EP1404907A4 - CRYSTALLINE GRAPHITE NANOFIBERS AND PROCESS FOR PRODUCING THE SAME - Google Patents
CRYSTALLINE GRAPHITE NANOFIBERS AND PROCESS FOR PRODUCING THE SAMEInfo
- Publication number
- EP1404907A4 EP1404907A4 EP02756407A EP02756407A EP1404907A4 EP 1404907 A4 EP1404907 A4 EP 1404907A4 EP 02756407 A EP02756407 A EP 02756407A EP 02756407 A EP02756407 A EP 02756407A EP 1404907 A4 EP1404907 A4 EP 1404907A4
- Authority
- EP
- European Patent Office
- Prior art keywords
- nanofiber
- group
- graphite sheets
- carbon
- nanofibers
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 239000002121 nanofiber Substances 0.000 title claims abstract description 65
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 title claims abstract description 60
- 229910002804 graphite Inorganic materials 0.000 title claims abstract description 38
- 239000010439 graphite Substances 0.000 title claims abstract description 38
- 238000000034 method Methods 0.000 title claims description 28
- 230000008569 process Effects 0.000 title claims description 20
- 239000003054 catalyst Substances 0.000 claims abstract description 59
- 239000002134 carbon nanofiber Substances 0.000 claims abstract description 50
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims abstract description 50
- 239000000203 mixture Substances 0.000 claims abstract description 27
- 229910052742 iron Inorganic materials 0.000 claims abstract description 24
- 239000000843 powder Substances 0.000 claims description 11
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 claims description 8
- 239000002253 acid Substances 0.000 claims description 6
- 230000002378 acidificating effect Effects 0.000 claims description 6
- 150000002978 peroxides Chemical class 0.000 claims description 5
- 229930194542 Keto Natural products 0.000 claims description 4
- 125000002485 formyl group Chemical class [H]C(*)=O 0.000 claims description 4
- 125000002887 hydroxy group Chemical group [H]O* 0.000 claims description 4
- 125000000468 ketone group Chemical group 0.000 claims description 4
- 125000000896 monocarboxylic acid group Chemical group 0.000 claims description 4
- 239000002245 particle Substances 0.000 claims description 4
- 125000000524 functional group Chemical group 0.000 claims 12
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 abstract description 67
- 239000010949 copper Substances 0.000 abstract description 24
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 abstract description 21
- 229910052802 copper Inorganic materials 0.000 abstract description 13
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 abstract description 12
- 229910052759 nickel Inorganic materials 0.000 abstract description 11
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 abstract description 9
- 239000001257 hydrogen Substances 0.000 abstract description 7
- 229910052739 hydrogen Inorganic materials 0.000 abstract description 7
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 abstract description 4
- 229910002091 carbon monoxide Inorganic materials 0.000 abstract description 4
- 229910052799 carbon Inorganic materials 0.000 description 19
- 229910002549 Fe–Cu Inorganic materials 0.000 description 17
- 239000002717 carbon nanostructure Substances 0.000 description 15
- 229910052751 metal Inorganic materials 0.000 description 15
- 239000002184 metal Substances 0.000 description 15
- 238000000354 decomposition reaction Methods 0.000 description 13
- 239000000463 material Substances 0.000 description 11
- 238000002474 experimental method Methods 0.000 description 10
- 239000007789 gas Substances 0.000 description 8
- 230000003647 oxidation Effects 0.000 description 7
- 238000007254 oxidation reaction Methods 0.000 description 7
- 238000006243 chemical reaction Methods 0.000 description 6
- 150000001875 compounds Chemical class 0.000 description 6
- 230000002687 intercalation Effects 0.000 description 6
- 238000009830 intercalation Methods 0.000 description 6
- 150000002739 metals Chemical class 0.000 description 6
- 230000000694 effects Effects 0.000 description 5
- 230000003993 interaction Effects 0.000 description 5
- 239000002086 nanomaterial Substances 0.000 description 5
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 4
- 239000007864 aqueous solution Substances 0.000 description 4
- 230000005540 biological transmission Effects 0.000 description 4
- 239000000376 reactant Substances 0.000 description 4
- 238000011282 treatment Methods 0.000 description 4
- 239000003575 carbonaceous material Substances 0.000 description 3
- 238000012512 characterization method Methods 0.000 description 3
- 238000000151 deposition Methods 0.000 description 3
- 239000001307 helium Substances 0.000 description 3
- 229910052734 helium Inorganic materials 0.000 description 3
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- 150000003839 salts Chemical class 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 229920000049 Carbon (fiber) Polymers 0.000 description 2
- 229910000881 Cu alloy Inorganic materials 0.000 description 2
- OAKJQQAXSVQMHS-UHFFFAOYSA-N Hydrazine Chemical compound NN OAKJQQAXSVQMHS-UHFFFAOYSA-N 0.000 description 2
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 239000004917 carbon fiber Substances 0.000 description 2
