EP1417736A1 - Kommutator für einen mehrpoligen kommutatormotor und damit ausgestatteter kommutatormotor - Google Patents

Kommutator für einen mehrpoligen kommutatormotor und damit ausgestatteter kommutatormotor

Info

Publication number
EP1417736A1
EP1417736A1 EP02700168A EP02700168A EP1417736A1 EP 1417736 A1 EP1417736 A1 EP 1417736A1 EP 02700168 A EP02700168 A EP 02700168A EP 02700168 A EP02700168 A EP 02700168A EP 1417736 A1 EP1417736 A1 EP 1417736A1
Authority
EP
European Patent Office
Prior art keywords
commutator
armature
motor
bridge conductors
pole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP02700168A
Other languages
English (en)
French (fr)
Inventor
Gerald Kuenzel
Joerg Brandes
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP1417736A1 publication Critical patent/EP1417736A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R39/00Rotary current collectors, distributors or interrupters
    • H01R39/02Details for dynamo electric machines
    • H01R39/04Commutators

Definitions

  • Commutator for a multi-pole commutator motor and commutator motor equipped with it
  • the invention relates to a commutator for a multi-pole commutator motor with at least four stator poles and with co-operating with armature coils, each of which is supplied with current via two commutator bars of the commutator and the number of which is greater than the number of stator poles, the number of commutators being reduced to reduce the number Contacting brushes magnetically identically oriented armature poles forming armature coils are connected in parallel by armature-side electrical bridge conductors.
  • the invention further relates to a multi-pole commutator motor with such a commutator.
  • Commutator motors of this type are used, for example, as pump drives for anti-lock braking systems in motor vehicles, as servo drives or as adjusting drives. Such commutator motors can also be referred to as small motors, since they usually cover a power range of up to approximately one kilowatt.
  • a typical example of such a commutator motor has, for example, four stator poles, which are preferably permanently excited, and accordingly four armature poles which interact with them and are formed by armature coils.
  • the armature coils are connected to an armature-side commutator, which is usually powered by four brushes. The brushes rub over the commutator bars of the commutator.
  • the hanging of the bridge conductors is problematic, since they have to extend transversely to the direction of rotation of the armature, because typically diametrically opposed commutator segments are connected to one another by the bridge conductors. It is also necessary to have an electrical on the shaft of the armature insulated section to support the bridge conductor.
  • commutator fins are connected in parallel by means of compensating connections in order to allow a flow of compensating currents between the commutator fins so that the brushes are not burdened by compensating currents.
  • a reduction in brushes is not provided and would lead to high commutator currents in such powerful motors, which would result in problematic current stall behavior, possibly even a round fire on the commutator.
  • the commutator according to the invention with the features of the main claim and the multi-pole commutator motor equipped with it, on the other hand, have the advantage that the winding of the armature is considerably easier since no bridge conductors made of winding wire are provided. Instead, the bridge conductors already form part of the commutator.
  • the bridge conductors are preferably arranged directly between the commutator lamellae of the commutator, so that the commutator has a very compact construction.
  • the commutator can be a flat or flat commutator, which is sometimes also referred to as a disk commutator, or a so-called drum commutator.
  • the commutator preferably has a circular or drum-shaped shape, the commutator lamellae being arranged on the outer circumference of the commutator and the bridge conductors saving space in the interior of the commutator.
  • An armature shaft typically penetrates a commutator. It is therefore preferably provided that a passage for the armature shaft is kept free inside the commutator, expediently along its axis of rotation.
  • the bridge conductors are, so to speak, bent around the armature shaft.
  • diametrically opposite commutator bars are connected in parallel by a bridge conductor on the circumference of the commutator.
  • This variant is particularly advantageous in the case of a four-pole commutator motor.
  • not only two, but also possibly more armature coils can be connected in parallel by means of bridge conductors. NEN.
  • armature coils can be connected in parallel, so that only one pair of brushes is required to make contact with the collector.
  • the bridge conductors are essentially arranged in a common plane. It is also possible for a group of bridge conductors or a plurality of groups of bridge conductors to be arranged essentially in common planes. In any case, this creates a very space-saving arrangement of the bridge conductors, so that the commutator is very compact in the direction of the axis of rotation. This variant proves to be particularly advantageous in the case of a disk commutator. To make contact with the commutator lamella assigned to them, the bridge conductors overlap or fall below the common level at which the respective bridge conductors are arranged.
  • bridge conductors it is also possible for the bridge conductors to be arranged one behind the other. They lie in planes one behind the other in the axis of rotation of the commutator. It is therefore possible for all bridge conductors to have the same geometric shape. This variant is particularly useful for a drum commutator.
  • the bridge conductors are expediently formed by metal conductors, in particular made of copper or aluminum, which are soldered, welded or otherwise electrically contacted with the commutator bars.
  • metal conductors in particular made of copper or aluminum, which are soldered, welded or otherwise electrically contacted with the commutator bars.
  • the commutator lamellae and the bridge conductors assigned to them can also be formed in one piece. In any case, the mechanical strength and stability of the commutator are improved by the bridge conductors arranged between the commutator segments.
  • the bridge conductors are expediently mechanically fixed by an insulating compound, in particular a casting compound, which is poured into the interior of the commutator, so that the stability of the commutator is further improved.
  • the armature coils are wound as multi-pole loop windings.
  • the number of brushes provided for contacting the armature coils is smaller than the number of armature poles.
  • the current load on the individual brushes increases.
  • this does not play a significant role in small motors up to an output of approximately one kilowatt, for which the commutator according to the invention is expediently provided, since the brushes used there are typically dimensioned such that they have a higher can cope with higher current.
  • the cost advantage of saving brushes is so great that the cost of providing more powerful brushes outweighs them.
  • FIG. 1 shows a development diagram of a rotor of a four-pole commutator motor with twelve grooves and twelve commutator lamellae and with bridge conductors according to the invention shown schematically,
  • FIG. 2 shows a commutator according to the invention, in which the
