EP0065922B1 - Pompe primaire d'un réacteur nucléaire à eau sous pression comportant un dispositif d'étanchéité de son arbre d'entrainement - Google Patents

Pompe primaire d'un réacteur nucléaire à eau sous pression comportant un dispositif d'étanchéité de son arbre d'entrainement Download PDF

Info

Publication number
EP0065922B1
EP0065922B1 EP82400929A EP82400929A EP0065922B1 EP 0065922 B1 EP0065922 B1 EP 0065922B1 EP 82400929 A EP82400929 A EP 82400929A EP 82400929 A EP82400929 A EP 82400929A EP 0065922 B1 EP0065922 B1 EP 0065922B1
Authority
EP
European Patent Office
Prior art keywords
seal
chamber
shaft
pressure
upstream
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP82400929A
Other languages
German (de)
English (en)
Other versions
EP0065922A1 (fr
Inventor
Nicolaas Bonhomme
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Areva NP SAS
Original Assignee
Framatome SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Framatome SA filed Critical Framatome SA
Publication of EP0065922A1 publication Critical patent/EP0065922A1/fr
Application granted granted Critical
Publication of EP0065922B1 publication Critical patent/EP0065922B1/fr
Expired legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/08Sealings
    • F04D29/10Shaft sealings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/08Sealings
    • F04D29/10Shaft sealings
    • F04D29/106Shaft sealings especially adapted for liquid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D13/00Pumping installations or systems
    • F04D13/02Units comprising pumps and their driving means
    • F04D13/06Units comprising pumps and their driving means the pump being electrically driven

