EP1407056A2 - Moulded piece made from an intermetallic gamma-ti-al material - Google Patents

Moulded piece made from an intermetallic gamma-ti-al material

Info

Publication number
EP1407056A2
EP1407056A2 EP02759850A EP02759850A EP1407056A2 EP 1407056 A2 EP1407056 A2 EP 1407056A2 EP 02759850 A EP02759850 A EP 02759850A EP 02759850 A EP02759850 A EP 02759850A EP 1407056 A2 EP1407056 A2 EP 1407056A2
Authority
EP
European Patent Office
Prior art keywords
intermetallic
atom
part made
alloy according
molded part
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP02759850A
Other languages
German (de)
French (fr)
Other versions
EP1407056B1 (en
Inventor
Andreas Dr. Hoffmann
Heinrich Dr. Kestler
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Plansee SE
Original Assignee
Plansee SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Plansee SE filed Critical Plansee SE
Priority to AT02759850T priority Critical patent/ATE305526T1/en
Publication of EP1407056A2 publication Critical patent/EP1407056A2/en
Application granted granted Critical
Publication of EP1407056B1 publication Critical patent/EP1407056B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C14/00Alloys based on titanium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/12Making non-ferrous alloys by processing in a semi-solid state, e.g. holding the alloy in the solid-liquid phase
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/16Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of other metals or alloys based thereon
    • C22F1/18High-melting or refractory metals or alloys based thereon
    • C22F1/183High-melting or refractory metals or alloys based thereon of titanium or alloys based thereon
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12014All metal or with adjacent metals having metal particles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12736Al-base component
    • Y10T428/12743Next to refractory [Group IVB, VB, or VIB] metal-base component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12806Refractory [Group IVB, VB, or VIB] metal-base component

Definitions

  • the invention relates to a molded part made of an intermetallic ⁇ -TiAl
  • ⁇ -TiAl materials are often also referred to as "near- ⁇ -titanium aluminides”.
  • the metal structure of these consists mainly of TiAl phase ( ⁇ phase) with a small proportion of Ti 3 Al ( ⁇ 2 phase).
  • Multi-component alloys can also still have a small proportion of ⁇ -phase, this phase being composed of elements such as chromium, tungsten or
  • Molybdenum is stabilized.
  • intermetallic ⁇ -TiAI materials are of interest for a large number of applications. These include, for example, turbine components as well as engine or transmission components of automobiles. The prerequisite for large-scale application of ⁇ -TiAl is
  • US Pat. No. 5,429,796 describes a cast molded part made of a titanium aluminide material, consisting of 44-52 atom% of aluminum, 0.05-8 atom% of one or more elements from the group consisting of chromium, carbon, gallium, molybdenum, manganese and niobium , Nickel, silicon, tantalum, vanadium and tungsten and at least 0.5% by volume of a boride phase which has a yield strength of 55 ksi and an elongation at break of at least 0.5%.
  • cast pores / blowholes also adversely affect the mechanical properties of ⁇ -TiAl manufactured using casting technology, so that post-compression processes such as e.g. hot isostatic pressing or forming processes must be used.
  • ⁇ -TiAl alloys are therefore usually made from VAR (Vacuum Arc Remeiting) raw material, which is converted into a fine-grained state by means of forming and annealing, the actual shaping following the hot working using complex mechanical, predominantly Machining is carried out.
  • VAR Vauum Arc Remeiting
  • a molded part made of an intermetallic ⁇ -TiAl alloy with 41-49 atom% AI, which has a grain size d ⁇ 5 ⁇ 300 ⁇ m and a pore volume ⁇ 0.2 vol.%
  • Process steps include: - Manufacture of a semi-finished product including a forming process, the degree of deformation being> 65%, - Forming of the semi-finished product in the solidus-liquidus phase state
  • Processing an alloy in the solidus-liquidus phase state is a semi-solid process.
  • Partially liquid masses are usually processed in a thixotropic state in a semi-solid process.
  • Thixotropy is the property of a material to behave highly viscous in the absence of external forces, but to assume a viscosity that is several orders of magnitude lower under the action of shear forces.
  • Thixotropic behavior is limited to certain alloy compositions and those temperature ranges in which both solid and liquid phase components are present in the alloy.
  • the aim is to achieve a semi-solid phase in which there are regular, i.e. globular grains in the solid phase that are evenly surrounded by the melt.
  • the shaping of an alloy using the semi-solid process is known as such.
  • molten alloys are usually slowly cooled to a temperature in the solidus-liquidus two-phase range using one of the known stirring techniques, such as MHD (Magneto-Hydrodynamic-Stirring) or mechanical stirring. Stirring dendrites are destroyed by stirring. The material is given thixotropic properties and the formation of globular primary crystals in the solid phase is promoted.
  • MHD Magnetic-Hydrodynamic-Stirring
  • the achievable grain size was> 50 ⁇ m.
  • ⁇ -TiAl alloys formed into semifinished products in a first hot-forming process section after heating to a temperature in the solidus-liquidus phase region, exhibit thixotropic behavior for the further shaping processing.
  • a degree of deformation of> 65% is a prerequisite, this value being defined as follows:
  • Degree of deformation ⁇ (cross-sectional area before forming - cross-sectional area in the deformed state) / cross-sectional area before forming ⁇ x 100 [%].
  • the thixotropic behavior is unsatisfactory at lower degrees of deformation.
  • ⁇ -TiAl primary material produced by means of VAR Vacuum Are Remelting
  • VAR Vauum Are Remelting
  • the semi-finished product was inductively heated to a temperature between solidus and liquidus in the form of a roughly shaped bolt.
  • the semifinished product had a sufficiently high "handling" strength to be shaped by thixo casting. For this purpose, it was placed in the filling chamber of a die casting machine and pressed into the adjacent mold with the casting piston.
  • the resulting shear stress formed the alloy as a flowable suspension that could be used to form complex components to be free of flow turbulence in the material so that the material spreads free of pores and voids in the mold.
  • This shaping process made it possible to dispense with mechanical machining, or to greatly reduce it, so that, in addition to excellent structural and mechanical properties, the molded parts according to the invention were also highly economical to manufacture. Compared to molded parts cast directly from the melt into a final shape, the advantage according to the invention lies in the much more fine-grained structure and the high degree of pore freedom.
  • the Grain size distribution determined using the line cutting method and the dgs value This means that 95% of the grains evaluated have a diameter that is smaller than the specified value. It should be noted that the dg grain size results in a significantly higher numerical value than is the case in the form of the average grain size. However, the dg 5 value is the more meaningful value, especially for structures with a large grain size range. Depending on the composition of the ⁇ -TiAl material and the applied semi-solid process, the achievable dg 5 grain sizes are between ⁇ 100 ⁇ m and ⁇ 300 ⁇ m. Such molded parts produced for comparison purposes by means of investment casting and not further processed by hot forming have a structure which is at least 5 times coarser than the molded parts produced according to the invention.
  • the grain size difference is particularly pronounced if, according to a preferred embodiment of the invention, alloys with a niobium content of between 1.5 and 12 atom% are used. These alloys show a micro-fine structure by a factor of 7 up to a factor of 16 compared to conventional investment casting.
  • Thixo forging and thixo cross extrusion each a technique that is already known and tried and tested, have proven to be useful alternative forming or shaping processes for the ⁇ -TiAl alloys according to the invention in the solidus-liquidus phase state.
  • thixo forging the partially liquid bolt is inserted into an open tool or die tool.
  • the shaping is carried out by a subsequent tool movement, for example in a forging press.
  • Thixo cross extrusion is a modification of thixo casting. The bolt pushed by a punch is deflected by an angle of 90 ° on its way from the casting chamber to the mold or to the forming tool.
  • the primary casting of an alloy with the composition titanium - 46.5 atom% Al - 2 atom% Cr - 1, 5 atom% Nb - 0.5 atom% Ta - 0.1 atom% boron was carried out using vacuum arc melting (VAR) , The casting block was remelted twice in order to achieve satisfactory homogeneity.
  • the ingot diameter was 210 mm, the ingot length 420 mm.
  • the ingot was extruded in the known state according to previously known process conditions, the degree of deformation being 83%.
  • a bolt section with a length of 110 mm was then heated to a temperature in the solidus-liquidus phase range of the alloy from 1460 to 1470 ° C. and in this state was pressed in a servo-hydraulic press into a closed die-casting tool made of a molybdenum alloy.
  • the molded part produced in this way, a cylindrical component with an average diameter of 40 mm, a length of 100 mm, a flange on the side and a recess of 35 mm x 35 mm x 35 mm in the cylindrical part was examined metallographically.
  • the grain size ds was 120 ⁇ m.
  • the relative density was determined using the buoyancy method and was 99.98%.
  • the grain size dg 5 of the remelted investment casting was 1400 ⁇ m.
  • an ingot of the alloy composition titanium - 45 atom% Al - 5 atom% Nb - 0.2 atom% C - 0.2 atom% boron was produced by vacuum arc melting (VAR) and remelted twice.
  • the ingot diameter was 210 mm, the ingot length 420 mm.
  • the ingot was extruded in the known state by conventional methods, the degree of deformation being 83%.
  • a bolt section with a length of 110 mm was heated to a temperature of 1460 - 1480 ° C, the alloy was brought into the solidus-liquidus phase area and in this state pressed into a closed die-casting tool made of a molybdenum alloy in a servo-hydraulic press.
  • the molded part produced in this way, a cylindrical component with an average diameter of 40 mm, a length of 100 mm, a flange on the side and a depression of 35 mm x 35 mm x 35 mm in the cylindrical part was examined metallographically.
  • the grain size dgs was 75 ⁇ m.
  • the relative density was 99.99%.
  • the grain size dg 5 of the investment casting produced at the beginning had been 1200 ⁇ m.
  • a primary casting blank of the alloy titanium - 46.5 atom% Al - 2 atom% Cr - 0.5 atom% Ta - 0.1 atom% boron was produced by vacuum arc melting (VAR) and remelted twice.
  • the ingot diameter was 170 mm, the ingot length 420 mm.
  • the ingot was extruded in the known state, the degree of deformation being 83%.
  • a bolt section with the length of 110 mm was heated to a temperature of 1440-1470 ° C and in a servo-hydraulic Press pressed into a closed die casting tool made of a molybdenum alloy.
  • the molded part produced in this way a cylindrical component with an average diameter of 40 mm, a length of 100 mm, a flange on the side and a depression of 35 mm x 35 mm x 35 mm in the cylindrical part was examined metallographically.
  • the grain size dgs was 220 ⁇ m.
  • the relative density was 99.99%.
  • the grain size dg of the investment casting had been 1500 ⁇ m.
  • Example 4 A primary casting block of the alloy titanium -46.5 atom% Al - 10 atom% Nb was produced in accordance with the process steps of Example 1 using vacuum arc melting (VAR) and remelted twice.
  • the ingot diameter was 170 mm, the ingot length 420 mm.
  • the ingot was extruded in the known state, the degree of deformation being 83%.
  • a bolt section with a length of 110 mm was heated to a temperature of 1440-1470 ° C and pressed in a servo-hydraulic press into a closed die-casting tool made of a molybdenum alloy.
  • the molded part produced in this way a cylindrical component with an average diameter of 40 mm, a length of 100 mm, a flange on the side and a depression of 35 mm x 35 mm x 35 mm in the cylindrical part was examined metallographically.
  • the grain size dgs was 90 ⁇ m.
  • the relative density was 99.98%.
  • the grain size dg 5 of the investment casting had been 1300 ⁇ m.
  • the primary casting block of the alloy titanium - 46.5 atom% Al - 10 atom% Nb was produced in accordance with Example 1 by means of vacuum arc melting (VAR) and remelted twice.
  • the ingot diameter was 170 mm, the ingot length 420 mm.
  • the ingot was extruded in the known state, the degree of deformation being 72%.
  • a bolt section with the length of 110 mm was heated to a temperature of 1440-1470 ° C and in a servo-hydraulic Press pressed into a closed die casting tool made of a molybdenum alloy.
  • the molded part produced in this way a cylindrical component with an average diameter of 40 mm, a length of 100 mm, a flange on the side and a depression of 35 mm x 35 mm x 35 mm in the cylindrical part was examined metallographically.
  • the grain size d g5 was 170 ⁇ m.
  • the relative density was 99.98%.
  • the grain size dg 5 of the investment casting had been 1300 ⁇ m.
  • Automotive industry e.g. Transmission and engine parts, but also parts for stationary gas turbines and for aerospace, e.g. Turbine components.