  • Bridge conductors are arranged in levels one behind the other in the axis of rotation of the commutator and
  • Figure 3 shows a further variant of a commutator according to the invention, in which the bridge conductors are arranged essentially in a common plane.
  • FIG. 1 shows the development diagram of an armature 13 of a four-pole commutator motor 14.
  • the commutator motor 14 has a stator 15 with stator poles 16, 17, 18, 19.
  • the cities Torpoles 16 to 19 can be electrically or permanently magnetically excited.
  • the armature 13 is rotatably arranged in the stator 15.
  • Coils 31 to 42 are supplied with current via brushes 20 and 21, which loop through a commutator 22.
  • the commutator 22 has commutator bars 1 to 12 which are electrically connected to the coils 31 to 42.
  • the coil 31 is connected on the one hand to the commutator bar 1 and on the other hand to the commutator bar 2, the coil 32 on one end to the commutator bar 2 and on the other hand to the commutator bar 3.
  • the further coils 33 to 42 are also connected to the commutator bars 3 to 12, 1.
  • the coils 31 to 42 are arranged in a loop winding on the armature 13. With this type of winding, as many brush sets are required as the respective commutator has excitation pole pairs, in the specific case, for example, two brush sets, each with two brushes.
  • the loop winding can also be called a parallel winding, since the winding parts of the armature are connected in parallel by the brushes of brush sets which are connected in parallel in the conventional commutator motor.
  • brushes 23, 24 which are connected in parallel to the brushes 20, 21.
  • the brushes 23, 24 are actually not provided in the commutator motor 14.
  • Leads 25 and 26 lead to the brushes 20, 23 and 21, 24. render section 27 of the feed line 25 and a section 28 of the feed line 26 leading to the brush 24 are only shown in dashed lines because they are provided in a conventional commutator motor, but not in the commutator motor 14 shown.
  • the coils 31 to 42 each consist of several turns of a metallic conductor, for example an insulated copper wire, which are wound several times around armature teeth 51 to 62 and the ends of which are each electrically connected to the commutator bars 1 to 12.
  • a metallic conductor for example an insulated copper wire
  • the coil 31 is wound several times around the armature teeth 51, 52 and 53, so that its windings come to lie between the armature teeth 51, 56 and 53, 54.
  • the coil 31 is electrically connected to the commutator bars 1 and 2.
  • the further coils 32 to 42 are wound around the armature teeth 51 to 62 according to the same loop winding scheme.
  • the brush 24 is not present in the commutator motor 14.
  • the commutator 22 has bridge conductors 43 to 48 which are located between the commutator bars 1, 7; 2, 8; 3, 9; 4, 10; 5, 11; 6, 12 extend.
  • the bridge conductors 43 to 48 form part of the commutator 22 and place between the commutator bars 1, 7; 2, 8; 3, 9; 4, 10; 5, 11; 6, 12 each establish an electrical connection.
  • the half armature current I A / 2 arriving at the commutator lamella 1 can flow off via the bridge conductor 43 to the commutator lamella 7 and from there via the brush 21 and the line 26.
  • FIGS. 2 and 3 show exemplary designs of the bridge conductors 43 to 48 integrated in the commutator 22.
  • FIG. 2 shows the commutator 22 in a design 22a as a drum commutator or drum collector. It has a cylindrical or drum-shaped shape and is penetrated by an armature shaft 49 of the armature 13, which is only shown in broken lines.
  • the commutator bars 1 to 12 are arranged on the circumference of the roller.
  • a drum commutator is manufactured from a copper tube, the interior of which is filled with an electrically insulating casting compound (not shown) and the outer circumference of which is slotted, so that commutator segments which are electrically separate from one another are formed.
  • the potting compound is not shown in FIG.
  • bridge conductors 43, 44, 45 which are shown by way of example and which are shown as between the commutator bars 1, 7; 2, 8; 3, 9 soldered or welded metal conductors are formed.
  • the other bridge conductors 46 to 48 can be constructed and arranged in the same way as the bridge conductors 43 to 45, but are not shown for reasons of clarity.
  • the bridge conductors 43 to 48 are bent essentially in the form of a circular arc, the radius of the circular arc being dimensioned such that the bridge conductors on the one hand leave a passage for the armature shaft 49 and on the other hand to the commutator segments 1 to 12 respectively are spaced so that electrical insulation is achieved.
  • the bridge conductors 43 to 48 are each bent outwards towards the circumference of the commutator 22a and are welded or soldered to a commutator bar 1 to 12, respectively.
  • the bridge conductors 43 to 48 lie one behind the other along an axis of rotation 50 of the commutator 22a, which at the same time forms the axis of rotation of the armature shaft 49.
  • the bridge conductors 43 to 48 each connect diametrically opposite commutator segments 1 to 12 on the circumference of the commutator 22a, so that these are connected in parallel.
  • the stability and mechanical strength of the commutator 22a is increased by the mechanical connection of the commutator bars 1 to 12 by a bridge conductor 43 to 48, respectively.
  • a further increase in the mechanical load capacity is achieved by pouring a casting compound into the interior of the commutator 22a. If an insulating casting compound is expediently used, electrical insulation can also be achieved between the bridge conductors 43-48 and / or the commutator segments 1-12. When potting, a passage for the armature shaft 49 can be kept free or the armature shaft 49 can be potted directly.
  • the bridge conductors 43 to 48 lie essentially in one plane.
  • the commutator 22b can also be one Act so-called drum commutator, in which case the brushes 21, 22, as shown in dashed lines in FIG. 3, rub on the outer circumference of the commutator 22b over the commutator bars 1 to 12.
  • the commutator 22b is designed as a flat or flat commutator, in which brushes 20b, 21b contact the commutator bars 1 to 12 on the end face of the commutator 22b.
  • the brushes 20b, 21b are also drawn as a variant in dashed lines.
  • the bridge conductors 43 to 48 are arranged and designed such that a passage for the armature shaft 49 is kept free inside the commutator 22b.
  • the bridge conductors 43 to 48 are bent in a concentric circular arc around an axis of rotation 50 of the commutator 22b and lie essentially in a common plane.
  • the bridge conductors 43 to 48 each have sections 43a, 43b to 48a, 48b which are directed toward the outer circumference of the commutator 22b and lie transversely to the axis of rotation 50 and which are connected to the commutator bars 1, 7; 2, 8; 3, 9; 4, 10; 5, 11; 6, 12 are electrically connected.
  • the sections 44a to 48a of the bridge conductors 44 to 48 reach under the common plane in which the bridge conductors 43 to 48 are arranged.
  • the bridge conductors 43 to 48 can be formed, for example, by conductor tracks which are arranged on an electrical circuit board. A trace The level of the electrical printed circuit board then forms the common level for the bridge conductors 43 to 48, with plated-through holes for example above or below the level of the conductor track. If the commutator 22b is a flat commutator, the commutator bars 1 to 12 can also be formed by conductor tracks on the circuit board.