Definitions

  • the invention relates to a primary pump of a pressurized water nuclear reactor comprising a device for sealing its drive shaft.
  • the cooling circuit of the reactor core, or primary circuit comprises at least two cooling loops each comprising a steam generator and a primary pump.
  • the primary pumps consist of a volute inside which rotates an impeller rigidly attached to the lower end of a drive shaft connected to a motor.
  • Sealing along the drive shaft is ensured by a set of seals arranged in an annular space between the shaft and a housing which surrounds this shaft from its exit from the volute to the drive motor.
  • the sealing device of the drive shaft of the primary pumps generally consists of three seals comprising a fixed part secured to the housing and a mobile part secured to the shaft.
  • the facing surfaces of these sealing elements are either in rubbing contact, the seal is then of the mechanical type, or separated by a layer of fluid in circulation between the surfaces of the seal, the seal is then of the hydrostatic type.
  • the water circulated by the pump is at a very high pressure, of the order of 150 bars.
  • the seal placed most upstream on the drive shaft, that is to say closest to the internal part of the pump, is therefore a hydrostatic seal which allows a significant pressure drop between its upstream part and its downstream part, while the seals arranged downstream are generally mechanical type seals.
  • a high pressure cold water supply circuit makes it possible to bring into the annular space limited by the housing, upstream of the hydrostatic seal, water, part of which is discharged towards the volute of the pump and of which another part supplies the hydrostatic seal leakage current. After passing through the hydrostatic seal, this water is also used to cool the mechanical seals.
  • a pump for a high pressure fluid such as the primary water of a pressurized water nuclear reactor and its drive motor
  • the pump drive shaft is placed in a cylindrical housing which provides an annular space around the shaft receiving the pressurized fluid.
  • a hydrostatic seal is arranged between the drive shaft and the housing, at the end through which the drive shaft exits, in order to prevent leaks of high pressure fluid towards the outside and in particular towards the engine. Coolant of the hydrostatic seal at a pressure slightly higher than the pressure of the fluid circulated by the pump is introduced into the annular space, upstream of the hydrostatic seal, that is to say in the part of the annular space located towards the pump.
  • a hydrostatic seal as used on primary pumps as an upstream seal has for example been described in patents FR-A-1,435,568 and FR-A-2,049,690.
  • this pressure limit is of the order of 14 bars.
  • the cooling water of the reactor is at a pressure of the order of 150 bars and the cold water injected upstream of the hydrostatic seal is at a slightly higher pressure, so that the pressure drop across the hydrostatic seal is very high and generally around 150 bars. The proper functioning of the hydrostatic seal is then ensured.
  • the injection pressure upstream of the hydrostatic seal is no longer sufficient to ensure such a ⁇ P greater than 14 bars and the hydrostatic seal can no longer function correctly.
  • the object of the invention is therefore to propose a primary pump for a pressurized water nuclear reactor comprising a drive shaft, a housing surrounding this shaft so as to provide an annular space around the shaft and a device for '' seal made up of a set of seals placed one after the other along the length of the shaft in the annular space, at least one of which, disposed most upstream, that is to say say towards the inside of the pump, is of the hydrostatic type with liquid leakage between two elements limiting this leakage, one connected to the shaft and the other to the housing, the part of the annular space which is located upstream of the seal and which constitutes a chamber in communication with the internal part of the pump being supplied with water at a pressure higher than the primary pressure of the reactor by a circuit, this primary pump being able to remain in operation even if the pressure of the fluid which is carried out the pumping reaches low values, for example the lower than 26 bars.
  • FIG. 1 we see a pump comprising a pump body or volute 1 pierced with a suction opening 2 and a delivery opening 3.
  • a diffuser 4 Inside this volute is arranged a diffuser 4 inside which rotates the impeller 5 secured to the drive shaft 7 connected to the drive motor of the pump not shown.
  • the upper part of the pump body has a coupling flange 8 making it possible to connect the pump to its motor unit.
  • the shaft 7 is surrounded by a housing 9 which provides an annular space 10 around it.
  • the housing 9 includes a flange 12 for connection to the pump drive motor.
  • seals 14 making it possible to seal along the shaft 7.
  • the shaft 7 carries at its end entering the volute the impeller 5 and exits from this volute at a labyrinth seal 16 at which is also placed a thermal barrier 17 traversed by a cooling coil.
  • the shaft 7 then passes through a bearing 15 ensuring its maintenance and its guidance.
  • the seal 14 disposed most upstream, that is to say towards the inside of the pump, and therefore placed closest to the bearing 15, is of the hydrostatic type, cold water under a pressure slightly higher than the water pressure in the pump being injected by injection pipes 19, into the annular space 10 in which the seals are placed.
  • FIG. 2 we see a schematic representation of the sealing device associated with a primary pump of the same type as the pump shown in FIG. 1.
  • the impeller 25 integral with the end of the shaft 27 is rotated by means of this tree.
  • the shaft passes through a set of two labyrinth seals 26 themselves surrounded by the thermal barrier 28 traversed by a coil 29 supplied with cooling water.
  • the shaft 27 then passes through the annular space 30 delimited by a housing arranged around the shaft along its entire length until it is connected to the drive motor 31.
  • the first seal 33 disposed upstream is of the hydrostatic type with liquid leakage between its rotating part linked to the shaft 27 and its fixed part linked to the housing.
  • the seals 34 and 35 are of the mechanical type comprising two floating parts, one of which is integral with the shaft and the other of the housing.
  • a cold pressurized water supply circuit 36 makes it possible to bring this cold water to a pressure slightly higher than the pressure of the water circulated by the pump, in the annular space 30, upstream of the seal 33.
  • the pressure of this cold water is adjusted by means of a bypass valve 38 and a charge pump 39 placed in bypass on the main line of the circuit 36.
  • a pressure gauge 40 makes it possible to check the pressure in the circuit 36. Lines 41, 42 and 43 make it possible to recycle the water recovered downstream of the seal 33 in the supply circuit 36.
  • the sealing device according to the invention further comprises an auxiliary seal 45 disposed upstream of the hydrostatic seal 33 in the part of the annular space 30 constituting a chamber 46 in communication with the internal part of the volute 21, by means of the labyrinth seals 26.
  • the auxiliary seal 45 is a mechanical seal with rubbing surfaces which separates the chamber 46 into two parts, 46a situated upstream of the seal 45 and 46b situated downstream of the seal 45 and upstream of the seal 33.
  • a pipe 47 makes it possible to join the two parts 46a and 46b of the chamber 46.
  • a valve 48 is arranged on the pipe 47 to isolate or put the two parts of the chamber 46 into communication.
  • a valve 49 is placed in bypass with respect to the valve 48.
  • the auxiliary seal 45 consists of a fixed part 50 secured to the housing 29 and a movable part 51 secured to the shaft 27, the surfaces of which are placed in facing contact are in rubbing contact.
  • the hydrostatic seal 33 consists of a floating lining and a rotating lining separated by a film of water with controlled leakage.
  • the thickness of the water film (water filtered and injected upstream of the seal 33 in the chamber 46b by the circuit 36) is regulated by the geometric profile of the active parts as a function of the pressure in the chamber 46b.
  • the water leak from this seal 33 is partly evacuated through the seal 34 and the rest towards the circuit 36 via the pipe 41 (FIG. 2).
  • the nuclear reactor During normal operation of the pump, the nuclear reactor being in service, it causes the circulation of the water in the primary circuit which is at a pressure of the order of 150 bars and at a temperature above 300 ° C.
  • the valve 48 disposed on the pipe 47 connecting the two parts of the chamber 46 is open. Cold water is brought by the circuit 36 in the part 46b of the chamber, at a pressure slightly higher than the pressure of the primary circuit.
  • the placing in communication of the two parts 46a and 46b of the chamber 46 by the pipe 47 produces a pressure balancing between these two parts of the chamber, so that the pressure difference across the auxiliary seal 45 is negligible. It is therefore possible to provide a rubbing contact between the surfaces facing the seal 45, with a low application pressure so that the wear of this seal is very limited.
  • the seal 45 is cooled by the water of the circuit 36 and works at moderate temperature.
  • the sealing device then operates like the devices of the prior art, the pressure difference across the hydrostatic seal 33 being practically equal to the overpressure of the primary circuit.
  • the pressure in the primary circuit can drop to a low value, for example less than 26 bars.
  • this pressure will be chosen equal to 26 bars so as to be just above the minimum threshold of ⁇ p allowing the operation of the seal 33.
  • the pressure difference between the chamber 46b subjected to a pressure close to 26 bars and the chamber 46a subjected to a pressure close to that of the primary circuit is at most equal to 26 bars, so that the pressure drop of on either side of the joint 45 is at most equal to this value.
  • the seals with rubbing surfaces of the sealing device shown in FIGS. 2 and 3 operate in good conditions because the pressure drops on either side of these seals are weak and the circulation of water coming from in contact with these seals allows lubrication of the friction surfaces.
  • the seal 45 is cooled and lubricated by the water injected by the circuit 36 while the seals 34 and 35 are cooled and lubricated by a part of the water passing through the seal 33. This water allowing the cooling and the lubrication is finally recycled by lines 41, 42 and 43.
  • valve 49 placed in bypass with respect to the valve 48 is designed to remain closed as long as the pressure in the chamber 46a is lower than the pressure in the chamber 46b.
  • This valve opens only in the case of an overpressure in the chamber 46a relative to the chamber 46b. During normal operation of the reactor, this valve therefore remains closed since the circuit 36 introduces water at slight overpressure relative to the water in the primary circuit.
  • the pressure in the chamber 46a becomes higher at the pressure in the chamber 46b which is no longer supplied and the valve 49 opens, so that the water of the primary circuit cooled by the thermal barrier 28 can penetrate into the chamber 46b and perform the cooling and lubrication of seals with rubbing surfaces to replace the cold water injected by circuit 36.
  • an advantage of the device according to the invention is to allow the operation of the primary pumps of a nuclear reactor at low pressure. During the reactor shutdown phases it becomes possible to continue circulating the water in the primary circuit without using auxiliary means to maintain its pressure above 26 bars.
  • the reactor cooling circuit which makes it possible to lower the temperature and the pressure of the primary circuit during the cold shutdown phases of the reactor can be used at pressures below 26 bars, which was not the case. not possible previously since circulation of primary water must be maintained during the shutdown phases.
  • this cooling circuit can be used until the final phases of the cold shutdown of the reactor.
  • the hydrostatic seal disposed upstream of the sealing device can be associated with seals of any type and the number of these seals is not limited.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Description

