EP1409965A1 - Procede et dispositif de correction de l'erreur dynamique d'un detecteur - Google Patents

Procede et dispositif de correction de l'erreur dynamique d'un detecteur

Info

Publication number
EP1409965A1
EP1409965A1 EP02776655A EP02776655A EP1409965A1 EP 1409965 A1 EP1409965 A1 EP 1409965A1 EP 02776655 A EP02776655 A EP 02776655A EP 02776655 A EP02776655 A EP 02776655A EP 1409965 A1 EP1409965 A1 EP 1409965A1
Authority
EP
European Patent Office
Prior art keywords
correction
output signal
filter
stage
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP02776655A
Other languages
German (de)
English (en)
Inventor
Manfred Strohrmann
Uwe Konzelmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP1409965A1 publication Critical patent/EP1409965A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/68Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using thermal effects
    • G01F1/696Circuits therefor, e.g. constant-current flow meters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/18Circuit arrangements for generating control signals by measuring intake air flow
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/72Devices for measuring pulsing fluid flows
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F15/00Details of, or accessories for, apparatus of groups G01F1/00 - G01F13/00 insofar as such details or appliances are not adapted to particular types of such apparatus
    • G01F15/02Compensating or correcting for variations in pressure, density or temperature
    • G01F15/04Compensating or correcting for variations in pressure, density or temperature of gases to be measured
    • G01F15/043Compensating or correcting for variations in pressure, density or temperature of gases to be measured using electrical means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D2041/1413Controller structures or design
    • F02D2041/1432Controller structures or design the system including a filter, e.g. a low pass or high pass filter