Landscapes

  • Motor Or Generator Current Collectors (AREA)
  • Dc Machiner (AREA)

Abstract

Die Erfindung betrifft einen Kommutator (22; 22a; 22b) für einen mehrpoligen Kommutatormotor (14) mit mindestens vier Statorpolen (16 19) und mit mit diesen zusammenwirkenden Ankerspulen (31 42), die zur Stromversorgung jeweils mit zwei Kommutatorlamellen (1 12) des Kommutators (22; 22a; 22b) elektrisch verbunden sind und deren Anzahl grösser ist als die Anzahl der Statorpole (16 19), wobei zur Reduzierung der Anzahl von den Kommutator (22; 22a; 22b) kontaktierenden Bürsten (20, 21; 23, 24) magnetisch gleich orientierte Ankerpole bildende Ankerspulen (31 42) durch ankerseitige elektrische Brückenleiter (43 48) parallel geschaltet sind. Bei dem Kommutator (22; 22a; 22b) wird vorgeschlagen, dass die Brückenleiter (43 48) einen Bestandteil des Kommutators (22; 22a; 22b) bilden. Die Erfindung betrifft ferner einen mehrpoligen Kommutatormotor (14) mit einem derartigen Kommutator (22; 22a; 22b).

Description

Kommutator für einen mehrpoligen Kommutatormotor und damit ausgestatteter Kommutatormotor
STAND DER TECHNIK
Die Erfindung betrifft einen Kommutator für einen mehrpoligen Kommutatormotor mit mindestens vier Stätorpolen und mit mit diesen zusammenwirkenden Ankerspulen, die jeweils über zwei Kommutatorlamellen des Kommutators mit Strom versorgt werden und deren Anzahl größer ist als die Anzahl der Statorpole, wobei zur Reduzierung der Anzahl von den Kommutator kontaktierenden Bürsten magnetisch gleich orientierte Ankerpole bildende Ankerspulen durch ankerseitige elektrische Brückenleiter parallel geschaltet sind. Die Erfindung betrifft ferner einen mehrpoligen Kommutatormotor mit einem derartigen Kommutator .
Derartige Kommutatormotoren werden beispielsweise als Pumpenantriebe für Antiblockiersysteme in Kraftfahrzeugen eingesetzt, als Servoantriebe oder als Versteilantriebe. Man kann derartige Kommutatormotoren auch als Kleinmotoren bezeichnen, da sie üblicherweise einen Leistungsbereich bis zu ca. einem Kilowatt abdecken. Ein typisches Beispiel für einen derartigen Kommutatormotor weist beispielsweise vier Statorpole auf, die vorzugsweise permanent erregt sind, und dementsprechend vier mit diesen zusammenwirkenden, durch Ankerspulen gebildete Ankerpole. Die Ankerspulen sind an einen ankerseitigen Kommutator angeschlossen, der üblicherweise über vier Bürsten mit Strom versorgt wird. Die Bürsten schleifen über Kommutatorlamellen des Kommutators .
Zur Einsparung von Bürsten ist es im Stand der Technik bekannt, solche Ankerspulen durch ankerseitige elektrische Brückenleiter parallel zu schalten, die magnetisch gleich orientierte Ankerpole bilden. In der deutschen Patentschrift DE 197 57 279 Cl wird dazu vorgeschlagen, die Brückenleiter als Kommutatorlamellen-Kontaktbrücken auszugestalten, die durch Wicklungsdraht beim Wickeln der Ankerspulen mitgewickelt werden. Die Brückenleiter werden ebenso wie die Ankerspulen in Haken eingehängt, die an den Kommutatorlamellen zu den Ankerspulen hin angeordnet sind. Das Einhängen der Ankerspulen ist unproblematisch, da sich die Ankerspulen im Wesentlichen in Drehachsrichtung des Ankers erstrecken und somit leicht in die Haken eingehängt werden können. Problematisch hingegen ist das Einhängen der Brückenleiter, da sich diese quer zur Drehachsrichtung des Ankers erstrecken müssen, weil typischerweise diametral gegenüberliegende Kommutatorlamellen durch die Brückenleiter miteinander verbunden werden. Zudem ist es erforderlich, an der Welle des Ankers einen elektrisch isolierten Abschnitt zur Abstützung der Brückenleiter vorzusehen .
Bei Kommutatormotoren mit größerer Leistung, jedenfalls einer Leistung, die wesentlich größer ist als ein Kilowatt, werden Kommutatorlamellen durch Ausgleichsverbindungen parallel geschaltet, um ein Fließen von Ausgleichsströmen zwischen den Kommutatorlamellen zu ermöglichen, so dass die Bürsten durch Ausgleichströme nicht belastet werden. Eine Reduzierung von Bürsten ist jedenfalls nicht vorgesehen und würde bei derart leistungsstarken Motoren zu hohen Kommutatorströmen führen, was ein problematisches Stromabrissverhalten, gegebenenfalls sogar ein Rundfeuer am Kommutator zur Folge hätte.
VORTEILE DER ERFINDUNG
Der erfindungsgemäße Kommutator mit den Merkmalen des Hauptanspruchs sowie der damit ausgestattete mehrpolige Kommutatormotor hingegen haben den Vorteil, dass das Wickeln des Ankers wesentlich einfacher ist, da keine Brückenleiter aus Wicklungsdraht vorgesehen sind. Stattdessen bilden die Brückenleiter bereits einen Bestandteil des Kommutators.
Durch die in den Unteransprüchen aufgeführten Maßnahmen sind vorteilhafte Weiterbildungen und Verbesserungen des erfindungsgemäßen Kommutators und des erfindungsgemäßen Koitunuta- tormotors möglich. Vorzugsweise sind die Brückenleiter unmittelbar zwischen Kommutatorlamellen des Kommutators angeordnet, so dass der Kommutator sehr kompakt bauend ist.