  • L'invention concerne une pompe primaire d'un réacteur nucléaire à eau sous pression comportant un dispositif d'étanchéité de son arbre d'entraînement.
  • Dans les réacteurs nucléaires à eau sous pression, le circuit de refroidissement du coeur du réacteur, ou circuit primaire, comporte au moins deux boucles de refroidissement comportant chacune un générateur de vapeur et une pompe primaire.
  • Les pompes primaires sont constituées par une volute à l'intérieur de laquelle tourne une roue à aubes fixée rigidement à l'extrémité inférieure d'un arbre d'entraînement relié à un moteur.
  • L'étanchéité le long de l'arbre d'entraînement est assurée par un ensemble de joints disposés dans un espace annulaire compris entre l'arbre et un boîtier qui entoure cet arbre depuis sa sortie de la volute jusqu'au moteur d'entraînement.
  • Le dispositif d'étanchéité de l'arbre d'entraînement des pompes primaires est généralement constitué de trois joints comportant une partie fixe solidaire du boîtier et une partie mobile solidaire de l'arbre.
  • Les surfaces en regard de ces éléments d'étanchéité sont soit en contact frottant, le joint est alors de type mécanique, soit séparées par une couche de fluide en circulation entre les surfaces du joint, le joint est alors du type hydrostatique.
  • Les joints de type mécanique sont généralement utilisés pour assurer l'étanchéité entre deux zones dont les pressions ne sont pas trop différentes, alors que les joints hydrostatiques peuvent être utilisés dans le cas d'une très grande différence de pression de part et d'autre du joint.
  • Dans le cas des pompes primaires, l'eau mise en circulation par la pompe est à une pression très élevée, de l'ordre de 150 bars. Le joint disposé le plus en amont sur l'arbre d'entraînement, c'est-à-dire le plus près de la partie interne de la pompe, est donc un joint hydrostatique qui permet une chute de pression importante entre sa partie amont et sa partie aval, alors que les joints disposés en aval sont généralement des joints de type mécanique.
  • Un circuit d'alimentation en eau froide sous haute pression permet d'amener dans l'espace annulaire limité par le boîtier, à l'amont du joint hydrostatique, de l'eau dont une partie est refoulée vers la volute de la pompe et dont une autre partie fournit le courant de fuite du joint hydrostatique. Après être passée par le joint hydrostatique, cette eau sert également au refroidissement des joints mécaniques.
  • Dans le brevet US-A-3.215.083, est décrite une pompe pour un fluide à haute pression, tel que l'eau primaire d'un réacteur nucléaire à eau sous pression et son moteur d'entraînement. L'arbre d'entraînement de la pompe est placé dans un boîtier cylindrique qui ménage autour de l'arbre un espace annulaire recevant le fluide sous pression. Un joint hydrostatique est disposé entre l'arbre d'entraînement et le boîtier, à l'extrémité par où sort l'arbre d'entraînement, afin d'éviter des fuites de fluide à haute pression vers l'extérieur et en particulier vers le moteur. Du fluide de refroidissement du joint hydrostatique à une pression légèrement supérieur à la pression du fluide mis en circulation par la pompe est introduit dans l'espace annulaire, en amont du joint hydrostatique, c'est-à-dire dans la partie de l'espace annulaire située vers la pompe.
  • Un joint hydrostatique tel qu'utilisé sur les pompes primaires comme joint amont a par exemple été décrit dans les brevets FR-A-1.435.568 et FR-A-2.049.690.
  • Pour qu'un tel joint hydrostatique puisse fonctionner correctement, c'est-à-dire sans que les éléments disposés en vis-à-vis limitant la fuite viennent en contact, il faut que la chute de pression à travers ce joint hydrostatique, appelée Δp, soit supérieure à une certaine limite.
  • Dans le cas des pompes primaires utilisées actuellement, cette limite de pression est de l'ordre de 14 bars.
  • Dans le cas du fonctionnement normal du réacteur nucléaire, l'eau de refroidissement du réacteur est à une pression de l'ordre de 150 bars et l'eau froide injectée en amont du joint hydrostatique est à une pression un peu supérieure, si bien que la chute de pression à travers le joint hydrostatique est très élevée et généralement voisine de 150 bars. Le bon fonctionnement du joint hydrostatique est alors assuré.
  • Il n'en est plus de même lorsque la pression du circuit primaire diminue par exemple dans le cas d'un arrêt du réacteur, puisqu'on est amené à diminuer la pression d'injection de l'eau froide lorsque la pression du circuit primaire diminue. Il faut en effet équilibrer les débits injectés dans la volute et dans le joint et ces débits dépendent de la pression du circuit primaire.
  • En deçà d'une certaine valeur de la pression dans le circuit primaire la pression d'injection en amont du joint hydrostatique n'est plus suffisante pour assurer un tel ΔP supérieur à 14 bars et le joint hydrostatique ne peut plus fonctionner correctement.
  • Dans le cas des pompes primaires utilisées dans les réacteurs nucléaires à eau sous pression actuellement en service, on considère que la pression minimale du fluide primaire en deçà de laquelle on ne peut plus faire fonctionner le joint hydrostatique est de l'ordre de 26 bars.
  • Lors de l'arrêt d'un réacteur nucléaire à eau sous pression, il est nécessaire de laisser en fonctionnement au moins une pompe primaire pour permettre la circulation du fluide primaire et assurer un bon refroidissement.
  • En fin de refroidissement, on est en présence d'eau à 26 bars et à une température de 70 °C. A cette température, on ne peut plus maintenir la pression de 26 bars par utilisation de l'équilibre IiquideNapeur dans le pressuriseur du réacteur et on est obligé d'utiliser des pompes de charge d'un circuit auxiliaire pour maintenir la pression.
