EP1399597B1 - Dispositif de chargement d'un four a cuve - Google Patents

Dispositif de chargement d'un four a cuve Download PDF

Info

Publication number
EP1399597B1
EP1399597B1 EP02753069A EP02753069A EP1399597B1 EP 1399597 B1 EP1399597 B1 EP 1399597B1 EP 02753069 A EP02753069 A EP 02753069A EP 02753069 A EP02753069 A EP 02753069A EP 1399597 B1 EP1399597 B1 EP 1399597B1
Authority
EP
European Patent Office
Prior art keywords
annular
suspension rotor
rotating ring
ring
rotating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP02753069A
Other languages
German (de)
English (en)
Other versions
EP1399597A1 (fr
Inventor
Emile Lonardi
Giovanni Cimenti
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Paul Wurth SA
Original Assignee
Paul Wurth SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Paul Wurth SA filed Critical Paul Wurth SA
Publication of EP1399597A1 publication Critical patent/EP1399597A1/fr
Application granted granted Critical
Publication of EP1399597B1 publication Critical patent/EP1399597B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B7/00Blast furnaces
    • C21B7/18Bell-and-hopper arrangements
    • C21B7/20Bell-and-hopper arrangements with appliances for distributing the burden

Definitions

  • the present invention relates to a loading device for a tank. It relates more particularly to the cooling of a device for loading for a shaft furnace, such as a blast furnace, which includes a casing to be mounted on the head of the shaft furnace, a suspended suspension rotor of rotating way in this housing, a loading chute suspended in the suspension rotor and at least one cooling circuit carried by the rotor suspension.
  • a shaft furnace such as a blast furnace
  • a suspended suspension rotor of rotating way in this housing a loading chute suspended in the suspension rotor and at least one cooling circuit carried by the rotor suspension.
  • the rotor of suspension of this device is provided with a lower protective screen which surrounds the feed channel of the chute and protects the drive devices housed in the housing, particularly against heat radiation at inside the shaft oven.
  • the lower screen includes a circuit for coolant which is supplied with coolant through a annular rotary fitting arranged around the feed channel of the chute.
  • This rotary connector includes a rotary ferrule and a fixed ring. The ferrule rotary extends the suspension rotor, of which it forms an integral part, outside the housing.
  • the fixed ring is fixed on the casing and the rotary ferrule is adjusted with play in the fixed ring.
  • Two cylindrical roller bearings are intended to center the rotating ferrule in the fixed ring.
  • two superimposed annular grooves are arranged so as to face the external cylindrical surface of the rotating shell.
  • Connection channels of the cooling system define mouths in the cylindrical surface outer of the rotating shell opposite the two grooves.
  • Toppings sealing which are mounted along the two edges of each groove, rely on the external cylindrical surface of the rotating shell for the purpose sealing between the rotating ferrule and the fixed ring.
  • this type of swivel fitting is hardly suitable for a loading of a shaft furnace. Indeed, in order to avoid leaks of cooling water in the housing, it is necessary to ensure a good seal between the ferrule rotary and fixed ring.
  • a first disadvantage of the cooling device of 1982 is that the pressure available to pass the cooling water through the cooling circuits is essentially determined by the difference of height between the annular tank and the lower collector. It is therefore necessary to equip the rotor for cooling circuits with low pressure drop, which is a considerable disadvantage from the standpoint of space and / or cooling efficiency. There is in particular a risk of local overheating due to the low cooling water circulation speeds in the cooling circuits.
  • Another disadvantage of the cooling device from 1982 is that blast furnace gases come into contact with water from cooling already in the upper annular tank. Like these tall gases furnaces are heavily loaded with dust, large quantities of dust inevitably passes into the cooling water. These dusts form sludge in the upper annular tank, which cross the cooling coils and risk blocking them. Moreover, the blast furnace gases make the cooling water acidic, which promotes corrosion of the cooling circuits.
  • Patent application WO 99/28510 presents a method for cooling a loading device of the kind described above which is equipped with a swivel fitting. Contrary to the teachings of the state of the art, no attempt is made to ensure the perfect tightness of the swivel joint, as recommended for example in US patent 4,273,492, or to avoid leaks in outside the swivel joint by a level control system, such as recommended for example in US patent 4,526,536.
  • a level control system such as recommended for example in US patent 4,526,536.
  • Patent application WO 99/28510 proposes several embodiments for the annular rotary union.
  • the fixed part is a annular block which is adjusted with clearance in an annular channel of the rotor of suspension, so as to be separated from each of the two cylindrical walls of this channel through a radial annular slot.
  • patent application WO 99/28510 suggests either providing at least one lip seal in each annular slot, or to design each annular slot in the form of a labyrinth seal.
  • a disadvantage of this execution is that the annular channel in the rotor of suspension requires very precise machining, therefore very expensive.
  • the adjustment of the annular block in the annular channel of the suspension rotor must be very specific.
  • the fixed part of the fitting rotating comprises a stationary rotating ring which is axially supported, using two tight seals, on a ring housed in an annular channel of the suspension rotor.
  • the fixed rotating ring can be slid vertically, so that it can be pressed against the ring housed in the annular channel of the suspension rotor.
  • a charging device is of the type comprising a casing to be mounted on the head of the shaft furnace, a rotor suspension suspended rotatably in this housing, a loading chute suspended in the suspension rotor and at least one circuit of cooling carried by the suspension rotor.
  • This cooling circuit is supplied with coolant through a fitting annular turn which is of the type comprising: a fixed ring carried by the housing, a rotating ring in rotation with the suspension rotor and rolling means between the fixed ring and the rotating ring.
  • the fixed ring and the rotating ring cooperate so as to define a cylindrical interface in which at least one annular groove provides a transfer of pressurized coolant between the fixed ring and the rotating ring.
  • a device according to the invention stands out in particular for the following characteristics.
  • the fitting annular turn is mounted inside the housing in an annular tank of collection of leaks which is formed by the suspension rotor.
  • the ring of this rotating union is supported exclusively by the fixed ring by means of the rolling means.
  • Mating means then couple this rotating ring, freely supported by the fixed ring, to the suspension rotor so as to selectively transmit a moment of rotation of the suspension rotor to the rotating ring, while preventing transmission of other forces from the suspension rotor to the ring press.
  • connection means finally comprise at least one element deformable tubular, so that the connection means form a non-rigid connection between the rotating ring and the suspension rotor.
  • the rotary connector does not cause neither sealing problems nor excessive friction problems nor seal life issues or problems with differential thermal expansions or seizure problems.
  • the fitting turning is insensitive to severe shocks which are inevitably absorbed by the chute suspension rotor. It is also insensitive to faults centering of the rotor and to flatness of the rotation of the rotor of suspension. Special machining of the rotor suspension rotor is not required. The swivel joint can be easily replaced without removing the suspension rotor.
  • the device according to the invention allows easily to integrate a cooling circuit carried by the suspension rotor in a closed cooling circuit. To this end it is sufficient to provide a first annular groove in the cylindrical interface to ensure transfer coolant from the fixed ring to the rotating ring, and a second annular groove in the cylindrical interface to ensure transfer of coolant from the rotating ring to the fixed ring. Of this way we can get the coolant going back and forth through the annular swivel joint.
  • the cooling circuit (s) may include at least one open discharge line.
  • the housing includes advantageously a fixed annular tank for collecting the coolant, in which the discharge line (s) open out during the rotation of the suspension rotor.
  • Evacuation means are associated with the tank fixed ring to discharge coolant in a controlled manner outside of the housing.
  • Drainage means are advantageously connected to the annular tank of leakage collection to evacuate the leakage rate collected by it from controlled way outside the housing.
  • the fixed ring of the swivel fitting is carried by an annular flange which is fixed on the casing.
  • the annular leakage collecting tank then includes upper edges which cooperate with this annular flange to define labyrinth seals. he As a result, the swivel joint is relatively well insulated from the rest of the housing.
  • connection means advantageously comprise at least one connection flexible and axially compressible coupling, which is advantageously carried by the rotating ring and includes a coupling head.
  • connection flexible and axially compressible coupling which is advantageously carried by the rotating ring and includes a coupling head.
  • this coupling coupling is then associated with a coupling seat, which is arranged in the annular leakage collecting tank, so that the head coupling seat on the coupling seat when the coupling annular turn is mounted in the annular leakage collecting tank.
  • the aforementioned coupling means advantageously comprise a simple radial cross member mounted in the annular collection tank for suspension rotor leaks and a notch in the rotating ring. This notch then engages the radial cross member when the annular rotary coupling is arranged in the annular leakage collecting tank.
  • connection means advantageously open into a collector ring arranged below the annular leakage collecting tank. Many cooling circuits carried by the suspension rotor are then connected to the annular collector.
  • a pair of spaced packings axially is arranged in the cylindrical interface between a groove annular and the rolling means, respectively between two grooves adjacent annulars.
  • a drainage channel drains the interface area cylindrical between the two packings of a pair of packings in the annular leakage collecting tank.
  • FIG 1 shows schematically a loading device with a rotary chute 10 which is intended to equip a shaft furnace, such as for example a blast furnace.