- 230000003197 catalytic effect Effects 0.000 description 2
- 238000000975 co-precipitation Methods 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- IYRDVAUFQZOLSB-UHFFFAOYSA-N copper iron Chemical compound [Fe].[Cu] IYRDVAUFQZOLSB-UHFFFAOYSA-N 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 229910052500 inorganic mineral Inorganic materials 0.000 description 2
- 238000001000 micrograph Methods 0.000 description 2
- 239000011707 mineral Substances 0.000 description 2
- 229910003455 mixed metal oxide Inorganic materials 0.000 description 2
- 230000007935 neutral effect Effects 0.000 description 2
- 150000002823 nitrates Chemical class 0.000 description 2
- 229910017604 nitric acid Inorganic materials 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 230000003014 reinforcing effect Effects 0.000 description 2
- ATRRKUHOCOJYRX-UHFFFAOYSA-N Ammonium bicarbonate Chemical compound [NH4+].OC([O-])=O ATRRKUHOCOJYRX-UHFFFAOYSA-N 0.000 description 1
- 229910000013 Ammonium bicarbonate Inorganic materials 0.000 description 1
- 229910020637 Co-Cu Inorganic materials 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- 229910001030 Iron–nickel alloy Inorganic materials 0.000 description 1
- 229910018054 Ni-Cu Inorganic materials 0.000 description 1
- 229910018481 Ni—Cu Inorganic materials 0.000 description 1
- IUHFWCGCSVTMPG-UHFFFAOYSA-N [C].[C] Chemical group [C].[C] IUHFWCGCSVTMPG-UHFFFAOYSA-N 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 150000001342 alkaline earth metals Chemical class 0.000 description 1
- 235000012538 ammonium bicarbonate Nutrition 0.000 description 1
- 239000001099 ammonium carbonate Substances 0.000 description 1
- 229910003481 amorphous carbon Inorganic materials 0.000 description 1
- 239000012736 aqueous medium Substances 0.000 description 1
- 125000004429 atom Chemical group 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 150000001805 chlorine compounds Chemical class 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 239000000356 contaminant Substances 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- XTVVROIMIGLXTD-UHFFFAOYSA-N copper(II) nitrate Chemical class [Cu+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O XTVVROIMIGLXTD-UHFFFAOYSA-N 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 230000009849 deactivation Effects 0.000 description 1
- 238000006056 electrooxidation reaction Methods 0.000 description 1
- 230000005294 ferromagnetic effect Effects 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 238000004817 gas chromatography Methods 0.000 description 1
- 238000002309 gasification Methods 0.000 description 1
- 229910021389 graphene Inorganic materials 0.000 description 1
- 239000011357 graphitized carbon fiber Substances 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 239000002923 metal particle Substances 0.000 description 1
- 150000007522 mineralic acids Chemical class 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000000877 morphologic effect Effects 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 229910000510 noble metal Inorganic materials 0.000 description 1
- 229910052755 nonmetal Inorganic materials 0.000 description 1
- 150000002843 nonmetals Chemical class 0.000 description 1
- 238000010943 off-gassing Methods 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 239000012286 potassium permanganate Substances 0.000 description 1
- 239000012256 powdered iron Substances 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 230000003252 repetitive effect Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 239000010421 standard material Substances 0.000 description 1
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 1
- 238000010301 surface-oxidation reaction Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y30/00—Nanotechnology for materials or surface science, e.g. nanocomposites
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y40/00—Manufacture or treatment of nanostructures
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
- C01B32/05—Preparation or purification of carbon not covered by groups C01B32/15, C01B32/20, C01B32/25, C01B32/30
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
- C01B32/15—Nano-sized carbon materials
- C01B32/158—Carbon nanotubes
- C01B32/16—Preparation
- C01B32/162—Preparation characterised by catalysts
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
- C01B32/15—Nano-sized carbon materials
- C01B32/18—Nanoonions; Nanoscrolls; Nanohorns; Nanocones; Nanowalls
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01F—CHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
- D01F9/00—Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
- D01F9/08—Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
- D01F9/12—Carbon filaments; Apparatus specially adapted for the manufacture thereof
- D01F9/127—Carbon filaments; Apparatus specially adapted for the manufacture thereof by thermal decomposition of hydrocarbon gases or vapours or other carbon-containing compounds in the form of gas or vapour, e.g. carbon monoxide, alcohols
- D01F9/1278—Carbon monoxide
Definitions
- This invention relates to a process for producing substantially crystalline graphitic carbon nanofibers comprised of graphite sheets.