  • Le but de l'invention est donc de proposer une pompe primaire d'un réacteur nucléaire à eau sous pression comportant un arbre d'entraînement, un boîtier entourant cet arbre de façon à ménager un espace annulaire autour de l'arbre et un dispositif d'étanchéité constitué par un ensemble de joints placés l'un à la suite de l'autre suivant la longueur de l'arbre dans l'espace annulaire dont l'un au moins, disposé le plus en amont, c'est-à-dire vers l'intérieur de la pompe, est du type hydrostatique à fuite de liquide entre deux éléments limitant cette fuite reliés l'un à l'arbre et l'autre au boîtier, la partie de l'espace annulaire qui se trouve en amont du joint et qui constitue une chambre en communication avec la partie interne de la pompe étant alimentée en eau à une pression supérieure à la pression primaire du réacteur par un circuit, cette pompe primaire pouvant rester en fonctionnement même si la pression du fluide dont on effectue le pompage atteint des valeurs faibles, par exemple inférieures à 26 bars.
  • Dans ce but, le dispositif d'étanchéité suivant l'invention comporte en outre :
    • - un joint auxiliaire du type mécanique dont les pièces frottantes en regard sont liées, l'une à l'arbre et l'autre au boîtier, disposé dans là chambre, en amont du point de jonction du circuit et séparant cette chambre en une partie amont et une partie aval,
    • - et une canalisation disposée entre la partie amont et la partie aval de la chambre, sur laquelle est placée une vanne permettant d'isoler ou de mettre en communication les deux parties de la chambre.
  • Afin de bien faire comprendre l'invention, on va maintenant décrire, à titre d'exemple non limitatif, en se référant aux figures jointes en annexe, une pompe primaire d'un réacteur nucléaire à eau sous pression équipée d'un dispositif d'étanchéité suivant l'invention.
    • La figure 1 représente dans une vue en perspective éclatée, une pompe primaire suivant l'art antérieur.
    • La figure 2 représente de façon schématique le dispositif d'étanchéité suivant l'invention.
    • La figure 3 représente dans une demi-vue en coupe par un plan vertical de symétrie, la partie supérieure d'une pompe primaire pour réacteur nucléaire comportant un dispositif d'étanchéité suivant l'invention.
  • Sur la figure 1 on voit une pompe comportant un corps de pompe ou volute 1 percée d'une ouverture d'aspiration 2 et d'une ouverture de refoulement 3.
  • A l'intérieur de cette volute est disposé un diffuseur 4 à l'intérieur duquel tourne la roue à aubes 5 solidaire de l'arbre d'entraînement 7 relié au moteur d'entraînement de la pompe non représenté.
  • La partie supérieure du corps de pompe comporte une bride d'accouplement 8 permettant de relier la pompe à son groupe moteur.
  • L'arbre 7 est entouré d'un boîtier 9 qui ménage autour de celui-ci un espace annulaire 10.
  • A sa partie supérieure le boîtier 9 comporte une bride 12 de raccordement au moteur d'entraînement de la pompe.
  • Dans l'espace annulaire 10 sont disposés des joints 14 permettant d'assurer l'étanchéité le long de l'arbre 7.
  • L'arbre 7 porte à son extrémité pénétrant dans la volute la roue à aubes 5 et sort de cette volute au niveau d'un joint labyrinthe 16 au niveau duquel est également placée une barrière thermique 17 parcourue par un serpentin de refroidissement. L'arbre 7 passe ensuite dans un palier 15 assurant son maintien et son guidage.
  • Le joint 14 disposé le plus en amont, c'est-à-dire vers l'intérieur de la pompe, et donc placé le plus près du palier 15, est du type hydrostatique, de l'eau froide sous une pression légèrement supérieure à la pression de l'eau dans la pompe étant injectée par des tubulures d'injection 19, dans l'espace annulaire 10 dans lequel sont placés les joints d'étanchéité.
  • Sur la figure 2, on voit une représentation schématique du dispositif d'étanchéité associé à une pompe primaire du même type que la pompe représentée à la figure 1.
  • A l'intérieur de la volute 21 de cette pompe comportant une ouverture d'aspiration 22 et une ouverture de refoulement 23, la roue à aubes 25 solidaire de l'extrémité de l'arbre 27 est mise en rotation par l'intermédiaire de cet arbre. A sa sortie de la volute 21, l'arbre passe dans un ensemble de deux joints à labyrinthe 26 eux- mêmes entourés par la barrière thermique 28 parcourue par un serpentin 29 alimenté en eau de refroidissement.
  • L'arbre 27 traverse alors l'espace annulaire 30 délimité par un boîtier disposé autour de l'arbre suivant toute sa longueur jusqu'à son raccordement avec le moteur d'entraînement 31.
  • A l'intérieur de cet espace annulaire sont disposés le palier 32 permettant le guidage de l'arbre et les joints 33, 34 et 35.
  • Le premier joint 33 disposé en amont est du type hydrostatique à fuite de liquide entre sa partie tournante liée à l'arbre 27 et sa partie fixe liée au boîtier.
  • Les joints 34 et 35 sont du type mécanique comportant deux parties flottantes dont l'une est solidaire de l'arbre et l'autre du boîtier.
  • Un circuit d'alimentation en eau froide sous pression 36 permet d'amener cette eau froide à une pression légèrement supérieure à la pression de l'eau mise en circulation par la pompe, dans l'espace annulaire 30, en amont du joint 33.
  • La pression de cette eau froide est réglée grâce à une vanne de dérivation 38 et à une pompe de charge 39 placée en dérivation sur la conduite principale du circuit 36. Un manomètre 40 permet de vérifier la pression dans le circuit 36. Des conduites 41, 42 et 43 permettent de recycler l'eau récupérée à l'aval du joint 33 dans le circuit d'alimentation 36.
  • Le dispositif d'étanchéité suivant l'invention comporte de plus un joint auxiliaire 45 disposé en amont du joint hydrostatique 33 dans la partie de l'espace annulaire 30 constituant une chambre 46 en communication avec la partie interne de la volute 21, par l'intermédiaire des joints labyrinthes 26.
  • Le joint auxiliaire 45 est un joint mécanique à surfaces frottantes qui sépare la chambre 46 en deux parties, 46a située à l'amont du joint 45 et 46b situé à l'aval du joint 45 et à l'amont du joint 33.
  • Une conduite 47 permet de joindre les deux parties 46a et 46b de la chambre 46. Une vanne 48 est disposée sur la canalisation 47 pour isoler ou mettre en communication les deux parties de la chambre 46.
  • Un clapet 49 est placé en dérivation par rapport à la vanne 48.