Bei dem Kommutator sind verschiedene Bauvarianten möglich. Beispielsweise kann es sich um einen Plan- oder Flachkommutator handeln, der bisweilen auch als Scheibenkommutator bezeichnet wird, oder um einen sogenannten Trommelkommutator. Jedenfalls weist der Kommutator vorzugsweise eine kreis- oder trommeiförmige Gestalt auf, wobei die Kommutatorlamellen am Außenumfang des Kommutators angeordnet sind und die Brückenleiter platzsparend im Innern des Kommutators.
Typischerweise wird ein Kommutator von einer Ankerwelle durchdrungen. Daher ist vorzugsweise vorgesehen, dass im Inneren des Kommutators, zweckmäßigerweise entlang seiner Drehachse, ein Durchgang für die Ankerwelle freigehalten wird. Die Brückenleiter sind dabei sozusagen um die Ankerwelle herum gebogen.
Zweckmäßigerweise ist vorgesehen, dass am Umfang des Kommutators jeweils diametral gegenüberliegende Kommutatorlaraellen durch jeweils einen Brückenleiter parallel geschaltet sind. Diese Variante ist insbesondere bei einem vierpoligen Kommutatormotor vorteilhaft. Es versteht sich allerdings, dass nicht nur jeweils zwei, sondern auch gegebenenfalls mehr Ankerspulen durch Brückenleiter parallel geschaltet sein kön- nen. Beispielsweise können bei einem sechspoligen Kommutatormotor jeweils drei Ankerspulen parallel geschaltet sein, so dass lediglich ein Bürstenpaar zur Kontaktierung des Kollektors erforderlich ist.
In einer bevorzugten Variante sind die Brückenleiter im Wesentlichen in einer gemeinsamen Ebene angeordnet. Es ist auch möglich, dass eine Gruppe von Brückenleitern oder mehrere Gruppen von Brückenleitern jeweils im Wesentlichen in gemeinsamen Ebenen angeordnet sind. Jedenfalls entsteht dabei ein sehr platzsparende Anordnung der Brückenleiter, so dass der Kommutator in Drehachsrichtung sehr kompakt baut. Diese Variante erweist sich insbesondere bei einem Scheibenkommutator als vorteilhaft. Zur Kontaktierung mit der ihnen jeweils zugeordneten Kommutatorlamelle über- oder untergreifen die Brückenleiter jeweils einenends die gemeinsame Ebene, in der die jeweiligen Brückenleiter angeordnet sind.
Es ist allerdings auch möglich, dass die Brückenleiter hin- tereinanderliegend angeordnet sind. Sie liegen dabei in in Drehachsrichtung des Kommutators hintereinanderliegenden Ebenen. Somit ist es möglich, dass alle Brückenleiter die gleiche geometrische Form aufweisen. Diese Variante ist insbesondere bei einem Trommelkommutator sinnvoll.
Die Brückenleiter werden zweckmäßigerweise durch Metallleiter, insbesondere aus Kupfer oder Aluminium, gebildet, die zwischen die Kommutatorlamellen gelötet, geschweißt oder in sonstiger Weise mit diesen elektrisch kontaktiert sind. Es versteht sich allerdings, dass die Kommutatorlamellen und die ihnen jeweils zugeordneten Brückenleiter auch einstückig ausgebildet sein können. Jedenfalls wird durch die zwischen den Kommutatorlamellen angeordneten Brückenleiter die mechanische Belastbarkeit und Stabilität des Kommutators verbessert.
Zweckmäßigerweise sind die Brückenleiter durch eine Isoliermasse, insbesondere eine Vergussmasse, die in das Innere des Kommutators eingegossen wird, mechanisch fixiert, so dass die Stabilität des Kommutators weiter verbessert wird.
Durch die Integration der Brückenleiter in den Kommutator sind in Bezug auf die Wicklungsart der Ankerspulen keine Einschränkungen zu beachten. In einer bevorzugten Variante der Erfindung ist allerdings vorgesehen, dass die Ankerspulen als mehrpolige Schleifenwicklungen gewickelt sind. Jedenfalls erweist es sich bei allen Wicklungsarten als vorteilhaft , dass die Anzahl der zur Kontaktierung der Ankerspulen vorgesehenen Bürsten kleiner ist als die Anzahl der Ankerpole. Zwar erhöht sich hierbei die Strombelastung der einzelnen Bürsten. Allerdings spielt dies bei Kleinmotoren bis zu einer Leistung von ca. ein Kilowatt, für die der erfindungsgemäße Kommuta"tor zweckmäßigerweise vorgesehen ist, keine nennenswerte Rolle, da die dort eingesetzten Bürsten typischerweise so bemessen sind, dass sie einen durch Einsparung von Bürsten bedingt hö- heren Strom verkraften können. Jedenfalls ist der Kostenvorteil durch Einsparung von Bürsten so groß, dass die Kosten für das Vorsehen leistungsfähigerer Bürsten aufwiegt.
ZEICHNUNG
Ausführungsbeispiele der Erfindung sind in den Zeichnungen dargestellt und in der nachfolgenden Beschreibung näher erläutert. Es zeigen
Figur 1 ein Abwicklungsschema, eines Rotors eines vierpoligen Kommutatormotors mit zwölf Nuten und zwölf Kommutatorlamellen sowie mit schematisch eingezeichneten erfindungsgemäßen Brückenleitern,
Figur 2 einen erfindungsgemäßen Kommutator, bei dem die
Brückenleiter in in Drehachsrichtung des Kommutators hintereinanderliegenden Ebenen angeordnet sind und
Figur 3 eine weitere Variante eines erfindungsgemäßen Kommutators, bei dem die Brückenleiter im Wesentlichen in einer gemeinsamen Ebene angeordnet sind.