Definitions

  • the invention relates to a method for correcting the dynamic error of a sensor, in particular an air mass meter with a non-linearly curved characteristic curve and response delay, with the features of claim 1 and a circuit arrangement for carrying out this method.
  • Air mass sensors work in steady-state operation, in which the physical quantity to be detected changes only slowly and no higher-frequency fluctuations are superimposed on this change apart from a certain noise, since the comparatively high-frequency noise can be filtered out without difficulty.
  • sensors with a non-linearly curved characteristic curve show a dynamic error which also depends, among other things, on the inertia of the sensor element.
  • the additional filtering of the signal emitted by the sensor can also lead to a measurement error.
  • the output signal of air mass meters which fluctuates rapidly due to periodic and aperiodic superimpositions, is sampled every millisecond and the measured values recorded are corrected with the aid of correction values, which are based on the currently measured speed and throttle valve position values from correction value tables that are stored in fixed value memories.
  • the disadvantage here is that not only the rapid sampling of the sensor output signal, but above all the acquisition and processing of two further measured values (speed and throttle valve angle) require a comparatively high outlay on circuitry.
  • the invention has for its object a method and a circuit arrangement for performing this Specify method with which a reliable damping of the interference superimposed on the signal is achieved even with a strongly fluctuating sensor output signal.
  • Dynamic error of sensors with a non-linearly curved characteristic therefore includes at least one, but preferably several filter stages, to which the faulty sensor output signal is fed in parallel and which have different pass characteristics. Furthermore, a correction circuit is provided which has a number of correction stages which corresponds to the number of filter stages and which is are switched that the faulty sensor output signal is fed to the first correction stage and the corrected output signal of the preceding correction stage to each subsequent correction stage.
  • each correction stage has a second signal input to which the filter output signal emitted by the associated filter stage is present. Since the pass characteristics of the individual filter stages differ from one another, different information regarding the difference between the “ideal” and the actual sensor output signal is contained in each of these filter output signals.
  • This information is acquired in the respective correction stage by comparing its two input signals and used to correct the signal present at its first signal input. This results in a correction of the defective sensor output signal that progresses from correction stage to correction stage, so that the last correction stage emits a correspondingly strongly corrected sensor signal.
  • the number of correction stages used depends on the requirements with regard to the accuracy with which the corrected sensor signal emitted by the last correction stage is intended to match the "ideal" sensor signal.
  • the comparison of the two input signals of each correction stage is preferably carried out by forming the difference and the generation of a correction signal by multiplying the difference signal thus obtained by a constant factor, which for each correction stage with associated filter stage is carried out by calibration solutions have been determined and stored permanently in the correction level.
  • the corrected output signal of the correction stages is then preferably generated by adding the correction signal in the first correction stage of the series circuit to the sensor output signal and in each further correction stage to the corrected output signal of the preceding correction stage.
  • the filter stages are low-pass filters which differ from one another in their corner frequencies.
  • FIG. 1 shows a very general block diagram to explain the basic principle according to the invention.
  • FIG. 2 shows a schematic block diagram of a preferred embodiment in more detail.
  • FIG. 1 shows a general exemplary embodiment of the invention as a highly schematic block diagram, the sensor, the dynamic error of which is to be corrected, not shown.
  • This sensor can be, for example, an air mass meter that has a strongly curved, non-linear characteristic and moreover has a certain inertia.
  • SA the physical quantity to be detected by such a sensor, ie in the air mass meter the air mass flowing through the intake pipe per unit of time changes only slowly, the sensor emits a correspondingly slowly changing sensor signal SA, which is input due to the pulsating suction of the downstream combustion engine periodic signal is superimposed, the frequency of which generally depends on the number of cylinders of the engine and changes with its speed.
  • the amplitude of the periodic superimposition signal is so low that simple filtering is sufficient for averaging in order to obtain a sufficiently accurate, corrected sensor signal.
  • the sensor output signal SA is subject to an unacceptable dynamic error due to the non-linearity of the sensor characteristic and the delayed response behavior of the sensor.
  • the sensor output signal SA is applied to an input connection 1 of the circuit arrangement according to the invention, from which it arrives on the one hand at a first signal input of a correction circuit 2 and on the other hand at an input of a filter circuit 3.
  • the information obtained in the filter circuit 3 by filtering the sensor output signal SA is passed on to the correction circuit 2 via a line connection 4, which uses this information to correct the sensor output signal SA and outputs a corrected sensor signal KS at the output 5 of the circuit arrangement according to the invention , which can then be used for further processing and evaluation.
  • FIG. 2 The basic structure of a circuit arrangement according to the invention shown in FIG. 1 is shown in FIG. 2 for a specific exemplary embodiment in somewhat more detailed form.
  • the same reference symbols as in FIG. 1 are used for the same elements.
  • the filter circuit 3 here comprises three filter stages F1, F2 and F3, to which the real sensor output signal SA is fed in parallel.
  • the three filter stages are low-pass filters that differ from each other in terms of their corner frequencies.
  • the filter Fl has the highest cut-off frequency, i.e. only suppresses very high superimposed frequencies, while the filters F2 and F3 have lower cut-off frequencies, so that the filter F2 is only permeable for a frequency range that is significantly below that of the filter Fl, and the filter F3 has an even lower pass band.
  • the correction circuit 2 comprises a number of correction stages K1, K2, K3 which correspond to the number of filter stages in the filter circuit 3 and are connected in series in such a way that the faulty sensor output signal SA supplied to the correction circuit 2 is connected to a first input of the the first correction stage K 1 is applied, the output of which is connected to the first input of the second correction stage K 2, which in turn supplies its output signal to the first input of the third correction stage K 3, the output of which is connected to that of the correction stage Circuit 2 coincides and outputs the corrected sensor signal KS.
  • the output signal of the filter is supplied Fl with the largest pass-band to the second signal input of the first correction stage Kl via line 4a, 'while that of the filter stages F2 and F2 output filtered signals via lines 4b or 4c the respective second signal input of the correction stages K2 and K3 are supplied.
  • Each of the three correction stages Kl, K2 and K3 comprises a comparison circuit, not shown, which, for example, shows the difference between the signals present at the two signal inputs of the correction stage, that is to say in the correction stage Kl between the faulty sensor output signal SA and that coming from the filter stage F1 filtered signal and in the two other correction stages K2 and K3 between the corrected output signal of the immediately preceding correction stage and the filter output signal supplied by the associated filter stage F2 or F3.
  • each of the correction stages K 1, K 2 and K 3 comprises a weighting circuit, also not shown, which, for example, multiplies the difference signal generated by the comparison circuit by a predeterminable factor and thus generates a correction signal with the aid of which the faulty sensor output signal SA or that of the corrected output signals coming from the respective preceding correction stages K 1 and K 2 (the latter one more time) are corrected by adding this correction signal onto them.
  • a correction of the faulty sensor output signal SA progressing from correction stage to correction stage and becoming ever more precise in such a way that filter information is used in each downstream correction stage, which is obtained from a low-pass filter with an even narrower filter
  • Passband can be supplied.
  • the circuit arrangement according to the invention changes the sensor output signal SA only slightly, so that the corrected sensor signal KS which it emits is almost identical to the former.
  • the arrangement according to the invention is operated in such a way that the corrected sensor signal KS which it emits corresponds to the ideal sensor output signal much better than the faulty sensor output signal SA.
  • the quality of the correction or approximation of KS to the ideal sensor output signal depends on the number of correction and filter stages used. In the case of applications in which the quality of the correction is not particularly demanding, a single correction stage and a single filter stage can suffice.
  • filter stages F1, F2 or F3 are not absolutely necessary to design the filter stages F1, F2 or F3 as a low-pass filter. Rather, a satisfactory correction of the dynamic error can also be achieved with the help of filters with other pass characteristics. It is not necessary that all filter stages used are of the same characteristic types. Rather, low-pass, high-pass and band-pass filters can be combined with one another.

