EP1404961A1 - Fuel injector having injection curve shaping carried out by switchable throttling elements - Google Patents

Fuel injector having injection curve shaping carried out by switchable throttling elements

Info

Publication number
EP1404961A1
EP1404961A1 EP02748597A EP02748597A EP1404961A1 EP 1404961 A1 EP1404961 A1 EP 1404961A1 EP 02748597 A EP02748597 A EP 02748597A EP 02748597 A EP02748597 A EP 02748597A EP 1404961 A1 EP1404961 A1 EP 1404961A1
Authority
EP
European Patent Office
Prior art keywords
throttle element
valve
fuel injector
chamber
flow channel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP02748597A
Other languages
German (de)
French (fr)
Other versions
EP1404961B1 (en
Inventor
Friedrich Boecking
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP1404961A1 publication Critical patent/EP1404961A1/en
Application granted granted Critical
Publication of EP1404961B1 publication Critical patent/EP1404961B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M45/00Fuel-injection apparatus characterised by having a cyclic delivery of specific time/pressure or time/quantity relationship
    • F02M45/12Fuel-injection apparatus characterised by having a cyclic delivery of specific time/pressure or time/quantity relationship providing a continuous cyclic delivery with variable pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M47/00Fuel-injection apparatus operated cyclically with fuel-injection valves actuated by fluid pressure
    • F02M47/02Fuel-injection apparatus operated cyclically with fuel-injection valves actuated by fluid pressure of accumulator-injector type, i.e. having fuel pressure of accumulator tending to open, and fuel pressure in other chamber tending to close, injection valves and having means for periodically releasing that closing pressure
    • F02M47/027Electrically actuated valves draining the chamber to release the closing pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/0012Valves
    • F02M63/0031Valves characterized by the type of valves, e.g. special valve member details, valve seat details, valve housing details
    • F02M63/0033Lift valves, i.e. having a valve member that moves perpendicularly to the plane of the valve seat
    • F02M63/0036Lift valves, i.e. having a valve member that moves perpendicularly to the plane of the valve seat with spherical or partly spherical shaped valve member ends
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/0012Valves
    • F02M63/0031Valves characterized by the type of valves, e.g. special valve member details, valve seat details, valve housing details
    • F02M63/0045Three-way valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2200/00Details of fuel-injection apparatus, not otherwise provided for
    • F02M2200/28Details of throttles in fuel-injection apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/0012Valves
    • F02M63/0014Valves characterised by the valve actuating means
    • F02M63/0015Valves characterised by the valve actuating means electrical, e.g. using solenoid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/0012Valves
    • F02M63/0014Valves characterised by the valve actuating means
    • F02M63/0015Valves characterised by the valve actuating means electrical, e.g. using solenoid
    • F02M63/0026Valves characterised by the valve actuating means electrical, e.g. using solenoid using piezoelectric or magnetostrictive actuators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/0012Valves
    • F02M63/0031Valves characterized by the type of valves, e.g. special valve member details, valve seat details, valve housing details
    • F02M63/004Sliding valves, e.g. spool valves, i.e. whereby the closing member has a sliding movement along a seat for opening and closing