  • This device comprises a casing 12 with an annular flange 14 at its end lower, a support plate 16 at its upper end, and a side casing 18.
  • the annular flange 14 serves to connect the casing 12 of tight to a counter flange (not shown) of a shaft furnace.
  • To the plate support 16 is tightly connected the lower end of a hopper or valve housing (not shown).
  • the lateral envelope 18 connects the flange 14 sealingly to the support plate 16.
  • a sleeve fixed supply 20 is fixed using an annular flange 22 in a central opening of the support plate 16.
  • This fixed supply sleeve 20 enters the casing 12 to define a supply channel 24 for the material to be loaded in the shaft furnace.
  • This supply channel 24 has an axis central 26 which is normally confused with the central axis of the shaft furnace.
  • a suspension rotor 28 for the chute 10 In the casing 12 is mounted a suspension rotor 28 for the chute 10.
  • the upper end of this suspension rotor 28 forms a sleeve suspension 30, which surrounds the fixed supply sleeve 20 and is suspended from using a large diameter bearing ring 32 in the casing 12.
  • the lower end of the suspension rotor 28 forms a screen box 34 in the central opening of the lower flange 14 of the casing 12. It supports in in addition to the bearings of the suspensions 36 for the chute 10.
  • a ring gear 38 of the suspension sleeve 34 cooperates with a motor (not shown) to drive the suspension rotor 28, and therefore the chute 10 suspended therein, rotating about the axis 26.
  • the chute 10 is further equipped with a pivoting device (not shown), which allows you to vary its angle of inclination by rotating it in its suspension bearings 36 around an axis 40 which is perpendicular to the axis of rotation 26 (in FIG. 1, the axis 40 is perpendicular to the plane of the leaf).
  • the screen casing 34 is provided with cooling circuits 42 1 , 42 2 , 42 3 , 42 4 in which a coolant, for example water, is circulated.
  • These cooling circuits 42 1 , 42 2 , 42 3 , 42 4 advantageously contain baffles or tubes (not shown) circulating the cooling water along a predetermined path along the walls of the screen box 34. They are connected to a coolant distribution circuit using an annular rotary connection, which is generally identified by the reference numeral 44. The latter is mounted inside the casing 12 in an annular leakage collecting tank 46, which is formed by the upper end of the suspension sleeve 30 of the suspension rotor 28.
  • annular leakage collecting tank 46 cooperates with the annular flange 22 to define labyrinth seals 52, 54.
  • a sort of chamber is thus defined inside the casing 12 separate 56, in which for the annular rotary connection 44 is well protected from the fumes which penetrate into the casing 12. To further reinforce this protection, it is possible to inject a clean gas into this separate chamber 56, so as to maintain the latter in overpressure by compared to the oven.
  • the fitting annular turn 44 includes a ring fixed 60, which is screwed onto the lower surface of the flange 22, as well as a rotary ring 62, which is mounted with radial clearance in the fixed ring 60. It It is important to note that the rotating ring 62 is supported exclusively by the fixed ring 60 by means of a bearing 64. Indeed, there is no rigid connection between the rotating ring 62 and the suspension rotor 28, however selective coupling means couple the rotating ring 62 to the suspension rotor 28 so as to selectively transmit a moment of rotation of the suspension rotor 28 to the rotating ring 62, while preventing transmission of other forces from the suspension rotor 28 to the rotating ring 62.
  • FIG. 4 and 5 A particularly simple execution of these coupling means is illustrated using FIG. 4 and 5. It is a radial cross member 65 which is fixed in the annular leakage collecting tank 46 and which engages a notch 66 in the rotary ring 62 when the annular rotary connector 44 is fixed in the annular leakage collecting tank 46. It will be appreciated that the radial cross member 65 and the notch 66 cooperate so as to transmit a moment of rotation of the suspension rotor 28 to the rotating ring 62, while nevertheless allowing relative vertical and radial displacements of the two elements. This makes the annular rotary union 44 almost insensitive to thermal expansion, shocks, vibrations and layout faults experienced by the suspension rotor 28. Remain to note that the reference 68 globally marks a lubrication circuit under bearing pressure 64. The excess grease is discharged below of the bearing 64 through a drainage channel 69 in the loading channel 24.
  • Reference 70 identifies a fitting for a pipe supply of pressurized coolant.
  • An internal channel 72 of the fixed ring 60 connects this fitting 70 to an annular groove 74 which is arranged in a concave cylindrical surface 76 of the fixed ring 60.
  • a internal channel 78 of the rotating ring 62 is connected to a mouth 80, which is arranged in a convex cylindrical surface 82 of the rotating ring 62 opposite the annular groove 74.
  • This internal channel 78 opens into the lower front surface of the rotating ring 62 in a fitting coupling 84.
  • the pressurized coolant supplied to the fitting 70 passes through the fixed ring 60 through the internal channel 72 in the annular groove 74, to be transferred through a cylindrical interface, formed by the two cylindrical surfaces 76, 82, and the first mouth 80 in the rotating ring 62. In this, the coolant flows to through the internal channel 78 in the coupling fitting 84.
  • the fitting coupling 84 is axially projecting from the front surface bottom of the rotating ring 62. It comprises a flexible tubular element 100 laterally and axially compressible, which is embedded with one end in the lower front surface of the rotating ring 62. The other end carries a coupling head 102.
  • the tubular element 100 comprises a bellows compensator 104 surrounded by a helical compression spring 106.
  • the coupling head 102 is associated with a coupling seat 108, which is arranged on the bottom of the annular leakage collecting tank 46 so as to what the coupling head 102 sits on the coupling seat when the annular rotary union 44 is mounted in the annular collection tank for leaks 46.
  • the compression spring 106 then provides sufficient contact pressure between coupling head 102 and seat coupling 108, so that a seal 110, which is carried either by a spherical convex crown 111 of the coupling head 102 either by a conical concave crown 112 of the coupling seat 108 can seal between the two coupling elements.
  • the coupling seat 108 could also be carried by the rotating ring 62.
  • the coupling fitting 84 would be axially projecting by relative to the bottom of the annular leakage collecting tank 46.
  • the head coupling 102 could be fitted with a conical concave crown and the coupling seat of a spherical convex crown, which cooperate with or without a gasket to ensure watertightness during their coupling.
  • the pressurized coolant enters through the coupling seat 108 into an annular supply manifold 114.
  • the latter is arranged immediately below the annular tank 46.
  • supply manifold 114 of the suspension rotor 28 are connected supply tubes of the cooling circuits 42 1 , 42 2 , 42 3 , 42 4 carried by the suspension rotor 28.
  • FIG. 1 there is shown by way of example the supply tube 116 which supplies the cooling circuit 42 1 .
  • FIG. 1 it can be seen that the coolant leaves the cooling circuit 42 1 through a return tube 118 which opens into a second annular manifold 120.
  • the latter is arranged just below the first annular manifold 114.
  • the second annular collector 120 serves as a collector for all the returns from the cooling circuits 42 1 , 42 2 , 42 3 , 42 4 . It is connected through a coupling fitting 84 '/ coupling seat 108' assembly, which is of the same type as the assembly 84/108 described above, to an internal channel 78 'of the rotating ring 62. From this channel 78 ′ the coolant passes, in the opposite direction to that described above, through a mouth 80 ′ and the cylindrical interface 76, 82 in a second annular groove 74 ′ arranged in the concave cylindrical surface 76 of the fixed ring 60. In this fixed ring 60 the coolant is led through an internal channel 72 'in the fixed connector 70' for a return line of the coolant under pressure.
  • Interface area 128 cylindrical 76, 82 located between the two seals 126 ', 126 "east drained by a drainage channel 130 in the annular collection tank for leaks 46. Since the pressure in zone 128 of the cylindrical interface 76, 82 is lower than the pressures in the second groove 74 ′, it is guaranteed that the coolant cannot be short-circuited through the interface cylindrical 76, 82 of the first groove 74, where the pressure prevails supply, in the second groove 74 ′, where the return pressure prevails which is significantly lower than the supply pressure.
  • a last seal 132 is arranged in the cylindrical interface 76, 82 in below the second groove 74 '.
  • the leakage rate flowing through this seal 132 is drained through the cylindrical interface 76, 82 in the annular leakage collecting tank 46.
  • the linings sealing 121 ', 121 ", 126', 126" and 132 are not intended to completely cancel leakage rates but to limit them to reasonable values and to channel them in a controlled manner into the annular leakage collecting tank 46. It it follows that the seals 121 ', 121 ", 126', 126" and 132 are always well cooled and lubricated, which significantly increases their life of life and avoids seizures. In addition, the power required to make turning the rotary ring 62 in the fixed ring 60 is thus considerably scaled down.
  • Reference 134 locates a drainage pipe which allows the evacuation of leakage rates collected in the annular leakage collecting tank 46.
  • this drainage pipe 134 opens into an annular tank fixed 136, which is arranged in the lower end of the casing 12.
  • the free end of the drainage pipe 134 moves in the fixed annular tank 136.
  • means evacuation are associated with the fixed annular tank 136 to evacuate the liquid of controlled cooling outside the housing 12.
  • these evacuation means are represented schematically by pipes 138.
  • FIG. 6 shows a simplified embodiment of the device of FIG. 1.
  • the return of the coolant from the cooling circuits 42 1 , 42 2 , 42 3 , 42 4 does not pass through the annular rotary union 44 ′, but is evacuated through open discharge pipes in the fixed annular tank 136 which is arranged in the lower end of the casing 12.
  • the discharge line 140 of the cooling circuit 42 1 has been shown .
  • the annular rotary connector 44 must only have an annular groove and internal channels to ensure the transfer of the coolant under pressure between the fixed ring and the rotary ring.
  • the disadvantage of this system is that in the fixed annular tank 136, the coolant is exposed to the atmosphere prevailing in the casing 12. This requires a more expensive treatment of the cooling water before its recirculation in the cooling system .