Figur 1 zeigt das Abwicklungsschema eines Ankers 13 eines vierpoligen Kommütatormotors 14. Der Kommutatormotor 14 weist einen Stator 15 mit Statorpolen 16, 17, 18, 19 auf. Die Sta- torpole 16 bis 19 können elektrisch oder permanentmagnetisch erregt sein.
Der Anker 13 ist im Stator 15 drehbeweglich angeordnet . Über Bürsten 20 und 21, die über einen Kommutator 22 schleifen, werden Spulen 31 bis 42 mit Strom versorgt. Der Kommutator 22 weist Kommutatorlamellen 1 bis 12 auf, die elektrisch mit den Spulen 31 bis 42 verbunden sind. Dabei ist die Spule 31 eine- nends mit der Kommutatorlamelle 1 und andernends mit der Kommutatorlamelle 2, die Spule 32 einenends mit der Kommutatorlamelle 2 und andernends mit der Kommutatorlamelle 3 verbunden. Nach diesem Schema sind auch die weiteren Spulen 33 bis 42 mit den Kommutatorlamellen 3 bis 12, 1 verbunden.
Dis Spulen 31 bis 42 sind in Schleifenwicklung auf dem Anker 13 angeordnet. Bei dieser Wicklungsart sind an sich so viele Bürstensätze erforderlich, wie der jeweilige Kommutator Erregerpolpaare hat, im konkreten Fall beispielsweise zwei Bürstensätze mit je zwei Bürsten. Man kann die Schleifenwicklung auch als Parallelwicklung bezeichnen, da durch die Bürsten von Bürstensätzen, die beim konventionellen Kommutatormotor parallel geschaltet sind, die Wicklungsteile des Ankers parallel geschaltet werden. Dies ist in Figur 1 durch Bürsten 23, 24 angedeutet, die zu den Bürsten 20, 21 parallel geschaltet sind. Die Bürsten 23, 24 sind tatsächlich beim Kommutatormotor 14 nicht vorgesehen. Zu den Bürsten 20, 23 und 21, 24 führen Zuleitungen 25 bzw. 26. Ein zur Bürste 23 füh- render Abschnitt 27 der Zuleitung 25 sowie ein zur Bürste 24 führender Abschnitt 28 der Zuleitung 26 sind lediglich gestrichelt dargestellt, weil sie zwar bei einem konventionellen Kommutatormotor, nicht jedoch beim gezeigten Kommutatormotor 14 vorgesehen sind.
Die Spulen 31 bis 42 bestehen jeweils aus mehreren Windungen eines metallischen Leiters, beispielsweise eines isolierten Kupferdrahtes, die jeweils mehrfach um Ankerzähne 51 bis 62 gewickelt sind und deren Enden jeweils elektrisch mit den Kommutatorlamellen 1 bis 12 verbunden sind. Dabei ist beispielsweise die Spule 31 mehrfach um die Ankerzähne 51, 52 und 53 gewickelt, so dass ihre Windungen zwischen den Ankerzähnen 51, 56 und 53, 54 zu liegen kommen. Ferner ist die Spule 31 mit den Kommutatorlamellen 1 und 2 elektrisch verbunden. Die weiteren Spulen 32 bis 42 sind nach demselben Schleifenwicklungsschema um die Ankerzähne 51 bis 62 gewickelt.
Zur besseren Verständlichkeit soll nun zunächst der Strom- fluss durch den Anker 13 erläutert werden, wie er bei einem konventionellen Kommutatormotor, bei dem die Bürsten 23, 24 vorgesehen sind, auftreten würde. Über die Zuleitung 25 fließt ein Ankerstrom IÄ jeweils zur Hälfte auf die Kommutatorlamellen 4, 10. Von der Kommutatorlamelle 10 fließt der Ankerstrom IÄ/2 über die Spule 40 zur Kommutatorlamelle 11, von dort weiter über die Spule 41 zur Kommutatorlamelle 12 und von dort weiter über die Spule 42 zur Kommutatorlamelle
1. Von dort kann der Ankerstrom Ia/2 bei einem konventionellen Kommutatormotor über die Bürste 24 und die Leitungen 28,
26 wieder abfließen. Beim Kommutatormotor 14 jedoch ist die Bürste 24 nicht vorhanden. Statt der Bürsten 23, 24 weist der Kommutator 22 Brückenleiter 43 bis 48 auf, die sich zwischen den Kommutatorlamellen 1, 7; 2, 8; 3, 9; 4, 10; 5, 11; 6, 12 erstrecken. Die Brückenleiter 43 bis 48 bilden einen Bestandteil des Kommutators 22 und stellen zwischen den Kommutatorlamellen 1, 7; 2, 8; 3, 9; 4, 10; 5, 11; 6, 12 jeweils eine elektrische Verbindung her. Statt wie 'beim konventionellen Kommutatormotor kann beim Kommutatormotor 14 der an der Kommutatorlamelle 1 ankommende halbe Ankerstrom IA/2 über den Brückenleiter 43 zur Kommutatorlamelle 7 und von dort über die Bürste 21 und die Leitung 26 abfließen.
Bei einem konventionellen Kommutatormotor würde die andere Hälfte des Ankerstromes IA/2 über die Bürste 23 zur Kommutatorlamelle 4 fließen. Statt der Bürste 24 leitet beim Kommutatormotor 14 in der gezeigten Ankerstellung der Brückenleiter 46 den Ankerstrom IA hälftig zur Kommutatorlamelle 4, von der er in die Spule 34 eingespeist wird. Über die Spule 34 fließt der Ankerstrom IA/2 zur Kommutatorlamelle 5, von dort weiter über die Spule 35 zur Kommutatorlamelle 6 und über die Spule 36 zur Kommutatorlamelle 7, wo er über die Bürste 21 und die Leitung 26 abfließen kann. In den Figuren 2 und 3 sind exemplarische Bauformen der in den Kommutator 22 integrierten Brückenleiter 43 bis 48 dargestellt. Figur 2 zeigt den Kommutator 22 in einer Bauform 22a als Trommelkommutator oder Trommelkollektor. Er weist dabei eine walzen- oder trommeiförmige Gestalt auf, und wird von einer lediglich gestrichelt gezeichneten Ankerwelle 49 des