Definitions

  • Fuel injection systems on direct-injection internal combustion engines are increasingly being implemented as accumulator injection systems.
  • a high-pressure pump or a high-pressure storage space is used to supply the individual fuel injectors in an injection sequence under extremely high pressure, the fuel being supplied at an extremely high pressure level almost without fluctuations in pressure.
  • the start of injection and the end of injection are of great importance with regard to particle emission, depending on the progress of the combustion in the combustion chamber of an internal combustion engine.
  • an injection valve for an internal combustion engine which comprises a servo valve which hydraulically controls the opening and closing movement of the nozzle needle for the injection process.
  • the injection valve comprises a valve body and a valve element movably arranged therein, which presses on a valve seat in the closed position.
  • the valve element has a channel with a throttle, which leads to a groove in the valve element, the groove comprising a piston-shaped shoulder, which lies essentially sealingly against the wall of a bore in the valve body when the servo valve is closed.
  • the bore widens radially at a distance from the upper edge of the groove in relation to the position of the valve element when the servo valve is closed, so that when the servo valve is open there is a direct connection between the valve seat and the groove, from which channels lead to the injection nozzle.
  • This solution can be used in the initial phase of injection Establish throttled connection to the injection nozzle of the injection system.
  • a direct dethrottled connection to the injection nozzle is established, so that an unimpeded injection occurs during the transition from the initial to the main phase of the injection process of fuel can take place in the combustion chamber of the internal combustion engine.
  • EP 0 994 248 A2 relates to a fuel injector with injection profile shaping by means of a piezoelectric stroke in the injector body.
  • injection rates can be characterized by a ramp-like rise, a boot phase and an approximately trapezoidal phase.
  • a fuel injector comprises an injector body which contains an injection opening.
  • a nozzle needle is movably arranged within the injector body and movable between an open position and a closed position.
  • a piezo actuator is arranged in the injector body and can be moved between an activated and an deactivated position.
  • the nozzle needle and the piezo actuator are coupled to one another by means of a coupling element in such a way that the movement of the piezo actuator within the injector body is translated into a larger stroke movement of the nozzle needle.
  • the nozzle needle can be stopped in a plurality of stroke positions between its open position and its closed position, which allows the injection quantity to be influenced in accordance with the holding position of the nozzle needle in the injector body.
  • the solution according to the invention offers the advantage of being able to shape the injection course by switching on or off discharge throttle elements or inlet throttle elements in combination with a multi-way valve e.g. to represent a 3/3-way valve in a fuel injector.
  • a first outlet throttle element is always connected downstream of the outlet of the valve chamber of the multi-way valve.
  • the valve chamber of the multi-way valve is connected via a main flow channel and a bypass channel to be run parallel to the control valve actuating the nozzle needle.
  • a further outlet throttle element can be accommodated both in the secondary flow channel and in the main flow channel.
  • the inlet throttle element can both be arranged to open into the valve chamber of the multi-way valve and also open directly into the control chamber or be designed to open into one of the channels connecting the valve chamber to the control chamber, for example the main flow channel.
  • the control chamber actuating the nozzle needle is always filled with a control volume by means of the inlet throttle, which can be arranged at various points in the injector body of the fuel injector.
  • the further outlet throttle element is designed in a smaller throttle cross-section compared to the first outlet throttle element downstream of the valve chamber of the multi-way valve, these two outlet throttle elements can be connected both in series and in parallel to one another for shaping the course of the injection. Particularly good shaping of the injection profile can be achieved with the first outlet throttle element connected in series with the further outlet throttle element.
  • outlet throttle elements In addition to the series or parallel connection of outlet throttle elements, it is also possible, according to a further general embodiment variant of the concept on which the invention is based, to form an injection profile on a fuel injector which is equipped with two inlet throttle elements and two outlet throttle elements by means of a suitable circuit combination of the throttle elements. According to this general design variant, too, one of the outlet throttle elements in the valve chamber of the multi-way valve always remains downstream.
  • the multi-way valve can be a 3/3-way valve, injection course shaping taking place in particular through the combination of the further outlet throttle element, either incorporated according to a sub-variant in the main flow or another sub-variant in the bypass duct ,
  • a first inlet throttle element always opens directly into the control chamber, which controls the nozzle needle / tappet movement in the injector body.
  • the further inlet throttle element of this solution variant is arranged such that it is connected to the first outlet throttle element when it is opened as a bypass.
  • the control chamber can thus be filled via two inlet throttle elements which can be connected in parallel, which enables a rapid needle closing speed.
  • the injection course shaping is supported in that two discharge throttle elements can be switched in series or individually acting.
  • a fuel injector that is manufactured in accordance with the two general design variants outlined is characterized by particularly inexpensive and simple manufacturability.
  • Figure 1 shows an embodiment variant with a control room downstream
  • Outlet throttle a further outlet throttle in the bypass duct and an inlet throttle in the valve chamber
  • FIG. 2 shows an embodiment variant with a first outlet throttle element accommodated in the main flow channel and an inlet throttle opening into the control chamber
  • FIG. 3 shows an embodiment variant according to FIG. 2 with the inlet throttle opening into the valve chamber
  • Figure 4 shows an embodiment variant with an opening in the main flow channel
  • FIG. 5 shows a control chamber which is acted upon by control volume via an inlet throttle opening into it and which is followed by an outlet throttle with a further inlet throttle opening into the valve chamber,
  • FIG. 6 shows an embodiment variant according to FIG. 5 with a further inlet throttle element opening into the bypass duct
  • FIG. 7 shows an embodiment variant according to FIG. 5 with a further outlet throttle element incorporated in the main flow channel and a further inlet throttle and above this opening
  • Figure 8 shows an embodiment variant as shown in Figure 7 in the
  • Valve chamber of the multi-way valve opening further inlet throttle element.
  • FIG. 1 shows an embodiment variant with an outlet throttle element connected downstream of a control chamber, a further outlet throttle element in the bypass duct and an inlet throttle opening into the valve chamber of a multi-way valve.
  • An injector for injecting fuel into the combustion chamber of an internal combustion engine comprises an injector body 2, in which a control chamber 3 is formed.
  • the control room 3 is delimited on the one hand by a control room ceiling 4 of the injector body 2 and on the other hand by an end face 6 of a nozzle needle tappet arrangement 5. Furthermore, the control room 3 is delimited by a control room wall 7 of the injector body 2.
  • the control chamber 3 is connected to a valve chamber 19 of a multi-way valve 18 via a first flow channel, the main flow channel 8 via a control chamber-side opening 9 and a valve chamber-side opening 10.
  • the multi-way valve 18 is preferably designed as a 3/3-way valve.
  • control chamber 3 is connected to the valve chamber 19 of the multi-way valve via a second flow channel 11, the bypass channel.
  • the mouth of the flow channel 11 on the control room side is identified by reference numeral 12, while the mouth of the secondary flow channel 11 on the valve room side is identified by reference number 13.
  • Both the main flow channel 8 and the secondary flow channel 11 between the control chamber 3 and the valve chamber 19 can be flowed through by fuel in both flow directions 29 and 30.
  • An outlet throttle element 16 is arranged in the bypass duct 11 and has a cross-sectional area 17 (A 2 ).
  • a transmission element 21 acting on the closing body 20 is shown, which can be actuated by an actuator (not shown here) - be it a piezo actuator or a solenoid valve.
  • an annular gap 22 is formed, from which a branch 23 runs in the direction of an outlet 24.
  • a further outlet throttle element 25 is formed, which is designed in a cross-sectional area Aj.
  • the valve body 20 of the multi-way valve 18 can be switched back and forth by means of the transmission element 21 between a first seat 27 and a further, the second seat 28.
  • the first flow restriction is Sel element 16, which is received in the bypass duct 11 in the illustration according to FIG. 1, is provided with a cross-sectional area A, which is dimensioned smaller than the cross-sectional area 26 A 2 of the further outlet throttle element.
  • the first outlet throttle element 16 received in the bypass duct 11 acts in the outlet direction 30 of the control volume from the control chamber 3 and the further outlet throttle element 25 acted upon via the valve chamber 19 with the control volume to be controlled in the outlet 24 in series.
  • very good injection curve shaping can be achieved in accordance with the dimensioning of the throttle cross sections A, 17 and A 2 26 configured flow areas.
  • FIG. 2 shows an embodiment variant with a first outlet throttle element received in the main flow channel and an inlet throttle element opening directly into the control chamber.
  • valve chamber 19 of the multi-way valve 18 and the control chamber 3 in the injector body 2 are connected via two flow channels running parallel to one another, ie the main flow channel 8 and the secondary flow channel 11.
  • the valve body 20 of the multi-way valve 18 can be moved by means of a transmission element 21 between a first valve seat 27 and a second valve seat 28 above the main flow channel 8.
  • an outlet 24 branches off at the branch point 23, in which the further outlet throttle element 25 with cross-sectional area A 2 , reference numeral 26, is integrated.
  • the control chamber 3 is supplied with fuel directly by a permanently acting inlet throttle 14 from a first inlet 14 on the high-pressure side.
  • the first outlet throttle element 16 is integrated into the main flow channel 8.
  • FIG. 3 shows an embodiment variant according to FIG. 2, however, with a permanently acting inlet throttle opening into the valve chamber.
  • This embodiment variant differs from that according to FIG. 2 only in that the permanently acting first inlet throttle element 15 of the first high-pressure inlet 14 does not open directly into the control chamber 3 but laterally into the valve chamber 19 surrounding the valve body 20 of the multi-way valve 18 in the injector body 2.
  • the main flow channel 8 is therefore flowed through both in relation to the control chamber 3 in the feed direction 29 and in the drain direction 30 by the control volume.
  • the control chamber-side orifices of the main flow channel 8 and the secondary flow channel 11 are identified with the reference numerals 9 and 12 analogously to the illustration according to FIGS. 2 and 3, while the valve chamber-side orifices 10 and 13 of the main flow channel 8 and the secondary flow channel 11 are also identified in the same way as in the previous figures the reference numerals 10 and 13 are identified.
  • FIG. 4 shows an embodiment variant with a permanently acting inlet throttle element opening into the main flow channel between the valve chamber and the control chamber.
  • the first outlet throttle element 16 with its cross-sectional area 17 (A,) is arranged directly behind the mouth 9 on the control room side in the control room ceiling 4.
  • the permanently acting inlet throttle element 15 is in a second additional inlet position, which is identified by reference number 41.
  • the first outlet throttle element 16 received in the main flow channel 8 is flowed through - in relation to the control chamber 3 - in the inlet direction 29 or in the outlet direction 30, the permanently acting inlet throttle element 15 being seen primarily as a leakage quantity limiter, since the actual inlet throttle function depends on the backward flow flow element 17 is taken over - in the feed direction 29.
  • a branch 23 is assigned to an annular gap 22 above the valve chamber 19 of the multi-way valve 18, which branches into an outlet 24 in which a further outlet throttle element 25 is integrated.
  • the cross-sectional area 26 A 2 of the further outlet throttle element 25 is larger than the cross-sectional area A, 17 of the first outlet throttle element 16, which is accommodated in the main flow channel 8 in this embodiment variant and through which the control volume can flow in both directions 29 and 30.
  • FIGS. 1 to 4 have in common that when the valve body 20 of the multi-way valve 18 is in its first seat 27 in the injector body 2, the control chamber 3 is filled by the high pressure present in the inlet 14 on the high-pressure side and the nozzle needle / tappet arrangement 5 is held in its closed position.
  • the control chamber is filled by the first inlet throttle element 15, which is arranged at different points according to the embodiment variants shown here.
  • a very good injection course shaping can be achieved in particular with the embodiment variants according to FIGS. 1 and 4, in which the first outlet throttle elements 16 and the further outlet throttle element 25 are connected in series.
  • FIG. 5 shows a further general embodiment variant of a fuel injector, with a control chamber which is acted upon by a permanently acting inlet throttle opening into it, an outlet throttle being connected downstream of the valve chamber and a first inlet throttle element 15 opening into the valve chamber.
  • a further outlet throttle element 25 with a cross-sectional area 26 A 2 is connected downstream of the valve chamber 19 of the multi-way valve 18, which is accommodated in the outlet 24, which branches off from the annular gap 22.
  • the embodiment variants shown in FIGS. 5, 6, 7 and 8 of the control chamber 3 formed in the injector body 2 of the injector 1 are filled directly via a permanently acting first inlet throttle element 15, which in turn is acted upon by a first inlet 14 on the high-pressure side.
  • the control chamber 3 and the valve chamber 19 of the multi-way valve 18 via two flow channels, i.e. the main flow channel 8 and the secondary flow channel 11 are connected to one another.
  • the main flow channel 8 can be closed by the spherical valve body 20 of the multi-way valve 18 in the following embodiment variants when it enters the second valve seat 28 or can be released again when the transmission element 21 is actuated by an actuator (not shown).
  • a first outlet throttle element 16 is accommodated in the flow channel 11 between the valve chamber 19 of the multi-way valve 18 and the control chamber 3.
  • the bypass duct 11 can be flowed through by the flow volume with respect to the control chamber 3 both in the feed direction 29 and in the drain direction 30.
  • the control-side end of the main flow channel is identified by reference number 9 and its valve-chamber-side opening is identified by reference number 10, while the control-chamber end of the bypass flow channel 11 is identified by reference number 12 and its valve-side end by reference number 13.
  • a further inlet throttle element 51 opens, which is connected to a further inlet 50 on the high-pressure side.
  • valve chamber is in the valve chamber. If, according to this embodiment variant, the valve body 20 of the multi-way valve 18 is placed in its first seat 27, the control chamber is quickly fulfilled via the inlet throttle elements 15 and 51 acting in parallel, in this circuit variant the control chamber via the secondary flow channel 11, the main flow channel 8 and the permanently acting one first inlet throttle element 15 is acted upon.
  • the first outlet throttle element received in the bypass duct 11 is flowed through in the rearward direction when the valve body 20 of the multi-way valve 18 is placed in the first valve seat 27; the nozzle needle / needle arrangement 5 is therefore quickly closed by the control chamber acting on the end face 6 of the nozzle needle / tappet arrangement 3 additionally via a further inlet throttle element 51, which in this case opens into the valve chamber 19 of the multi-way valve 18, is filled and consequently a faster pressure build-up occurs in the control chamber 3.
  • the further inlet throttle element 51 acts as a bypass to the first outlet throttle element 16 accommodated in the bypass duct 11, and when the valve body 20 is moved in the first valve seat 27, a parallel connection of two inlet throttle elements 15 and 51 is brought about.
  • the ability to shape the injection course is given by the fact that, when the valve body 20 is placed in the second valve seat 28 - correspondingly controlled by the actuator actuating the transmission elements 21 - a pressure relief of the control chamber 3 via the series-connected flow restrictor elements, i.e. the first discharge throttle element 16 received in the bypass duct 11 and the further discharge throttle element 25, which can be connected in series therewith, take place in the outlet 24 arranged downstream of the valve chamber 19.
  • the shape of the injection course can be characterized and set by the design of the throttle cross sections 17 and 26 of the first outlet throttle element 16 in the bypass duct 11 and the further outlet throttle element 25 in outlet 24.
  • FIG. 6 shows an embodiment variant as shown in FIG. 5 with a further inlet throttle element opening into the bypass duct.
  • the control chamber 3 in the injector body 2 is filled via a permanently acting first inlet throttle element 15 directly via a first inlet 14 on the high pressure side.
  • a first outlet throttle element 16 is accommodated in the bypass channel 11 in the embodiment variant shown in FIG.
  • Downstream of the valve chamber of the multi-way valve is an outlet 24, which is a further outlet throttle element 25, designed in cross section 26 A 2 includes.
  • the further inlet throttle element 51 of a further inlet 50 on the high-pressure side now does not open in the valve chamber 19, but in the bypass duct 11 at a first distance 54 with respect to the first outlet throttle element 16 arranged in the bypass duct 11.
  • the distance 54 according to the embodiment variant in FIG. 6 it is dimensioned such that in the area of the mouth of the further inlet throttle element 51 and the end of the first outlet throttle element 16 in the bypass duct 11, the flow can again be laminar.
  • the first high-pressure inlet 14 and the further high-pressure inlet 50 and the inlet throttle elements 15 and 51 accommodated therein are connected in parallel, so that, according to this embodiment variant, the control chamber 3 is connected in parallel via two Inlets acted on and thus a quick pressure build-up can be realized, which leads to a quick needle closing.
  • the further inlet 50 on the high-pressure side is designed as a bypass to the first outlet throttle element 16, which is arranged downstream of the control chamber 3.
  • valve body 20 of the multi-way valve When the valve body 20 of the multi-way valve is placed in the second valve seat 28, the pressure in the control chamber 3 is relieved via the outlet throttle elements 16 connected in series in the bypass duct 11 and the further outlet throttle element 25 in the outlet 24 downstream of the valve chamber 19.
  • control chamber 3 is always acted upon directly by a permanently acting first inlet throttle element 15 via a first inlet 14 on the high-pressure side.
  • the control chamber 19 is followed by an outlet 24, in which a further outlet throttle element 25 is accommodated, which is designed in a cross section 26 A 2 .
  • the first outlet throttle element 16 connected downstream of the control chamber is not received in the bypass duct 11, but rather in the main flow duct 8, which can be opened or closed by the valve body 20 of the multi-way valve 18 in the valve chamber 19.
  • the control valve is filled. chamber 3 in the valve body 20 closing the main flow channel 8 via the parallel inlet throttle elements 15 and 51 and the high pressure side inlets 14 and 50 acting on them. Pressure relief of the control chamber 3 takes place according to the embodiment variant of the injector shown in FIG Valve seat provided valve body 20 via the further outlet throttle element received in the outlet 24.
  • the first outlet throttle element 16 accommodated in the main flow channel 8 is not effective since the main flow channel 8 is closed when the pressure in the control chamber 3 is relieved of pressure, so that the pressure relief of the control chamber 3 takes place via the bypass duct 11, the valve chamber 19 and the further outlet throttle element 25 of the outlet 24.
  • FIG. 8 shows a slight modification of the embodiment variant according to FIG. 7.
  • the further inlet 50 on the high-pressure side and the further inlet throttle element 51 integrated therein do not open directly into the main flow channel 8, but rather into the valve chamber 19 of the multi-way valve.
  • the first outlet throttle element 16, designed in a first cross section A, 17, is contained in the main flow channel 8.
  • the valve chamber 19 of the multi-way valve is followed by the outlet 24, which comprises the further outlet throttle element 25, designed in cross section A 2 .
  • the control chamber 3 is pressurized, on the one hand, via the first inlet throttle element 15, which permanently fills it, via the first inlet 14 on the high-pressure side, and via the further inlet throttle element 51, which opens into the valve chamber 19, of another Inlet 50 on the high-pressure side.
  • the control chamber is thus filled via the secondary flow channel 11 and the main flow channel 8, the first outlet throttle element 16, which is incorporated in the main flow channel 8 according to the embodiment variant in FIG. 8, acting as the actual inlet throttle.
  • valve body 20 of the multi-way valve in the valve chamber 19 is placed at its second seat 28, the main flow channel 8 is closed and the pressure in the control chamber 3 is released via the bypass channel 11 into which the outlet 24 downstream of the valve chamber 19 of the multi-way valve 18 is accommodated.
  • the injection profile shaping ability of the injector 1 is achieved in that according to the embodiment variants of FIGS. 5 and 6, when the pressure in the control chamber 3 is relieved, the first outlet throttle element 16 of the bypass duct 11 and the further outlet throttle element 25 of the outlet 24, which is connected downstream of the control chamber 19, act in series and, according to the design of the throttle cross sections A, 17 and A 2 26, injection course shaping can be achieved, while in the embodiment variants shown in FIGS. 7 and 8 the pressure relief of the control chamber 3 when the valve body 20 of the multi-way valve 18 is placed in the second valve seat 28 via the bypass duct 11, the valve chamber 19 into the further outlet throttle element 25 acting individually in these cases in the outlet 24.
  • the control chamber 3 is filled in parallel via the permanently acting first inlet throttle element 15 and the first inlet 18 on the high pressure side and the further inlet throttle element 51 and the other inlet side Inlet 50, which in the variants 5, 6, 7 and 8 at different points, ie the valve chamber 19, the secondary flow channel 11, main flow channel 8 can open.

Abstract

The invention relates to a fuel injector for injecting fuel into the combustion chamber of an internal combustion engine. A multi-way valve (18) is accommodated inside the injector body (2) and comprises a valve body (20) enclosed by a valve space (19). A control space (3) is subjected to the action of pressure or relieved from pressure when the multi-way valve (18) inside the injector body (2) is actuated, whereby the control space (3) is pressurized via at least one inlet throttling element (15) and is relieved from pressure via at least one discharge throttling element (16). Another discharge throttling element (25) is connected down from the valve space (19) of the multi-way valve (18) on the discharge side, whereby the valve space (19) and the control space (3) are connected to one another via a main flow channel (8) and an auxiliary flow channel (11).