  • En se reportant à la figure 3, on retrouve les mêmes éléments que ceux représentés sur la figure 2 et avec les mêmes repères, la pompe primaire étant du même type que la pompe représentée sur la figure 1.
  • Sur la figure 3, le circuit 36 n'a cependant pas été représenté pour éviter de compliquer la représentation.
  • Le joint auxiliaire 45 est constitué d'une partie fixe 50 solidaire du boîtier 29 et d'une partie mobile 51 solidaire de l'arbre 27, dont les surfaces disposées en vis-à-vis sont en contact frottant.
  • Le joint hydrostatique 33 consiste en une garniture flottante et une garniture tournante séparées par un film d'eau à fuite contrôlée.
  • L'épaisseur du film d'eau (eau filtrée et injectée en amont du joint 33 dans la chambre 46b par le circuit 36) est régulée par le profil géométrique des parties actives en fonction de la pression dans la chambre 46b. La fuite d'eau de ce joint 33 est évacuée en partie à travers le joint 34 et le reste vers le circuit 36 par la conduite 41 (figure-2).
  • On va maintenant décrire, en se référant aux figures 2 et 3, le fonctionnement du dispositif d'étanchéité suivant l'invention.
  • Pendant le fonctionnement normal de la pompe, le réacteur nucléaire étant en service, celle-ci provoque la circulation de l'eau du circuit primaire qui est à une pression de l'ordre de 150 bars et à une température supérieure à 300 °C. La vanne 48 disposée sur la conduite 47 mettant en communication les deux parties de la chambre 46 est ouverte. De l'eau froide est amenée par le circuit 36 dans la partie 46b de la chambre, à une pression un peu supérieure à la pression du circuit primaire. La mise en communication des deux parties 46a et 46b de la chambre 46 par la conduite 47 produit un équilibrage de pression entre ces deux parties de la chambre, si bien que la différence de pression à travers le joint auxiliaire 45 est négligeable. On peut donc prévoir un contact frottant entre les surfaces en regard du joint 45, avec une pression d'application faible si bien que l'usure de ce joint est très limitée. D'autre part, le joint 45 est refroidi par l'eau du circuit 36 et travaille à température modérée.
  • Le dispositif d'étanchéité fonctionne alors comme les dispositifs de l'art antérieur, la différence de pression à travers le joint hydrostatique 33 étant pratiquement égale à la surpression du circuit primaire.
  • Lors d'un arrêt du réacteur, la pression du circuit primaire peut s'abaisser jusqu'à une valeur faible, par exemple inférieure à 26 bars. Pour maintenir la pompe en état de marche, Il suffit alors de fermer la vanne 48 et de régler le débit et la pression de l'eau froide injectée par le circuit 36, en agissant sur la vanne 38 et la pompe 39, de façon à maintenir une pression suffisante dans la chambre 46b délimitée par le joint hydrostatique 33 et par le joint auxiliaire 45. De préférence, on choisira cette pression égale à 26 bars de façon à être juste au-dessus du seuil minimal du Δp permettant le fonctionnement du joint 33.
  • Dans ces conditions, la différence de pression entre la chambre 46b soumise à une pression voisine de 26 bars et la chambre 46a soumise à une pression voisine de celle du circuit primaire est au plus égale à 26 bars, si bien que la chute de pression de part et d'autre du joint 45 est au plus égale à cette valeur.
  • Ceci est compatible avec un fonctionnement du joint 45 dans de bonnes conditions.
  • Dans tous les cas, les joints à surfaces frottantes du dispositif d'étanchéité représenté aux figures 2 et 3 fonctionnent dans de bonnes conditions car les chutes de pression de part et d'autre de ces joints sont faibles et la circulation de l'eau venant en contact avec ces joints permet la lubrification des surfaces frottantes. Le joint 45 est refroidi et lubrifié par l'eau injectée par le circuit 36 alors que les joints 34 et 35 sont refroidis et lubrifiés par une partie de l'eau traversant le joint 33. Cette eau permettant le refroidissement et la lubrification est finalement recyclée par les conduites 41, 42 et 43.
  • Le clapet 49 placé en dérivation par rapport à la vanne 48 est conçu pour rester fermé tant que la pression dans la chambre 46a est inférieure à la pression dans la chambre 46b. Ce clapet ne s'ouvre que dans le cas d'une surpression dans la chambre 46a par rapport à la chambre 46b. Pendant le fonctionnement normal du réacteur, ce clapet reste donc fermé puisque le circuit 36 introduit de l'eau en légère surpression par rapport à l'eau du circuit primaire.
  • Lors d'un arrêt du réacteur, la pression étant amenée à une valeur faible dans le circuit primaire et la vanne 48 étant fermée, s'il se produit une avarie sur le circuit d'alimentation 36, la pression dans la chambre 46a devient supérieure à la pression dans la chambre 46b qui n'est plus alimentée et le clapet 49 s'ouvre, si bien que l'eau du circuit primaire refroidie par la barrière thermique 28 peut pénétrer dans la chambre 46b et assurer la fonction de refroidissement et de lubrification des joints à surfaces frottantes en remplacement de l'eau froide injectée par le circuit 36.
  • On voit donc qu'un avantage du dispositif suivant l'invention est de permettre le fonctionnement des pompes primaires d'un réacteur nucléaire à basse pression. Pendant les phases d'arrêt du réacteur il devient possible de continuer à faire circuler l'eau du circuit primaire sans recourir à des moyens auxiliaires pour maintenir sa pression au-dessus de 26 bars.
  • D'autre part le circuit de refroidissement du réacteur qui permet d'abaisser la température et la pression du circuit primaire au cours des phases de mise en arrêt à froid du réacteur peut être utilisé à des pressions inférieures à 26 bars ce qui n'était pas possible antérieurement puisqu'une circulation de l'eau primaire doit être maintenue pendant les phases de mise à l'arrêt.
  • Il en résulte que ce circuit de refroidissement pourra être utilisé jusqu'aux phases ultimes de l'arrêt à froid du réacteur.
  • De façon générale, au joint hydrostatique disposé en amont du dispositif d'étanchéité peuvent être associés des joints d'un type quelconque et le nombre de ces joints n'est pas limité.