Abstract

The invention relates to a moulded piece made from a selection of gamma TiAl alloys with excellent mechanical properties, which, according to the invention, may be produced particularly economically, by a series of process steps.

Description

FORMTEIL AUS EINEM INTERMETALLISCHEN γ-TiAl WERKSTOFF MOLDED PART FROM AN INTERMETALLIC γ-TiAl MATERIAL
Die Erfindung betrifft einen Formteil aus einem intermetallischen γ-TiAlThe invention relates to a molded part made of an intermetallic γ-TiAl
Werkstoff (γ-Titanaluminid) mit 41 - 49 Atom% AI und ein Verfahren zu dessenMaterial (γ-titanium aluminide) with 41 - 49 atom% AI and a process for the same
Herstellung.Production.
γ-TiAl Werkstoffe werden häufig auch als „Near-γ-Titanaluminide" bezeichnet.γ-TiAl materials are often also referred to as "near-γ-titanium aluminides".
Bei diesen besteht das Metallgefüge hauptsächlich aus TiAI-Phase (γ-Phase) mit einem geringen Anteil an Ti3AI (α2-Phase). Bei einigenThe metal structure of these consists mainly of TiAl phase (γ phase) with a small proportion of Ti 3 Al (α 2 phase). With some
Vielkomponentenlegierungen kann auch noch ein geringer Anteil an ß-Phase vorliegen, wobei diese Phase durch Elemente wie Chrom, Wolfram oderMulti-component alloys can also still have a small proportion of β-phase, this phase being composed of elements such as chromium, tungsten or
Molybdän stabilisiert wird.Molybdenum is stabilized.
Gemäß J.W. Kim (J. Met. 41 (7), p 24 -30, 1989, J. Met. 46 (7), p 30 - 39, 1994) können einzelne Gruppen von vorteilhaften Legierungselementen in γ-TiAI-Legierungen allgemein wie folgt beschrieben werden (in Atom%): Ti-AI45-48- (Cr, Mn, V)0_3 - (Nb, Ta, Mo, W)o_5 - (Si, B)o_ι. Niob, Wolfram, Molybdän und in geringem Ausmaß Tantal verbessern die Oxidationsbeständigkeit, Chrom, Mangan und Vanadin wirken duktilisierend.According to JW Kim (J. Met. 41 (7), p 24-30, 1989, J. Met. 46 (7), p 30-39, 1994), individual groups of advantageous alloying elements in γ-TiAl alloys can generally be like are described as follows (in atomic%): Ti-AI 4 5-48- (Cr, Mn, V) 0 _ 3 - (Nb, Ta, Mo, W) o_ 5 - (Si, B) o_ι. Niobium, tungsten, molybdenum and to a small extent tantalum improve the resistance to oxidation, chromium, manganese and vanadium have a ductile effect.
Aufgrund ihres hohen Festigkeit / Dichte-Verhältnisses, des hohen spezifischen E-Moduls, sowie der Oxidationsbeständigkeit und der Kriechfestigkeit sind intermetallische γ-TiAI-Werkstoffe für eine Vielzahl von Anwendungen von Interesse. Dazu zählen beispielhaft Turbinenkomponenten, sowie Motor- oder Getriebebauteile von Automobilen. Voraussetzung für eine großtechnische Anwendung von γ-TiAl ist dieDue to their high strength / density ratio, the high specific elastic modulus, as well as the oxidation resistance and creep resistance, intermetallic γ-TiAI materials are of interest for a large number of applications. These include, for example, turbine components as well as engine or transmission components of automobiles. The prerequisite for large-scale application of γ-TiAl is
Verfügbarkeit einer technisch zuverlässigen Formgebungsmethode, die eine kostengünstige Herstellung von Formteilen mit anforderungsgerechten Eigenschaften ermöglicht.Availability of a technically reliable molding method that enables inexpensive production of molded parts with properties that meet requirements.
Auf den Erfahrungen mit der gusstechnischen Verarbeitung von Titan aufbauend, wurden in den letzten Jahren große Anstrengungen unternommen, eine Feingusstechnik für γ-TiAl Werkstoffe zu etablieren. Es zeigte sich, dass die üblicherweise gebildete grobe Gussstruktur für mechanische Eigenschaften von je γ-TiAl höchst nachteilig ist. Formteile aus intermetallischen γ-TiAl Werkstoffen, basierend auf Ti - 45 Atom% AI - 5 Atom% Nb, die mittels Feinguss hergestellt wurden, wiesen ein unerwünscht grobes Gefüge mit einer mittleren Korngröße von > 500 μm auf, wobei zudem die minimale und maximale Korngröße in einem weiten Bereich streuten. Auch ein mittels Feinguss hergestellter Formteil mit der Legierungszusammensetzung 44 Atom% AI - 1 Atom% V - 5 Atom% Nb -Building on the experience with the casting of titanium, great efforts have been made in recent years to establish an investment casting technique for γ-TiAl materials. It was shown that the coarse cast structure usually formed is extremely disadvantageous for the mechanical properties of each γ-TiAl. Molded parts made of intermetallic γ-TiAl materials, based on Ti - 45 atom% AI - 5 atom% Nb, which were produced by means of investment casting, had an undesirably coarse structure with an average grain size of> 500 μm, with the minimum and maximum grain size also spread over a wide range. Also a molded part produced by investment casting with the alloy composition 44 atom% AI - 1 atom% V - 5 atom% Nb -
1 Atom% B, Rest Ti, eine Legierung gemäß der EP 0 634 496, weist eine mittlere Korngröße im Bereich von 550 μm auf ebenfalls mit einem breiten Streubereich.1 atom% B, balance Ti, an alloy according to EP 0 634 496, has an average grain size in the range of 550 μm, likewise with a wide range of scatter.
Aus der Vielzahl von Versuchen, sowohl legierungs- als auch verfahrenstechnisch ein feinkörniges Gefüge zu erreichen, werden die Nachfolgenden repräsentativ genannt.The following are representative of the multitude of attempts to achieve a fine-grained structure both in terms of alloys and processes.
In der US 5 429 796 ist ein gegossener Formteil aus einem Titanaluminid- Werkstoff beschrieben, bestehend aus 44 - 52 Atom% Aluminium, 0,05 - 8 Atom% eines oder mehrerer Elemente der Gruppe Chrom, Kohlenstoff, Gallium, Molybdän, Mangan, Niob, Nickel, Silizium, Tantal, Vanadin und Wolfram und zumindest 0,5 Vol.% einer Boridphase, der eine Streckgrenze von 55 ksi und eine Bruchdehnung von zumindest 0,5 % aufweist. Bei den dort nach den genannten Verfahren bevorzugt gefertigten Legierungen Ti - 47,7 Atom% AI - 2 Atom% Nb - 2 Atom% Mn - 1 Vol.% TiB2, Ti - 44,2 Atom% AI -US Pat. No. 5,429,796 describes a cast molded part made of a titanium aluminide material, consisting of 44-52 atom% of aluminum, 0.05-8 atom% of one or more elements from the group consisting of chromium, carbon, gallium, molybdenum, manganese and niobium , Nickel, silicon, tantalum, vanadium and tungsten and at least 0.5% by volume of a boride phase which has a yield strength of 55 ksi and an elongation at break of at least 0.5%. In the case of the alloys preferably produced there according to the processes mentioned, Ti - 47.7 atom% AI - 2 atom% Nb - 2 atom% Mn - 1 vol.% TiB 2 , Ti - 44.2 atom% AI -
2 Atom% Nb - 1 ,4 Atom% Mn - 2 Vol.% TiB2 sowie Ti - 45,4 Atom% AI - 1 ,9 Atom% Nb - 1 ,6 Atom% Mn - 4,6 Vol.% TiB2, lagen die erreichbaren mittleren Korngrößen bei 50 bis 150 μm, d.h. das Gefüge war vergleichsweise fein. Bei einer Legierungsausgestaltung mit Ti - 45,4 Atom% AI - 1 ,9 Atom% Nb - 1 ,4 Atom% Mn - 0,1 Vol.% TiB2, lag die mittlere Korngröße bei 1000 μm, d.h. das Gefüge war vergleichsweise grob. Die beiden Legierungen mit einem hohen Anteil von TiB2-Phase, neigen indes bei langsamer Abkühlung nach dem Gussvorgang zur Ausbildung von groben Borid-Ausscheidungen an den Korngrenzen, die sich sehr nachteilig auf die mechanischen Eigenschaften auswirken. Eine hohe Abkühlgeschwindigkeit kann nicht angewandt werden, da in diesen Fällen aufgrund thermisch induzierter Spannungen Risse auftreten. Die Boride werden der Vorlegierung im schmelzflüssigen Zustand zugegeben. Um eine unvermeidliche Vergröberung der Boride in der Schmelze möglichst gering zu halten, ist als weitere Fertigungserschwernis die Zeit zwischen Abguss und Einsetzen der Erstarrung kurz zu halten. Neben den prozesstechnischen Schwierigkeiten verschlechtern hohe Borgehalte, die einerseits für eine effektive Komfeinung geeignet erscheinen, auf der anderen Seite dessen mechanische Eigenschaften.2 atom% Nb - 1, 4 atom% Mn - 2 vol.% TiB 2 and Ti - 45.4 atom% AI - 1, 9 atom% Nb - 1, 6 atom% Mn - 4.6 vol.% TiB 2 , the achievable average grain sizes were 50 to 150 μm, ie the structure was comparatively fine. When designing an alloy with Ti - 45.4 atom% AI - 1.9 atom% Nb - 1.4 atom% Mn - 0.1 vol.% TiB 2 , the average grain size was 1000 μm, ie the structure was comparatively coarse , The two alloys with a high proportion of TiB 2 phase, however, tend to form coarse boride deposits at the grain boundaries with slow cooling after the casting process, which have a very disadvantageous effect on the mechanical properties. A high cooling rate cannot be used because in these cases cracks occur due to thermally induced stresses. The borides are added to the master alloy in the molten state. In order to keep the inevitable coarsening of the borides in the melt as low as possible, the time between casting and solidification has to be kept short as a further manufacturing difficulty. In addition to the process-technical difficulties, high boron contents, which on the one hand appear to be suitable for effective refinement, and on the other hand their mechanical properties.