Description

Kraftstoffinjektor mit Einspritzverlaufsformung durch schaltbare DrosselelementeFuel injector with injection course shaping through switchable throttle elements
Technisches GebietTechnical field
Kraftstoffeinspritzsysteme an direkt einspritzenden Verbrennungskraftmaschinen werden zunehmend als Speichereinspritzsysteme ausgeführt. Über eine Hochdruckpumpe oder einen Hochdruckspeicherraum wird den einzelnen Kraftstoffinjektoren in Einspritzsequenz unter extrem hohem Druck stehender Kraftstoff zugeleitet, wobei die Kraftstoffzufuhr nahezu druckschwankungsfrei auf einem extrem hohen Druckniveau erfolgt. Neben der Zufuhr von Kraftstoff auf einem hohen nahezu konstantem Druckniveau ist hinsichtlich der Partikelemission der Einspritzbeginn sowie das Ende der Einspritzung abhängig vom Fort- schritt der Verbrennung im Brennraum einer Verbrennungskraftmaschine von großer Bedeutung.Fuel injection systems on direct-injection internal combustion engines are increasingly being implemented as accumulator injection systems. A high-pressure pump or a high-pressure storage space is used to supply the individual fuel injectors in an injection sequence under extremely high pressure, the fuel being supplied at an extremely high pressure level almost without fluctuations in pressure. In addition to supplying fuel at a high, almost constant pressure level, the start of injection and the end of injection are of great importance with regard to particle emission, depending on the progress of the combustion in the combustion chamber of an internal combustion engine.
Stand der TechnikState of the art
Aus DE 199 10 589 AI ist ein Einspritzventil für eine Verbrennungskraftmaschine bekannt, welches ein Servoventil umfaßt, das hydraulisch der Öffnungs- und Schließbewegung der Düsennadel für den Einspritzvorgang steuert. Das Einspritzventil umfaßt einen Ventilkörper und ein darin beweglich angeordnetes Ventilelement, welches in Schließposition auf einen Ventilsitz drückt. Abhängig von dem in einem Steuerraum herrschenden Druck wird die Verbindung zwischen einem Einlaßkanal und einer Einspritzdüse unterbrochen wobei der Druck im Steuerraum von einem Aktor gesteuert wird. Das Ventilelement weist einen Kanal mit einer Drossel, der zu einer Nut im Ventilelement führt auf, wobei die Nut einen kolbenförmigen Absatz umfaßt, der im wesentlichen abdichtend an der Wand einer Bohrung im Ventilkörper anliegt, wenn das Servoventil geschlossen ist. Die Bohrung erweitert sich in einem Abstand von der Oberkante der Nut bezogen auf die Stellung des Ventilelementes bei geschlossenem Servoventil derart radial, das sich bei offenem Servoventil eine direkte Verbindung zwischen Ventilsitz und Nut ergibt, von der Kanäle zur Einspritzdüse fuhren. Mit dieser Lösung läßt sich in der Anfangsphase der Einspritzung eine gedrosselte Verbindung zu der Einspritzdüse des Einspritzsystemes herstellen. Im weiteren Verlauf des Einspritzvorgangs wird dann, wenn sich das Servoventil weiter öffnet unter Umgehung der während der Anfangsphase der Einspritzung wirksamen Drossel eine di- rekte entdrosselte Verbindung zu der Einspritzdüse aufgebaut, so dass beim Übergang von der Anfangs- zur Hauptphase des Einspritzvorganges eine ungehinderte Einspritzung von Kraftstoff in den Brennraum der Verbrennungskraftmaschine erfolgen kann.From DE 199 10 589 AI an injection valve for an internal combustion engine is known which comprises a servo valve which hydraulically controls the opening and closing movement of the nozzle needle for the injection process. The injection valve comprises a valve body and a valve element movably arranged therein, which presses on a valve seat in the closed position. Depending on the pressure prevailing in a control room, the connection between an inlet channel and an injection nozzle is interrupted, the pressure in the control room being controlled by an actuator. The valve element has a channel with a throttle, which leads to a groove in the valve element, the groove comprising a piston-shaped shoulder, which lies essentially sealingly against the wall of a bore in the valve body when the servo valve is closed. The bore widens radially at a distance from the upper edge of the groove in relation to the position of the valve element when the servo valve is closed, so that when the servo valve is open there is a direct connection between the valve seat and the groove, from which channels lead to the injection nozzle. This solution can be used in the initial phase of injection Establish throttled connection to the injection nozzle of the injection system. In the further course of the injection process, when the servo valve opens further, bypassing the throttle that is active during the initial phase of the injection, a direct dethrottled connection to the injection nozzle is established, so that an unimpeded injection occurs during the transition from the initial to the main phase of the injection process of fuel can take place in the combustion chamber of the internal combustion engine.
EP 0 994 248 A2 betrifft ein Kraftstoffinjektor mit Einspritzverlaufsformung durch auf piezoelektrischem Wege erfolgenden Düsennadelhub im Injektorkörper. Zur Vermeidung von unerwünschten Abgasemissionen sind zumindest drei verschiedene den Betriebsbereich einer Verbrennungskraftmaschine abdeckende Einspritzraten wünschenswert. Diese Einspritzraten lassen sich durch einen rampenförmigen Anstieg, eine Bootphase sowie eine annähernd trapezförmig verlaufende Phase charakterisieren. Bei der aus EP 0 994 248 A2 bekannten Lösung umfaßt ein Kraftstoffinjektor einen Injektorkörper, der eine Einspritzöffnung enthält. Eine Düsennadel ist innerhalb des Injektorkörpers bewegbar angeordnet und zwischen einer Öffnungsstellung und einer Schließposition bewegbar. Im Injektorkörper ist ferner ein Piezoaktor angeordnet, der zwischen einer eingeschalteten und einer ausgeschalteten Position bewegbar ist. Mittels eines Kopplungselementes sind die Düsennadel und der Piezoaktor miteinander derart verkoppelt, dass die Bewegung des Pie- zoaktors innerhalb des Injektorkörpers in eine größere Hubbewegung der Düsennadel übersetzt wird. Die Düsennadel ist zwischen ihrer Öffnungsstellung bzw. ihrer Schließposition in einer Vielzahl von Hubstellungen anhaltbar, was eine Beeinflussung der Einspritzmenge entsprechend der Halteposition der Düsennadel im Injektorkörper zuläßt. Mit dieser Lö- sung läßt sich die Einspritzung entsprechender Einspritzraten in den Brennraum und damit eine Formung des Einspritzverlaufes erzielen.EP 0 994 248 A2 relates to a fuel injector with injection profile shaping by means of a piezoelectric stroke in the injector body. To avoid undesired exhaust gas emissions, at least three different injection rates covering the operating range of an internal combustion engine are desirable. These injection rates can be characterized by a ramp-like rise, a boot phase and an approximately trapezoidal phase. In the solution known from EP 0 994 248 A2, a fuel injector comprises an injector body which contains an injection opening. A nozzle needle is movably arranged within the injector body and movable between an open position and a closed position. In addition, a piezo actuator is arranged in the injector body and can be moved between an activated and an deactivated position. The nozzle needle and the piezo actuator are coupled to one another by means of a coupling element in such a way that the movement of the piezo actuator within the injector body is translated into a larger stroke movement of the nozzle needle. The nozzle needle can be stopped in a plurality of stroke positions between its open position and its closed position, which allows the injection quantity to be influenced in accordance with the holding position of the nozzle needle in the injector body. With this solution, the injection of corresponding injection rates into the combustion chamber and thus a shaping of the injection process can be achieved.
Darstellung der ErfindungPresentation of the invention
Die erfindungsgemäße Lösung bietet den Vorteil, die Fähigkeit zur Einspritzverlaufsformung durch ein Zu- bzw. ein Abschalten von Ablaufdrosselelementen bzw. Zulaufdrosselelementen in Kombination mit einem Mehrwegeventil z.B. eines 3/3- Wege- Ventiles in einem Kraftstoffinjektor darzustellen.The solution according to the invention offers the advantage of being able to shape the injection course by switching on or off discharge throttle elements or inlet throttle elements in combination with a multi-way valve e.g. to represent a 3/3-way valve in a fuel injector.
In einer ersten generellen Ausführungsvariante ist ein erstes Ablaufdrosselelement stets dem Ablauf des Ventilraumes des Mehrwegeventiles nachgeschaltet. Gemäß dieser Variante, bei der der Ventilraum des Mehrwegeventils über einen Hauptstromkanal und einen parallel der zu verlaufenden Nebenstromkanal mit dem die Düsennadel betätigenden Steu- erraum in Verbindung stehen, kann ein weiteres Ablaufdrosselelement sowohl im Neben- stromkanal als auch im Hauptstromkanal untergebracht werden. Das Zulaufdrosselelement jedoch kann sowohl in den Ventilraum des Mehrwegeventils mündend angeordnet sein als auch direkt im Steuerraum münden oder in einen der den Ventilraum mit dem Steuerraum verbindenden Kanäle z.B. dem Hauptstromkanal mündend ausgebildet sein.In a first general embodiment variant, a first outlet throttle element is always connected downstream of the outlet of the valve chamber of the multi-way valve. According to this variant, in which the valve chamber of the multi-way valve is connected via a main flow channel and a bypass channel to be run parallel to the control valve actuating the nozzle needle. connection, a further outlet throttle element can be accommodated both in the secondary flow channel and in the main flow channel. However, the inlet throttle element can both be arranged to open into the valve chamber of the multi-way valve and also open directly into the control chamber or be designed to open into one of the channels connecting the valve chamber to the control chamber, for example the main flow channel.
Die Befüllung des die Düsennadel betätigenden Steuerraum mit einem Steuervolumen erfolgt stets mittels der Zulaufdrossel, die an verschiedenen Stellen im Injektorkörper des Kraftstoffinjektors angeordnet sein kann. Wird das weitere Ablaufdrosselelement in einem kleineren Drosselquerschnitt, verglichen zu dem den Ventilraum des Mehrwegeventiles nachgeschalteten ersten Ablaufdrosselelementes ausgeführt, lassen sich diese beiden Ablaufdrosselelemente zur Einspritzverlaufsformung sowohl in Reihe als auch parallel zueinander schalten. Eine besonders gute Formung des Einspritzverlaufes läßt sich bei in Reihe geschaltetem ersten Ablaufdrosselelement mit dem weiteren Ablaufdrosselelement realisie- ren.The control chamber actuating the nozzle needle is always filled with a control volume by means of the inlet throttle, which can be arranged at various points in the injector body of the fuel injector. If the further outlet throttle element is designed in a smaller throttle cross-section compared to the first outlet throttle element downstream of the valve chamber of the multi-way valve, these two outlet throttle elements can be connected both in series and in parallel to one another for shaping the course of the injection. Particularly good shaping of the injection profile can be achieved with the first outlet throttle element connected in series with the further outlet throttle element.