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Blast Furnaces (AREA)
  • Joints Allowing Movement (AREA)
  • Mechanical Sealing (AREA)
  • Replacement Of Web Rolls (AREA)
  • Crushing And Grinding (AREA)
  • Unwinding Webs (AREA)
  • Motor Or Generator Cooling System (AREA)
  • Heat Treatment Of Articles (AREA)
  • Vertical, Hearth, Or Arc Furnaces (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Description

DOMAINE TECHNIQUE AUQUEL SE RAPPORTE L'INVENTION
La présente invention concerne un dispositif de chargement pour un four à cuve. Elle concerne plus particulièrement le refroidissement d'un dispositif de chargement pour un four à cuve, tel qu'un haut fourneau, qui comprend un carter à monter sur la tête du four à cuve, un rotor de suspension suspendu de façon rotative dans ce carter, une goulotte de chargement suspendue dans le rotor de suspension et au moins un circuit de refroidissement porté par le rotor de suspension.
ÉTAT DE LA TECHNIQUE
En 1978 la société Paul Wurth S.A. a proposé un tel dispositif de chargement, lequel est décrit en détail dans le brevet US 4,273,492. Le rotor de suspension de ce dispositif est muni d'un écran de protection inférieur qui entoure le canal d'alimentation de la goulotte et protège les dispositifs d'entraínement logés dans le carter notamment contre le rayonnement de chaleur à l'intérieur du four à cuve. À cette fin, l'écran inférieur comprend un circuit de refroidissement qui est alimenté avec un liquide de refroidissement à travers un raccord tournant annulaire agencé autour du canal d'alimentation de la goulotte. Ce raccord tournant comprend une virole rotative et une bague fixe. La virole rotative prolonge le rotor de suspension, dont elle forme une partie intégrante, en-dehors du carter. La bague fixe est fixée sur le carter et la virole rotative est ajustée avec jeu dans la bague fixe. Deux roulements à rouleaux cylindriques ont pour but de centrer la virole rotative dans la bague fixe. Dans la bague fixe sont aménagées deux gorges annulaires superposées, de façon à faire face à la surface cylindrique externe de la virole rotative. Des canaux de raccord du circuit de refroidissement définissent des embouchures dans la surface cylindrique externe de la virole rotative en face des deux gorges. Des garnitures d'étanchéité, qui sont montées le long des deux bords de chaque gorge, s'appuient sur la surface cylindrique externe de la virole rotative dans le but d'assurer l'étanchéité entre la virole rotative et la bague fixe. En pratique, il s'est avéré que ce type de raccord tournant ne convient guère pour un dispositif de chargement d'un four à cuve. En effet, afin d'éviter des fuites d'eau de refroidissement dans le carter, il faut assurer une bonne étanchéité entre la virole rotative et la bague fixe. Or, dans un four à cuve, l'efficacité des garnitures d'étanchéité du raccord tournant se détériore rapidement. Elles sont en effet en contact avec une virole assez chaude, ce qui n'est guère favorable à leur durée de vie. De plus, suite à des dilatations thermiques différentielles, le jeu radial entre la virole rotative et la bague fixe est fortement variable, ce qui est également néfaste à la durée de vie des garnitures d'étanchéité, et peut même entraíner le grippage et la destruction complète du raccord tournant. Aussi faut-il relever que la durée de vie du raccord tournant est encore affectée par des chocs violents qui sont inévitablement absorbés par le rotor de suspension de la goulotte. Enfin, il reste à noter qu'un tel raccord tournant de grand diamètre qui est équipé de garnitures étanches présente un frottement important, ce qui augmente sensiblement la puissance requise pour entraíner la goulotte en rotation. En conclusion, il s'est avéré qu'un raccord tournant du type décrit dans le brevet US 4,273,492 présente beaucoup trop d'inconvénients pour être une solution fiable pour alimenter un circuit de refroidissement porté par un équipement de chargement rotatif d'un four à cuve.
Pour éviter tous ces inconvénients, la société Paul Wurth S.A. a proposé déjà en 1982 un dispositif de refroidissement d'une installation de chargement d'un haut fourneau sans garnitures étanches. Ce dispositif de refroidissement, qui est décrit en détail dans le brevet US 4,526,536, a été installé dans de nombreuses installations de chargement de hauts fourneaux à travers le monde. Il est caractérisé par un bac annulaire supérieur, qui est porté par un manchon supérieur du rotor de suspension et qui est alimenté par gravité en eau de refroidissement. A cette fin, une conduite d'alimentation en eau de refroidissement est intégrée dans le carter et présente au-dessus du bac annulaire au moins une embouchure permettant un écoulement par gravité de l'eau de refroidissement dans le bac annulaire supérieur en rotation avec le rotor de suspension. Le bac annulaire supérieur est connecté à plusieurs serpentins de refroidissement équipant le rotor de suspension. Ces serpentins ont des conduites de décharge débitant dans un bac annulaire inférieur, qui est immobile en rotation puisqu'il est porté par le bord inférieur du carter. L'eau s'écoule par conséquent par gravité, à partir d'une conduite d'alimentation immobile en rotation, dans le bac annulaire supérieur du rotor de suspension, passe par gravité à travers les serpentins de refroidissement montés sur le rotor de suspension, pour être collectée ensuite dans le bac annulaire du carter et être évacuée à l'extérieur du carter. Des mesures de niveau d'eau dans les deux bacs annulaires permettent de contrôler la circulation de l'eau de refroidissement. Dans le bac annulaire supérieur, le niveau est ajusté de façon à se trouver constamment entre un niveau minimal et un niveau maximal. Si le niveau descend jusqu'au niveau minimal, on augmente le débit d'alimentation du bac annulaire afin de garantir une alimentation convenable des serpentins. Si le niveau monte jusqu'au niveau maximal, on diminue le débit d'alimentation du bac annulaire afin d'éviter un débordement du bac annulaire.
Un premier désavantage du dispositif de refroidissement de 1982 est que la pression disponible pour faire passer l'eau de refroidissement à travers les circuits de refroidissement est essentiellement déterminée par la différence de hauteur entre le bac annulaire et le collecteur inférieur. Il faut dès lors équiper le rotor de suspension de circuits de refroidissement à faibles pertes de charge, ce qui est un désavantage considérable du point de vue encombrement et/ou efficacité du refroidissement. Il y a notamment un risque de surchauffes locales dû aux faibles vitesses de circulation de l'eau de refroidissement dans les circuits de refroidissement. Un autre désavantage du dispositif de refroidissement de 1982 est que les gaz de haut fourneau entrent en contact avec l'eau de refroidissement déjà dans le bac annulaire supérieur. Comme ces gaz de haut fourneau sont fortement chargés en poussières, des quantités importantes de poussières passent inévitablement dans l'eau de refroidissement. Ces poussières forment des boues dans le bac annulaire supérieur, qui traversent les serpentins de refroidissement et risquent de boucher ces derniers. De plus, les gaz de haut fourneau rendent l'eau de refroidissement acide, ce qui favorise une corrosion des circuits de refroidissement.
Afin de pouvoir réaliser des circuits de refroidissement à pertes de charge plus élevées, il a été proposé dans la demande de brevet DE 3342572 d'équiper ces circuits d'une pompe auxiliaire portée par le rotor de suspension. Cette pompe auxiliaire est entraínée en rotation par un mécanisme qui transforme une rotation du rotor de suspension en une rotation d'un arbre d'entraínement de la pompe. Il en résulte que la pompe auxiliaire fonctionne seulement lorsque le rotor est en rotation. De plus, une telle pompe auxiliaire est assez sensible aux boues qui traversent les serpentins de refroidissement.
La demande de brevet WO 99/28510 présente un procédé pour refroidir un dispositif de chargement du genre décrit plus haut qui est équipé d'un raccord tournant. Contrairement aux enseignements de l'état de la technique, on n'essaie ni d'assurer l'étanchéité parfaite du raccord tournant, comme préconisé par exemple dans le brevet US 4,273,492, ni d'éviter des fuites en dehors du raccord tournant par un système de contrôle de niveaux, comme préconisé par exemple dans le brevet US 4,526,536. On propose plutôt d'effectuer l'alimentation en liquide de refroidissement du raccord tournant de façon à ce qu'un débit de fuite passe dans une fente annulaire de séparation entre la partie rotative et la partie fixe du raccord tournant pour y former un joint liquide qui empêche la pénétration de poussières dans le raccord tournant. Ce débit de fuite est ensuite collecté et évacué en dehors de le carter, sans passer par le circuit de refroidissement. Il en résulte que des boues de poussières ne passent pas non plus à travers le circuit de refroidissement et ne risquent dès lors pas de boucher ce dernier.