Ankers 13 durchdrungen. Die Kommutatorlamellen 1 bis 12 sind dabei am Walzenumfang angeordnet. Typischerweise wird ein Trommel ommutator aus einem Kupferrohr gefertigt, dessen Inneres vorliegend mit einer nicht gezeigten elektrisch isolierenden Vergussmasse ausgefüllt ist und dessen Außenumfang geschlitzt ist, so dass elektrisch voneinander getrennte Kommutatorlamellen gebildet werden. In Figur 2 ist die Vergussmasse aus Veranschaulichungsgründen nicht dargestellt, so dass die beispielhaft eingezeichneten Brückenleiter 43, 44, 45 sichtbar sind, die als zwischen die Kommutatorlamellen 1, 7; 2, 8; 3, 9 eingelötete oder eingeschweißte Metallleiter ausgebildet sind. Die weiteren Brückenleiter 46 bis 48 können gleich aufgebaut und angeordnet sein wie die Brückenleiter 43 bis 45, sind jedoch aus Gründen der Übersichtlichkeit nicht dargestellt.
Beim Kommutator 22a sind die Brückenleiter 43 bis 48 im Wesentlichen kreisbogenförmig gebogen, wobei der Radius des Kreisbogens so bemessen ist, dass die Brückenleiter zum einen einen Durchgang für die Ankerwelle 49 freilassen und zum anderen zu den Kommutatorlamellen 1 bis 12 jeweils soweit beabstandet sind, dass eine elektrische Isolierung erzielt wird. An ihren Enden sind die Brückenleiter 43 bis 48 jeweils zum Umfang des Kommutators 22a hin nach außen gebogen und mit jeweils einer Kommutatorlamelle 1 bis 12 verscheißt oder verlötet. Die Brückenleiter 43 bis 48 liegen hintereinander entlang einer Drehachse 50 des Kommutators 22a, die zugleich die Drehachse der Ankerwelle 49 bildet. Jedenfalls verbinden die Brückenleiter 43 bis 48 jeweils am Umfang des Kommutators 22a diametral gegenüberliegende Kommutatorlamellen 1 bis 12, so dass diese parallel geschaltet sind.
Zudem wird die Stabilität und mechanische Belastbarkeit des Kommutators 22a durch die mechanische Verbindung der Kommutatorlamellen 1 bis 12 durch jeweils einen Brückenleiter 43 bis 48 erhöht. Eine weitere Erhöhung der mechanischen Belastbarkeit erzielt man durch Eingießen einer Vergussmasse in den Innenraum des Kommutators 22a. Wenn zweckmäßigerweise eine isolierende Vergussmasse verwendet wird, kann zudem auch eine elektrische Isolation zwischen den Brückenleitern 43 - 48 und/oder den Kommutatorlamellen 1 - 12 erreicht werden . Beim Vergießen kann ein Durchgang für die Ankerwelle 49 freigehalten werden oder die Ankerwelle 49 unmittelbar mitvergossen werden.
Bei der in Figur 3 gezeigten Variante 22b des Kommutators 22 liegen die Brückenleiter 43 bis 48 im Wesentlichen in einer Ebene. Bei dem Kommutator 22b kann es sich ebenfalls um einen sogenannten Trommelkommutator handeln, wobei dann die Bürsten 21, 22, wie in Figur 3 gestrichelt dargestellt, am Außenumfang des Kommutators 22b über die Kommutatorlamellen 1 bis 12 schleifen. Es ist aber auch denkbar, dass der Kommutator 22b als ein Plan- oder Flachkommutator ausgeführt ist, bei dem Bürsten 20b, 21b die Kommutatorlamellen 1 bis 12 an der Stirnsteite des Kommutators 22b kontaktieren. Die Bürsten 20b, 21b sind als Variante ebenfalls in gestrichelten Linien eingezeichnet .
Auch beim Kommutator 22b sind die Bruckenleiter 43 bis 48 so angeordnet und gestaltet, dass im Innern des Kommutators 22b ein Durchgang für die Ankerwelle 49 freigehalten wird. Die Brückenleiter 43 bis 48 sind im konzentrischen Kreisbogen um eine Drehachse 50 des Kommutators 22b herumgebogen und liegen im Wesentlichen in einer gemeinsamen Ebene. An ihren Enden weisen die Brückenleiter 43 bis 48 jeweils zum Außenumfang des Kommutators 22b hin gerichtete, quer zur Drehachse 50 liegende Abschnitte 43a, 43b bis 48a, 48b auf, die mit den Kommutatorlamellen 1, 7; 2, 8; 3, 9; 4, 10; 5, 11; 6, 12 e- lektrisch verbunden sind. Die Abschnitte 44a bis 48a der Brückenleiter 44 bis 48 untergreifen die gemeinsame Ebene, in der die Brückenleiter 43 bis 48 angeordnet sind.
Beim Kommutator 22b können die Brückenleiter 43 bis 48 beispielsweise durch Leiterbahnen gebildet werden, die auf einer elektrischen Leiterplatte angeordnet sind. Eine Leiterbahn- Ebene der elektrischen Leiterplatte bildet dann die gemeinsame Ebene für die Brückenleiter 43 bis 48, wobei zum Über- o- der Untergreifen der Leiterbahn-Ebene beispielsweise Durch- kontaktierungen vorgesehen sein können. Sofern es sich bei dem Kommutator 22b um einen Flachkommutator handelt, können auch die Kommutatorlamellen 1 bis 12 durch Leiterbahnen auf der Platine gebildet werden.
Es versteht sich, dass weitere Ausgestaltungen der Erfindung ohne weiteres möglich sind. Insbesondere hinsichtlich der Ausgestaltung der Brückenleiter, die einen Bestandteil des Kommutators bilden, sind weitere Bauformen ohne weiteres denkbar.
Ferner sind beliebige Kombinationen der in der Beschreibung sowie in den Ansprüchen angegebenen Maßnahmen möglich. Insbesondere können die in den Figuren 2 und 3 gezeigten Varianten ohne weiteres miteinander kombiniert werden.