Claims (3)

1. Pompe primaire d'un réacteur nucléaire à eau sous pression comportant un arbre d'entraînement (27), un boîtier entourant cet arbre (27) de façon à ménager un espace annulaire (30) autour de l'arbre (27) et un dispositif d'étanchéité constitué par un ensemble de joints (33, 34, 35) placés l'un à la suite de l'autre suivant la longueur de l'arbre (27) dans l'espace annulaire (30) dont l'un au moins (33) disposé le plus en amont, c'est-à-dire vers l'intérieur de la pompe, est du type hydrostatique à fuite de liquide entre deux éléments limitant cette fuite reliés l'un à l'arbre (27) et l'autre au boîtier, la partie de l'espace annulaire (30) qui se trouve en amont du joint (33) et qui constitue une chambre (46) en communication avec la partie interne de la pompe étant alimentée en eau à une pression supérieure à la pression primaire du réacteur par un circuit d'alimentation (36), caractérisé par le fait que le dispositif d'étanchéité comporte en outre :
- un joint auxiliaire (45) du type mécanique dont les pièces frottantes en regard sont liées l'une à l'arbre (27) et l'autre au boîtier, disposé dans la chambre (46), en amont du point de jonction du circuit (36) et séparant cette chambre (46) en une partie amont (46a) et une partie aval (46b),
- et une canalisation (47) disposée entre la partie amont (46a) et la partie aval (46b) de la chambre (46), sur laquelle est placée une vanne (48) permettant d'isoler ou de mettre en communication les deux parties (46a et 46b) de la chambre (46).
2. Pompe primaire suivant la revendication 1, caractérisée par le fait qu'un clapet (49) est placé en dérivation par rapport à la vanne (48) permettant l'isolation ou la mise en communication des deux parties (46a et 46b) de la chambre (46), ce clapet (49) étant conçu pour s'ouvrir lorsque la pression dans la partie (46a) de la chambre située en amont est supérieure à la pression dans la partie (46b) de la chambre située en aval du joint auxiliaire (45).
3. Pompe primaire suivant l'une quelconque des revendications 1 et 2, comportant successivement, autour de son arbre d'entraînement (27), depuis sa volute (21) jusqu'à son moteur d'entraînement (31), une barrière thermique (28), un palier (32), le joint hydrostatique (33), un premier joint mécanique à surfaces frottantes (34) et un second joint mécanique à surfaces frottantes (35), caractérisée par le fait que le joint mécanique auxiliaire (45) est intercalé entre la barrière thermique (28) et le palier (32).
EP82400929A 1981-05-21 1982-05-19 Pompe primaire d'un réacteur nucléaire à eau sous pression comportant un dispositif d'étanchéité de son arbre d'entrainement Expired EP0065922B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8110128 1981-05-21
FR8110128A FR2506399A1 (fr) 1981-05-21 1981-05-21 Dispositif d'etancheite de l'arbre d'entrainement d'une pompe pour fluide a haute pression