La demande de brevet WO 99/28510 propose plusieurs réalisations pour le raccord tournant annulaire. Dans une première exécution, la partie fixe est un bloc annulaire qui est ajusté avec jeu dans un canal annulaire du rotor de suspension, de façon à être séparé de chacune des deux parois cylindriques de ce canal par une fente annulaire radiale. Pour réduire le débit de fuite à travers ces deux fentes annulaires radiales, la demande de brevet WO 99/28510 propose soit de prévoir dans chaque fente annulaire au moins un joint à lèvre, soit de concevoir chaque fente annulaire sous forme d'un joint labyrinthe. Un inconvénient de cette exécution est que le canal annulaire dans le rotor de suspension nécessite un usinage très précis, donc très coûteux. De plus, l'ajustage du bloc annulaire dans le canal annulaire du rotor de suspension doit être très précis. Il en résulte par ailleurs que cette exécution est très sensible à des défauts de centrage de la rotation du rotor de suspension ainsi qu'à des chocs violents absorbés par le rotor de suspension. Un autre désavantage est que le rotor de suspension entier doit être démonté pour réparer un canal annulaire endommagé. Dans une exécution alternative, la partie fixe du raccord tournant comprend un anneau fixe en rotation qui prend axialement appui, à l'aide de deux garnitures étanches, sur un anneau logé dans un canal annulaire du rotor de suspension. L'anneau fixe en rotation est coulissable verticalement, de façon à pouvoir être pressé contre l'anneau logé dans le canal annulaire du rotor de suspension. Cette exécution est relativement sensible à des défauts de planéité de la rotation du rotor de suspension. Or, de tels défauts de planéité de la rotation du rotor de suspension sont difficilement évitables car la mise en charge de l'anneau de roulement supportant le rotor de suspension dans le carter n'est généralement pas symétrique par rapport à l'axe de ce roulement et varie avec la position angulaire de la goulotte de chargement.
En conclusion, plus de vingt ans après la date de dépôt du brevet US 4,273,492, on n'a toujours pas de solution satisfaisante pour alimenter avec un liquide de refroidissement sous pression un équipement rotatif d'un dispositif de chargement pour un four à cuve.
OBJET DE L'INVENTION
Par conséquent, il sera vivement apprécié que le dispositif de chargement défini dans la première revendication, constitue enfin une solution satisfaisante au problème susmentionné.
EXPOSE DE L'INVENTION
Il faut d'abord rappeler qu'un dispositif de chargement selon l'invention est du type comprenant un carter à monter sur la tête du four à cuve, un rotor de suspension suspendu de façon rotative dans ce carter, une goulotte de chargement suspendue dans le rotor de suspension et au moins un circuit de refroidissement porté par le rotor de suspension. Ce circuit de refroidissement est alimenté avec un liquide de refroidissement par l'intermédiaire d'un raccord tournant annulaire qui est du type comprenant : une bague fixe portée par le carter, une bague rotative en rotation avec le rotor de suspension et des moyens de roulement entre la bague fixe et la bague rotative. Dans ce raccord tournant, la bague fixe et la bague rotative coopèrent de façon à définir une interface cylindrique dans laquelle au moins une rainure annulaire assure un transfert d'un liquide de refroidissement sous pression entre la bague fixe et la bague rotative. Le transfert du liquide de refroidissement de la bague rotative au rotor de suspension est alors assuré par des moyens de raccord connectés entre la bague rotative et le rotor de suspension. Un dispositif selon l'invention se distingue notamment par les caractéristiques qui vont suivre. Le raccord tournant annulaire est monté à l'intérieur du carter dans un bac annulaire de collecte de fuites qui est formé par le rotor de suspension. De plus, la bague rotative de ce raccord tournant est supportée exclusivement par la bague fixe par l'intermédiaire des moyens de roulement. Des moyens d'accouplement sélectifs accouplent alors cette bague rotative, librement supportée par la bague fixe, au rotor de suspension de façon à transmettre sélectivement un moment de rotation du rotor de suspension à la bague rotative, tout en empêchant une transmission d'autres efforts du rotor de suspension à la bague rotative. Les moyens de raccord comprennent finalement au moins un élément tubulaire déformable, de façon à ce que les moyens de raccord forment une connexion non rigide entre la bague rotative et le rotor de suspension. Il sera apprécié que ces caractéristiques procurent enfin, après plus de vingt ans de recherche, une solution fiable pour alimenter avec un liquide de refroidissement sous pression un équipement rotatif d'un dispositif de chargement pour un four à cuve. En effet, dans la solution selon l'invention, le raccord tournant ne cause ni des problèmes d'étanchéité ni des problèmes de frottement excessif ni des problèmes de durée de vie de garnitures d'étanchéité ni des problèmes de dilatations thermiques différentielles ni des problèmes de grippage. Le raccord tournant est insensible aux chocs violents qui sont inévitablement absorbés par le rotor de suspension de la goulotte. Il est également insensible à des défauts de centrage du rotor et à des défauts de planéité de la rotation du rotor de suspension. Un usinage spéciale du rotor de suspension du rotor n'est pas requis. Le raccord tournant peut être facilement remplacé sans démonter le rotor de suspension.
Il sera également apprécié que le dispositif selon l'invention permet facilement d'intégrer un circuit de refroidissement porté par le rotor de suspension dans un circuit de refroidissement fermé. À cette fin il suffit de prévoir une première rainure annulaire dans l'interface cylindrique pour assurer un transfert du liquide de refroidissement de la bague fixe à la bague rotative, et une deuxième rainure annulaire dans la interface cylindrique pour assurer un transfert du liquide de refroidissement de la bague rotative à la bague fixe. De cette façon, on peut faire passer l'aller et le retour du liquide de refroidissement à travers le raccord tournant annulaire.
Alternativement, le ou les circuits de refroidissement peuvent comprendre au moins une conduite de décharge ouverte. Dans ce cas, le carter comprend avantageusement un bac annulaire fixe de collecte du liquide de refroidissement, dans lequel la ou les conduites de décharge débouchent lors de la rotation du rotor de suspension. Des moyens d'évacuation sont associés au bac annulaire fixe pour évacuer le liquide de refroidissement de façon contrôlée en-dehors du carter.
Des moyens de drainage sont avantageusement connectés au bac annulaire de collecte de fuites pour évacuer le débit de fuite collecté par celui-ci de façon contrôlée en-dehors du carter.
Dans une exécution préférée du dispositif selon l'invention, la bague fixe du raccord tournant est portée par une bride annulaire qui est fixée sur le carter. Le bac annulaire de collecte de fuites comprend alors des bords supérieurs qui coopèrent avec cette bride annulaire pour définir des joints labyrinthes. Il s'ensuit que le raccord tournant est relativement bien isolé du reste du carter.
Les moyens de raccord comprennent avantageusement au moins un raccord d'accouplement flexible et axialement compressible, qui est avantageusement porté par la bague rotative et comprend une tête d'accouplement. À ce raccord d'accouplement est alors associé un siège d'accouplement, qui est agencé dans le bac annulaire de collecte de fuites, de façon à ce que la tête d'accouplement s'assoie sur le siège d'accouplement lorsque le raccord tournant annulaire est monté dans le bac annulaire de collecte de fuites. Il sera apprécié que ce mode de réalisation rend notamment très facile le montage et le démontage du raccord tournant annulaire.
Les moyens d'accouplement susmentionnés comprennent avantageusement une simple traverse radiale montée dans le bac annulaire de collecte de fuites du rotor de suspension et une encoche dans la bague rotative. Cette encoche engage alors la traverse radiale lorsque le raccord tournant annulaire est agencé dans le bac annulaire de collecte de fuites.