Neben der Reihen- bzw. Parallelschaltung von Ablaufdrosselelementen ist es gemäß einer weiteren generellen Ausfuhrungsvariante des der Erfindung zugrundeliegenden Gedankens auch möglich, eine Einspritzverlaufsformung an einem Kraftstoffinjektor, der mit zwei Zulaufdrosselelementen und zwei Ablaufdrosselelementen ausgestattet ist, durch geeignete Schaltungskombination der Drosselelemente miteinander zu realisieren. Auch gemäß dieser generellen Ausführungsvariante bleibt eine der Ablaufdrosselelemente im Ventilraum des Mehrwegeventils stets nachgeschaltet. Bei dem Mehrwegeventil kann es sich wie vorstehend bereits erwähnt, um ein 3/3 -Wege- Ventil handeln, wobei eine Einspritzverlaufs- formung insbesondere durch die Kombination des weiteren Ablaufdrosselelementes, entweder aufgenommen gemäß einer Untervariante im Hauptstrom oder einer anderen Untervariante im Nebenstromkanal, erfolgt. Gemäß der skizzierten generellen Ausführungsvariante mündet ein erstes Zulaufdrosselelement stets direkt im Steuerraum, welcher die Düsennadel/Stößelbewegung im Injektorkörper steuert. Das weitere Zulaufdrosselelement dieser Lösungsvariante ist so angeordnet, dass es beim Öffnen als Bypass zum ersten Ablaufdrosselelement geschaltet ist. Damit kann eine Befüllung des Steuerraumes über zwei parallel schaltbare Zulaufdrosselelemente erfolgen, was eine schnelle Nadelschließgeschwindigkeit ermöglicht. Die Einspritzverlaufsformung wird dadurch unterstützt, dass zwei Ablaufdrosselelemente in Reihenschaltung oder einzeln wirkend schaltbar sind.In addition to the series or parallel connection of outlet throttle elements, it is also possible, according to a further general embodiment variant of the concept on which the invention is based, to form an injection profile on a fuel injector which is equipped with two inlet throttle elements and two outlet throttle elements by means of a suitable circuit combination of the throttle elements. According to this general design variant, too, one of the outlet throttle elements in the valve chamber of the multi-way valve always remains downstream. As already mentioned above, the multi-way valve can be a 3/3-way valve, injection course shaping taking place in particular through the combination of the further outlet throttle element, either incorporated according to a sub-variant in the main flow or another sub-variant in the bypass duct , According to the general design variant outlined, a first inlet throttle element always opens directly into the control chamber, which controls the nozzle needle / tappet movement in the injector body. The further inlet throttle element of this solution variant is arranged such that it is connected to the first outlet throttle element when it is opened as a bypass. The control chamber can thus be filled via two inlet throttle elements which can be connected in parallel, which enables a rapid needle closing speed. The injection course shaping is supported in that two discharge throttle elements can be switched in series or individually acting.
Mit dieser generellen Ausfuhrungsvariante ist ein besonders schnelles Schließen der Düsennadel im Injektorkörper erzielbar. Ein Kraftstoffinjektor, der gemäß der beiden dargestellten skizzierten generellen Ausführungsvarianten hergestellt wird, zeichnet sich durch eine besonders günstige und einfache Herstellbarkeit aus.With this general embodiment variant, a particularly quick closing of the nozzle needle in the injector body can be achieved. A fuel injector that is manufactured in accordance with the two general design variants outlined is characterized by particularly inexpensive and simple manufacturability.
Zeichnungdrawing
Anhand der Zeichnung wird die Erfindung nachstehend eingehender beschrieben.The invention is described in more detail below with reference to the drawing.
Es zeigt:It shows:
Figur 1 eine Ausführungsvariante mit einer einem Steuerraum nachgeschaltetenFigure 1 shows an embodiment variant with a control room downstream
Ablaufdrossel, einer weiteren Ablaufdrossel im Nebenstromkanal und einer Zulaufdrossel im Ventilraum,Outlet throttle, a further outlet throttle in the bypass duct and an inlet throttle in the valve chamber,
Figur 2 eine Ausfuhrungsvariante mit einem im Hauptstromkanal aufgenommenen ersten Ablaufdrosselelement und in den Steuerraum mündender Zulaufdrossel,FIG. 2 shows an embodiment variant with a first outlet throttle element accommodated in the main flow channel and an inlet throttle opening into the control chamber,
Figur 3 eine Ausfuhrungsvariante gemäß Figur 2 mit in den Ventilraum münden- der Zulaufdrossel,FIG. 3 shows an embodiment variant according to FIG. 2 with the inlet throttle opening into the valve chamber,
Figur 4 eine Ausfuhrungsvariante mit einer in den Hauptstromkanal mündendenFigure 4 shows an embodiment variant with an opening in the main flow channel
Zulaufdrossel,Inlet throttle,
Figur 5 ein Steuerraum, der über eine in diese mündende Zulaufdrossel mit Steuervolumen beaufschlagt wird und dem eine Ablaufdrossel nachgeschaltet ist, mit in den Ventilraum mündender weiterer Zulaufdrossel,5 shows a control chamber which is acted upon by control volume via an inlet throttle opening into it and which is followed by an outlet throttle with a further inlet throttle opening into the valve chamber,
Figur 6 eine Ausfuhrungsvariante gemäß Figur 5 mit in den Nebenstromkanal mündenden weiteren Zulaufdrosselelement,FIG. 6 shows an embodiment variant according to FIG. 5 with a further inlet throttle element opening into the bypass duct,
Figur 7 eine Ausführungsvariante gemäß Figur 5 mit in den Hauptstromkanal aufgenommenen weiteren Ablaufdrosselelement und oberhalb von diesem mündender weiterer Zulaufdrossel undFIG. 7 shows an embodiment variant according to FIG. 5 with a further outlet throttle element incorporated in the main flow channel and a further inlet throttle and above this opening
Figur 8 eine Ausführungsvariante gemäß der Darstellung in Figur 7 mit in denFigure 8 shows an embodiment variant as shown in Figure 7 in the
Ventilraum des Mehrwegeventiles mündenden weiterem Zulaufdrosselelement. AusfuhrungsvariantenValve chamber of the multi-way valve opening further inlet throttle element. design variants
Figur 1 zeigt eine Ausführungsvariante mit einem einem Steuerraum nachgeschalteten Ablaufdrosselelement, einem weiteren Ablaufdrosselelement im Nebenstromkanal und einer im Ventilraum eines Mehrwegeventiles mündenden Zulaufdrossel.FIG. 1 shows an embodiment variant with an outlet throttle element connected downstream of a control chamber, a further outlet throttle element in the bypass duct and an inlet throttle opening into the valve chamber of a multi-way valve.
Ein Injektor zum Einspritzen von Kraftstoff in den Brennraum einer Verbrennungskraftmaschine umfaßt einen Injektorkörper 2, in welchem ein Steuerraum 3 ausgebildet ist. Der Steuerraum 3 wird einerseits von einer Steuerraumdecke 4 des Injektorkörpers 2 und andererseits von einer Stirnfläche 6 einer DüsennadelVStößelanordnung 5 begrenzt. Ferner ist der Steuerraum 3 von einer Steuerraum wand 7 des Injektorkörpers 2 begrenzt. Der Steuerraum 3 steht über einen ersten Strömungskanal, dem Hauptstromkanal 8 über eine steuer- raumseitige Mündung 9 und eine ventilraumseitige Mündung 10 mit einem Ventilraum 19 eines Mehrwegeventiles 18 in Verbindung. Das Mehrwegeventil 18 wird vorzugsweise als ein 3/3-Wege- Ventil ausgebildet. Ferner steht der Steuerraum 3 über einen zweiten Strömungskanal 11, dem Nebenstromkanal mit dem Ventilraum 19 des Mehrwegeventils in Verbindung. Die steuerraumseitige Mündung des Stromkanals 11 ist mit Bezugszeichen 12 gekennzeichnet, während die ventilraumseitige Mündung des Nebenstromkanales 11 mit Bezugszeichen 13 identifiziert ist. Sowohl der Hauptstromkanal 8 als auch der Nebenstromkanal 11 zwischen Steuerraum 3 und Ventilraum 19 sind in beide Fließrichtungen 29 bzw. 30 von Kraftstoff durchströmbar.An injector for injecting fuel into the combustion chamber of an internal combustion engine comprises an injector body 2, in which a control chamber 3 is formed. The control room 3 is delimited on the one hand by a control room ceiling 4 of the injector body 2 and on the other hand by an end face 6 of a nozzle needle tappet arrangement 5. Furthermore, the control room 3 is delimited by a control room wall 7 of the injector body 2. The control chamber 3 is connected to a valve chamber 19 of a multi-way valve 18 via a first flow channel, the main flow channel 8 via a control chamber-side opening 9 and a valve chamber-side opening 10. The multi-way valve 18 is preferably designed as a 3/3-way valve. Furthermore, the control chamber 3 is connected to the valve chamber 19 of the multi-way valve via a second flow channel 11, the bypass channel. The mouth of the flow channel 11 on the control room side is identified by reference numeral 12, while the mouth of the secondary flow channel 11 on the valve room side is identified by reference number 13. Both the main flow channel 8 and the secondary flow channel 11 between the control chamber 3 and the valve chamber 19 can be flowed through by fuel in both flow directions 29 and 30.
Der Ventilraum 19, in welchem ein in der Darstellung gemäß Figur 1 kugelförmig konfigu- rierter Schließkörper 20 aufgenommen ist, steht über ein erstes Zulaufdrosselelement 15 mit einem ersten hochdruckseitigen Zulauf 14 in Verbindung. Im Nebenstromkanal 11 ist ein Ablaufdrosselelement 16 angeordnet, welches eine Querschnittsfläche 17 (A2) aufweist.The valve chamber 19, in which a closing body 20 configured in a spherical configuration in the illustration according to FIG. 1 is accommodated, is connected via a first inlet throttle element 15 to a first inlet 14 on the high-pressure side. An outlet throttle element 16 is arranged in the bypass duct 11 and has a cross-sectional area 17 (A 2 ).
Oberhalb des kugelförmig konfigurierten Schließkörpers 20 des Mehrwegeventils 18 ist ein auf den Schließkörper 20 einwirkendes Übertragungselement 21 dargestellt, welches über einen hier nicht näher dargestellten Aktor - sei es ein Piezoaktor oder ein Magnetventil - betätigbar ist. Zwischen der Mantelfläche des Übertragungselementes 21 und der Wandung des Injektorkörpers 2 ist ein Ringspalt 22 ausgebildet, von welchem ein Abzweig 23 in Richtung eines Ablaufes 24 verläuft. Im Ablauf 24, dem Abzweig 23 nachgeordnet, ist ein weiteres Ablaufdrosselelement 25 ausgebildet, welches in einer Querschnittsfläche Aj ausgeführt ist. Der Ventilkörper 20 des Mehrwegeventiles 18 ist mittels des Übertragungselementes 21 zwischen einem ersten Sitz 27 und einem weiteren, dem zweiten Sitz 28 hin- und herschaltbar. Zur Erzielung einer Einspritzverlaufsformung ist das erste Ablaufdros- selelement 16, welches in der Darstellung gemäß Figur 1 im Nebenstromkanal 11 aufgenommen ist, mit einer Querschnittsfläche A, versehen, welche kleiner bemessen ist als die Querschnittsfläche 26 A2 des weiteren Ablaufdrosselelementes.Above the spherically configured closing body 20 of the multi-way valve 18, a transmission element 21 acting on the closing body 20 is shown, which can be actuated by an actuator (not shown here) - be it a piezo actuator or a solenoid valve. Between the outer surface of the transmission element 21 and the wall of the injector body 2, an annular gap 22 is formed, from which a branch 23 runs in the direction of an outlet 24. In outlet 24, downstream of branch 23, a further outlet throttle element 25 is formed, which is designed in a cross-sectional area Aj. The valve body 20 of the multi-way valve 18 can be switched back and forth by means of the transmission element 21 between a first seat 27 and a further, the second seat 28. In order to achieve an injection course shaping, the first flow restriction is Sel element 16, which is received in the bypass duct 11 in the illustration according to FIG. 1, is provided with a cross-sectional area A, which is dimensioned smaller than the cross-sectional area 26 A 2 of the further outlet throttle element.