Es ist bekannt, intermetallische γ-TiAl Werkstoffe durch Glühbehandlungen in einen feinkörnigeren Zustand überzuführen, siehe beispielsweiseIt is known to convert intermetallic γ-TiAl materials into a more fine-grained state by means of annealing treatments, see for example
US 5 634 992, US 5 226 985, US 5 204 058 und US 5 653 828. Mittels der dort beschriebenen Glühungen erreicht man eine Komfeinung, wobei die Korngröße des Gussgefüges die mittels Glühbehandlung günstigstenfalls erreichbare Korngröße vorgibt. Eine aus Anwendersicht ausreichende Komfeinung ist bei einer über Gusstechnik hergestellten Gefügestruktur letztendlich nicht möglich.US Pat. No. 5,634,992, US Pat. No. 5,226,985, US Pat. No. 5,204,058, and US Pat. No. 5,653,828. Refining is achieved by means of the anneals described therein, the grain size of the cast structure specifying the grain size that can best be achieved by annealing treatment. A sufficient level of refinement is ultimately not possible with a microstructure produced using casting technology.
Neben der groben Gefügestruktur beeinflussen auch Gussporen / Gusslunker die mechanischen Eigenschaften von mittels Gusstechnik gefertigtem γ-TiAl nachteilig, so dass für die Herstellung technisch brauchbarer Formteile Nachverdichtungsverfahren, wie z.B. heißisostatisches Pressen bzw. Umformverfahren angewandt werden müssen.In addition to the coarse structure, cast pores / blowholes also adversely affect the mechanical properties of γ-TiAl manufactured using casting technology, so that post-compression processes such as e.g. hot isostatic pressing or forming processes must be used.
Wegen der oben beschriebenen Schwierigkeiten hat die Herstellung von Formteilen aus intermetallischen γ-Titanaluminiden mittels der üblichen Gussverfahren, wie z.B. Feinguss, bisher keine großtechnische Umsetzung erfahren.Because of the difficulties described above, the production of molded parts from intermetallic γ-titanium aluminides by means of the usual casting processes, such as e.g. Investment casting, so far no large-scale implementation.
Alternativ zur Herstellung mittels Gusstechnik werden endformnahe Formteile, Formteile mit Endform, aber auch Vormaterial für eine weitere umformtechnische Verarbeitung mittels üblicher pulvermetallurgischerAs an alternative to the production using casting technology, near-net-shape molded parts, molded parts with final shape, but also primary material for further metal-forming processing using conventional powder metallurgy
Verfahren, wie z.B. heißisostatisches Pressen, hergestellt, siehe beispielsweise US 4 917 858, US 5 015 534 und US 5 424 027. In diesen Fällen werden als Vormaterial üblicherweise mittels Sprühtechnik hergestellte Pulver verwendet. Pulvermetallurgisch gefertigte Formteile sind deutlich feinkörniger, als nach Gussverfahren gefertigte. Pulvermetallurgisch gefertigtes Material weist jedoch mit Gas gefüllte Poren auf - üblicherweise das bei der sprühtechnischen Pulverherstellung verwendete Schutzgas Argon. Die Poren wirken sich nachteilig sowohl auf das Kriechverhalten, als auch auf das Ermüdungsverhalten aus.Processes such as, for example, hot isostatic pressing, see, for example, US Pat. No. 4,917,858, US Pat. No. 5,015,534 and US Pat. No. 5,424,027. In these cases, powders which are usually produced by spray technology are used as starting material. Shaped parts manufactured using powder metallurgy are significantly more fine-grained than those produced using the casting process. However, material made from powder metallurgy has pores filled with gas - usually the protective gas argon used in spray powder production. The pores have a disadvantageous effect both on the creep behavior and on the fatigue behavior.
Bei Gussformen aus γ-TiAl lässt sich mittels speziell entwickelter Umformverfahren, wie Strangpressen, Schmieden, Walzen und Kombinationen dieser Verfahren, eine zufriedenstellende Komfeinung erreichen. Im industriellen Maßstab werden heute γ-TiAl Legierungen daher üblicherweise aus VAR (Vacuum-Arc-Remeiting) Vormaterial, das mittels Umformung und Glühbehandlung in einen feinkörnigen Zustand übergeführt wird, hergestellt, wobei die eigentliche Formgebung im Anschluss an die Warmbearbeitung mittels aufwendiger mechanischer, überwiegend spanbildender Bearbeitung erfolgt.In the case of molds made of γ-TiAl, satisfactory refinement can be achieved using specially developed forming processes such as extrusion, forging, rolling and combinations of these processes. On an industrial scale today, γ-TiAl alloys are therefore usually made from VAR (Vacuum Arc Remeiting) raw material, which is converted into a fine-grained state by means of forming and annealing, the actual shaping following the hot working using complex mechanical, predominantly Machining is carried out.
Die gesamte Fertigungsroute für solche Formteile ist daher teuer und beschränkt aus Kostengründen die mögliche Anwendungsvielfalt.The entire production route for such molded parts is therefore expensive and limits the possible variety of applications for cost reasons.
Es ist danach Aufgabe der vorliegenden Erfindung, gemessen am oben beschriebenen Stand der Technik, einen feinkörnigen, möglichst porenfreien und duktilen Formteil auf Basis von intermetallischem γ-TiAl, mittels einer vergleichsweise wirtschaftlichen Verfahrenstechnik bereitzustellen.It is an object of the present invention, measured using the prior art described above, to provide a fine-grained, as pore-free and ductile molded part based on intermetallic γ-TiAl by means of a comparatively economical process technology.
Diese Aufgabe wird gemäß der Erfindung gelöst durch einen Formteil aus einer intermetallischen γ-TiAI-Legierung mit 41 - 49 Atom% AI, der eine Korngröße dθ5< 300 μm und ein Porenvolumen < 0,2 Vol.% aufweist und dessen Herstellung zumindest folgende Verfahrensschritte umfasst: - Fertigen eines Halbzeuges unter Einbeziehung eines Umformprozesses, wobei der Umformgrad > 65 % beträgt, - Ausformen des Halbzeuges im Solidus-Liquidus Phasenzustand derThis object is achieved according to the invention by a molded part made of an intermetallic γ-TiAl alloy with 41-49 atom% AI, which has a grain size d θ5 <300 μm and a pore volume <0.2 vol.% And its production at least the following Process steps include: - Manufacture of a semi-finished product including a forming process, the degree of deformation being> 65%, - Forming of the semi-finished product in the solidus-liquidus phase state
Legierung in einem Formwerkzeug unter zumindest zeitweisem Aufbringen von mechanischen Formungskräften. Die Unteransprüche enthalten bevorzugte Ausführungen des Formteils gemäß Erfindung.Alloy in a mold with at least temporary application of mechanical shaping forces. The subclaims contain preferred designs of the molded part according to the invention.
