oxidation of propane and butane | |
EP2834347B1 (en) | Method for aerobic production of alanine | |
DE4480132C2 (en) | Method and Rhodococcus rhodochrous strain for the preparation of amides from nitriles | |
EP1285962B1 (en) | NADH oxidase from Lactobacillus | |
EP0550455B1 (en) | Process for purifying water | |
DE69219530T2 (en) | Process for the preparation of R (-) - mandelic acid and its derivative | |
EP1285082B1 (en) | Method comprising the indirect electrochemical regeneration of nad(p)h | |
CN120174034A (en) | A method for high-yield fermentation of pyrroloquinoline quinone using Methylobacterium extorquens | |
CH657373A5 (en) | ENZYMATIC SYNTHESIS OF L-SERINE. | |
EP0229614A2 (en) | Process for the selective regeneration of mediators and catalyst therefor | |
WO2003018824A2 (en) | Method used for the enzymatic reduction of substrates by molecular hydrogen | |
EP1805313A1 (en) | Method for producing chiral alcohols | |
EP3992299A1 (en) | Method for the enzymatic racemate cleavage of camphor | |
DE60115849T2 (en) | METHOD AND CATALYTIC SYSTEM FOR THE STEREOSELECTIVE INVERTING OF A CHIRAL CENTER IN A CHEMICAL COMPOUND | |
DE3505397A1 (en) | METHOD FOR REGENERATING COENZYME | |
Sonnleitner et al. | Stereospecific reductions of ketones and oxo-acid esters using continuously growing cultures of Thermoanaerobium brockii | |
EP0410430B1 (en) | Process for the microbiological discontinual preparation of L-carnitine | |
DE69730444T2 (en) | PROCESS FOR PREPARING OPTICALLY ACTIVE N-BENZYL-3-PYRROLIDINOLS | |
Kalckar et al. | Concerted reduction of yeast uridine diphosphate galactose 4-epimerase | |
WO1997029194A2 (en) | Preparation of l-ascorbic acid | |
CN108315375B (en) | Production method of oxidized nicotinamide adenine dinucleotide phosphate | |
DE10247147A1 (en) | Production of D-mannitol, useful e.g. as sweetener and plasma extender, by culturing organisms that express mannitol-2-dehydrogenase and where substrate is introduced by a non-phosphorylating pathway | |
DE68910914T2 (en) | Process for the electrochemical regeneration of pyridine cofactors. |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20040116 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: GREINER, LASSE Inventor name: LIESE, ANDREAS Inventor name: MERTENS, RITA Inventor name: HAAKER, HUUB Inventor name: VAN DEN BAN, EYKE |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN |
|
18W | Application withdrawn |
Effective date: 20060204 |