Les moyens de raccord débouchent avantageusement dans un collecteur annulaire agencé en dessous du bac annulaire de collecte de fuites. Plusieurs circuits de refroidissement portés par le rotor de suspension sont alors raccordés au collecteur annulaire.
Dans une exécution préférée, une paire de garnitures d'étanchéité espacées axialement est agencée dans l'interface cylindrique entre une rainure annulaire et les moyens de roulement, respectivement entre deux rainures annulaires adjacentes. Un canal de drainage draine la zone de l'interface cylindrique entre les deux garnitures d'étanchéité d'une paire de garnitures d'étanchéité dans le bac annulaire de collecte de fuites.
BREVE DESCRIPTION DES FIGURES
D'autres particularités et caractéristiques de l'invention ressortiront de la description détaillée de quelques modes de réalisation avantageux présentés ci-dessous, à titre d'illustration, en se référant aux dessins annexés. Ceux-ci montrent:
Fig.1:
est une coupe verticale d'une première exécution d'un dispositif de chargement d'un four à cuve selon l'invention;
Fig.2:
est une coupe verticale d'un raccord tournant annulaire équipant le dispositif de chargement d'un four à cuve de la Figure 1;
Fig.3:
est une autre coupe verticale du raccord tournant annulaire équipant le dispositif de chargement d'un four à cuve de la Figure 1;
Fig.4:
est encore une autre coupe verticale du raccord tournant annulaire équipant le dispositif de chargement d'un four à cuve de la Figure 1;
Fig.5:
est une coupe selon la ligne de coupe 5-5 dans la FIG. 4 ; et
Fig.6:
est une coupe verticale d'une deuxième exécution d'un dispositif de chargement d'un four à cuve selon l'invention.
DESCRIPTION DETAILLEE DE QUELQUES MODES DE REALISATION AVANTAGEUX DE L'INVENTION
Sur les figures, les mêmes références désignent des éléments identiques ou similaires.
La Figure 1 représente de façon schématique un dispositif de chargement avec une goulotte rotative 10 qui est destiné à équiper un four à cuve, tel que par exemple un haut fourneau.
Ce dispositif comprend un carter 12 avec une bride annulaire 14 à son extrémité inférieure, une plaque de support 16 à son extrémité supérieure, et une enveloppe latérale 18. La bride annulaire 14 sert à connecter le carter 12 de façon étanche à une contre-bride (non montrée) d'un four à cuve. À la plaque de support 16 est connectée de façon étanche l'extrémité inférieure d'une trémie ou d'un carter à clapets (non montrés). L'enveloppe latérale 18 relie la bride 14 de façon étanche à la plaque de support 16. Un manchon d'alimentation fixe 20 est fixé à l'aide d'une bride annulaire 22 dans une ouverture centrale de la plaque de support 16. Ce manchon d'alimentation fixe 20 pénètre dans la carter 12 pour définir un canal d'alimentation 24 pour la matière à charger dans le four à cuve. Ce canal d'alimentation 24 a un axe central 26 qui est normalement confondu avec l'axe central du four à cuve.
Dans le carter 12 est monté un rotor de suspension 28 pour la goulotte 10. L'extrémité supérieure de ce rotor de suspension 28 forme un manchon de suspension 30, qui entoure le manchon d'alimentation fixe 20 et est suspendu à l'aide d'un anneau de roulement de grand diamètre 32 dans le carter 12. L'extrémité inférieure du rotor de suspension 28 forme un caisson écran 34 dans l'ouverture centrale de la bride inférieure 14 du carter 12. Elle supporte en outre des paliers des suspension 36 pour la goulotte 10.
Une couronne dentée 38 du manchon de suspension 34 coopère avec un moteur (non montre) pour entraíner le rotor de suspension 28, et par conséquent la goulotte 10 y suspendue, en rotation autour de l'axe 26. Le plus souvent, la goulotte 10 est en outre équipée d'un dispositif de pivotement (non montré), qui permet de faire varier son angle d'inclinaison en la faisant pivoter dans ses paliers de suspension 36 autour d'un axe 40 qui est perpendiculaire à l'axe de rotation 26 (dans la FIG. 1, l'axe 40 est perpendiculaire au plan de la feuille).
Pour protéger le caisson écran 34 des températures élevées dans le four à cuve et pour éviter que celles-ci ne transmettent la chaleur à l'intérieur du carter 12, le caisson écran 34 est muni de circuits de refroidissement 421, 422, 423, 424 dans lesquels on fait circuler un liquide de refroidissement, par exemple de l'eau. Ces circuits de refroidissement 421, 422, 423, 424 contiennent avantageusement des chicanes ou tubes (non montrés) faisant circuler l'eau de refroidissement selon un chemin prédéterminé le long des parois du caisson écran 34. Ils sont connectés à un circuit de distribution de liquide de refroidissement à l'aide d'un raccord tournant annulaire, qui est globalement repéré par le chiffre de référence 44. Ce dernier est monté à l'intérieur du carter 12 dans un bac annulaire de collecte de fuites 46, qui est formé par l'extrémité supérieure du manchon de suspension 30 du rotor de suspension 28. En se référant à la FIG. 2, il sera noté que les deux bords supérieurs 48, 50 du bac annulaire de collecte de fuites 46 coopèrent avec la bride annulaire 22 pour définir des joints labyrinthes 52, 54. On délimite ainsi à l'intérieur du carter 12 une sorte de chambre séparée 56, dans laquelle pour le raccord tournant annulaire 44 est bien protégé des fumées qui pénètrent dans le carter 12. Pour encore renforcer cette protection, on peut injecter un gaz propre dans cette chambre séparée 56, de façon à maintenir cette dernière en surpression par rapport au four.
Le raccord tournant annulaire 44 sera maintenant décrit plus en détail à l'aide des FIG. 2 à 5. Il sera noté que les FIG. 2 à 4 représentent des coupes verticales du raccord tournant annulaire 44 de la Figure 1 à trois endroits différents, illustrant respectivement :
  • FIG. 2, le transfert du liquide de refroidissement à travers le raccord tournant annulaire 44 au rotor de suspension 28;
  • FIG. 3, le retour du liquide de refroidissement du rotor de suspension à travers le raccord tournant annulaire 44 ;
  • FIG. 4, l'accouplement mécanique du raccord tournant annulaire 44 au rotor de suspension, son graissage et la gestion des débits de fuite.
En se référant d'abord à la FIG. 4, la conception mécanique du raccord tournant annulaire 44 sera brièvement décrite. Ce dernier comprend une bague fixe 60, qui est vissée sur la surface inférieure de la bride 22, ainsi qu'une bague rotative 62, qui est montée avec jeu radial dans la bague fixe 60. Il importe de signaler que la bague rotative 62 est supportée exclusivement par la bague fixe 60 par l'intermédiaire d'un roulement 64. En effet, il n'existe pas de connexion rigide entre la bague rotative 62 et le rotor de suspension 28, cependant des moyens d'accouplement sélectifs accouplent la bague rotative 62 au rotor de suspension 28 de façon à transmettre sélectivement un moment de rotation du rotor de suspension 28 à la bague rotative 62, tout en empêchant une transmission d'autres efforts du rotor de suspension 28 à la bague rotative 62. Une exécution particulièrement simple de ces moyens d'accouplement est illustrée à l'aide des FIG. 4 et 5. Il s'agit d'une traverse radiale 65 qui est fixée dans le bac annulaire de collecte de fuites 46 et qui engage une encoche 66 dans la bague rotative 62 lorsque le raccord tournant annulaire 44 est fixé dans le bac annulaire de collecte de fuites 46. Il sera apprécié que la traverse radiale 65 et l'encoche 66 coopèrent de façon à transmettre un moment de rotation du rotor de suspension 28 à la bague rotative 62, tout en permettant cependant des déplacements verticaux et radiaux relatifs des deux éléments. Ceci rend le raccord tournant annulaire 44 quasi insensible aux dilatations thermiques, chocs, vibrations et défauts d'agencement subis par le rotor de suspension 28. Reste à noter que la référence 68 repère globalement un circuit de graissage sous pression du roulement 64. L'excédent de graisse est évacué en dessous du roulement 64 à travers un canal de drainage 69 dans le canal de chargement 24.
En se référant maintenant à la FIG. 2, le transfert d'un liquide de refroidissement au rotor de suspension 28 par le raccord tournant annulaire 44 sera décrit plus en détail. La référence 70 repère un raccord pour une conduite d'alimentation d'un liquide de refroidissement sous pression. Un canal interne 72 de la bague fixe 60 connecte ce raccord 70 à une rainure annulaire 74 qui est aménagée dans une surface cylindrique concave 76 de la bague fixe 60. Un canal interne 78 de la bague rotative 62 est connecté à une embouchure 80, qui est agencée dans une surface cylindrique convexe 82 de la bague rotative 62 en face de la rainure annulaire 74. Ce canal interne 78 débouche dans la surface frontale inférieure de la bague rotative 62 dans un raccord d'accouplement 84.