- the graphite sheets are substantially parallel to the longitudinal axis of the carbon nanofiber.
- These carbon nanofibers are produced by contacting a bulk iron, or an iron opper bimetallic, or an iron:nickel bimetallic catalyst with a mixture of carbon monoxide and hydrogen at temperatures from about 625°C to about 725°C for an effective amount of time.
- Nanostructure materials are quickly gaining importance for various potential commercial applications. Such applications include their use to store molecular hydrogen, to serve as catalyst supports, as reinforcing components for polymeric composites, and for use in various types of batteries.
- Carbon nanostructure materials are generally prepared from the decomposition of carbon-containing gases over selected catalytic metal surfaces at temperatures ranging from about 500°C to about 1,200°C.
- U.S. Patent Nos. 5,149,584 and 5,618,875 to Baker et al. teach carbon nanofibers as reinforcing components in polymer reinforced composites.
- the carbon nanofibers can either be used as is, or as part of a carbon-carbon structure comprised of carbon fibers having carbon nanofibers grown therefrom.
- the examples in these patents show the preparation of various carbon nanostructui'es by the decomposition of a mixture of ethylene and hydrogen in the presence of metal catalysts, such as iron, nickel, a nickel: copper alloy, an iron: copper alloy, etc.
- U.S. Patent No. 5,413,866 to Baker et al. teaches carbon nanostrucrures characterized as having a shape that is selected from the group consisting of branched, spiral, and helical. These carbon nanostructui'es are taught as being prepared by depositing a catalyst containing at least one Group IB metal and at least one other metal, on a suitable refractory support, then subjecting the catalyst-treated support to a carbon-containing gas at a temperature from the decomposition temperature of the carbon-containing gas to the deactivation temperature of the catalyst.
- U.S. Patent No. 5,458,784 also to Baker et al. teaches the use of the carbon nanosrructures of U.S. Patent No. 5,413,866 for removing contaminants from aqueous and gaseous steams; and U.S. Patent No. 5,653,951 to Rodriguez et al. discloses and claims that molecular hydrogen can be stored in layered carbon nanostructure materials having specific distances between layers.
- the examples in these patents teach the aforementioned preparation methods, as well as the decomposition of a mixture of carbon monoxide and hydrogen in the presence of an iron powder catalyst at 600°C. All of the above referenced US patents are incorporated herein by reference.
- substantially crystalline graphitic carbon nanofibers comprised of graphite sheets that are substantially parallel to the longitiidinal axis of the nanofibers, wherein the distance between the graphite sheets is from about 0.335 nm to about 0.67 nm, and having a crystallinity greater than about 95%.
- the distance between the graphite sheets is from about 0.335 and 0.40 nm.
- a process for producing substantially crystalline graphitic carbon nanofibers which process comprises reacting a mixture of C07H 2 in the presence of a bulk powder catalyst comprised of iron, ironxopper bimetallic, or iron:nickel bimetallic for an effective amount of time at a temperature from about 625°C to about 725°C.
- the catalyst is an ironxopper bimetallic catalyst wherein the ratio of iron to copper is from about 1:99 to about 99: 1 and the ratio of CO to H 2 is from about 95:5 to about 5:95, preferably from about 80:20 to about 20:80.
- Figure la is a representation of a platelet carbon nanofiber, which is comprised of substantially graphite sheets that are substantially perpendicular to the longitudinal axis, or growth axis, of the nanofiber.
- Figure lb is a representation of a cylindrical carbon nanostructure that is comprised of continuous carbon sheets and is in the form of tube within a tube within a tube and having a substantially hollow center.