Die Verarbeitung einer Legierung im Solidus-Liquidus Phasenzustand ist ein Semi-Solid Prozess. Üblicherweise werden bei einem Semi-Solid-Prozess teilflüssige Massen in einem thixotropen Zustand verarbeitet. Thixotropie ist die Eigenschaft eines Materials, sich bei Abwesenheit äußerer Kräfte hochviskos zu verhalten, unter der Wirkung von Scherkräften aber eine um mehrere Größenordnungen niedrigere Viskosität anzunehmen. Thixotropes Verhalten ist auf bestimmte Legierungszusammensetzungen und solche Temperaturbereiche beschränkt, bei denen sowohl feste, als auch flüssige Phasenanteile in der Legierung vorliegen. Dabei wird eine Semi-Solid Phase angestrebt, bei der regelmäßige, das heißt möglichst globulare Körner im festen Phaseanteil vorliegen, die gleichmäßig von Schmelze umgeben sind. Die Formgebung einer Legierung mittels Semi-Solid Prozess als solche ist bekannt.Processing an alloy in the solidus-liquidus phase state is a semi-solid process. Partially liquid masses are usually processed in a thixotropic state in a semi-solid process. Thixotropy is the property of a material to behave highly viscous in the absence of external forces, but to assume a viscosity that is several orders of magnitude lower under the action of shear forces. Thixotropic behavior is limited to certain alloy compositions and those temperature ranges in which both solid and liquid phase components are present in the alloy. The aim is to achieve a semi-solid phase in which there are regular, i.e. globular grains in the solid phase that are evenly surrounded by the melt. The shaping of an alloy using the semi-solid process is known as such.
Üblicherweise werden im Zuge dieses Prozesses schmelzflüssige Legierungen in Anwendung einer der bekannten Rührtechniken, wie MHD (Magneto- Hydrodynamic-Stirring) oder mechanisches Rühren, langsam auf eine Temperatur im Solidus-Liquidus Zweiphasenbereich abgekühlt. Durch das Rühren werden aus der Schmelze ausscheidende Dendriten zerstört. Dabei werden dem Material thixotrope Eigenschaften verliehen und die Ausbildung von globularen Primärkristallen in der festen Phase gefördert. Dieses Verfahren ist in der US 5 358 687 für intermetallische Werkstoffe beschrieben, wobei unter anderen auch TiAl erwähnt ist, im Unterschied zur vorliegenden Erfindung aber eine weitere Formgebung in Einbeziehung von mechanischenIn the course of this process, molten alloys are usually slowly cooled to a temperature in the solidus-liquidus two-phase range using one of the known stirring techniques, such as MHD (Magneto-Hydrodynamic-Stirring) or mechanical stirring. Stirring dendrites are destroyed by stirring. The material is given thixotropic properties and the formation of globular primary crystals in the solid phase is promoted. This method is described in US Pat. No. 5,358,687 for intermetallic materials, TiAl being mentioned among others, but in contrast to the present invention a further shaping including mechanical ones
Warmumformschritten nicht genannt ist. Die erreichbare Korngröße lag bei > 50 μm.Hot forming steps is not mentioned. The achievable grain size was> 50 μm.
Diese Technik auf γ-TiAl angewandt, lässt indes keine wirtschaftliche Fertigung zu. Bei TiAl ist der mechanische Rührerverschleiß zu hoch.However, this technique applied to γ-TiAl does not allow economical production. The mechanical stirrer wear is too high with TiAl.
Ebenfalls schon früher wurde in Halbzeug aus einzelnen Stahllegierungen mittels Strangpressen im Labormaßstab ein Gefüge erzeugt, das bei einer nachfolgenden Weiterverarbeitung im Solidus-Liquidus Zweiphasengebiet thixotrope Eigenschaften aufwies (Dissertation H. Müller-Späth, RWTH Aachen, 1999). Dort konnten indes keine ermutigenden Qualitäts- und/oder Kostenziele erreicht werden.Also in the past, a structure was created in semi-finished products from individual steel alloys using extrusion on a laboratory scale, which during subsequent processing in the solidus-liquidus two-phase area had thixotropic properties (dissertation H. Müller-Späth, RWTH Aachen, 1999). However, no encouraging quality and / or cost targets could be achieved there.
Anders als Stahllegierungen sind aber intermetallische Werkstoffe umformtechnisch schwierig zu handhaben. Speziell bei γ-TiAl ist die erreichbare Gefügekonsolidierung wenig zufriedenstellend. Dies drückt sich darin aus, dass das umgeformte und dynamisch rekristallisierte Gefüge regelmäßig eine zeilige Struktur und durch Segregation entstandene chemische Inhomogenitäten aufweist.Unlike steel alloys, however, intermetallic materials are difficult to handle in terms of forming technology. Especially with γ-TiAl, the structure consolidation that can be achieved is not very satisfactory. This is expressed in the fact that the reshaped and dynamically recrystallized structure regularly has a line structure and chemical inhomogeneities resulting from segregation.
Für den Fachmann war es daher nicht vorhersehbar, dass gemäß der Erfindung in einem ersten Warmumform-Prozessabschnitt zu Halbzeug umgeformte γ-TiAI-Legierungen, nach einem Anwärmen auf eine Temperatur im Solidus- Liquidus Phasengebiet für die weitere formgebende Verarbeitung thixotropes Verhalten zeigen. Voraussetzung ist jedoch ein Umformgrad von > 65 %, wobei dieser Wert folgendermaßen definiert ist:For the person skilled in the art, it was therefore not foreseeable that, according to the invention, γ-TiAl alloys formed into semifinished products in a first hot-forming process section, after heating to a temperature in the solidus-liquidus phase region, exhibit thixotropic behavior for the further shaping processing. However, a degree of deformation of> 65% is a prerequisite, this value being defined as follows:
Umformgrad = {(Querschnittsfläche vor der Umformung - Querschnittsfläche im umgeformten Zustand) / Querschnittsfläche vor der Umformung} x 100 [%]. Bei niedrigeren Umformgraden ist das thixotrope Verhalten nicht zufriedenstellend.Degree of deformation = {(cross-sectional area before forming - cross-sectional area in the deformed state) / cross-sectional area before forming} x 100 [%]. The thixotropic behavior is unsatisfactory at lower degrees of deformation.
Der Nachweis der beschriebenen Vorteile gelang mittels einer Verfahrensroute, die in den Beispielen für einzelnen unterschiedliche γ-TiAI-Legierungen näher beschrieben ist. Mittels VAR (Vacuum Are Remelting) erzeugtes γ-TiAl Vormaterial wurde vorzugsweise durch Strangpressen mit einem Umformgrad > 65 % umgeformt. Dann wurde das Halbzeug in Gestalt eines grobgeformten Bolzens induktiv auf eine Temperatur zwischen Solidus und Liquidus erwärmt. Das Halbzeug wies in diesem Zustand eine ausreichend hohe „Handlings"-Festigkeit auf, um dieses durch Thixogießen formgebend zu verarbeiten. Dazu wurde es in die Füllkammer einer Druckgussmaschine eingelegt und mit dem Gießkolben in die angrenzende Kokille gedrückt. Bei der dabei auftretenden Scherbelastung bildete sich die Legierung als fließfähige Suspension aus, die sich zur Formung komplex gestalteter Bauteile nutzen ließ. Dieses Eindrücken hat langsam und frei von Strömungsturbulenzen im Werkstoff zu erfolgen, so dass sich der Werkstoff frei von Poren und Lunkern in der Kokille ausbreitet. Durch diesen Formgebungsprozess konnte eine mechanische, spanende Bearbeitung entfallen oder stark reduziert werden, so dass neben hervorragender Gefüge- und mechanischer Eigenschaften für die erfindungsgemäßen Formteile auch hohe Wirtschaftlichkeit bei deren Fertigung gegeben war. Im Vergleich zu direkt aus der Schmelze in eine Endform gegossenen Formteilen liegt der Vorteil gemäß Erfindung in der wesentlich feinkörnigeren Gefügestruktur und dem hohen Grad an Porenfreiheit.The advantages described were demonstrated by means of a process route which is described in more detail in the examples for individual different γ-TiAl alloys. Γ-TiAl primary material produced by means of VAR (Vacuum Are Remelting) was preferably formed by extrusion with a degree of deformation> 65%. Then the semi-finished product was inductively heated to a temperature between solidus and liquidus in the form of a roughly shaped bolt. In this state, the semifinished product had a sufficiently high "handling" strength to be shaped by thixo casting. For this purpose, it was placed in the filling chamber of a die casting machine and pressed into the adjacent mold with the casting piston. The resulting shear stress formed the alloy as a flowable suspension that could be used to form complex components to be free of flow turbulence in the material so that the material spreads free of pores and voids in the mold. This shaping process made it possible to dispense with mechanical machining, or to greatly reduce it, so that, in addition to excellent structural and mechanical properties, the molded parts according to the invention were also highly economical to manufacture. Compared to molded parts cast directly from the melt into a final shape, the advantage according to the invention lies in the much more fine-grained structure and the high degree of pore freedom.