Publications (2)

Publication Number Publication Date
EP0065922A1 EP0065922A1 (fr) 1982-12-01
EP0065922B1 true EP0065922B1 (fr) 1985-07-17

Family

ID=9258727

Family Applications (1)

Application Number Title Priority Date Filing Date
EP82400929A Expired EP0065922B1 (fr) 1981-05-21 1982-05-19 Pompe primaire d'un réacteur nucléaire à eau sous pression comportant un dispositif d'étanchéité de son arbre d'entrainement

Country Status (12)

Country Link
US (1) US4587076A (fr)
EP (1) EP0065922B1 (fr)
JP (1) JPS57198395A (fr)
KR (1) KR880001267B1 (fr)
CA (1) CA1193482A (fr)
DE (1) DE3264764D1 (fr)
EG (1) EG15240A (fr)
ES (1) ES512345A0 (fr)
FI (1) FI71394C (fr)
FR (1) FR2506399A1 (fr)
YU (1) YU96682A (fr)
ZA (1) ZA823471B (fr)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5076757A (en) * 1981-01-29 1991-12-31 Vaughan Co., Inc. High head centrifugal slicing slurry pump
EP0212911B1 (fr) * 1985-08-09 1991-07-31 Dolphin Machinery Limited Appareil de soudage
US4722663A (en) * 1986-02-04 1988-02-02 Rotoflow Corporation Seal-off mechanism for rotating turbine shaft
GB9008987D0 (en) * 1990-04-21 1990-06-20 David Brown Corp Limited Means for applying a back pressure to a shaft seal
FR2821978B1 (fr) * 2001-03-12 2003-06-20 Jeumont Sa Procede de reparation du joint labyrinthe d'un diffuseur d'une pompe primaire d'une centrale nucleaire
US6599091B2 (en) * 2001-05-29 2003-07-29 James Nagle Modular submersible pump
US20020181325A1 (en) * 2001-06-05 2002-12-05 Engel David J Mixer seal and bearing apparatus and method
FI20050451A (fi) * 2005-04-29 2006-10-30 Sulzer Pumpen Ag Keskipakopumpun sivulevyn kiinnityksen tiivistysjärjestely ja siinä käytettävä kiinnitysruuvi
CN101403395B (zh) * 2008-11-17 2011-01-12 浙江大农实业有限公司 高压水泵之调压机构
DE102013004908B3 (de) * 2013-03-22 2014-02-06 Ksb Aktiengesellschaft Ventil und Pumpenanordnung mit Ventil
US10107126B2 (en) * 2015-08-19 2018-10-23 United Technologies Corporation Non-contact seal assembly for rotational equipment