- Figure lc is a representation of a ribbon carbon nanofiber of the present invention that is comprised of graphitic sheets that are substantially parallel to the longitudinal axis of the nanofiber.
- Figure Id is a representation of a faceted tubular carbon nanofiber of the present invention and is comprised of continuous sheets of graphic carbon but having multifaceted flat faces.
- the graphitic sheets are also substantially parallel to the longitudinal axis of the nanofiber.
- Figure le is a representation of a herringbone carbon nanofiber wherein the graphitic platelets or sheets are at an angle to the longitudinal axis of the nanofiber.
- the carbon nanofibers of the present invention possess novel structures in which graphite sheets, constituting the nanostructure, are aligned in a direction that is substantially parallel to the growth axis (longitudinal axis) of the nanofiber.
- the carbon nanofibers are sometimes referred to herein as “ribbon” nanofibers and multifaceted tubular nanofibers.
- the carbon nanostructures of the present invention are distinguished from the so-called “fibrils” or cylindrical carbon nanostructures.
- the terms “carbon nanofibers” and “carbon nanostructures” are sometimes used interchangeably herein.
- the graphite sheets that compose the nanostructures of the present invention are either discontinuous sheets or faceted flat-faced tubular structures.
- cylindrical carbon nanostructures are composed of continuous circular graphite sheets and can be represented by tube within a tube structure having a substantially hollow center.
- the carbon nanofibers of the present invention have a unique set of properties, that includes: (i) a nitrogen surface area from about 40 to 300 m 2 /g; (ii) an electrical resistivity of 0.4 ohm*cm to 0.1 ohm*cm; (iii) a crystallinity from about 95% to 100%; and (iv) a spacing between adjacent graphite sheets of 0.335 nm to about 1.1 nm, preferably from about 0.335 nm to about 0.67 nm, and more preferably from about 0.335 to about 0.40 nm.
- the catalysts used to prepare the carbon nanofibers of the present invention are bulk metals in powder form wherein the metal is selected from the group consisting of iron, iron: copper bimetallics, and iron:nickel bimetallics. It is well established that the ferromagnetic metals, iron, cobalt, and nickel, are active catalysts for the growth of carbon nanofibers during decomposition of certain hydrocarbons or carbon monoxide. Efforts are now being directed at modifying the catalytic behavior of these metals, with respect to nanofiber growth, by introducing other metals and non-metals into the system. In this respect, copper is an enigma, appearing to be relatively inert towards carbon deposition during the CO/H 2 reaction.
- Fe or the combination of Cu or Ni with Fe has such a dramatic effect on carbon nanofiber growth in the CO/H 2 system in the temperature range of about 625°C to about 725°C.
- Iron:copper catalysts are preferred for preparing the carbon nanostructures of the present invention.
- the average powder particle size of the metal catalyst will range from about 0.25 nanometers to about 5 micrometer, preferably from about 1 nanometers to about 3 micrometer and more preferably from about 2.5 nanometers to about 1 micrometer.
- the ratio of the two metals can be any effective ratio that will produce substantially crystalline carbon nanofibers in which the graphite sheets are substantially parallel to the longitudinal axis of the nanofiber, at temperatures from about 625°C to about 725°C in the presence of a mixture of CO/H 2 .
- the ratio of iron to either copper or nickel will typically be from about 1:99 to about 99: 1, preferably from about 5:95 to about 95:5, more preferably from about 3:7 to about 7:3; and most preferably from about 6:4 to about 7:3.
- the bimetallic catalyst can be prepared by any suitable technique.
- One preferred technique is by co-precipitation of aqueous solutions containing soluble salts of the two metals.
- Preferred salts include the nitrates, sulfates, and chlorides of iron, copper, and nickel particularly the nitrates.
- the resulting precipitates are dried and calcined to convert the salts to the mixed metal oxides.
- the calcined metal powders are then reduced at an effective temperature and for an effective time.
- the catalyst powders used in the present invention are preferably prepared by the co-precipitation of aqueous solutions containing appropriate amounts of iron, nickel and copper nitrates using ammonium bicarbonate.
- the precipitates were dried overnight at about 110°C before being calcined in air at 400°C to convert the carbonates into mixed metal oxides.