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Measuring Volume Flow (AREA)
  • Electronic Switches (AREA)

Abstract

L'invention concerne un procédé et un dispositif de correction de l'erreur dynamique d'un détecteur. Pour effectuer cette correction, le signal de sortie du détecteur est cédé à un circuit filtrant et à un circuit correcteur. Le circuit correcteur obtient au moins un signal filtré cédé par le circuit filtrant et génère un signal de détecteur corrigé à partir des données obtenues par comparaison du signal filtré et du signal de sortie de détecteur non filtré, ou d'un signal corrigé qui en est dérivé. Ce signal détecteur corrigé est cédé à un traitement ultérieur.
EP02776655A 2001-07-11 2002-07-05 Procede et dispositif de correction de l'erreur dynamique d'un detecteur Withdrawn EP1409965A1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10133524A DE10133524A1 (de) 2001-07-11 2001-07-11 Verfahren und Vorrichtung zur Korrektur des Dynamikfehlers eines Sensors
DE10133524 2001-07-11
PCT/DE2002/002465 WO2003010497A1 (fr) 2001-07-11 2002-07-05 Procede et dispositif de correction de l'erreur dynamique d'un detecteur

Publications (1)

Publication Number Publication Date
EP1409965A1 true EP1409965A1 (fr) 2004-04-21

Family

ID=7691303

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02776655A Withdrawn EP1409965A1 (fr) 2001-07-11 2002-07-05 Procede et dispositif de correction de l'erreur dynamique d'un detecteur

Country Status (5)

Country Link
US (1) US20040153780A1 (fr)
EP (1) EP1409965A1 (fr)
JP (1) JP2004536320A (fr)
DE (1) DE10133524A1 (fr)
WO (1) WO2003010497A1 (fr)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1226410A2 (fr) * 1999-10-01 2002-07-31 Marel HF. Filtre multiple
NZ540615A (en) * 2004-06-09 2006-11-30 Lyons & Mackenzie Proprietary Safety switch for motor that compares measured signal with filtered version of signal
DE102005005152A1 (de) * 2005-02-04 2006-08-10 Bayerische Motoren Werke Ag Verfahren zur Ermittlung eines von Messrauschen bereinigten Signals in einem Kraftfahrzeug
JP2006242748A (ja) * 2005-03-03 2006-09-14 Hitachi Ltd 発熱抵抗体式空気流量測定装置およびその計測誤差補正方法
DE102005025884A1 (de) * 2005-06-06 2006-12-07 Robert Bosch Gmbh Verfahren und Vorrichtung zur Korrektur eines Signals eines Sensors
ATE556302T1 (de) * 2005-06-21 2012-05-15 Mettler Toledo Ag Verfahren zur verarbeitung des ausgangssignals eines messumformers sowie eine kraftmessvorrichtung zur durchführung des verfahrens.
JP5073949B2 (ja) * 2006-02-02 2012-11-14 日立オートモティブシステムズ株式会社 流量測定装置
CN100424332C (zh) * 2006-09-08 2008-10-08 浙江麦姆龙仪表有限公司 带自检的汽车发动机空气流量测量装置及方法
DE102008043975B4 (de) * 2008-11-21 2021-10-14 Robert Bosch Gmbh Verfahren und Vorrichtung zum Bereitstellen einer Luftmassenstromangabe bei einem aufgeladenen Verbrennungsmotor
FR2953561A3 (fr) * 2009-12-04 2011-06-10 Renault Sa Procede et systeme de correction d'une mesure de debit d'air admis dans un moteur a combustion interne
JP5548104B2 (ja) * 2010-11-10 2014-07-16 日立オートモティブシステムズ株式会社 内燃機関の制御装置
DE102011075577B4 (de) * 2011-05-10 2013-01-31 MULTIPOND Wägetechnik GmbH Signalverarbeitungsverfahren, Vorrichtung zur Signalverarbeitung und Waage mit Vorrichtung zur Signalverarbeitung
DE102011087213A1 (de) * 2011-11-28 2013-05-29 Volkswagen Ag Verfahren und Vorrichtung zur Regelung eines Luft-Kraftstoff-Verhältnisses eines Verbrennungsmotors
JP5731569B2 (ja) * 2013-05-02 2015-06-10 ファナック株式会社 精度補正機能を備えたエンコーダ
DE102015205772B3 (de) * 2015-03-31 2016-04-21 Schaeffler Technologies AG & Co. KG Verfahren zur Erzeugung eines Geschwindigkeitssignals eines Elektromotors
DE102015222202B3 (de) 2015-11-11 2016-11-24 Schaeffler Technologies AG & Co. KG Verfahren zum Bestimmen eines korrigierten Drehgeschwindigkeitssignals sowie Elektromotoranordnung
JP6506681B2 (ja) * 2015-11-13 2019-04-24 日立オートモティブシステムズ株式会社 空気流量測定装置
DE102017206480B3 (de) * 2017-04-18 2018-06-14 Audi Ag Verfahren zum Betreiben eines kapazitiven Regensensors eines Kraftfahrzeugs, Messsignalentstörungsvorrichtung und Kraftfahrzeug mit einer derartigen Messsignalentstörungsvorrichtung