Als Maß für die Korngrößen der so gefertigten Formteile wurde dieAs a measure of the grain sizes of the molded parts manufactured in this way
Korngrößenverteilung mittels Linienschnittverfahrens und der dgs Wert ermittelt. Darunter ist zu verstehen, dass 95 % der ausgewerteten Körner einen Durchmesser aufweisen, der kleiner ist als der angegebene Wert. Dazu ist anzumerken, dass die dg Korngröße einen deutlich höheren Zahlenwert ergibt, als dies bei der Angabe in Form der mittleren Korngröße der Fall ist. Der dg5-Wert ist jedoch speziell bei Gefügen mit einem hohen Komgrößenstreubereich der aussagekräftigere Wert. Die erzielbaren dg5- Komgrößen liegen je nach Zusammensetzung des γ-TiAl Werkstoffes und des angewandten Semi-Solid Prozess bei Werten < 100 μm bis < 300 μm. Solche, zu Vergleichszwecken mittels Feinguss gefertigte und nicht durch Warmumformen weiterbehandelte Formteile zeigen ein zumindest um einen Faktor 5 grobkörnigeres Gefüge als erfindungsgemäß hergestellte Formteile.Grain size distribution determined using the line cutting method and the dgs value. This means that 95% of the grains evaluated have a diameter that is smaller than the specified value. It should be noted that the dg grain size results in a significantly higher numerical value than is the case in the form of the average grain size. However, the dg 5 value is the more meaningful value, especially for structures with a large grain size range. Depending on the composition of the γ-TiAl material and the applied semi-solid process, the achievable dg 5 grain sizes are between <100 μm and <300 μm. Such molded parts produced for comparison purposes by means of investment casting and not further processed by hot forming have a structure which is at least 5 times coarser than the molded parts produced according to the invention.
Besonders ausgeprägt ist der Korngrößenunterschied, wenn gemäß einer bevorzugten Ausführung der Erfindung, Legierungen mit einem Niobgehalt zwischen 1 ,5 und 12 Atom% verwendet werden. Diese Legierungen zeigen ein um den Faktor 7 bis zu einem Faktor 16 feinkörnigeres Gefüge als bei konventioneller Fertigung mittels Feinguss.The grain size difference is particularly pronounced if, according to a preferred embodiment of the invention, alloys with a niobium content of between 1.5 and 12 atom% are used. These alloys show a micro-fine structure by a factor of 7 up to a factor of 16 compared to conventional investment casting.
Die besten Resultate konnten mit γ-TiAI-Legierungen mit einem Niobgehalt von 5 bis 10 Atom% erreicht werden. Ein zusätzlicher Feinungseffekt wurde durch die Legierungselemente Kohlenstoff und Bor in Gehalten von jeweils bis zuThe best results were achieved with γ-TiAI alloys with a niobium content of 5 to 10 atom%. An additional refining effect was achieved by the alloying elements carbon and boron in amounts of up to
0,4 Atom% erzielt. Als brauchbare alternative Ausformungs- bzw. Formgebungsverfahren für die erfindungsgemäßen γ-TiAI-Legierungen im Solidus-Liquidus Phasenzustand haben sich das Thixoschmieden und das Thixoquerfließpressen, jede eine an sich bereits bekannte und erprobte Technik, bewährt. Beim Thixoschmieden wird der teilflüssige Bolzen in ein offenes Werkzeug, bzw. Gesenkwerkzeug eingelegt. Die Formgebung erfolgt durch eine anschließende Werkzeugbewegung, zum Beispiel in einer Schmiedepresse. Das Thixoquerfließpressen stellt eine Abwandlung des Thixogießens dar. Dabei wird der von einem Stempel geschobene Bolzen auf seinem Weg von der Gießkammer zur Kokille bzw. zum Formgebungswerkzeug um einen Winkel von 90° umgelenkt.0.4 atomic% achieved. Thixo forging and thixo cross extrusion, each a technique that is already known and tried and tested, have proven to be useful alternative forming or shaping processes for the γ-TiAl alloys according to the invention in the solidus-liquidus phase state. In thixo forging, the partially liquid bolt is inserted into an open tool or die tool. The shaping is carried out by a subsequent tool movement, for example in a forging press. Thixo cross extrusion is a modification of thixo casting. The bolt pushed by a punch is deflected by an angle of 90 ° on its way from the casting chamber to the mold or to the forming tool.
Im Folgenden wird die Erfindung an Hand von Herstellbeispielen näher erläutert.The invention is explained in more detail below on the basis of production examples.
Beispiel 1example 1
Die Herstellung des Primärgusses einer Legierung der Zusammensetzung Titan - 46,5 Atom% AI - 2 Atom% Cr - 1 ,5 Atom% Nb - 0,5 Atom% Ta - 0,1 Atom% Bor erfolgte über Vakuum-Lichtbogenschmelzen (VAR). Für das Erreichen einer zufriedenstellenden Homogenität wurde der Gussblock zweimal umgeschmolzen. Der Ingotdurchmesser betrug 210 mm, die Ingotlänge 420 mm.The primary casting of an alloy with the composition titanium - 46.5 atom% Al - 2 atom% Cr - 1, 5 atom% Nb - 0.5 atom% Ta - 0.1 atom% boron was carried out using vacuum arc melting (VAR) , The casting block was remelted twice in order to achieve satisfactory homogeneity. The ingot diameter was 210 mm, the ingot length 420 mm.
Der Ingot wurde im gekannten Zustand gemäß vorbekannter Verfahrensbedingungen vorbeschrieben stranggepresst, wobei der Umformgrad 83 % betrug. Ein Bolzenabschnitt der Länge 110 mm wurde anschließend auf eine Temperatur im Solidus-Liquidus Phasenbereich der Legierung von 1460 - 1470°C erwärmt und in diesem Zustand in einer servohydraulischen Presse in ein geschlossenes Druckgusswerkzeug aus einer Molybdänlegierung gepresst. Der so hergestellte Formteil, ein zylindrischer Bauteil mit einem mittleren Durchmesser von 40 mm, einer Länge von 100 mm, einem seitlich aufgesetzten Flansch und einer Vertiefung der Abmessung 35 mm x 35 mm x 35 mm im zylindrischen Teil wurde metallographisch untersucht. Die Korngröße d s betrug 120 μm. Die relative Dichte wurde mittels Auftriebsmethode bestimmt und betrug 99,98 %.The ingot was extruded in the known state according to previously known process conditions, the degree of deformation being 83%. A bolt section with a length of 110 mm was then heated to a temperature in the solidus-liquidus phase range of the alloy from 1460 to 1470 ° C. and in this state was pressed in a servo-hydraulic press into a closed die-casting tool made of a molybdenum alloy. The molded part produced in this way, a cylindrical component with an average diameter of 40 mm, a length of 100 mm, a flange on the side and a recess of 35 mm x 35 mm x 35 mm in the cylindrical part was examined metallographically. The grain size ds was 120 μm. The relative density was determined using the buoyancy method and was 99.98%.
Zum Vergleich, die Korngröße dg5 des zweimal umgeschmolzenen Feingussteiles betrug 1400 μm.For comparison, the grain size dg 5 of the remelted investment casting was 1400 μm.
Beispiel 2Example 2