- the calcined powders are then reduced in hydrogen for 20 hours at 400°C. Following this treatment the reduced catalyst is cooled to room temperature in a helium environment before being passivated in a 2% oxygen/helium mixture for 1 hour at about room temperature (24°C).
- carbon nanostructures can be prepared by reacting a catalyst in a heating zone with the vapor of a suitable carbon-containing compound. While the art teaches a wide variety of carbon-containing compounds as being suitable, the inventors hereof have found that only a mixture of CO and H 2 will yield carbon nanofibers with unexpected high crystallinities in the unique structures of nanofibers of the present invention in the temperature range of about 625°C to about 725°C. That is, crystallinities greater than about 95%, preferably greater than 97% more preferably greater than 98%, and most preferably substantially 100%.
- an aqueous solution of an inorganic acid such as a mineral acid
- suitable mineral acids include sulfuric acid, nitric acid, and hydrochloric acid. Preferred is hydrochloric acid.
- intercalation involves incorporating an appropriate intercalation compound between platelets.
- Intercalation compounds suitable for graphite structures are comprehensively discussed in Applications of Graphite Intercalation Compounds, by M.hiagaki, Journal of Material Research, Vol 4, No.6, Nov/Dec 1989, which is incorporated herein by reference.
- the preferred intercalation compounds for use with the nanofibers of the present invention are alkali and alkaline-earth metals.
- the limit to which the spacing of the graphite sheets will be increased for purposes of the present invention will be that point wherein the carbon nanofibers no longer can be characterized as graphitic. That is, the spacing can become so large that the carbon now has properties different than those of graphite. In most cases the electro-conductivity is enhanced. It is important for the practice of the present invention that the carbon nanofibers maintain the basal plane structure representative of graphite.
- the carbon nanostructures of the present invention contain a substantial number of edge sites, which are also referred to as edge regions.
- the edge regions of the nanostructures of the present invention can be made either basic (introduction of NFl groups) or acidic (addition of COOH " groups) by use of appropriate methods.
- oxygenated groups hydroxyl, peroxide, ether, keto or aldehyde
- These groups in turn can react with organic compounds to house unique structures for separations.
- Polar groups will promote the interaction of carbon edge atoms with other polar groups such as water.
- the interaction of graphitic materials with aqueous solutions can be greatly enhanced due to the presence of acid, basic or neutral functionality.
- polar groups in active carbon occurs in a random fashion, whereas the graphitic nanofibers of the present invention, such sites are located at the edges of the graphene layers.
- Addition of oxygenated groups can be achieved by selected oxidation treatments including treatment with peroxides, nitric acid, potassium permanganate, etc. Functionality can also be incorporated by electrochemical oxidation, at for example 2.3 volts for various periods of time. The nature of the groups will be dependent upon the oxidation time and the voltage.
- Polar sites can also be eliminated by reduction, out-gassing in vacuum at 1000°C or treatment in hydrazine at about 35°C. Following this procedure, the graphite nanofiber will become hydrophobic.
- composition of the gas phase was measured at regular intervals by taking samples of the inlet and outlet streams, which were then analyzed by gas chromatography using a 30m megabore (CS-Q) capillary column in a Varian 3400 GC unit. Carbon and hydrogen atom balances, in combination with the relative concentrations of the respective components, were applied to obtain the various product yields. In order to obtain reproducible carbon deposition data it was necessary to follow an identical protocol for each experiment.
- Table I shows the number of grams of carbon nanofibers per weight of catalyst produced after a period of 2 hours at each temperature. In each case the optimum yield of carbon nanofibers was generated at temperatures between 550°C and 600°C. The most active catalysts were those that contained a larger fraction of iron than copper.
- Example 5 In a further set of experiments the overall degree of crystallrnity of the carbon nanofibers produced from the interaction of selected Fe:Cu catalysts with a CO/H 2 (4: 1) mixture at 600°C for 2.0 hours was determined from temperature programmed oxidation of the nanofibers in C0 2 . The characteristics of the controlled gasification of carbonaceous solids in C0 2 provides a sensitive method of determining the structural perfection of such materials.
- Table V The data shown in Table V below indicates that the degree of crystallinity of carbon nanofibers generated from an Fe-Cu (7:3) catalyst is significantly higher than that of the same type of nanofibers grown under identical reaction conditions on a pure iron catalyst. Table V
- a carbon nanofiber having graphite sheets at an angle to the longitudinal axis of the nanofiber is referred to as a "herringbone structure”.