Bei in den zweiten Ventilsitz 28 gestellten Ventilkörper 20 des Mehrwegeventiles 18 wirken das im Nebenstromkanal 11 aufgenommene erste Ablaufdrosselelement 16 in Abiaufrichtung 30 des Steuervolumens aus dem Steuerraum 3 gesehen und das über den Ventilraum 19 mit abzusteuerndem Steuervolumen beaufschlagte weitere Ablaufdrosselelement 25 im Ablauf 24 in Reihe. Bei in Reihe geschalteten Ablaufdrosselelementen 16 bzw. 25 läßt sich eine sehr gute Einspritzverlaufsformung, entsprechend der Dimensionierung der Drosselquerschnitte A, 17 bzw. A2 26 konfigurierte Durchflußflächen erzielen.When the valve body 20 of the multi-way valve 18 is placed in the second valve seat 28, the first outlet throttle element 16 received in the bypass duct 11 acts in the outlet direction 30 of the control volume from the control chamber 3 and the further outlet throttle element 25 acted upon via the valve chamber 19 with the control volume to be controlled in the outlet 24 in series. In the case of discharge throttle elements 16 and 25 connected in series, very good injection curve shaping can be achieved in accordance with the dimensioning of the throttle cross sections A, 17 and A 2 26 configured flow areas.
In Figur 2 ist eine Ausfuhrungsvariante mit einem im Hauptstromkanal aufgenommenen ersten Ablaufdrosselelement und einem in den Steuerraum unmittelbar mündender Zulauf- drosselelement dargestellt.FIG. 2 shows an embodiment variant with a first outlet throttle element received in the main flow channel and an inlet throttle element opening directly into the control chamber.
Auch gemäß dieser Ausführungsvariante stehen der Ventilraum 19 des Mehrwegeventils 18 sowie der Steuerraum 3 im Injektorkörper 2 über zwei parallel zueinander verlaufende Strömungskanäle, d.h. den Hauptstromkanal 8 un den Nebenstromkanal 11 in Verbindung. Der Ventilkörper 20 des Mehrwegeventils 18 ist mittels eines Übertragungselementes 21 zwischen einem ersten Ventilsitz 27 und einem zweiten Ventilsitz 28 oberhalb des Haupt- stromkanales 8 bewegbar. Vom Ringspalt 22, der das Übertragungselement 21 zur An- steuerung des Ventilkörpers 20 betätigt, zweigt ein Ablauf 24 an der Abzweigstelle 23 ab, in welchen das weitere Ablaufdrosselelement 25 mit Querschnittsfläche A2, Bezugszeichen 26, integriert ist. Im Unterschied zur Darstellung gemäß Figur 1 ist der Steuerraum 3 unmittelbar durch eine permanent wirkende Zulaufdrossel 14 von einem ersten hochdruck- seitigem Zulauf 14 mit Kraftstoff versorgt. Ferner ist das erste Ablaufdrosselelement 16 im Gegensatz zur Darstellung gemäß Figur 1 in den Hauptstromkanal 8 integriert.According to this embodiment variant, the valve chamber 19 of the multi-way valve 18 and the control chamber 3 in the injector body 2 are connected via two flow channels running parallel to one another, ie the main flow channel 8 and the secondary flow channel 11. The valve body 20 of the multi-way valve 18 can be moved by means of a transmission element 21 between a first valve seat 27 and a second valve seat 28 above the main flow channel 8. From the annular gap 22, which actuates the transmission element 21 to control the valve body 20, an outlet 24 branches off at the branch point 23, in which the further outlet throttle element 25 with cross-sectional area A 2 , reference numeral 26, is integrated. In contrast to the representation according to FIG. 1, the control chamber 3 is supplied with fuel directly by a permanently acting inlet throttle 14 from a first inlet 14 on the high-pressure side. Furthermore, in contrast to the illustration according to FIG. 1, the first outlet throttle element 16 is integrated into the main flow channel 8.
Bei dieser Ausfuhrungsvariante wirken das erste Ablaufdrosselelement 16, aufgenommen im Hauptstromkanal 8 sowie das weitere Ablaufdrosselelement 25, aufgenommen im Ablauf 24 parallel zueinander. Auch gemäß dieser Ausfuhrungsvariante liegt die Querschnitts- fläche 17 A, des ersten Ablaufdrosselelementes 16 unterhalb der Querschnittsfläche 26 A2 des weiteren Ablaufdrosselelementes.In this embodiment variant, the first outlet throttle element 16, accommodated in the main flow channel 8, and the further outlet throttle element 25, accommodated in the outlet 24, act parallel to one another. According to this embodiment variant, too, the cross-sectional area 17 A of the first outlet throttle element 16 lies below the cross-sectional area 26 A 2 of the further outlet throttle element.
Figur 3 zeigt eine Ausführungsvariante gemäß Figur 2 jedoch mit in den Ventilraum mündender, permanent wirkender Zulaufdrossel. Diese Ausführungsvariante unterscheidet sich von derjenigen gemäß Figur 2 lediglich dadurch, dass das permanent wirkende erste Zulaufdrosselelement 15 des ersten hochdruck- seitigen Zulaufes 14 nicht unmittelbar in den Steuerraum 3 mündet sondern seitlich in den den Ventilkörper 20 des Mehrwegeventiles 18 umgebenden Ventilraum 19 im Injektorkör- per 2. Der Hauptstromkanal 8 wird demnach sowohl - in Bezug auf den Steuerraum 3 gesehen - in Zulaufrichtung 29 als auch in Abiaufrichtung 30 vom Steuervolumen durchströmt. Die steuerraumseitigen Mündungen des Hauptstromkanales 8 sowie des Neben- stromkanales 11 sind analog zur Darstellung gemäß den Figuren 2 und 3 mit den Bezugszeichen 9 und 12 identifiziert, während die ventilraumseitigen Mündungen 10 bzw. 13 von Hauptstromkanal 8 und Nebenstromkanal 11 analog zu den vorhergehenden Figuren mit den Bezugszeichen 10 bzw. 13 gekennzeichnet sind.FIG. 3 shows an embodiment variant according to FIG. 2, however, with a permanently acting inlet throttle opening into the valve chamber. This embodiment variant differs from that according to FIG. 2 only in that the permanently acting first inlet throttle element 15 of the first high-pressure inlet 14 does not open directly into the control chamber 3 but laterally into the valve chamber 19 surrounding the valve body 20 of the multi-way valve 18 in the injector body 2. The main flow channel 8 is therefore flowed through both in relation to the control chamber 3 in the feed direction 29 and in the drain direction 30 by the control volume. The control chamber-side orifices of the main flow channel 8 and the secondary flow channel 11 are identified with the reference numerals 9 and 12 analogously to the illustration according to FIGS. 2 and 3, while the valve chamber-side orifices 10 and 13 of the main flow channel 8 and the secondary flow channel 11 are also identified in the same way as in the previous figures the reference numerals 10 and 13 are identified.
Figur 4 zeigt eine Ausfuhrungsvariante mit einem in dem Hauptstromkanal zwischen Ventilraum und Steuerraum mündenden permanent wirkenden Zulaufdrosselelement.FIG. 4 shows an embodiment variant with a permanently acting inlet throttle element opening into the main flow channel between the valve chamber and the control chamber.
Gemäß dieser Ausführungsvariante des der Erfindung zugrundeliegenden Gedankens ist das erste Ablaufdrosselelement 16 mit seiner Querschnittsfläche 17 (A,) unmittelbar hinter der steuerraumseitigen Mündung 9 in der Steuerraumdecke 4 angeordnet. Im Unterschied zu den Darstellungen gemäß der Figuren 1 und 2 befindet sich das permanent wirkende Zulaufdrosselelement 15 in einer zweiten weiteren Zulaufposition, die mit Bezugszeichen 41 bekennzeichnet ist. Das im Hauptstromkanal 8 aufgenommene erste Ablaufdrosselelement 16 wird - in bezug auf den Steuerraum 3 - in Zulaufrichtung 29 bzw. in Abiaufrichtung 30 durchströmt, wobei das permanent wirkende Zulaufdrosselelement 15 in erster Linie als ein Leckagenmengenbegrenzer zu sehen ist, da die eigentliche Zulaufdrossel- funktion vom rückwärts - in Zulaufrichtung 29 - durchströmten ersten Ablaufdrosselelement 17 übernommen wird. Auch in dieser Ausführungsvariante ist einem Ringspalt 22 oberhalb des Ventilraumes 19 des Mehrwegeventiles 18 ein Abzweig 23 zugeordnet, welcher in einen Ablauf 24 übergeht, in welchem ein weiteres Ablaufdrosselelement 25 integriert ist. Die Querschnittsfläche 26 A2 des weiteren Ablaufdrosselelementes 25 ist größer bemessen als die Querschnittsfläche A, 17 des ersten Ablaufdrosselelementes 16, welches in dieser Ausführungsvariante im Hauptstromkanal 8 aufgenommen ist und in beide Richtungen 29 bzw. 30 vom Steuervolumen durchströmt werden kann.According to this embodiment variant of the idea on which the invention is based, the first outlet throttle element 16 with its cross-sectional area 17 (A,) is arranged directly behind the mouth 9 on the control room side in the control room ceiling 4. In contrast to the representations according to FIGS. 1 and 2, the permanently acting inlet throttle element 15 is in a second additional inlet position, which is identified by reference number 41. The first outlet throttle element 16 received in the main flow channel 8 is flowed through - in relation to the control chamber 3 - in the inlet direction 29 or in the outlet direction 30, the permanently acting inlet throttle element 15 being seen primarily as a leakage quantity limiter, since the actual inlet throttle function depends on the backward flow flow element 17 is taken over - in the feed direction 29. In this embodiment variant too, a branch 23 is assigned to an annular gap 22 above the valve chamber 19 of the multi-way valve 18, which branches into an outlet 24 in which a further outlet throttle element 25 is integrated. The cross-sectional area 26 A 2 of the further outlet throttle element 25 is larger than the cross-sectional area A, 17 of the first outlet throttle element 16, which is accommodated in the main flow channel 8 in this embodiment variant and through which the control volume can flow in both directions 29 and 30.
Den in Figur 1 bis 4 wiedergegebenen Ausfuhrungsvarianten ist gemeinsam, das bei Stel- lung des Ventilkörpers 20 des Mehrwegeventils 18 an seinen ersten Sitz 27 im Injektorkorper 2 der Steuerraum 3 durch den im hochdruckseitigen Zulauf 14 anstehenden hohen Druck befüllt wird und die DüsennadeL/Stößelanordnung 5 in ihre Schließposition gehalten wird. Die Befüllung des Steuerraumes erfolgt durch das erste Zulaufdrosselelement 15, welches gemäß der hier dargestellten Ausfuhrungsvarianten an verschiedenen Stellen angeordnet ist. Eine sehr gute Einspritzverlaufsformung läßt sich insbesondere mit den Ausführungsvarianten gemäß der Figuren 1 und 4 erzielen, bei welchen die als erste Ablaufdrosselelemente 16 sowie das weitere Ablaufdrosselelement 25 in Reihe geschaltet sind.The embodiment variants shown in FIGS. 1 to 4 have in common that when the valve body 20 of the multi-way valve 18 is in its first seat 27 in the injector body 2, the control chamber 3 is filled by the high pressure present in the inlet 14 on the high-pressure side and the nozzle needle / tappet arrangement 5 is held in its closed position. The control chamber is filled by the first inlet throttle element 15, which is arranged at different points according to the embodiment variants shown here. A very good injection course shaping can be achieved in particular with the embodiment variants according to FIGS. 1 and 4, in which the first outlet throttle elements 16 and the further outlet throttle element 25 are connected in series.