En résumé, le liquide de refroidissement sous pression alimenté dans le raccord 70 passe dans la bague fixe 60 à travers le canal interne 72 dans la rainure annulaire 74, pour être transféré à travers une interface cylindrique, formée par les deux surfaces cylindriques 76, 82, et la première embouchure 80 dans la bague rotative 62. Dans celle-ci, le liquide de refroidissement passe à travers le canal interne 78 dans le raccord d'accouplement 84.
En se référant encore à la FIG. 2, il sera noté que le raccord d'accouplement 84 est axialement en saillie par rapport à la surface frontale inférieure de la bague rotative 62. Il comprend un élément tubulaire 100 flexible latéralement et axialement compressible, qui est encastré avec une extrémité dans la surface frontale inférieure de la bague rotative 62. L'autre extrémité porte une tête d'accouplement 102. L'élément tubulaire 100 comprend un compensateur à soufflets 104 entouré d'un ressort hélicoïdal de compression 106. La tête d'accouplement 102 est associé à un siège d'accouplement 108, qui est agencé sur le fond du bac annulaire de collecte de fuites 46 de façon à ce que la tête d'accouplement 102 s'assoie sur le siège d'accouplement lorsque le raccord tournant annulaire 44 est monté dans le bac annulaire de collecte de fuites 46. Il sera noté que le ressort de compression 106 assure alors une pression de contact suffisante entre la tête d'accouplement 102 et le siège d'accouplement 108, pour qu'un joint d'étanchéité 110, qui est porté soit par une couronne convexe sphérique 111 de la tête d'accouplement 102 soit par une couronne concave conique 112 du siège d'accouplement 108 puisse assurer l'étanchéité entre les deux éléments d'accouplement. Il reste à noter que le siège d'accouplement 108 pourrait aussi être porté par la bague rotative 62. Dans ce cas, le raccord d'accouplement 84 serait axialement en saillie par rapport au fond du bac annulaire de collecte de fuites 46. Enfin, la tête d'accouplement 102 pourrait être munie d'une couronne concave conique et le siège d'accouplement d'une couronne convexe sphérique, qui coopèrent avec ou sans joint d'étanchéité pour assurer l'étanchéité lors de leur accouplement.
Du premier raccord d'accouplement 84, le liquide de refroidissement sous pression pénètre à travers le siège d'accouplement 108 dans un collecteur annulaire d'alimentation 114. Ce dernier est agencé immédiatement en dessous du bac annulaire 46. À ce collecteur d'alimentation 114 du rotor de suspension 28 sont connectés des tubes d'alimentations des circuits de refroidissement 421, 422, 423, 424 portés par le rotor de suspension 28. Sur la FIG. 1, on a représenté à titre d'exemple le tube d'alimentation 116 qui alimente le circuit de refroidissement 421.
Sur la FIG. 1 on voit que le liquide de refroidissement quitte le circuit de refroidissement 421 à travers un tube de retour 118 qui débouche dans un deuxième collecteur annulaire 120. Ce dernier est agencé juste en dessous du premier collecteur annulaire 114.
En se référant maintenant à la FIG. 3, le retour du liquide de refroidissement à travers le raccord tournant annulaire 44 sera décrit plus en détail. Le deuxième collecteur annulaire 120 sert de collecteur pour tous les retours des circuits de refroidissement 421, 422, 423, 424. Il est connecté à travers un ensemble raccord d'accouplement 84'/siège d'accouplement 108', qui est du même type que l'ensemble 84/108 décrit plus haut, à un canal interne 78' de la bague rotative 62. De ce canal 78' le liquide de refroidissement passe, dans le sens inverse de celui décrit plus haut, à travers une embouchure 80' et l'interface cylindrique 76, 82 dans une deuxième rainure annulaire 74' aménagée dans la surface cylindrique concave 76 de la bague fixe 60. Dans cette bague fixe 60 le liquide de refroidissement est conduit à travers un canal interne 72' dans le raccord fixe 70' pour une conduite de retour du liquide de refroidissement sous pression.
En se référant de nouveau à la FIG. 4, la gestion des débits de fuite sera maintenant décrite plus en détail. Il sera d'abord noté que le jeu radial entre la bague fixe 60 et la bague rotative 62 est relativement important, pour réduire le risque de grippage des deux bagues 60, 62. Ainsi, le débit de fuite axial dans l'interface cylindrique 76, 82 est assez important. Ce débit de fuite est cependant contrôlé par des garnitures d'étanchéité et des canaux de drainage. Une première paire de garnitures d'étanchéité 121', 121" est agencée dans l'interface cylindrique 76, 82 entre la première rainure 74 et le roulement 64. Ces deux garnitures d'étanchéité 121', 121" sont axialement espacées l'une de l'autre, et la zone 122 de l'interface cylindrique 76, 82 située entre les deux garnitures d'étanchéité 121', 121" est drainée par un canal de drainage 124 dans le bac annulaire de collecte de fuites 46. Vu que la pression dans le circuit de graissage sous pression 68 est plus élevée que dans la zone 122 de l'interface cylindrique 76, 82, il est garanti que le liquide de refroidissement ne peut pénétrer dans le roulement 64. Une deuxième paire de garnitures d'étanchéité 126', 126" est agencée dans l'interface cylindrique 76, 82 entre la première rainure 74 et la deuxième rainure 74'. La zone 128 de l'interface cylindrique 76, 82 située entre les deux garnitures d'étanchéité 126', 126" est drainée par un canal de drainage 130 dans le bac annulaire de collecte de fuites 46. Vu que la pression dans zone 128 de l'interface cylindrique 76, 82 est inférieure aux pressions dans la deuxième rainure 74', il est garanti que le liquide de refroidissement ne peut être court-circuité à travers l'interface cylindrique 76, 82 de la première rainure 74, où règne la pression d'alimentation, dans la deuxième rainure 74', où règne la pression de retour qui est sensiblement plus faible que la pression d'alimentation. Une dernière garniture d'étanchéité 132 est agencée dans l'interface cylindrique 76, 82 en dessous de la deuxième rainure 74'. Le débit de fuite s'écoulant à travers cette garniture d'étanchéité 132 est drainé à travers l'interface cylindrique 76, 82 dans le bac annulaire de collecte de fuites 46. En résumé, les garnitures d'étanchéité 121', 121", 126', 126" et 132 n'ont pas pour but d'annuler complètement les débits de fuites mais de les limiter à des valeurs raisonnables et de les canaliser de façon contrôlée dans le bac annulaire de collecte de fuites 46. Il s'ensuit que les garnitures d'étanchéité 121', 121", 126', 126" et 132 sont toujours bien refroidies et lubrifiées, ce qui augmente sensiblement leur durée de vie et évite des grippages. De plus, la puissance nécessaire pour faire tourner la bague rotative 62 dans la bague fixe 60 est ainsi considérablement réduite.
La référence 134 repère un tuyau de drainage qui permet d'évacuer les débits de fuites recueillis dans le bac annulaire de collecte de fuites 46. Sur la FIG. 1 on voit que ce tuyau de drainage 134 débouche dans un bac annulaire fixe 136, qui est agencé dans l'extrémité inférieure du carter 12. Lorsque le rotor de suspension est en rotation, l'extrémité libre du tuyau de drainage 134 se meut dans le bac annulaire fixe 136. Reste à noter que des moyens d'évacuation sont associés au bac annulaire fixe 136 pour évacuer le liquide de refroidissement de façon contrôlée en-dehors du carter 12. Sur la FIG. 1, ces moyens d'évacuation sont représentés schématiquement par des tuyaux 138.
La FIG. 6 représente une exécution simplifiée du dispositif de la FIG. 1. Dans cette exécution simplifiée, le retour du liquide de refroidissement des circuits de refroidissement 421, 422, 423, 424 ne passe pas à travers le raccord tournant annulaire 44', mais est évacué à travers des conduites de décharge ouvertes dans le bac annulaire fixe 136 qui est agencé dans l'extrémité inférieure du carter 12. Sur la FIG. 6, on a par exemple représenté la conduite de décharge 140 du circuit de refroidissement 421. Il s'ensuit que le raccord tournant annulaire 44' doit seulement avoir une rainure annulaire et des canaux internes pour assurer le transfert du liquide de refroidissement sous pression entre la bague fixe et la bague rotative. Le désavantage de ce système est que dans le bac annulaire fixe 136, le liquide de refroidissement est exposé à l'atmosphère régnant dans le carter 12. Ceci nécessite un traitement plus coûteux de l'eau de refroidissement avant sa recirculation dans le système de refroidissement.