Claims

Kommutator für einen mehrpoligen Kommutatormotor und damit ausgestatteter KommutatormotorAnsprüche
1. Kommutator für einen mehrpoligen Kommutatormotor (14) mit mindestens vier Statorpolen (16 - 19) und mit mit diesen zusammenwirkenden Ankerspulen (31 - 42) , die zur Stromversorgung jeweils mit zwei Kommutatorlamellen (1 - 12) des Kommutators (22; 22a; 22b) elektrisch verbunden sind und deren Anzahl größer ist als die Anzahl der Statorpole (16 - 19), wobei zur Reduzierung der Anzahl von den Kommutator (22; 22a; 22b) kontaktierenden Bürsten (20, 21; 23, 24) magnetisch gleich orientierte Ankerpole bildende Ankerspulen (31 - 42) durch ankerseitige elektrische Brückenleiter (43 - 48) parallel geschaltet sind, dadurch gekennzeichnet, dass die Brückenleiter (43 - 48) einen Bestandteil des Kommutators (22; 22a; 22b) bilden.
2. Kommutator nach Anspruch 1, dadurch gekennzeichnet, dass die Brückenleiter (43 - 48) unmittelbar zwischen Ko mutator- lamellen (1 - 12) des Kommutators (22; 22a; 22b) angeordnet sind.
3. Kommutator nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass der Kommutator (22; 22a; 22b) eine kreis- oder trommeiförmige Gestalt aufweist, insbesondere als Scheibenoder Trommelkommutator ausgestaltet ist, dass die Kommutatorlamellen (1 - 12) am Außenumfang des Kommutators (22; 22a; 22b) angeordnet sind, und dass die Brückenleiter (43 - 48) im Innern des Kommutators (22; 22a; 22b) angeordnet sind.
4. Kommutator nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Brückenleiter (43 - 48) derart gestaltet und angeordnet sind, dass im Inneren des Kommutators (22; 22a; 22b) , vorzugsweise entlang seiner Drehachse, ein Durchgang für eine Ankerwelle (49) freigehalten wird.
5. Kommutator nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass am Umfang des Kommutators (22; 22a; 22b) jeweils diametral gegenüberliegende Kommutatorlamellen (1 - 12) durch jeweils einen Brückenleiter (43 - 48) parallel geschaltet sind.
6. Kommutator nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Brückenleiter (43 - 48) oder eine Gruppe der Brückenleiter (43 - 48) im Wesentlichen in einer gemeinsamen Ebene angeordnet sind.
7. Kommutator nach Anspruch 6, dadurch gekennzeichnet, dass die Brückenleiter (43 - 48) bzw. die Brückenleiter (43 - 48) der Brückenleiter-Gruppen zumindest teilweise jeweils eine- nends zur Kontaktierung mit der ihnen zugeordneten Kommuta- torlamelle (1 - 12) die gemeinsame Ebene über- oder untergreifen.
8. Kommutator nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass die Brückenleiter (43 - 48) in in Drehachsrichtung des Kommutators (22; 22a; 22b) hintereinander- liegenden Ebenen angeordnet sind.
9. Kommutator nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Brückenleiter (43 - 48) durch zwischen die Kommutatorlamellen (1 - 12) gelötete oder geschweißte Metallleiter, insbesondere aus Kupfer oder Aluminium, gebildet werden.
10. Kommutator nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Brückenleiter (43 - 48) durch eine Isoliermasse, insbesondere eine Vergussmasse, mechanisch fixiert sind.
11. Kommutator nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass er für einen als elektrischer Kleinmotor, insbesondere als Pumpenantrieb eines Antiblo- ckiersystems für Kraftfahrzeuge, als Servoantrieb oder als Versteilantrieb dienender mehrpoligen Kommutatormotor (14), insbesondere in einem Leistungsbereich bis zu einem Kilowatt, vorgesehen ist.
12. Mehrpoliger Kommutatormotor (14) mit einem Kommutator (22; 22a; 22b) nach einem der vorhergehenden Ansprüche.
13. Mehrpoliger Kommutatormotor (14) nach Anspruch 12, dadurch gekennzeichnet, dass die Ankerspulen (31 - 42) als mehrpolige Schleifenwicklungen gewickelt sind.
14. Mehrpoliger Kommutatormotor (14) nach einem der Ansprüche 12 oder 13, dadurch gekennzeichnet, dass die Anzahl der zur Kontaktierung der Ankerspulen (31 - 42) vorgesehenen Bürsten (20, 21; 23, 24) kleiner ist als die Anzahl der Ankerpole .
15. Mehrpoliger Kommutatormotor (14) nach einem der Ansprüche 12 bis 14, dadurch gekennzeichnet, dass er als ein elektrischer Kleinmotor, insbesondere als ein Pumpenantrieb eines Antiblockiersystems für Kraftfahrzeuge, als ein Servoantrieb oder als ein VerStellantrieb, insbesondere in einem Leistungsbereich bis zu einem Kilowatt, ausgestaltet ist.
EP02700168A 2001-03-31 2002-01-25 Kommutator für einen mehrpoligen kommutatormotor und damit ausgestatteter kommutatormotor Withdrawn EP1417736A1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10116182 2001-03-31
DE10116182A DE10116182A1 (de) 2001-03-31 2001-03-31 Kommutator für einen mehrpoligen Kommutatormotor und damit ausgestatteter Kommutatormotor
PCT/DE2002/000245 WO2002080314A1 (de) 2001-03-31 2002-01-25 Kommutator für einen mehrpoligen kommutatormotor und damit ausgestatteter kommutatormotor