Figur 5 zeigt eine weitere generelle Ausführungsvariante eines Kraftstoffinjektors, mit einem Steuerraum, der über eine in diesen mündende permanent wirkende Zulaufdrossel beaufschlagt ist wobei dem Ventilraum eine Ablaufdrossel nachgeschaltet ist und in den Ventilraum ein erstes Zulaufdrosselelement 15 mündet.FIG. 5 shows a further general embodiment variant of a fuel injector, with a control chamber which is acted upon by a permanently acting inlet throttle opening into it, an outlet throttle being connected downstream of the valve chamber and a first inlet throttle element 15 opening into the valve chamber.
Auch bei den nachfolgend beschriebenen Figuren 5, 6, 7 und 8 ist dem Ventilraum 19 des Mehrwegeventiles 18 jeweils ein weiteres Ablaufdrosselelement 25 mit einer Querschnitts- fläche 26 A2 nachgeschaltet, welches im Ablauf 24, der vom Ringspalt 22 abzweigt, aufgenommen ist.In FIGS. 5, 6, 7 and 8 described below, a further outlet throttle element 25 with a cross-sectional area 26 A 2 is connected downstream of the valve chamber 19 of the multi-way valve 18, which is accommodated in the outlet 24, which branches off from the annular gap 22.
Ferner wird der in den Figuren 5, 6, 7 und 8 dargestellten Ausfuhrungsvarianten der im Injektorkörper 2 des Injektors 1 ausgebildete Steuerraum 3 unmittelbar über ein permanent wirkendes erstes Zulaufdrosselelement 15 befüllt, welches seinerseits von einem ersten hochdruckseitigen Zulauf 14 beaufschlagt wird. Eine weitere Gemeinsamkeit besteht darin, das in den nachfolgend beschriebenen Ausführungsvarianten des der Erfindung zugrundeliegenden Gedankens der Steuerraum 3 sowie der Ventilraum 19 des Mehrwegeventiles 18 über zwei Strömungskanäle, d.h. den Hauptstromkanal 8 sowie den Nebenstromkanal 11 miteinander in Verbindung stehen. Dabei ist der Hauptstromkanal 8 durch den in den nachstehenden Ausfuhrungsvarianten kugelförmig ausgebildeten Ventilkörper 20 des Mehrwe- geventiles 18 bei dessen Einfahren in den zweiten Ventilsitz 28 verschließbar bzw. bei Betätigung des Übertragungselementes 21 durch einen nicht dargestellten Aktor auch wieder freigebbar.Furthermore, the embodiment variants shown in FIGS. 5, 6, 7 and 8 of the control chamber 3 formed in the injector body 2 of the injector 1 are filled directly via a permanently acting first inlet throttle element 15, which in turn is acted upon by a first inlet 14 on the high-pressure side. Another common feature is that in the embodiment variants described below of the concept on which the invention is based, the control chamber 3 and the valve chamber 19 of the multi-way valve 18 via two flow channels, i.e. the main flow channel 8 and the secondary flow channel 11 are connected to one another. The main flow channel 8 can be closed by the spherical valve body 20 of the multi-way valve 18 in the following embodiment variants when it enters the second valve seat 28 or can be released again when the transmission element 21 is actuated by an actuator (not shown).
Gemäß der Ausfuhrungsvariante nach Figur 5 ist in den Stromkanal 11 zwischen Ventil- räum 19 des Mehrwegeventiles 18 und Steuerraum 3 ein erstes Ablaufdrosselelement 16 aufgenommen. Der Nebenstromkanal 11 ist in bezug auf den Steuerraum 3 sowohl in Zulaufrichtung 29 als auch in Abiaufrichtung 30 vom Strömungsvolumen durchströmbar. Analog zu den in Figur 1 bis 4 dargestellten Ausführungsvarianten ist das steuerseitige Ende des Hauptstromkanals mit Bezugszeichen 9 und dessen ventilraumseitige Mündung mit Bezugszeichen 10 bezeichnet, während das steuerraumseitige Ende des Nebenstromka- nales 11 mit Bezugszeichen 12 und dessen ventilraumseitiges Ende mit Bezugszeichen 13 identifiziert ist. Im in Figur 5 dargestellten Ausführungsbeispiel mündet ein weiteres Zulaufdrosselelement 51, welches mit einem weiteren hochdruckseitigen Zulauf 50 in Ver- bindung steht, in den Ventilraum. Wird gemäß dieser Ausführungsvariante der Ventilkörper 20 des Mehrwegeventiles 18 in seinen ersten Sitz 27 gestellt, erfolgt eine schnelle Erfüllung des Steuerraumes über die parallel wirkenden Zulaufdrosselelemente 15 und 51, wobei in dieser Schaltungsvariante der Steuerraum über den Nebenstromkanal 11, den Hauptstromkanal 8 und das permanent wirkende erste Zulaufdrosselelement 15 beaufschlagt wird. Das im Nebenstromkanal 11 aufgenommene erste Ablaufdrosselelement wird bei in den ersten Ventilsitz 27 gestellten Ventilkörper 20 des Mehrwegeventiles 18 in rückwärtige Richtung durchströmt, ein schnelles Schließen der Düsennadel- /Nadelanordnung 5 erfolgt demnach dadurch, dass der die Stirnseite 6 der Düsennadel- /Stößelanordnung beaufschlagende Steuerraum 3 zusätzlich über ein weiteres Zulaufdrosselelement 51, welches in diesem Falle im Ventilraum 19 des Mehrwegeventiles 18 mündet, befüllt wird und sich demzufolge ein schnellerer Druckaufbau in Steuerraum 3 einstellt. Das weitere Zulaufdrosselelement 51 wirkt in der Ausfuhrungsvariante gemäß Figur 5 als Bypass zum im Nebenstromkanal 11 aufgenommenen ersten Ablaufdrosselelement 16 und bei in den ersten Ventilsitz 27 gefahrenen Ventilkörper 20 wird eine Parallelschaltung zweier Zulaufdrosselelemente 15 bzw. 51 herbeigeführt.According to the embodiment variant according to FIG. 5, a first outlet throttle element 16 is accommodated in the flow channel 11 between the valve chamber 19 of the multi-way valve 18 and the control chamber 3. The bypass duct 11 can be flowed through by the flow volume with respect to the control chamber 3 both in the feed direction 29 and in the drain direction 30. Analogously to the embodiment variants shown in FIGS. 1 to 4, the control-side end of the main flow channel is identified by reference number 9 and its valve-chamber-side opening is identified by reference number 10, while the control-chamber end of the bypass flow channel 11 is identified by reference number 12 and its valve-side end by reference number 13. In the exemplary embodiment shown in FIG. 5, a further inlet throttle element 51 opens, which is connected to a further inlet 50 on the high-pressure side. is in the valve chamber. If, according to this embodiment variant, the valve body 20 of the multi-way valve 18 is placed in its first seat 27, the control chamber is quickly fulfilled via the inlet throttle elements 15 and 51 acting in parallel, in this circuit variant the control chamber via the secondary flow channel 11, the main flow channel 8 and the permanently acting one first inlet throttle element 15 is acted upon. The first outlet throttle element received in the bypass duct 11 is flowed through in the rearward direction when the valve body 20 of the multi-way valve 18 is placed in the first valve seat 27; the nozzle needle / needle arrangement 5 is therefore quickly closed by the control chamber acting on the end face 6 of the nozzle needle / tappet arrangement 3 additionally via a further inlet throttle element 51, which in this case opens into the valve chamber 19 of the multi-way valve 18, is filled and consequently a faster pressure build-up occurs in the control chamber 3. In the embodiment variant according to FIG. 5, the further inlet throttle element 51 acts as a bypass to the first outlet throttle element 16 accommodated in the bypass duct 11, and when the valve body 20 is moved in the first valve seat 27, a parallel connection of two inlet throttle elements 15 and 51 is brought about.
Gemäß dieser Ausführungsvariante ist die Fähigkeit zur Einspritzverlaufsformung dadurch gegeben, dass bei in den zweiten Ventilsitz 28 gestelltem Ventilkörper 20 - entsprechend angesteuert durch den das Übertragungselemente 21 betätigenden Aktor - eine Druckentlastung des Steuerraumes 3 über die in Reihe geschalteten Ablaufdrosselelemente, d.h. das im Nebenstromkanal 11 aufgenommene erste Ablaufdrosselelemente 16 und das zu diesem in Reihe schaltbare weitere Ablaufdrosselelement 25 in den dem Ventilraum 19 nachge- ordneten Ablauf 24 erfolgt. Die Einspritzverlaufsformung kann durch die Auslegung der Drosselquerschnitte 17 bzw. 26 des ersten Ablaufdrosselelementes 16 im Nebenstromkanal 11 und des weiteren Ablaufdrosselelementes 25 in Ablauf 24 charakterisiert und eingestellt werden.According to this embodiment variant, the ability to shape the injection course is given by the fact that, when the valve body 20 is placed in the second valve seat 28 - correspondingly controlled by the actuator actuating the transmission elements 21 - a pressure relief of the control chamber 3 via the series-connected flow restrictor elements, i.e. the first discharge throttle element 16 received in the bypass duct 11 and the further discharge throttle element 25, which can be connected in series therewith, take place in the outlet 24 arranged downstream of the valve chamber 19. The shape of the injection course can be characterized and set by the design of the throttle cross sections 17 and 26 of the first outlet throttle element 16 in the bypass duct 11 and the further outlet throttle element 25 in outlet 24.
Figur 6 zeigt eine Ausführungsvariante gemäß der Darstellung in Figur 5 mit in den Ne- benstromkanal mündenden weiteren Zulaufdrosselelement.FIG. 6 shows an embodiment variant as shown in FIG. 5 with a further inlet throttle element opening into the bypass duct.
Auch gemäß dieser Ausführungsvariante wird der Steuerraum 3 im Injektorkörper 2 über ein permanent wirkendes erstes Zulaufdrosselelement 15 unmittelbar über einen ersten hochdruckseitigen Zulauf 14 befüllt. Analog zur Ausgestaltung des Hauptstromkanals 8 und des Nebenstromkanals 11 gemäß der Ausführungsvariante in Figur 5 ist bei der in Figur 6 dargestellten Ausführungsvariante ein erstes Ablaufdrosselelement 16 im Nebenstromkanal 11 aufgenommen. Dem Ventilraum des Mehrwegeventils ist ein Ablauf 24 nachgeordnet, der ein weiteres Ablaufdrosselelement 25, ausgelegt in Querschnitt 26 A2 umfasst. Im Unterschied zur Ausfuhrungsvariante gemäß Figur 5 mündet das weitere Zulaufdrosselelement 51 eines weiteres hochdruckseitigen Zulaufes 50 nun nicht im Ventilraum 19, sondern im Nebenstromkanal 11 in einem ersten Abstand 54 in bezug auf das im Nebenstromkanal 11 angeordnete erste Ablaufdrosselelement 16. Der Abstand 54 gemäß der Ausfuhrungsvariante in Figur 6 ist so bemessen, dass im Bereich der Mündungsstelle des weiteren Zulaufdrosselelementes 51 und dem Ende des ersten Ablaufdrosselelementes 16 im Nebenstromkanal 11 die Strömung sich wieder laminar ausbilden kann.According to this embodiment variant, the control chamber 3 in the injector body 2 is filled via a permanently acting first inlet throttle element 15 directly via a first inlet 14 on the high pressure side. Analogous to the design of the main flow channel 8 and the secondary flow channel 11 according to the embodiment variant in FIG. 5, a first outlet throttle element 16 is accommodated in the bypass channel 11 in the embodiment variant shown in FIG. Downstream of the valve chamber of the multi-way valve is an outlet 24, which is a further outlet throttle element 25, designed in cross section 26 A 2 includes. In contrast to the embodiment variant according to FIG. 5, the further inlet throttle element 51 of a further inlet 50 on the high-pressure side now does not open in the valve chamber 19, but in the bypass duct 11 at a first distance 54 with respect to the first outlet throttle element 16 arranged in the bypass duct 11. The distance 54 according to the embodiment variant in FIG. 6 it is dimensioned such that in the area of the mouth of the further inlet throttle element 51 and the end of the first outlet throttle element 16 in the bypass duct 11, the flow can again be laminar.