Claims (9)

  1. Dispositif de chargement pour un four à cuve comprenant:
    un carter (12) à monter sur la tête du four à cuve ;
    un rotor de suspension (28) suspendu de façon rotative dans ledit carter (12) ;
    une goulotte de chargement (10) suspendue dans ledit rotor de suspension (28) ;
    au moins un circuit de refroidissement (42) porté par ledit rotor de suspension (28) ;
    un raccord tournant (44) annulaire pour alimenter ledit circuit de refroidissement (42) avec un liquide de refroidissement, ledit raccord tournant (44) annulaire comprenant une bague fixe (60) portée par ledit carter (12), une bague rotative (62) en rotation avec ledit rotol de suspension (28), et des moyens de roulement (32) entre ladite bague fixe (60) et ladite bague rotative (62), ladite bague fixe (60) et ladite bague rotative (62) coopérant de façon à définir une interface cylindrique dans laquelle au moins une rainure annulaire (74, 74') assure un transfert d'un liquide de refroidissement sous pression entre ladite bague fixe (60) et ladite bague rotative (62); et
    des moyens de raccord (84, 108, 84', 108') connectés entre ladite bague rotative (62) et ledit rotor de suspension (28) pour assurer le transfert du liquide de refroidissement de ladite bague rotative (62) audit rotor de suspension (28) ;
    caractérisé en ce que
    ledit raccord tournant (44) annulaire est monté à l'intérieur du carter (12) dans un bac annulaire de collecte de fuites (46) qui est formé par ledit rotor de suspension (28) ;
    ladite bague rotative (62) est supportée exclusivement par ladite bague fixe (60) par l'intermédiaire desdits moyens de roulement (64) ;
    des moyens d'accouplement (65, 66) sélectifs accouplent ladite bague rotative (62) audit rotor de suspension (28) de façon à transmettre sélectivement un moment de rotation dudit rotor de suspension (28) à ladite bague rotative (62), tout en empêchant une transmission d'autres efforts dudit rotor de suspension (28) à ladite bague rotative (62) ; et
    lesdits moyens de raccord (84, 108, 84', 108') comprennent au moins un élément tubulaire déformable, de façon à ce que lesdits moyens de raccord (84, 108, 84', 108') forment une connexion non rigide entre ladite bague rotative (62) et ledit rotor de suspension (28).
  2. Dispositif selon la revendication 1, caractérisé par:
    une première rainure annulaire (74) agencée dans ladite interface cylindrique pour assurer un transfert du liquide de refroidissement de ladite bague fixe (60) à ladite bague rotative (62) ; et
    une deuxième rainure annulaire (74') agencée dans ladite interface cylindrique pour assurer un transfert du liquide de refroidissement de ladite bague rotative (62) à ladite bague fixe (60).
  3. Dispositif selon la revendication 1, caractérisé en ce que :
    ledit au moins un circuit de refroidissement (42) comprend au moins une conduite de décharge ;
    le carter (12) comprend un bac annulaire fixe (136) de collecte du liquide de refroidissement ;
    ladite conduite de décharge (140) débouche dans ledit bac annulaire fixe (136) lors de la rotation dudit rotor de suspension (28) ; et
    des moyens d'évacuation sont associés audit bac annulaire fixe pour évacuer le liquide de refroidissement en-dehors du carter (12).
  4. Dispositif selon l'une quelconque des revendications 1 à 3, caractérisé par des moyens de drainage (134, 136, 138) qui sont connectés audit bac annulaire de collecte de fuites (46) pour évacuer le débit de fuite collecté par celui-ci de façon contrôlée en-dehors dudit carter (12).
  5. Dispositif selon l'une quelconque des revendications 1 à 4, caractérisé en ce que :
    ladite bague fixe (60) est portée par une bride annulaire (22) fixée sur ledit carter (12); et
    ledit bac annulaire de collecte de fuites (46) comprend des bords supérieurs (48, 50) qui coopèrent avec ladite bride annulaire (22) pour définir des joints labyrinthes (52, 54).
  6. Dispositif selon l'une quelconque des revendications 1 à 5, caractérisé en ce que lesdits moyens de raccord (84, 108, 84', 108') comprennent :
    au moins un raccord d'accouplement (84, 84') flexible et axialement compressible, qui est porté par ladite bague rotative (62) et comprend une tête d'accouplement (102); et
    un siège d'accouplement (108, 108') qui est agencé dans ledit bac annulaire de collecte de fuites (46), de façon à ce que ladite tête d'accouplement s'assoie sur ledit siège d'accouplement (102) lorsque ledit raccord tournant (44) annulaire est monté dans ledit bac annulaire de collecte de fuites (46).
  7. Dispositif selon l'une quelconque des revendications 1 à 6, caractérisé en ce que lesdits moyens d'accouplement (65, 66) comprennent :
    une traverse radiale (65) montée dans ledit bac annulaire de collecte de fuites (46) du rotor de suspension (28) ; et
    une encoche (66) dans ladite bague rotative (62) qui engage ladite traverse radiale (65) lorsque ledit raccord tournant (44) annulaire est agencé dans ledit bac annulaire de collecte de fuites (46).
  8. Dispositif selon l'une quelconque des revendications 1 à 7, caractérisé en ce que :
    lesdites moyens de raccord (84, 108, 84', 108') débouchent dans un collecteur annulaire (114, 120) agencé en dessous dudit bac annulaire de collecte de fuites (46) ; et
    plusieurs circuits de refroidissement (42) portés par ledit rotor de suspension (28) sont raccordés audit collecteur annulaire.
  9. Dispositif selon l'une quelconque des revendications 1 à 8, caractérisé par :
    une paire de garnitures d'étanchéité (121', 121") (126', 126") espacées axialement, ladite paire de garnitures d'étanchéité étant agencée dans ladite interface cylindrique entre une rainure annulaire (74) et lesdits moyens de roulement (64) ou entre deux rainures annulaires (74, 74') adjacentes ; et
    un canal de drainage (124, 130) apte à drainer la zone de l'interface cylindrique (122, 128) entre les deux garnitures d'étanchéité d'une paire de garnitures d'étanchéité dans ledit bac annulaire de collecte de fuites (46).
EP02753069A 2001-06-26 2002-06-18 Dispositif de chargement d'un four a cuve Expired - Lifetime EP1399597B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
LU90794A LU90794B1 (fr) 2001-06-26 2001-06-26 Dispositif de chargement d'un four à cuve
LU90794 2001-06-26
PCT/EP2002/006682 WO2003002770A1 (fr) 2001-06-26 2002-06-18 Dispositif de chargement d'un four a cuve