Publications (1)

Publication Number Publication Date
EP1417736A1 true EP1417736A1 (de) 2004-05-12

Family

ID=7679959

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02700168A Withdrawn EP1417736A1 (de) 2001-03-31 2002-01-25 Kommutator für einen mehrpoligen kommutatormotor und damit ausgestatteter kommutatormotor

Country Status (6)

Country Link
US (1) US20030052566A1 (de)
EP (1) EP1417736A1 (de)
JP (1) JP2004535146A (de)
BR (1) BR0204508A (de)
DE (1) DE10116182A1 (de)
WO (1) WO2002080314A1 (de)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004003146B4 (de) 2003-01-22 2023-08-24 Aisan Kogyo Kabushiki Kaisha Motor, Kraftstoffpumpe, Kommutator und Verfahren zur Herstellung eines Kommutators
JP3954504B2 (ja) * 2003-01-23 2007-08-08 アスモ株式会社 モータ
DE10332016A1 (de) * 2003-07-14 2005-02-10 Robert Bosch Gmbh Kommutator
DE102004057750B4 (de) * 2004-11-30 2012-02-02 Kolektor Group D.O.O. Verfahren zur Herstellung eines Kommutators sowie Kommutator
DE102005041499A1 (de) 2005-09-01 2007-03-08 Temic Automotive Electric Motors Gmbh Kommutator für eine elektrische Maschine
CN102738998B (zh) * 2011-04-07 2016-06-15 德昌电机(深圳)有限公司 有刷直流电机

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19757279C1 (de) * 1997-12-22 1999-08-26 Siemens Ag Kommutatormotor, insbesondere zum Antrieb eines Kraftfahrzeug-Servoantriebes, und Verfahren zu dessen Herstellung
JP3559171B2 (ja) * 1998-08-10 2004-08-25 三菱電機株式会社 回転電機の整流子及びその製造方法
EP1073182A3 (de) * 1999-07-30 2003-11-05 Siemens Canada Limited Kreuzweise verbundener Kommutator mit zusätzlichen parallelen Wegen

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO02080314A1 *

Also Published As

Publication number Publication date
US20030052566A1 (en) 2003-03-20
DE10116182A1 (de) 2002-10-24
JP2004535146A (ja) 2004-11-18
WO2002080314A1 (de) 2002-10-10
BR0204508A (pt) 2003-04-08

Similar Documents

Publication Publication Date Title
EP1505711B1 (de) Elektromotor
DE112007002847T5 (de) Gleichstrommotor
DE19956699B4 (de) Leitungsdrahtanordnung für einen Wechselstromgenerator eines Fahrzeugs
DE10103935A1 (de) Statoranordnung einer elektrischen Umlaufmaschine für ein Fahrzeug
WO2006029992A1 (de) Permanenterregte synchronmaschine mit flachdrahtwicklungen
DE112004001908T5 (de) Anker einer sich drehenden elektrischen Maschine und deren Herstellverfahren
DE19917579B4 (de) Dynamo-elektrische Maschine und Verfahren zu ihrer Herstellung
DE102009045551A1 (de) Stator für eine elektrische Maschine mit einer Verschaltungseinrichtung
EP1468481B1 (de) Statoranordnung
WO2015082220A2 (de) Stator für einen elektronisch kommutierten gleichstrommotor
EP2946461A2 (de) Kontaktierelement für eine elektrische maschine
WO2015161331A2 (de) Stator eines elektromotors
EP1638188B1 (de) Motor, insbesondere für Niederspannung
DE102012214523B4 (de) Ständer oder Ständersegment einer dynamoelektrischen Maschine mit optimiertem Wickelkopf, dynamoelektrische Maschine und Rohrmühle oder Windkraftgenerator
EP1417736A1 (de) Kommutator für einen mehrpoligen kommutatormotor und damit ausgestatteter kommutatormotor
DE3320805C2 (de)
DE19846923C1 (de) Mehrphasige Wicklung einer elektrischen Maschine und Verfahren zu ihrer Herstellung
DE102006061673A1 (de) Elektrischer Vierpolmotor
EP1388198A1 (de) Mehrpoliger kommutatormotor mit brückenleitern
WO2005034308A1 (de) Ständer für eine elektrische maschine
WO2006100152A1 (de) Elektrische maschine mit kommutatorläufer und verfahren zu seiner herstellung
WO2019057597A1 (de) Elektrische maschine
DE69632230T2 (de) Anlasser für Kraftfahrzeug mit verbesserter Erregerspule
DE102019134935B4 (de) Elektromotor mit kompakter Sammelschieneneinheit
DE202005014302U1 (de) Motor, insbesondere für Niederspannung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20031031

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

RIN1 Information on inventor provided before grant (corrected)

Inventor name: BRANDES, JOERG

Inventor name: KUENZEL, GERALD

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20050802