Wird der Ventilkörper 20 im Ventilraum 19 in seinen ersten Sitz 27 gestellt, erfolgt eine Parallelschaltung des ersten hochdruckseitigen Zulaufes 14 und des weiteren hochdruckseitigen Zulaufes 50 und die darin aufgenommenen Zulaufdrosselelemente 15 bzw. 51, so dass auch gemäß dieser Ausfuhrungsvariante der Steuerraum 3 parallel über zwei Zuläufe beaufschlagt und damit ein schneller Druckaufbau realisierbar ist, der zu einem schnellen Nadelschließen führt. Auch hier ist der weitere hochdruckseitige Zulauf 50 als Bypass zum ersten Ablaufdrosselelemente 16, welches dem Steuerraum 3 nachgeordnet ist, ausgelegt.If the valve body 20 is placed in its first seat 27 in the valve chamber 19, the first high-pressure inlet 14 and the further high-pressure inlet 50 and the inlet throttle elements 15 and 51 accommodated therein are connected in parallel, so that, according to this embodiment variant, the control chamber 3 is connected in parallel via two Inlets acted on and thus a quick pressure build-up can be realized, which leads to a quick needle closing. Here, too, the further inlet 50 on the high-pressure side is designed as a bypass to the first outlet throttle element 16, which is arranged downstream of the control chamber 3.
Bei in den zweiten Ventilsitz 28 gestelltem Ventilkörper 20 des Mehrwegeventiles erfolgt eine Druckentlastung des Steuerraumes 3 über die in Reihe geschalteten Ablaufdrosselelemente 16 im Nebenstromkanal 11 und das weitere Ablaufdrosselelement 25 im Ventilraum 19 nachgeordneten Ablauf 24.When the valve body 20 of the multi-way valve is placed in the second valve seat 28, the pressure in the control chamber 3 is relieved via the outlet throttle elements 16 connected in series in the bypass duct 11 and the further outlet throttle element 25 in the outlet 24 downstream of the valve chamber 19.
In der Ausführungsvariante gemäß Figur 7 ist eine Abwandlung der Ausfuhrungsvariante gemäß Figur 5 mit in den Hauptstrom aufgenommenen weiteren Ablaufdrosselelement und oberhalb von diesem im Hauptstromkanal mündenden weiteren Zulaufdrosselelement dar- gestellt.In the embodiment variant according to FIG. 7, a modification of the embodiment variant according to FIG. 5 is shown with a further outlet throttle element incorporated into the main flow and above this further inlet throttle element opening into the main flow channel.
Auch gemäß dieser Variante wird der Steuerraum 3 stets unmittelbar durch ein permanent wirkendes erstes Zulaufdrosselelement 15 über einen ersten hochdruckseitigen Zulauf 14 mit Steuervolumen beaufschlagt. Dem Steuerraum 19 ist ein Ablauf 24 nachgeschaltet, in dem ein weiteres Ablaufdrosselelement 25 aufgenommen ist, das in einem Querschnitt 26 A2 ausgebildet ist. Im Unterschied zur in Figur 5 dargestellten Ausfuhrungsvariante ist das dem Steuerraum nachgeschaltete erste Ablaufdrosselelement 16 nicht im Nebenstromkanal 11, sondern im Hauptstromkanal 8 aufgenommen, welcher durch den Ventilkörper 20 des Mehrwegeventiles 18 im Ventilraum 19 geöffnet bzw. verschlossen werden kann.According to this variant, too, the control chamber 3 is always acted upon directly by a permanently acting first inlet throttle element 15 via a first inlet 14 on the high-pressure side. The control chamber 19 is followed by an outlet 24, in which a further outlet throttle element 25 is accommodated, which is designed in a cross section 26 A 2 . In contrast to the embodiment variant shown in FIG. 5, the first outlet throttle element 16 connected downstream of the control chamber is not received in the bypass duct 11, but rather in the main flow duct 8, which can be opened or closed by the valve body 20 of the multi-way valve 18 in the valve chamber 19.
Gemäß dieser Ausführungsvariante, bei der das weitere Zulaufdrosselelement 51 des weiteren hochdruckseitigen Zulaufes 50 in einem zweiten Abstand 55 oberhalb des ersten Ablaufdrosselelementes 16 im Hauptstromkanal 8 mündet, erfolgt eine Befüllung des Steuer- raumes 3 bei in den den Hauptstromkanal 8 verschließenden Ventilkörper 20 über die parallel wirkenden Zulaufdrosselelemente 15 bzw. 51 und die diese beaufschlagenden hochdruckseitigen Zuläufe 14 bzw. 50. Eine Druckentlastung des Steuerraumes 3 erfolgt gemäß der in Figur 7 dargestellten Ausfuhrungsvariante des Injektors bei in den zweiten Ventilsitz gestellten Ventilkörper 20 über das im Ablauf 24 aufgenommene weitere Ablaufdrosselelement. Das im Hauptstromkanal 8 aufgenommene erste Ablaufdrosselelement 16 ist, da der Hauptstromkanal 8 bei Druckentlastung des Steuerraumes 3 verschlossen ist, nicht wirksam, so dass die Druckentlastung des Steuerraumes 3 über den Nebenstromkanal, 11 den Ventilraum 19 und das weitere Ablaufdrosselelement 25 des Ablaufes 24 erfolgt.According to this embodiment variant, in which the further inlet throttle element 51 of the further high-pressure inlet 50 opens into the main flow channel 8 at a second distance 55 above the first outlet throttle element 16, the control valve is filled. chamber 3 in the valve body 20 closing the main flow channel 8 via the parallel inlet throttle elements 15 and 51 and the high pressure side inlets 14 and 50 acting on them. Pressure relief of the control chamber 3 takes place according to the embodiment variant of the injector shown in FIG Valve seat provided valve body 20 via the further outlet throttle element received in the outlet 24. The first outlet throttle element 16 accommodated in the main flow channel 8 is not effective since the main flow channel 8 is closed when the pressure in the control chamber 3 is relieved of pressure, so that the pressure relief of the control chamber 3 takes place via the bypass duct 11, the valve chamber 19 and the further outlet throttle element 25 of the outlet 24.
In der Darstellung gemäß Figur 8 ist eine leichte Abwandlung der Ausführungsvariante gemäß Figur 7 dargestellt. Im Unterschied zur Darstellung gemäß Figur 7 mündet der weitere hochdruckseitige Zulauf 50 und das in diesen integrierte weitere Zulaufdrosselelement 51 nicht unmittelbar in den Hauptstromkanal 8, sondern in den Ventilraum 19 des Mehr- wegeventiles. Analog zur Darstellung gemäß Figur 7 ist im Hauptstromkanal 8 das erste Ablaufdrosselelement 16, ausgelegt in einem ersten Querschnitt A, 17, enthalten. Dem Ventilraum 19 des Mehrwegeventiles ist der Ablauf 24 nachgeschaltet, der das weitere Ablaufdrosselement 25, ausgelegt im Querschnitt A2 umfasst. Ist der Ventilkörper 20 des Mehrwegeventiles in seinen ersten Ventilsitz 27 gestellt, so erfolgt eine Druckbeaufschla- gung des Steuerraumes 3 einerseits über das permanent diesen befullende erste Zulaufdrosselelement 15 über den ersten hochdruckseitigen Zulauf 14 und über das in den Ventilraum 19 mündende weitere Zulaufdrosselelement 51 eines weiteres hochdruckseitigen Zulaufes 50. Der Steuerraum wird somit über den Nebenstromkanal 11 und den Hauptstromkanal 8 befüllt, wobei das im Hauptstromkanal 8 gemäß der Ausführungsvariante in Figur 8 aufge- nommene erste Ablaufdrosselelement 16 als eigentliche Zulaufdrossel fungiert.8 shows a slight modification of the embodiment variant according to FIG. 7. In contrast to the illustration according to FIG. 7, the further inlet 50 on the high-pressure side and the further inlet throttle element 51 integrated therein do not open directly into the main flow channel 8, but rather into the valve chamber 19 of the multi-way valve. Analogously to the illustration according to FIG. 7, the first outlet throttle element 16, designed in a first cross section A, 17, is contained in the main flow channel 8. The valve chamber 19 of the multi-way valve is followed by the outlet 24, which comprises the further outlet throttle element 25, designed in cross section A 2 . If the valve body 20 of the multi-way valve is placed in its first valve seat 27, the control chamber 3 is pressurized, on the one hand, via the first inlet throttle element 15, which permanently fills it, via the first inlet 14 on the high-pressure side, and via the further inlet throttle element 51, which opens into the valve chamber 19, of another Inlet 50 on the high-pressure side. The control chamber is thus filled via the secondary flow channel 11 and the main flow channel 8, the first outlet throttle element 16, which is incorporated in the main flow channel 8 according to the embodiment variant in FIG. 8, acting as the actual inlet throttle.
Wird hingegen der Ventilkörper 20 des Mehrwegeventiles im Ventilraum 19 an seinen zweiten Sitz 28 gestellt, ist der Hauptstromkanal 8 verschlossen und eine Druckentlastung des Steuerraumes 3 erfolgt über den Nebenstromkanal 11 in die dem Ventilraum 19 des Mehrwegeventiles 18 nachgeschalteten Ablauf 24, aufgenommen ist.If, on the other hand, the valve body 20 of the multi-way valve in the valve chamber 19 is placed at its second seat 28, the main flow channel 8 is closed and the pressure in the control chamber 3 is released via the bypass channel 11 into which the outlet 24 downstream of the valve chamber 19 of the multi-way valve 18 is accommodated.
In den dargestellten Ausführungsvarianten gemäß der Figuren 5, 6, 7 und 8 wird die Ein- spritzverlaufformungsfähigkeit des Injektors 1 dadurch erreicht, dass gemäß der Ausfuh- • rungsvarianten der Figuren 5 und 6 bei Druckentlastung des Steuerraumes 3 das erste Ab- laufdrosselelement 16 des Nebenstromkanales 11 und das weitere Ablaufdrosselelement 25 des Ablaufes 24, welches dem Steuerraum 19 nachgeschaltet ist, in Reihe wirken und gemäß der Auslegung der Drosselquerschnitte A, 17 und A2 26 eine Einspritzverlaufsformung erzielbar ist, während bei den in Figur 7 und 8 ausgebildeten Ausführungsvarianten die Druckentlastung des Steuerraumes 3 bei in den zweiten Ventilsitz 28 gestellten Ventilkörper 20 des Mehrwegeventiles 18 über den Nebenstromkanal 11, den Ventilraum 19 in das in diesen Fällen einzeln wirkende weitere Ablaufdrosselelement 25 im Ablauf 24 erfolgt.In the illustrated embodiment variants according to FIGS. 5, 6, 7 and 8, the injection profile shaping ability of the injector 1 is achieved in that according to the embodiment variants of FIGS. 5 and 6, when the pressure in the control chamber 3 is relieved, the first outlet throttle element 16 of the bypass duct 11 and the further outlet throttle element 25 of the outlet 24, which is connected downstream of the control chamber 19, act in series and, according to the design of the throttle cross sections A, 17 and A 2 26, injection course shaping can be achieved, while in the embodiment variants shown in FIGS. 7 and 8 the pressure relief of the control chamber 3 when the valve body 20 of the multi-way valve 18 is placed in the second valve seat 28 via the bypass duct 11, the valve chamber 19 into the further outlet throttle element 25 acting individually in these cases in the outlet 24.
Gemäß der Ausführungsvarianten in den Figuren 5 bis 8 erfolgt bei in den zweiten Ventilsitz 28 gestellten Ventilkörper 20 des Mehrwegeventiles 18 eine Befüllung des Steuerraumes 3 parallel über das permanent wirkende erste Zulaufdrosselelement 15 und den ersten hochdruckseitigen Zulauf 18 sowie das weitere Zulaufdrosselelement 51 und den weiteren hochdruckseitigen Zulauf 50, welcher in den Ausführungsvarianten 5, 6, 7 und 8 an verschiedenen Stellen, d.h. dem Ventilraum 19, dem Nebenstromkanal 11, Hauptstromkanal 8 münden kann. According to the design variants in FIGS. 5 to 8, when the valve body 20 of the multi-way valve 18 is placed in the second valve seat 28, the control chamber 3 is filled in parallel via the permanently acting first inlet throttle element 15 and the first inlet 18 on the high pressure side and the further inlet throttle element 51 and the other inlet side Inlet 50, which in the variants 5, 6, 7 and 8 at different points, ie the valve chamber 19, the secondary flow channel 11, main flow channel 8 can open.