Publications (2)

Publication Number Publication Date
EP1399597A1 EP1399597A1 (fr) 2004-03-24
EP1399597B1 true EP1399597B1 (fr) 2004-11-24

Family

ID=19732000

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02753069A Expired - Lifetime EP1399597B1 (fr) 2001-06-26 2002-06-18 Dispositif de chargement d'un four a cuve

Country Status (11)

Country Link
US (1) US6857872B2 (fr)
EP (1) EP1399597B1 (fr)
CN (1) CN1234877C (fr)
AT (1) ATE283376T1 (fr)
CZ (1) CZ298797B6 (fr)
DE (1) DE60202068T2 (fr)
LU (1) LU90794B1 (fr)
RU (1) RU2258878C1 (fr)
TW (1) TW536556B (fr)
UA (1) UA73875C2 (fr)
WO (1) WO2003002770A1 (fr)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
LU90642B1 (fr) * 2000-09-20 2002-03-21 Wurth Paul Sa Dispositif de r-partition de mati-res en vrac avec goulotte rotative - angle d'inclinaison
EP1801241A1 (fr) 2005-12-23 2007-06-27 Paul Wurth S.A. Dispositif de refroidissement d'une installation de chargement d'un four a cuve avec goulotte tournante
EP1935993A1 (fr) * 2006-12-18 2008-06-25 Paul Wurth S.A. Dispositif de charge rotative pour un four vertical
LU91601B1 (en) * 2009-08-26 2012-09-13 Wurth Paul Sa Shaft furnace charging device equipped with a cooling system and annular swivel joint therefore
LU91645B1 (en) * 2010-01-27 2011-07-28 Wurth Paul Sa A charging device for a metallurgical reactor
LU91800B1 (en) * 2011-03-28 2012-10-01 Wurth Paul Sa Charging installation of a shaft furnace and method for charging a shaft furnace
LU91845B1 (en) * 2011-07-22 2013-01-23 Wurth Paul Sa Rotary charging device for shaft furnace
CN203866341U (zh) * 2011-07-22 2014-10-08 保尔伍斯股份有限公司 用于竖炉的旋转填料装置
LU91885B1 (en) 2011-10-11 2013-04-12 Wurth Paul Sa Blast furnace installation
KR102384150B1 (ko) * 2015-11-04 2022-04-08 삼성전자주식회사 조인트 어셈블리 및 이를 포함하는 운동 보조 장치
CN108443617B (zh) * 2018-05-22 2024-01-19 广州船舶及海洋工程设计研究院(中国船舶工业集团公司第六0五研究院) 用于液体输送的旋转接头设备
JP7288834B2 (ja) * 2019-10-07 2023-06-08 キヤノントッキ株式会社 成膜装置、成膜方法および電子デバイスの製造方法
CN114990266B (zh) * 2022-05-26 2024-01-16 武汉钢铁有限公司 一种可阻断损坏部位的高炉用冷却器

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
LU80112A1 (fr) * 1978-08-16 1979-01-19
LU84521A1 (fr) * 1982-12-10 1984-10-22 Wurth Paul Sa Dispositif de refroidissement d'une installation de chargement d'un four a cuve
LU86818A1 (fr) * 1987-03-24 1988-11-17 Wurth Paul Sa Procede et dispositif de refroidissement d'une installation de chargement d'un four a cuve
LU87948A1 (fr) * 1991-06-12 1993-01-15 Wurth Paul Sa Dispositif de refroidissement d'une goulotte de distribution d'une installation de chargement d'un four a cuve
LU88456A1 (fr) * 1994-02-01 1995-09-01 Wurth Paul Sa Dispositif de répartition de matières en vrac
LU90179B1 (fr) * 1997-11-26 1999-05-27 Wurth Paul Sa Procede pour refroidir un dispositif de chargement d'un four a cuve

Also Published As

Publication number Publication date
TW536556B (en) 2003-06-11
EP1399597A1 (fr) 2004-03-24
RU2004100829A (ru) 2005-08-10
DE60202068T2 (de) 2005-12-01
WO2003002770A1 (fr) 2003-01-09
LU90794B1 (fr) 2002-12-27
ATE283376T1 (de) 2004-12-15
US20040224275A1 (en) 2004-11-11
CN1234877C (zh) 2006-01-04
CN1516742A (zh) 2004-07-28
CZ298797B6 (cs) 2008-01-30
US6857872B2 (en) 2005-02-22
RU2258878C1 (ru) 2005-08-20
DE60202068D1 (de) 2004-12-30
UA73875C2 (en) 2005-09-15
CZ2004111A3 (cs) 2004-09-15

Similar Documents

Publication Publication Date Title
EP1399597B1 (fr) Dispositif de chargement d'un four a cuve
EP2045460B2 (fr) Turbomachine a double soufflante
EP1129220B1 (fr) Dispositif de repartition de matieres en vrac
CA2070506A1 (fr) Dispositif de refroidissement d'une goulotte de distribution d'une installation de chargement d'un four a cuve
EP0116142B1 (fr) Dispositif de refroidissement d'une installation de chargement d'un four à cuve
EP1034310B1 (fr) Procede pour refroidir un dispositif de chargement d'un four a cuve
EP0065922B1 (fr) Pompe primaire d'un réacteur nucléaire à eau sous pression comportant un dispositif d'étanchéité de son arbre d'entrainement
EP1549874B1 (fr) Systeme de joint tournant
CA1129250A (fr) Pompe helico-centrifuge de circulation de fluide
LU87730A1 (fr) Dispositif d'injection d'air prechauffe dans un four a cuve
FR2991736A1 (fr) Dispositif d'etancheite d'une pompe
LU88172A1 (fr) Dispositif de répartition de matières poudreuses
CH343727A (fr) Dispositif pour assurer l'étanchéité autour d'un arbre rotatif traversant une paroi
EP0586728A1 (fr) Distributeur rotatif
EP0018262A1 (fr) Réacteur nucléaire à neutrons rapides et à cuve interne cylindrique
LU88494A1 (fr) Dispositif de chargement à goulotte rotative pour un four à cuve
EP0094294B1 (fr) Dispositif de supportage de chaudière nucléaire
EP3209962B1 (fr) Dispositif de refroidissement des tourillons de support d'une goulotte de distribution d'un four à cuve
EP0122190B1 (fr) Générateur de vapeur pour réacteur refroidi par un métal liquide
WO2000021701A1 (fr) Cuve de traitement de metal liquide basculante et son dispositif de liaison etanche avec une goulotte fixe
EP0042797A1 (fr) Pompe centrifuge à diffuseur démontable
FR2500890A1 (fr) Pompe centrifuge
FR2763375A1 (fr) Vanne haute pression - haute temperature
EP2113718B1 (fr) Rouleau pour grille de four equipé d'un circuit de refroidissement
EP0119915A1 (fr) Réacteur nucléaire à neutrons rapides de type intégré

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20031208

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

RBV Designated contracting states (corrected)

Designated state(s): AT DE GB IT

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT DE GB IT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20041124

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 60202068

Country of ref document: DE

Date of ref document: 20041230

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20050111

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20050825

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20160418

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20160419

Year of fee payment: 15

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 283376

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170618

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20170618

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170618

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170618

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20210416

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 60202068

Country of ref document: DE