- Example 7 In another series of characterization studies, performed in a high resolution transmission electron microscope, samples of carbon nanofibers grown from the decomposition of CO/H 2 mixtures over a powdered iron catalyst at temperatures over the range 550 to 670°C were examined.
- Table VII The data presented in Table VII below indicates that there is a very narrow temperature window, 600 to 625 °C, where the structures of the nanofibers are produced exclusively in the form of platelet structures. Below this temperature the solid carbon product is found to consist of a mixture of herring-bone and platelet conformations, whereas at temperatures of 650°C there is a tendency for the structures to acquire a faceted tubular or ribbon arrangement, which becomes the only form at 670°C.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Nanotechnology (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Physics & Mathematics (AREA)
- Inorganic Chemistry (AREA)
- General Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Crystallography & Structural Chemistry (AREA)
- Thermal Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- Textile Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Composite Materials (AREA)
- Inorganic Fibers (AREA)
- Carbon And Carbon Compounds (AREA)
- Catalysts (AREA)
Applications Claiming Priority (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US902113 | 1992-06-22 | ||
| US09/902,113 US20020054849A1 (en) | 2000-09-08 | 2001-07-10 | Crystalline graphite nanofibers and a process for producing same |
| PCT/US2002/021497 WO2003006726A1 (en) | 2001-07-10 | 2002-07-09 | Crystalline graphite nanofibers and a process for producing same |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| EP1404907A1 EP1404907A1 (en) | 2004-04-07 |
| EP1404907A4 true EP1404907A4 (en) | 2008-07-02 |
Family
ID=25415316
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| EP02756407A Withdrawn EP1404907A4 (en) | 2001-07-10 | 2002-07-09 | CRYSTALLINE GRAPHITE NANOFIBERS AND PROCESS FOR PRODUCING THE SAME |
Country Status (4)
| Country | Link |
|---|---|
| EP (1) | EP1404907A4 (enExample) |
| JP (2) | JP2004534914A (enExample) |
| CA (1) | CA2477198A1 (enExample) |
| WO (1) | WO2003006726A1 (enExample) |
Families Citing this family (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP4330917B2 (ja) * | 2002-04-17 | 2009-09-16 | Jfeケミカル株式会社 | 気相成長炭素繊維の製造方法 |
| JP4157791B2 (ja) * | 2003-03-31 | 2008-10-01 | 三菱マテリアル株式会社 | カーボンナノファイバの製造方法 |
| TW200508431A (en) | 2003-08-26 | 2005-03-01 | Showa Denko Kk | Crimped carbon fiber and production method thereof |
| US20060122056A1 (en) * | 2004-12-02 | 2006-06-08 | Columbian Chemicals Company | Process to retain nano-structure of catalyst particles before carbonaceous nano-materials synthesis |
| JP5974631B2 (ja) * | 2012-05-23 | 2016-08-23 | 株式会社豊田中央研究所 | 排ガス浄化用触媒及びその製造方法 |
| JP2014114205A (ja) * | 2012-11-14 | 2014-06-26 | Toshiba Corp | 炭素材料とその製造方法およびそれを用いた電気化学セルと減酸素装置と冷蔵庫 |
Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5653951A (en) * | 1995-01-17 | 1997-08-05 | Catalytic Materials Limited | Storage of hydrogen in layered nanostructures |
| WO2002017427A1 (en) * | 2000-08-22 | 2002-02-28 | Catalytic Materials, Ltd | Graphite nanofiber catalyst systems for use in fuel cell electrodes |
Family Cites Families (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5618875A (en) * | 1990-10-23 | 1997-04-08 | Catalytic Materials Limited | High performance carbon filament structures |
-
2002
- 2002-07-09 JP JP2003512478A patent/JP2004534914A/ja active Pending
- 2002-07-09 EP EP02756407A patent/EP1404907A4/en not_active Withdrawn
- 2002-07-09 WO PCT/US2002/021497 patent/WO2003006726A1/en not_active Ceased
- 2002-07-09 CA CA002477198A patent/CA2477198A1/en not_active Abandoned
-
2004