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4446868A (en) * 1982-05-24 1984-05-08 Aronson Alfred L Cardiac arrhythmia analysis system
JP3249584B2 (ja) * 1992-08-18 2002-01-21 イーストマン・コダックジャパン株式会社 適応二値化回路
DE19543236C2 (de) * 1994-11-18 2001-01-25 Hitachi Ltd Einlaßluftmengen-Meßvorrichtung für Verbrennungsmotoren
US5671263A (en) * 1996-03-13 1997-09-23 Analogic Corporation Motion artifact suppression filter for use in computed tomography systems
DE19825305A1 (de) * 1998-06-05 1999-12-09 Bayerische Motoren Werke Ag Verfahren zur Korrektur der durch ein Saugrohr angesaugten und im Saugrohr gemessenen Luftmasse eines Verbrennungsmotors

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO03010497A1 *

Also Published As

Publication number Publication date
US20040153780A1 (en) 2004-08-05
WO2003010497A1 (fr) 2003-02-06
DE10133524A1 (de) 2003-01-30
JP2004536320A (ja) 2004-12-02

Similar Documents

Publication Publication Date Title
EP1409965A1 (fr) Procede et dispositif de correction de l'erreur dynamique d'un detecteur
EP1287248B1 (fr) Procede et dispositif servant a filtrer un signal
EP0689054B1 (fr) Procédé et dispositif pour la mesure du nombre de tours d'un moteur à courant continu avec une commutation mécanique
EP0929794B1 (fr) Procede et dispositif pour la correction de tolerances d'une roue indicatrice
DE102004047786A1 (de) Verfahren zur Pulsationskorrektur innerhalb eines einen Medienmassenstrom messenden Messgeräts
EP2522964B1 (fr) Procédé de traitement de signal, dispositif de traitement de signal et balance équipée du dispositif de traitement de signal
EP2016428B1 (fr) Procédé et dispositif de déclencement numérique d'un signal de mesure à signal de bruit superposé
EP3519687A1 (fr) Procédé de création d'un flux de données de signal de chambre de combustion antiparasité
EP3281021A1 (fr) Procédé pour analyser un signal et dispositif pour mettre en oeuvre le procédé
EP0284546A1 (fr) Procédé pour tester des dispositifs
DE102019109892B3 (de) Sensorschaltung und Verfahren zum Filtern eines Sensorsignals
EP1178202B1 (fr) Procédé et dispositif de commande d'un moteur à combustion interne
DE102004024375B4 (de) Klopferfassungsvorrichtung und Erfassungsverfahren
EP3289320A1 (fr) Procédé et système d'identification pour l'identification d'oscillations autoexcitées
DE19520033A1 (de) Vorrichtung zur Erzeugung eines synthetischen Signals für den Test von Klopfregelfunktionen
DE102011081026A1 (de) Verfahren zur Funktionsüberprüfung eines Inertialsensors und Inertialsensor
EP0021340B1 (fr) Appareil pour la mesure et l'évaluation de valeurs de pointe d'un signal de tnesion pulsant
DE19943689A1 (de) Verfahren und Vorrichtung zur Überwachung und/oder Diagnose sich bewegender Maschinen und/oder Maschinenteile
DE10145485B4 (de) Verfahren und Vorrichtung zur Diagnose eines Sensors
DE19713182A1 (de) Verfahren und Vorrichtung zur Bestimmung der Motordrehzahl eines Kraftfahrzeuges
DE3811735C2 (de) Verfahren zur Frequenzmessung
DE102008043203A1 (de) Vorrichtung zum Erfassen einer Frequenz eines Generatorausgangssignals
DE19954066C1 (de) Verfahren zur Ordnungs-Analyse von Schwingungen eines rotierenden Teiles, insbesondere einer Maschine
DE4211549C2 (de) Verfahren zur Rauschunterdrückung und adaptives Filter zur Durchführung des Verfahrens
WO2003034081A1 (fr) Procede et dispositif pour deceler un court-circuit sur des lignes d'acheminement de signaux d'un capteur, notamment d'un capteur de cliquetis sur un moteur a combustion interne

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20040211

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

RIN1 Information on inventor provided before grant (corrected)

Inventor name: KONZELMANN, UWE

Inventor name: STROHRMANN, MANFRED

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20060201