Claims

Patentansprüche claims
1. Kraftstoffinjektor zum Einspritzen von Kraftstoff in den Brennraum einer Verbrennungskraftmaschine, in welchem ein Mehrwegeventil (18) aufgenommen ist, welches einen in einem Ventilraum (19) aufgenommenen Ventilkörper (20) umfasst und bei Betätigung des Mehrwegeventiles (18) ein im Injektorkörper (2) angeordneter Steuerraum (3) druckentlastbar oder druckbeaufschlagbar ist, wobei der Steuerraum (3) über mindestens ein Zulaufdrosselelement (15) druckbeaufschlagbar und über mindestens ein Ablaufdrosselelement (16) druckentlastbar ist, dadurch gekennzeichnet, dass dem Ventilraum (19) des Mehrwegeventiles (18) ein weiteres Ablaufdrosselelement (25) nachgeschaltet ist, wobei der Ventilraum (19) und der Steuerraum (3) über einen Hauptstromkanal (8) und einen Nebenstromkanal (11) miteinander in Verbindung ste- hen.1. Fuel injector for injecting fuel into the combustion chamber of an internal combustion engine, in which a multi-way valve (18) is accommodated, which comprises a valve body (20) accommodated in a valve chamber (19) and, when the multi-way valve (18) is actuated, a one in the injector body (2 ) arranged control chamber (3) can be depressurized or pressurized, the control chamber (3) can be pressurized via at least one inlet throttle element (15) and can be depressurized via at least one outlet throttle element (16), characterized in that the valve chamber (19) of the multi-way valve (18) a further outlet throttle element (25) is connected downstream, the valve chamber (19) and the control chamber (3) being connected to one another via a main flow channel (8) and a secondary flow channel (11).
2. Kraftstoffinjektor gemäß Anspruch 1, dadurch gekennzeichnet, dass der Hauptstromkanal (8) durch den Ventilkörper (20) des Mehrwegeventiles (18) an einem zweiten Ventilsitz (28) verschließbar ist.2. Fuel injector according to claim 1, characterized in that the main flow channel (8) through the valve body (20) of the multi-way valve (18) can be closed on a second valve seat (28).
3. Kraftstoffinjektor gemäß Anspruch 1, dadurch gekennzeichnet, dass das erste Ablaufdrosselelement (16) im Nebenstromkanal (11) angeordnet ist.3. Fuel injector according to claim 1, characterized in that the first outlet throttle element (16) is arranged in the bypass duct (11).
4. Kraftstoffinjektor gemäß Anspruch 1, dadurch gekennzeichnet, dass das erste Ablauf- drosselelement (6) im Hauptstromkanal (8) angeordnet ist.4. Fuel injector according to claim 1, characterized in that the first outlet throttle element (6) is arranged in the main flow channel (8).
5. Kraftstoffinjektor gemäß Anspruch 1, dadurch gekennzeichnet, dass das erste Ablaufdrosselelement (16) einen kleineren Querschnitt (17) aufweist als der Querschnitt (26) des dem Ventilraum (19) nachgeschalteten weiteren Ablaufdrosselelementes (25).5. Fuel injector according to claim 1, characterized in that the first outlet throttle element (16) has a smaller cross-section (17) than the cross-section (26) of the further outlet throttle element (25) connected downstream of the valve chamber (19).
6. Kraftstoffinjektor gemäß Anspruch 4, dadurch gekennzeichnet, dass das permanent wirkende erste Zulaufdrosselelement (15) im Hauptstromkanal (8) oberhalb des ersten Ablaufdrosselelementes (16) mündet.6. Fuel injector according to claim 4, characterized in that the permanently acting first inlet throttle element (15) opens into the main flow channel (8) above the first outlet throttle element (16).
7. Kraftstoffmjektor gemäß Anspruch 3, dadurch gekennzeichnet, dass das permanent wirkende erste Zulaufdrosselelement (15) im Ventilraum (19) des Mehrwegeventiles (18) mündet. 7. Fuel injector according to claim 3, characterized in that the permanently acting first inlet throttle element (15) opens into the valve chamber (19) of the multi-way valve (18).
8. Kraftstoffmjektor gemäß Anspruch 4, dadurch gekennzeichnet, dass das permanent wirkende erste Zulaufdrosselelement (15) unmittelbar im Steuerraum (3) mündet.8. Fuel injector according to claim 4, characterized in that the permanently acting first inlet throttle element (15) opens directly into the control chamber (3).
9. Kraftstoffinjektor gemäß Anspruch 7, dadurch gekennzeichnet, dass ein weiteres Zulaufdrosselelement (51) unmittelbar im Steuerraum (3) mündet.9. Fuel injector according to claim 7, characterized in that a further inlet throttle element (51) opens directly into the control chamber (3).
10. Kraftstoffinjektor gemäß Anspruch 3, dadurch gekennzeichnet, dass das permanent wirkende Zulaufdrosselelement (15) oberhalb des ersten Ablaufdrosselelementes (16) mündet und der Steuerraum (3) über ein weiteres Zulaufdrosselelement (51) beaufschlagbar ist.10. Fuel injector according to claim 3, characterized in that the permanently acting inlet throttle element (15) opens above the first outlet throttle element (16) and the control chamber (3) can be acted upon via a further inlet throttle element (51).
11. Kraftstoffinjektor gemäß Anspruch 10, dadurch gekennzeichnet, dass das permanent wirkende erste Zulaufdrosselelement (15) in einem ersten Abstand (54) vom ersten Ablaufdrosselelement (16) im Nebenstromkanal (11) mündet.11. Fuel injector according to claim 10, characterized in that the permanently acting first inlet throttle element (15) opens at a first distance (54) from the first outlet throttle element (16) in the bypass duct (11).
12. Kraftstoffmjektor gemäß der Ansprüche 3 und 6, dadurch gekennzeichnet, dass der Steuerraum (3) über ein weiteres Zulaufdrosselelement (51) beaufschlagbar ist.12. The fuel injector according to claims 3 and 6, characterized in that the control chamber (3) can be acted upon via a further inlet throttle element (51).
13. Kraftstoffinjektor gemäß Anspruch 6, dadurch gekennzeichnet, dass das permanent wirkende Drosselelement (15) am Hauptstromkanal (8) in einem zweiten Abstand (5) vom ersten Ablaufdrosselelement (16) mündend angeordnet ist.13. Fuel injector according to claim 6, characterized in that the permanently acting throttle element (15) on the main flow channel (8) at a second distance (5) from the first outlet throttle element (16) is arranged opening.
14. Kraftstoffinjektor gemäß Anspruch 4, dadurch gekennzeichnet, dass das permanent wirkende Zulaufdrosselelement (15) mit dem Ventilraum (19) des Mehrwegeventiles14. Fuel injector according to claim 4, characterized in that the permanently acting inlet throttle element (15) with the valve chamber (19) of the multi-way valve
(18) und das weitere Zulaufdrosselelement (51) mit dem Steuerraum (3) unmittelbar in Fluidverbindung stehen. (18) and the further inlet throttle element (51) are directly in fluid connection with the control chamber (3).
EP02748597A 2001-06-29 2002-06-19 Fuel injector having injection curve shaping carried out by switchable throttling elements Expired - Lifetime EP1404961B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10131640 2001-06-29
DE10131640A DE10131640A1 (en) 2001-06-29 2001-06-29 Fuel injector with injection course shaping through switchable throttle elements
PCT/DE2002/002236 WO2003004856A1 (en) 2001-06-29 2002-06-19 Fuel injector having injection curve shaping carried out by switchable throttling elements

Publications (2)

Publication Number Publication Date
EP1404961A1 true EP1404961A1 (en) 2004-04-07
EP1404961B1 EP1404961B1 (en) 2006-03-15

Family

ID=7690077

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02748597A Expired - Lifetime EP1404961B1 (en) 2001-06-29 2002-06-19 Fuel injector having injection curve shaping carried out by switchable throttling elements

Country Status (5)

Country Link
US (1) US20060086818A1 (en)
EP (1) EP1404961B1 (en)
JP (1) JP2004521262A (en)
DE (2) DE10131640A1 (en)
WO (1) WO2003004856A1 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0215490D0 (en) 2002-07-04 2002-08-14 Delphi Tech Inc Control valve arrangement
DE10254749A1 (en) * 2002-11-23 2004-06-17 Robert Bosch Gmbh Fuel injection device with a 3/3-way control valve for injection course shaping
DE102004055263A1 (en) * 2004-11-17 2006-05-18 Robert Bosch Gmbh Fuel injector
EP1835171B1 (en) * 2006-03-15 2008-03-26 Delphi Technologies, Inc. Improved control valve arrangement
JP4855946B2 (en) * 2006-06-08 2012-01-18 株式会社デンソー Fuel injection valve
DE102007034318A1 (en) 2007-07-24 2009-01-29 Robert Bosch Gmbh injector
US8505514B2 (en) * 2010-03-09 2013-08-13 Caterpillar Inc. Fluid injector with auxiliary filling orifice
US8448878B2 (en) 2010-11-08 2013-05-28 Caterpillar Inc. Fuel injector with needle control system that includes F, A, Z and E orifices
CN102364080A (en) * 2011-11-22 2012-02-29 哈尔滨工程大学 Multistage throttling pressure-stabilizing electric control fuel injector
DE102013224404A1 (en) * 2013-11-28 2015-05-28 Robert Bosch Gmbh fuel injector
GB201411162D0 (en) * 2014-06-24 2014-08-06 Delphi International Operations Luxembourg S.�.R.L. Control valve

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2279010A (en) * 1941-08-19 1942-04-07 American Locomotive Co Fuel injection apparatus
DE19729844A1 (en) * 1997-07-11 1999-01-14 Bosch Gmbh Robert Fuel injector
DE19738397A1 (en) * 1997-09-03 1999-03-18 Bosch Gmbh Robert Fuel injection system for an internal combustion engine
EP0976924B1 (en) * 1998-07-31 2003-09-17 Siemens Aktiengesellschaft Injector with a servo valve
DE19844996A1 (en) * 1998-09-30 2000-04-13 Siemens Ag Fluid dosage dispenser for common-rail fuel injection
DE19859592C1 (en) * 1998-12-22 2000-05-04 Bosch Gmbh Robert Fuel injection valve for high pressure injection of fuel into the combustion chambers of internal combustion engines
DE19860397A1 (en) * 1998-12-28 2000-06-29 Bosch Gmbh Robert Fuel injection device for internal combustion engines
DE19940301A1 (en) * 1999-08-25 2001-03-01 Bosch Gmbh Robert Fuel injector
DE19940289B4 (en) * 1999-08-25 2008-01-31 Robert Bosch Gmbh Fuel injection valve
EP1081372B1 (en) * 1999-08-31 2004-10-13 Denso Corporation Fuel injection device
DE10024702A1 (en) * 2000-05-18 2001-11-22 Bosch Gmbh Robert Fuel injector for storage injection system includes bypass channel injecting into outlet path at valve chamber
JP3551898B2 (en) * 2000-06-15 2004-08-11 トヨタ自動車株式会社 Fuel injection valve

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO03004856A1 *

Also Published As

Publication number Publication date
JP2004521262A (en) 2004-07-15
WO2003004856A1 (en) 2003-01-16
DE10131640A1 (en) 2003-01-16
EP1404961B1 (en) 2006-03-15
DE50206087D1 (en) 2006-05-11
US20060086818A1 (en) 2006-04-27

Similar Documents

Publication Publication Date Title
EP0657642B1 (en) Fuel injection device for internal combustion engines
EP1125046B1 (en) Fuel injection system for an internal combustion engine with a pressure amplifier
DE4332119A1 (en) Fuel injection device for internal combustion engines
EP0657643B1 (en) Fuel injection device for internal combustion engines
WO2001088365A1 (en) Injection assembly for an accumulator fuel-injection system of an internal combustion engine
EP0028288A1 (en) Fuel injection nozzle for internal-combustion engines
DE4440182C2 (en) Fuel injection valve for internal combustion engines
DE19910589C2 (en) Injection valve for an internal combustion engine
EP1404961A1 (en) Fuel injector having injection curve shaping carried out by switchable throttling elements
EP1404966B1 (en) Fuel injector switch valve for the compression/decompression of a control chamber
DE19645900A1 (en) Fuel injection valve for internal combustion engine
CH686845A5 (en) Control arrangement for an injection valve for internal combustion engines.
DE10100390A1 (en) Injector
DE102006015745A1 (en) Fuel injector especially for diesel engine has a solenoid operated valve with a bypass for enhanced switching speed
DE10059124A1 (en) Common-rail fuel-injection system, for automotive vehicle internal combustion engine, has first and second distributor slide valves controlling opening of injectors
DE10131642A1 (en) Fuel injector with variable control room pressurization
DE10132248C2 (en) Fuel injector with 2-way valve control
EP1483499A1 (en) Installation for the pressure-modulated formation of the injection behavior
DE10132246A1 (en) Fuel injector with high pressure resistant inlet
EP1576276A1 (en) Fuel injection device comprising a 3/3-way control valve for forming the injection process
DE19956522A1 (en) High pressure fuel injector
EP0915251A2 (en) Accumulator fuel injection system for a multicylinder engine
EP1404964B1 (en) Fuel injector with a switchable control chamber feed
DE10164395A1 (en) Fuel injection device for IC engine has leakage channel connecting control pressure space for valve piston to discharge bore
DE10160490A1 (en) Fuel injection device, fuel system and IC engine, has fuel flow rate to injector nozzle modified by buffer chamber in nozzle valve

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20040129

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

17Q First examination report despatched

Effective date: 20040715

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 50206087

Country of ref document: DE

Date of ref document: 20060511

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20060705

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20061218

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20140620

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20140617

Year of fee payment: 13

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20150619

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20160229

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150619

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150630

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20190822

Year of fee payment: 18

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50206087

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210101