- 2004-03-17 JP JP2004076133A patent/JP2004277998A/ja active Pending
Patent Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5653951A (en) * | 1995-01-17 | 1997-08-05 | Catalytic Materials Limited | Storage of hydrogen in layered nanostructures |
| WO2002017427A1 (en) * | 2000-08-22 | 2002-02-28 | Catalytic Materials, Ltd | Graphite nanofiber catalyst systems for use in fuel cell electrodes |
Non-Patent Citations (3)
| Title |
|---|
| N. KRISHNANKUTTY ET AL: "The effect of copper on the structural characteristics of carbon filaments produced from iron catalyzed decomposition of ethylene", CATALYSIS TODAY, vol. 37, 1997, pages 295 - 307, XP002356732 * |
| PARK C ET AL: "Carbon Deposition on Iron-Nickel during Interaction with Carbon Monoxide-Hydrogen Mixtures", JOURNAL OF CATALYSIS, ACADEMIC PRESS, DULUTH, MN, US, vol. 169, no. 1, 1 July 1997 (1997-07-01), pages 212 - 227, XP004465559, ISSN: 0021-9517 * |
| See also references of WO03006726A1 * |
Also Published As
| Publication number | Publication date |
|---|---|
| JP2004277998A (ja) | 2004-10-07 |
| EP1404907A1 (en) | 2004-04-07 |
| WO2003006726A1 (en) | 2003-01-23 |
| JP2004534914A (ja) | 2004-11-18 |
| CA2477198A1 (en) | 2003-01-23 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US20020054849A1 (en) | Crystalline graphite nanofibers and a process for producing same | |
| US6537515B1 (en) | Crystalline graphite nanofibers and a process for producing same | |
| KR102182553B1 (ko) | 탄소 담체 상에 담지된 단일원자 촉매의 제조방법 | |
| US6890506B1 (en) | Method of forming carbon fibers | |
| US9409779B2 (en) | Catalyst for producing carbon nanotubes by means of the decomposition of gaseous carbon compounds on a heterogeneous catalyst | |
| EP1455927B1 (en) | Method for producing carbon nanostructures | |
| JP4033833B2 (ja) | 整然としたカーボンナノチューブを流動床で選択的に製造する方法 | |
| US7138100B2 (en) | Process for making single-wall carbon nanotubes utilizing refractory particles | |
| JP2006506304A (ja) | カーボンナノチューブおよび/またはナノファイバを製作する方法 | |
| US7550129B2 (en) | Graphite nanofibers having graphite sheets parallel to the growth axis | |
| Dhore et al. | Synthesis and characterization of high yield multiwalled carbon nanotubes by ternary catalyst | |
| Yu et al. | Catalytic engineering of carbon nanotube production | |
| JP2003206117A (ja) | 多層カーボンナノチューブの大量生産方法 | |
| WO2003006726A1 (en) | Crystalline graphite nanofibers and a process for producing same | |
| Bhagabati et al. | Synthesis/preparation of carbon materials | |
| US12195337B2 (en) | Long and narrow diameter carbon nanotubes and catalysts for producing same | |
| KR20230017835A (ko) | Mwcnt 제조를 위한 개선된 촉매 | |
| JP5036564B2 (ja) | プレートレット型スリット気相法炭素繊維の製造方法 | |
| JP2004324004A (ja) | カーボン繊維及びその製造方法 | |
| CN113101981B (zh) | 碳纳米管制备用催化剂的制备方法 | |
| Shivanna et al. | Fe-Ni nanoparticle-catalyzed controlled synthesis of multi-walled carbon nanotubes on CaCO 3 | |
| KR100814677B1 (ko) | 탄소나노섬유를 이용한 천연흑연의 표면개질 방법 | |
| Khavarian et al. | Floating catalyst cvd synthesis of carbon nanotubes using iron (III) Chloride: Influences of the growth parameters | |
| Kvande et al. | Towards large scale production of CNF for catalytic applications | |
| Buhari et al. | Synthesis of carbon nanotubes using catalytic chemical vapour decomposition of acetylene over Co-Mo bimetallic catalyst supported on magnesia |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
| 17P | Request for examination filed |
Effective date: 20040109 |
|
| AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT |
|
| A4 | Supplementary search report drawn up and despatched |
Effective date: 20080603 |
|
| RIC1 | Information provided on ipc code assigned before grant |
Ipc: D01F 9/12 20060101ALI20080528BHEP Ipc: C01B 31/00 20060101AFI20080528BHEP |
|
| STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
| 18D | Application deemed to be withdrawn |
Effective date: 20080831 |