Analog zur Prozessführung in Beispiel 1 wurde ein Ingot der Legierungszusammensetzung Titan - 45 Atom% AI - 5 Atom% Nb - 0,2 Atom% C - 0,2 Atom% Bor über Vakuum-Lichtbogenschmelzen (VAR) gefertigt und zweimal umgeschmolzen. Der Ingotdurchmesser betrug 210 mm, die Ingotlänge 420 mm.Analogous to the process control in Example 1, an ingot of the alloy composition titanium - 45 atom% Al - 5 atom% Nb - 0.2 atom% C - 0.2 atom% boron was produced by vacuum arc melting (VAR) and remelted twice. The ingot diameter was 210 mm, the ingot length 420 mm.
Der Ingot wurde im gekannten Zustand nach üblichen Verfahren stranggepresst, wobei der Umformgrad 83 % betrug. Ein Bolzenabschnitt mit der Länge von 110 mm wurde auf eine Temperatur von 1460 - 1480°C erwärmt, die Legierung damit in den Solidus-Liquidus Phasenbereich gebracht und in diesem Zustand in einer servohydraulischen Presse in ein geschlossenes Druckgusswerkzeug aus einer Molybdänlegierung gepresst. Der so hergestellte Formteil, ein zylindrischer Bauteil mit einem mittleren Durchmesser von 40 mm, einer Länge von 100 mm, einem seitlich aufgesetzten Flansch und einer Vertiefung von 35 mm x 35 mm x 35 mm im zylindrischen Teil wurde metallographisch untersucht. Die Korngröße dgs betrug 75 μm. Die relative Dichte betrug 99,99 %.The ingot was extruded in the known state by conventional methods, the degree of deformation being 83%. A bolt section with a length of 110 mm was heated to a temperature of 1460 - 1480 ° C, the alloy was brought into the solidus-liquidus phase area and in this state pressed into a closed die-casting tool made of a molybdenum alloy in a servo-hydraulic press. The molded part produced in this way, a cylindrical component with an average diameter of 40 mm, a length of 100 mm, a flange on the side and a depression of 35 mm x 35 mm x 35 mm in the cylindrical part was examined metallographically. The grain size dgs was 75 μm. The relative density was 99.99%.
Die Korngröße dg5 des eingangs gefertigten Feingussteiles hatte 1200 μm betragen.The grain size dg 5 of the investment casting produced at the beginning had been 1200 μm.
Beispiel 3Example 3
Analog dem Prozess von Beispiel 1 wurde ein Primärgussrohling der Legierung Titan - 46,5 Atom% AI - 2 Atom % Cr - 0,5 Atom% Ta - 0,1 Atom% Bor über Vakuum-Lichtbogenschmelzen (VAR) hergestellt und zweimal umgeschmolzen. Der Ingotdurchmesser betrug 170 mm, die Ingotlänge 420 mm. Der Ingot wurde im gekannten Zustand stranggepresst, wobei der Umformgrad 83 % betrug. Ein Bolzenabschnitt mit der Länge von 110 mm wurde auf eine Temperatur von 1440 - 1470°C erwärmt und in einer servohydraulischen Presse in ein geschlossenes Druckgusswerkzeug aus einer Molybdänlegierung gepresst.Analogous to the process of Example 1, a primary casting blank of the alloy titanium - 46.5 atom% Al - 2 atom% Cr - 0.5 atom% Ta - 0.1 atom% boron was produced by vacuum arc melting (VAR) and remelted twice. The ingot diameter was 170 mm, the ingot length 420 mm. The ingot was extruded in the known state, the degree of deformation being 83%. A bolt section with the length of 110 mm was heated to a temperature of 1440-1470 ° C and in a servo-hydraulic Press pressed into a closed die casting tool made of a molybdenum alloy.
Der so hergestellte Formteil, ein zylindrischer Bauteil mit einem mittleren Durchmesser von 40 mm, einer Länge von 100 mm, einem seitlich aufgesetzten Flansch und einer Vertiefung von 35 mm x 35 mm x 35 mm im zylindrischen Teil wurde metallographisch untersucht. Die Korngröße dgs betrug 220 μm. Die relative Dichte betrug 99,99 %. Die Korngröße dg des Feingussteiles hatte 1500 μm betragen.The molded part produced in this way, a cylindrical component with an average diameter of 40 mm, a length of 100 mm, a flange on the side and a depression of 35 mm x 35 mm x 35 mm in the cylindrical part was examined metallographically. The grain size dgs was 220 μm. The relative density was 99.99%. The grain size dg of the investment casting had been 1500 μm.
Beispiel 4 Ein Primärgussblock der Legierung Titan -46,5 Atom% AI - 10 Atom% Nb wurde entsprechend der Prozessschritte von Beispiel 1 über Vakuum- Lichtbogenschmelzen (VAR) gefertigt und zweimal umgeschmolzen. Der Ingotdurchmesser betrug 170 mm, die Ingotlänge 420 mm. Der Ingot wurde im gekannten Zustand stranggepresst, wobei der Umformgrad 83 % betrug. Ein Bolzenabschnitt mit der Länge von 110 mm wurde auf eine Temperatur von 1440 - 1470°C erwärmt und in einer servohydraulischen Presse in ein geschlossenes Druckgusswerkzeug aus einer Molybdänlegierung gepresst. Der so hergestellte Formteil, ein zylindrischer Bauteil mit einem mittleren Durchmesser von 40 mm, einer Länge von 100 mm, einem seitlich aufgesetzten Flansch und einer Vertiefung von 35 mm x 35 mm x 35 mm im zylindrischen Teil wurde metallographisch untersucht. Die Korngröße dgs betrug 90 μm. Die relative Dichte betrug 99,98 %. Die Korngröße dg5 des Feingussteiles hatte 1300 μm betragen.Example 4 A primary casting block of the alloy titanium -46.5 atom% Al - 10 atom% Nb was produced in accordance with the process steps of Example 1 using vacuum arc melting (VAR) and remelted twice. The ingot diameter was 170 mm, the ingot length 420 mm. The ingot was extruded in the known state, the degree of deformation being 83%. A bolt section with a length of 110 mm was heated to a temperature of 1440-1470 ° C and pressed in a servo-hydraulic press into a closed die-casting tool made of a molybdenum alloy. The molded part produced in this way, a cylindrical component with an average diameter of 40 mm, a length of 100 mm, a flange on the side and a depression of 35 mm x 35 mm x 35 mm in the cylindrical part was examined metallographically. The grain size dgs was 90 μm. The relative density was 99.98%. The grain size dg 5 of the investment casting had been 1300 μm.
Beispiel 5Example 5
Der Primärgussblock der Legierung Titan - 46,5 Atom% AI - 10 Atom% Nb wurde entsprechend Beispiel 1 über Vakuum-Lichtbogenschmelzen (VAR) gefertigt und zweimal umgeschmolzen. Der Ingotdurchmesser betrug 170 mm, die Ingotlänge 420 mm.The primary casting block of the alloy titanium - 46.5 atom% Al - 10 atom% Nb was produced in accordance with Example 1 by means of vacuum arc melting (VAR) and remelted twice. The ingot diameter was 170 mm, the ingot length 420 mm.
Der Ingot wurde im gekannten Zustand stranggepresst, wobei der Umformgrad 72 % betrug. Ein Bolzenabschnitt mit der Länge von 110 mm wurde auf eine Temperatur von 1440 - 1470°C erwärmt und in einer servohydraulischen Presse in ein geschlossenes Druckgusswerkzeug aus einer Molybdänlegierung gepresst.The ingot was extruded in the known state, the degree of deformation being 72%. A bolt section with the length of 110 mm was heated to a temperature of 1440-1470 ° C and in a servo-hydraulic Press pressed into a closed die casting tool made of a molybdenum alloy.
Der so hergestellte Formteil, ein zylindrischer Bauteil mit einem mittleren Durchmesser von 40 mm, einer Länge von 100 mm, einem seitlich aufgesetzten Flansch und einer Vertiefung von 35 mm x 35 mm x 35 mm im zylindrischen Teil wurde metallographisch untersucht. Die Korngröße dg5 betrug 170 μm. Die relative Dichte betrug 99,98 %. Die Korngröße dg5 des Feingussteiles hatte 1300 μm betragen.The molded part produced in this way, a cylindrical component with an average diameter of 40 mm, a length of 100 mm, a flange on the side and a depression of 35 mm x 35 mm x 35 mm in the cylindrical part was examined metallographically. The grain size d g5 was 170 μm. The relative density was 99.98%. The grain size dg 5 of the investment casting had been 1300 μm.
Die Erfindung ist nicht auf die vorgenannten Ausführungsbeispiele beschränkt. Bevorzugte Anwendungsbereiche für Formteile gemäß Erfindung sind dieThe invention is not limited to the aforementioned exemplary embodiments. Preferred areas of application for moldings according to the invention are
Automobilindustrie, z.B. Getriebe- und Motorteile, aber auch Teile für stationäre Gasturbinen und für die Luft- und Raumfahrt, z.B. Turbinenkomponenten. Automotive industry, e.g. Transmission and engine parts, but also parts for stationary gas turbines and for aerospace, e.g. Turbine components.

Claims

P a t e n t a n s p r ü c h e Patent claims
1. Formteil aus einer intermetallischen γ-TiAI-Legierung mit 41 - 49 Atom% AI, mit einer Korngröße dg5< 300 μm und einem Porenvolumen1. Shaped part made of an intermetallic γ-TiAI alloy with 41-49 atom% AI, with a grain size dg 5 <300 μm and a pore volume
< 0,2 Vol.%, dessen Herstellung zumindest folgende Verfahrensschritte umfasst:<0.2 vol.%, The production of which comprises at least the following process steps:
- Fertigen eines Halbzeuges unter Einbeziehung eines Warmumformprozesses, wobei der Umformgrad > 65 % beträgt,- Manufacture of a semi-finished product using a hot forming process, the degree of forming being> 65%,
- Ausformen des Halbzeuges im Solidus-Liquidus Phasenzustand der Legierung in einem Formwerkzeug unter zumindest zeitweisem Aufbringen von mechanischen Formungskräften.- Forming the semi-finished product in the solidus-liquidus phase state of the alloy in a molding tool with at least temporary application of mechanical shaping forces.
2. Formteil aus einer intermetallischen γ-TiAI-Legierung gemäß Anspruch 1 , dadurch gekennzeichnet, dass sich die Legierung beim Ausformen im thixotropen Zustand befindet.2. Shaped part made of an intermetallic γ-TiAI alloy according to claim 1, characterized in that the alloy is in the thixotropic state during molding.
Formteil aus einer intermetallischen γ-TiAI-Legierung nach Anspruch 1 und 2, dadurch gekennzeichnet, dass der feste Bestandteil der Legierung im Solidus-Liquidus Phasenzustand beim Ausformen globulares Gefüge aufweist.Shaped part made of an intermetallic γ-TiAI alloy according to claim 1 and 2, characterized in that the solid component of the alloy in the solidus-liquidus phase state has a globular structure during molding.
Formteil aus einer intermetallischen γ-TiAI-Legierung gemäß Anspruch 1 bis 3, dadurch gekennzeichnet, dass das Ausformen des Halbzeuges mittels Thixoschmieden in einer Gesenkform erfolgt.Shaped part made of an intermetallic γ-TiAI alloy according to claims 1 to 3, characterized in that the semi-finished product is shaped in a die form by means of thixo forging.
5. Formteil aus einer intermetallischen γ-TiAI-Legierung gemäß Anspruch 1 bis 3, dadurch gekennzeichnet, dass das Ausformen mittels Thixofließpressen des Halbzeuges in eine Formkokille erfolgt.5. molded part made of an intermetallic γ-TiAI alloy according to claim 1 to 3, characterized in that the shaping is carried out by means of thixoflowing of the semi-finished product in a mold.
6. Formteil aus einer intermetallischen γ-TiAI-Legierung gemäß Anspruch 1 bis 5, dadurch gekennzeichnet, dass das Fertigen des Halbzeuges in6. molded part made of an intermetallic γ-TiAI alloy according to claim 1 to 5, characterized in that the manufacture of the semi-finished product in
Einbeziehung eines Strangpress-Prozesses erfolgt. An extrusion process is included.
7. Formteil aus einer intermetallischen γ-TiAI-Legierung gemäß Anspruch 1 bis 6, dadurch gekennzeichnet, dass dieser eine Korngröße d95 < 200 μm aufweist.7. molded part made of an intermetallic γ-TiAl alloy according to claims 1 to 6, characterized in that it has a grain size d 95 <200 microns.
8. Formteil aus einer intermetallischen γ-TiAI-Legierung gemäß Anspruch 1 bis 7, dadurch gekennzeichnet, dass dieser eine Korngröße dgs < 150 μm aufweist.8. molded part made of an intermetallic γ-TiAl alloy according to claims 1 to 7, characterized in that it has a grain size dgs <150 microns.
9. Formteil aus einer intermetallischen γ-TiAI-Legierung gemäß Anspruch 1 bis 8, dadurch gekennzeichnet, dass die Legierung 43 - 47 Atom% AI und 1 ,5 - 12 Atom% Niob enthält.9. molded part made of an intermetallic γ-TiAI alloy according to claim 1 to 8, characterized in that the alloy contains 43 - 47 atom% AI and 1 - 5 - 12 atom% niobium.
10. Formteil aus einer intermetallischen γ-TiAI-Legierung gemäß Anspruch 9, dadurch gekennzeichnet, dass der Niobgehalt 5 - 10 Atom% beträgt.10. molded part made of an intermetallic γ-TiAI alloy according to claim 9, characterized in that the niobium content is 5 - 10 atom%.
11. Formteil aus einer intermetallischen γ-TiAI-Legierung gemäß Anspruch11. molded part made of an intermetallic γ-TiAI alloy according to claim
9 oder 10, dadurch gekennzeichnet, dass die Legierung weiters folgende Bestandteile enthält: Bor: 0,05 - 0,5 Atom%, Kohlenstoff: 0 - 0,5 Atom%, Chrom: 0 - 3 Atom%, Ta: 0 - 2 Atom%.9 or 10, characterized in that the alloy further contains the following constituents: boron: 0.05-0.5 atom%, carbon: 0-0.5 atom%, chromium: 0-3 atom%, Ta: 0-2 Atom%.
12. Formteil aus einer intermetallischen γ-TiAI-Legierung gemäß Anspruch12. molded part made of an intermetallic γ-TiAI alloy according to claim
11 , dadurch gekennzeichnet, dass der Kohlenstoffgehalt 0,1- 0,4 Atom% und der Borgehalt 0,1- 0,4 Atom% beträgt.11, characterized in that the carbon content is 0.1-0.4 atom% and the boron content is 0.1-0.4 atom%.
13. Formteil aus einer intermetallischen γ-TiAI-Legierung gemäß Anspruch 1 bis 7, dadurch gekennzeichnet, dass der Warmumformprozess mit einem13. molded part made of an intermetallic γ-TiAl alloy according to claim 1 to 7, characterized in that the hot forming process with a
Umformgrad > 80 % erfolgt.Degree of deformation> 80%.
14. Formteil aus einer intermetallischen γ-TiAI-Legierung gemäß Anspruch 1 bis 13 zur Verwendung als für Motor- oder Getriebebauteil in Automobilen. 14. Molded part made of an intermetallic γ-TiAI alloy according to claims 1 to 13 for use as an engine or transmission component in automobiles.
5. Formteil aus einer intermetallischen γ-TiAI-Legierung gemäß Anspruch 1 bis 14 zur Verwendung als Komponente in stationären und nicht stationären Gasturbinen. 5. molded part made of an intermetallic γ-TiAI alloy according to claim 1 to 14 for use as a component in stationary and non-stationary gas turbines.
EP02759850A 2001-07-19 2002-07-12 Process for producing a moulded piece made from an intermetallic gamma-ti-al material Expired - Lifetime EP1407056B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT02759850T ATE305526T1 (en) 2001-07-19 2002-07-12 METHOD FOR PRODUCING A MOLDED PART FROM AN INTERMETALLIC GAMMA-TI-AL MATERIAL

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
AT0057301U AT5199U1 (en) 2001-07-19 2001-07-19 MOLDED PART FROM AN INTERMETALLIC GAMMA-TI-AL MATERIAL
AT5732001 2001-07-19
PCT/AT2002/000205 WO2003008655A2 (en) 2001-07-19 2002-07-12 Moulded piece made from an intermetallic gamma tial material

Publications (2)

Publication Number Publication Date
EP1407056A2 true EP1407056A2 (en) 2004-04-14
EP1407056B1 EP1407056B1 (en) 2005-09-28

Family

ID=3494171

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02759850A Expired - Lifetime EP1407056B1 (en) 2001-07-19 2002-07-12 Process for producing a moulded piece made from an intermetallic gamma-ti-al material

Country Status (5)

Country Link
US (1) US6805759B2 (en)
EP (1) EP1407056B1 (en)
AT (1) AT5199U1 (en)
DE (1) DE50204409D1 (en)
WO (1) WO2003008655A2 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2305593T3 (en) 2004-02-26 2008-11-01 Gkss-Forschungszentrum Geesthacht Gmbh PROCEDURE FOR MANUFACTURING SEMIELABORATED COMPONENTS AND PRODUCTS CONTAINING TITANIUM ALUMINUM INTERMETAL ALLOYS, AS WELL AS COMPONENTS THAT CAN BE MANUFACTURED WITH THIS PROCEDURE.
DE102004056582B4 (en) * 2004-11-23 2008-06-26 Gkss-Forschungszentrum Geesthacht Gmbh Alloy based on titanium aluminides
DE102005022506B4 (en) * 2005-05-11 2007-04-12 Universität Stuttgart Method for forging a titanium alloy component
FR2913898B1 (en) * 2007-03-23 2009-05-08 Alcan Rhenalu Sa STRUCTURAL ELEMENT IN ALUMINUM ALLOY INCLUDING AN OPTICAL SENSOR.
TW200900541A (en) * 2007-06-29 2009-01-01 Jun-Yen Uan Method for making lithium-aluminum compound with high lithium content
AT509768B1 (en) * 2010-05-12 2012-04-15 Boehler Schmiedetechnik Gmbh & Co Kg METHOD FOR PRODUCING A COMPONENT AND COMPONENTS FROM A TITANIUM ALUMINUM BASE ALLOY
US9061351B2 (en) * 2011-11-10 2015-06-23 GM Global Technology Operations LLC Multicomponent titanium aluminide article and method of making
US9992917B2 (en) 2014-03-10 2018-06-05 Vulcan GMS 3-D printing method for producing tungsten-based shielding parts
FR3019561B1 (en) * 2014-04-08 2017-12-08 Snecma THERMAL TREATMENT OF AN ALLOY BASED ON TITANIUM ALUMINUM
CN108034857A (en) * 2017-11-23 2018-05-15 中国航发北京航空材料研究院 A kind of titanium fire preventing flame retardant coating and preparation method thereof
CN108559872B (en) * 2018-06-05 2020-06-30 中国航发北京航空材料研究院 TiAl alloy and preparation method thereof
EP3943627A4 (en) * 2019-03-18 2022-11-16 IHI Corporation Titanium aluminide alloy material for hot forging, forging method for titanium aluminide alloy material, and forged body
CN110643877A (en) * 2019-09-09 2020-01-03 中国航发北京航空材料研究院 TiAl intermetallic compound containing W, Mn, Si, B, C and rare earth elements
CN116607048A (en) * 2022-02-09 2023-08-18 中国科学院金属研究所 Gamma-TiAl alloy for precision casting and preparation method thereof

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5015534A (en) 1984-10-19 1991-05-14 Martin Marietta Corporation Rapidly solidified intermetallic-second phase composites
US4917858A (en) 1989-08-01 1990-04-17 The United States Of America As Represented By The Secretary Of The Air Force Method for producing titanium aluminide foil
US5284620A (en) 1990-12-11 1994-02-08 Howmet Corporation Investment casting a titanium aluminide article having net or near-net shape
US5204058A (en) 1990-12-21 1993-04-20 General Electric Company Thermomechanically processed structural elements of titanium aluminides containing chromium, niobium, and boron
US5131959A (en) 1990-12-21 1992-07-21 General Electric Company Titanium aluminide containing chromium, tantalum, and boron
US5226985A (en) 1992-01-22 1993-07-13 The United States Of America As Represented By The Secretary Of The Air Force Method to produce gamma titanium aluminide articles having improved properties
JP3839493B2 (en) * 1992-11-09 2006-11-01 日本発条株式会社 Method for producing member made of Ti-Al intermetallic compound
US5768679A (en) * 1992-11-09 1998-06-16 Nhk Spring R & D Center Inc. Article made of a Ti-Al intermetallic compound
US5358687A (en) * 1993-06-21 1994-10-25 Agency Of Industrial Science And Technology Processes for manufacturing intermetallic compounds, intermetallic alloys and intermetallic matrix composite materials made thereof
JP3626507B2 (en) 1993-07-14 2005-03-09 本田技研工業株式会社 High strength and high ductility TiAl intermetallic compound
US5424027A (en) 1993-12-06 1995-06-13 The United States Of America As Represented By The Secretary Of The Air Force Method to produce hot-worked gamma titanium aluminide articles
US6231699B1 (en) * 1994-06-20 2001-05-15 General Electric Company Heat treatment of gamma titanium aluminide alloys
US5634992A (en) 1994-06-20 1997-06-03 General Electric Company Method for heat treating gamma titanium aluminide alloys
US5609698A (en) * 1995-01-23 1997-03-11 General Electric Company Processing of gamma titanium-aluminide alloy using a heat treatment prior to deformation processing
US5653828A (en) 1995-10-26 1997-08-05 National Research Council Of Canada Method to procuce fine-grained lamellar microstructures in gamma titanium aluminides
US5823243A (en) * 1996-12-31 1998-10-20 General Electric Company Low-porosity gamma titanium aluminide cast articles and their preparation
GB9714391D0 (en) * 1997-07-05 1997-09-10 Univ Birmingham Titanium aluminide alloys
AT2881U1 (en) 1998-06-08 1999-06-25 Plansee Ag METHOD FOR PRODUCING A PAD VALVE FROM GAMMA-TIAL BASE ALLOYS

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO03008655A2 *

Also Published As

Publication number Publication date
AT5199U1 (en) 2002-04-25
WO2003008655A2 (en) 2003-01-30
WO2003008655A3 (en) 2003-10-30
EP1407056B1 (en) 2005-09-28
US20040094242A1 (en) 2004-05-20
DE50204409D1 (en) 2006-02-09
US6805759B2 (en) 2004-10-19

Similar Documents

Publication Publication Date Title
EP3069802B1 (en) Method for producing a component made of a compound material with a metal matrix and incorporated intermetallic phases
EP0464366B1 (en) Process for producing a work piece from an alloy based on titanium aluminide containing a doping material
EP1287173B1 (en) $g(G)-TIAL ALLOY-BASED COMPONENT COMPRISING AREAS HAVING A GRADUATED STRUCTURE
DE2303802C3 (en) Process for increasing the strength and toughness of dispersion-strengthened wrought alloys
EP0224016B1 (en) Wrought aluminium alloy of the type al-cu-mg having a high strength in the temperature range between 0 and 250o c
DE69921925T2 (en) High strength aluminum alloy forgings
EP2200768B1 (en) Method for producing semi-finished products from niti shape memory alloys
EP1407056B1 (en) Process for producing a moulded piece made from an intermetallic gamma-ti-al material
DE3445767A1 (en) Method of forging nickel-base superalloys and a nickel-base superalloy article having improved forgeability
EP3372700B1 (en) Method for making forged tial components
DE2542094A1 (en) METAL POWDER, METAL POWDER TREATMENT METHOD, AND METAL POWDER MANUFACTURING METHOD
DE112005000511T5 (en) Magnesium wrought alloy with improved extrudability and moldability
EP3162460A1 (en) Light metal casting part and method of its production
DE10062310C2 (en) Process for the treatment of metallic materials
US4869751A (en) Thermomechanical processing of rapidly solidified high temperature al-base alloys
DE102011121292A1 (en) Producing brake discs made of aluminum-matrix composite alloy, comprises heating spray-formed base-aluminum-matrix composite alloy having specified amount of silicon carbide particle in matrix-forming aluminum alloy in fusion mold
DE3041942A1 (en) CAST STRING MADE OF ALUMINUM NETWORK HIGH TENSILE STRENGTH ETC. AND METHOD FOR THE PRODUCTION THEREOF
EP1680246B1 (en) Method for producing metal matrix composite materials
DE2814553A1 (en) COMPRESSED PRODUCTS OF NICKEL SUPER ALLOYS
DE3835253A1 (en) SUBJECT OF AN ALUMINUM SILICON ALLOY AND METHOD FOR THE PRODUCTION THEREOF
DE3544759C2 (en)
EP1129803B1 (en) Material prepared by powder metallurgy with improved isotropy of the mechanical properties
DE2108978A1 (en) Process for the production of superalloys
DE2929812C2 (en) Wheel for automobiles
DE69909307T2 (en) ALUMINUM LITHIUM ALLOY

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20040113

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

17Q First examination report despatched

Effective date: 20041028

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RTI1 Title (correction)

Free format text: PROCESS FOR PRODUCING A MOULDED PIECE MADE FROM AN INTERMETALLIC GAMMA-TI-AL MATERIAL

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050928

Ref country code: GB

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050928

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050928

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050928

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050928

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050928

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050928

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20051228

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20051228

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20051228

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20051228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060108

REF Corresponds to:

Ref document number: 50204409

Country of ref document: DE

Date of ref document: 20060209

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060228

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

Effective date: 20050928

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060731

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060731

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060731

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060731

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20060629

EN Fr: translation not filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061124

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20070719

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060712

BERE Be: lapsed

Owner name: PLANSEE A.G.

Effective date: 20060731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050928

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060712

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050928

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050928

Ref country code: FR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050928

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090203