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3215083A (en) * 1963-10-23 1965-11-02 Westinghouse Electric Corp Dynamoelectric machinery for use in high pressure fluid systems
US3347552A (en) * 1964-06-04 1967-10-17 Westinghouse Electric Corp Controlled leakage face type seals
DE1800254B2 (de) * 1968-01-24 1971-09-30 Vorrichtung zur sicherstellung der kuehlung der wellen abdichtungen und mediumgeschmierten radiallager von unter hohen systemdruecken arbeitenden umwaelzpumpen
AT279747B (de) * 1968-07-30 1970-03-10 Andritz Ag Maschf Anlage zum Reinigen der Kühlflüssigkeit von Kernreaktoren
US3632117A (en) * 1969-05-15 1972-01-04 Westinghouse Electric Corp Seal lift-off mechanism
US3620639A (en) * 1969-08-22 1971-11-16 Karl Gaffal Pump with hydrostatic bearing
JPS4934211B1 (fr) * 1970-12-16 1974-09-12
JPS4929221B1 (fr) * 1970-12-16 1974-08-02
US3652179A (en) * 1971-03-10 1972-03-28 Westinghouse Electric Corp Controlled leakage centrifugal pump
US4189156A (en) * 1978-06-08 1980-02-19 Carrier Corporation Seal system for a turbomachine employing working fluid in its liquid phase as the sealing fluid

Also Published As

Publication number Publication date
FI71394B (fi) 1986-09-09
EP0065922A1 (fr) 1982-12-01
JPS57198395A (en) 1982-12-04
FI821802A0 (fi) 1982-05-20
KR830010308A (ko) 1983-12-30
CA1193482A (fr) 1985-09-17
EG15240A (en) 1987-04-30
DE3264764D1 (en) 1985-08-22
KR880001267B1 (ko) 1988-07-16
YU96682A (en) 1986-08-31
ES8406654A1 (es) 1984-07-01
FR2506399A1 (fr) 1982-11-26
JPH0361039B2 (fr) 1991-09-18
US4587076A (en) 1986-05-06
ZA823471B (en) 1983-03-30
ES512345A0 (es) 1984-07-01
FR2506399B1 (fr) 1983-10-07
FI71394C (fi) 1986-12-19

Similar Documents

Publication Publication Date Title
EP0065922B1 (fr) Pompe primaire d'un réacteur nucléaire à eau sous pression comportant un dispositif d'étanchéité de son arbre d'entrainement
EP0499504B1 (fr) Machine tournante du type compresseur ou turbine pour la compression ou la détente d'un gaz dangereux
CA2524594C (fr) Dispositif de lubrification d'un composant dans une turbomachine
FR2987402A1 (fr) Dispositif de lubrification d'un reducteur epicycloidal compatible d'un montage modulaire.
FR2648892A1 (fr) Recipient de pression
FR2652610A1 (fr) Procede de pompage de melange liquide gaz dans un puits d'extraction petrolier et dispositif de mise en óoeuvre du procede.
EP1399597B1 (fr) Dispositif de chargement d'un four a cuve
EP0553002B1 (fr) Dispositif de sécurité pour pompe primaire
CA1129250A (fr) Pompe helico-centrifuge de circulation de fluide
EP3004700A1 (fr) Système de régulation d'un liquide dans un circuit
FR2869085A1 (fr) Ensemble d'etancheite etage
FR2639140A1 (fr) Reacteur nucleaire, piege a froid, et procede pour retirer les impuretes du caloporteur d'un reacteur nucleaire
BE1009541A6 (fr) Regulateur de debit.
EP0494818B1 (fr) Dispositif de remplissage à distance d'un réservoir d'huile
EP3004699B1 (fr) Système de régulation d'un liquide dans un circuit
FR2991736A1 (fr) Dispositif d'etancheite d'une pompe
EP0018262A1 (fr) Réacteur nucléaire à neutrons rapides et à cuve interne cylindrique
EP0086312B1 (fr) Appareil de manutention pneumatique fonctionnant en continu sous de fortes pressions
EP0042797B1 (fr) Pompe centrifuge à diffuseur démontable
WO1988003246A1 (fr) Installation d'enfutage
WO2014037363A1 (fr) Reacteur nucleaire rapide integre, refroidi par un metal liquide, a echangeur intermediaire annulaire et moyens de surete passifs
FR2621083A1 (fr) Pompe immergee de prelevement de liquide dans une conduite, notamment une conduite de rejet en eau profonde d'eaux de refroidissement de centrale nucleaire
FR3064808B1 (fr) Pompe pour un reacteur nucleaire
FR3141719A1 (fr) Clapet pour turbomachine d’aéronef
FR2622669A1 (fr) Soupape de decharge pour canalisation de transport de fluide chaud

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): BE CH DE FR GB IT

17P Request for examination filed

Effective date: 19821023

ITF It: translation for a ep patent filed
GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): BE CH DE FR GB IT LI

REF Corresponds to:

Ref document number: 3264764

Country of ref document: DE

Date of ref document: 19850822

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19970421

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19970425

Year of fee payment: 16

Ref country code: CH

Payment date: 19970425

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19970428

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19970429

Year of fee payment: 16

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980519

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980531

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980531

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980531

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980531

BERE Be: lapsed

Owner name: FRAMATOME

Effective date: 19980531

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19980519

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990302

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST