EP1390614A1 - Magnetventil zur steuerung eines einspritzventils einer brennkraftmaschine - Google Patents

Magnetventil zur steuerung eines einspritzventils einer brennkraftmaschine

Info

Publication number
EP1390614A1
EP1390614A1 EP02729870A EP02729870A EP1390614A1 EP 1390614 A1 EP1390614 A1 EP 1390614A1 EP 02729870 A EP02729870 A EP 02729870A EP 02729870 A EP02729870 A EP 02729870A EP 1390614 A1 EP1390614 A1 EP 1390614A1
Authority
EP
European Patent Office
Prior art keywords
armature
valve
plate
stop
solenoid valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP02729870A
Other languages
English (en)
French (fr)
Other versions
EP1390614B1 (de
Inventor
Holger Rapp
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP1390614A1 publication Critical patent/EP1390614A1/de
Application granted granted Critical
Publication of EP1390614B1 publication Critical patent/EP1390614B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M47/00Fuel-injection apparatus operated cyclically with fuel-injection valves actuated by fluid pressure
    • F02M47/02Fuel-injection apparatus operated cyclically with fuel-injection valves actuated by fluid pressure of accumulator-injector type, i.e. having fuel pressure of accumulator tending to open, and fuel pressure in other chamber tending to close, injection valves and having means for periodically releasing that closing pressure
    • F02M47/027Electrically actuated valves draining the chamber to release the closing pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/0012Valves
    • F02M63/0014Valves characterised by the valve actuating means
    • F02M63/0015Valves characterised by the valve actuating means electrical, e.g. using solenoid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/0012Valves
    • F02M63/0014Valves characterised by the valve actuating means
    • F02M63/0015Valves characterised by the valve actuating means electrical, e.g. using solenoid
    • F02M63/0017Valves characterised by the valve actuating means electrical, e.g. using solenoid using electromagnetic operating means
    • F02M63/0021Valves characterised by the valve actuating means electrical, e.g. using solenoid using electromagnetic operating means characterised by the arrangement of mobile armatures
    • F02M63/0022Valves characterised by the valve actuating means electrical, e.g. using solenoid using electromagnetic operating means characterised by the arrangement of mobile armatures the armature and the valve being allowed to move relatively to each other
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/0012Valves
    • F02M63/0031Valves characterized by the type of valves, e.g. special valve member details, valve seat details, valve housing details
    • F02M63/004Sliding valves, e.g. spool valves, i.e. whereby the closing member has a sliding movement along a seat for opening and closing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/0012Valves
    • F02M63/0031Valves characterized by the type of valves, e.g. special valve member details, valve seat details, valve housing details
    • F02M63/004Sliding valves, e.g. spool valves, i.e. whereby the closing member has a sliding movement along a seat for opening and closing
    • F02M63/0042Sliding valves, e.g. spool valves, i.e. whereby the closing member has a sliding movement along a seat for opening and closing combined with valve seats of the lift valve type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/0012Valves
    • F02M63/0031Valves characterized by the type of valves, e.g. special valve member details, valve seat details, valve housing details
    • F02M63/0043Two-way valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/02Fuel-injection apparatus having several injectors fed by a common pumping element, or having several pumping elements feeding a common injector; Fuel-injection apparatus having provisions for cutting-out pumps, pumping elements, or injectors; Fuel-injection apparatus having provisions for variably interconnecting pumping elements and injectors alternatively
    • F02M63/0205Fuel-injection apparatus having several injectors fed by a common pumping element, or having several pumping elements feeding a common injector; Fuel-injection apparatus having provisions for cutting-out pumps, pumping elements, or injectors; Fuel-injection apparatus having provisions for variably interconnecting pumping elements and injectors alternatively for cutting-out pumps or injectors in case of abnormal operation of the engine or the injection apparatus, e.g. over-speed, break-down of fuel pumps or injectors ; for cutting-out pumps for stopping the engine
    • F02M63/022Fuel-injection apparatus having several injectors fed by a common pumping element, or having several pumping elements feeding a common injector; Fuel-injection apparatus having provisions for cutting-out pumps, pumping elements, or injectors; Fuel-injection apparatus having provisions for variably interconnecting pumping elements and injectors alternatively for cutting-out pumps or injectors in case of abnormal operation of the engine or the injection apparatus, e.g. over-speed, break-down of fuel pumps or injectors ; for cutting-out pumps for stopping the engine by acting on fuel control mechanism
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2200/00Details of fuel-injection apparatus, not otherwise provided for
    • F02M2200/30Fuel-injection apparatus having mechanical parts, the movement of which is damped
    • F02M2200/304Fuel-injection apparatus having mechanical parts, the movement of which is damped using hydraulic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2200/00Details of fuel-injection apparatus, not otherwise provided for
    • F02M2200/30Fuel-injection apparatus having mechanical parts, the movement of which is damped
    • F02M2200/306Fuel-injection apparatus having mechanical parts, the movement of which is damped using mechanical means

Definitions

  • Solenoid valve for controlling an injection valve of an internal combustion engine
  • the invention relates to a solenoid valve for controlling an injection valve of an internal combustion engine according to the preamble of claim 1.
  • Such a solenoid valve is used to control the fuel pressure in the control pressure chamber of an injection valve, for example an injector of a common rail injection system.
  • an injection valve for example an injector of a common rail injection system.
  • the known solenoid valve has an electromagnet arranged in a housing part, a movable armature and a control valve member which is moved with the armature and acted upon by a closing spring in the closing direction and which cooperates with a valve seat of the solenoid valve and thus controls the fuel outflow from the control pressure chamber.
  • a known disadvantage of such solenoid valves is the so-called armature bounce.
  • the armature When the magnet is switched off, the armature, and with it the control valve member, is accelerated from the closing spring of the solenoid valve to the valve seat in order to close a fuel drain channel from the control pressure chamber.
  • the impact of the control valve member on the valve seat results in an adverse swing and / or bounce of the control valve member on the valve seat, causing the Control of the injection process is impaired.
  • the armature is therefore made in two parts with an anchor bolt and an anchor plate slidably mounted on the anchor bolt, so that the anchor plate moves against the tension force of a return spring when the control valve member impacts the valve seat.
  • the return spring then conveys the anchor plate back to its defined starting position at a stop fixed on the anchor bolt. This ensures that when the electromagnet is switched on again, the armature plate is tightened from an always the same, defined, predetermined distance.
  • the effective braked mass and thus the kinetic energy causing the bouncing of the armature hitting the valve seat are reduced in the known solenoid valves, but the armature plate acted upon by the spring force of the return spring can open after the solenoid valve closes swing the anchor bolt disadvantageously.
  • the armature plate can hit the stop defined on the armature bolt and thereby briefly open the solenoid valve.
  • FIG. 1 shows a section of the upper part of a fuel injection valve with a solenoid valve known from the prior art
  • Fig. 4 shows the stroke of the anchor plate as a function of time for the solenoid valve according to the invention.
  • FIG. 1 shows the upper part of a fuel injection valve known from the prior art, which is intended for use in a fuel injection system, in particular a common rail system for diesel fuel, which is equipped with a high-pressure fuel reservoir which is continuously supplied with high-pressure force by a high-pressure feed pump. material is supplied.
  • the known fuel injection valve has a valve housing 4 with a longitudinal bore, in which a valve piston 6 is arranged, which acts with its one end, not shown in FIG. 1, on a valve needle arranged in a nozzle body.
  • the valve needle is arranged in a pressure chamber, which is supplied with fuel under high pressure via a pressure bore.
  • valve needle During an opening stroke movement of the valve piston 6, the valve needle is raised against the closing force of a spring by the high fuel pressure in the pressure chamber, which constantly acts on a pressure shoulder of the valve needle. The fuel is then injected into the combustion chamber of the internal combustion engine through an injection opening which is then connected to the pressure chamber.
  • the valve needle By lowering the valve piston 6, the valve needle is Direction pressed into the valve seat of the injection valve and the injection process ends.
  • the valve piston 6 is guided at its end facing away from the valve needle in a cylinder bore which is introduced into a valve piece 12 which is inserted into the valve housing 4.
  • the end face of the valve piston 6 includes a control pressure chamber 14, which is connected via an inlet channel to a high-pressure fuel connection, not shown.
  • the inlet channel is essentially made up of three parts.
  • a bore leading radially through the wall of the valve piece 12, the inner walls of which form an inlet throttle 15 over part of its length, is continuously connected to an annular space 16 surrounding the valve piece 12 on the circumferential side, which annular space in turn is in permanent communication with the high-pressure fuel connection stands.
  • the control pressure chamber 14 is exposed to the high fuel pressure prevailing in the high-pressure fuel reservoir via the inlet throttle 15.
  • Coaxial to the valve piston 6 branches off from the control pressure chamber 14 a bore running in the valve piece 12, which forms a fuel outlet channel 17 provided with an outlet throttle 18, which opens into a relief chamber 19, which is connected to a fuel low-pressure connection, not shown in FIG. 1, which in turn is connected to a fuel return of the injection valve.
  • the fuel drain channel 17 emerges from the valve piece 12 in the region of a conically countersunk part 21 of the outer end face of the valve piece 12.
  • the valve piece 12 is clamped together with an adjusting disk 38 and the flange 32 of a sliding piece 34 in the valve housing 4 by means of a screw member 23 ,
  • a valve seat 24 is formed in the conical part 21, with which a control valve member 25 of a solenoid valve 30 controlling the injection valve interacts.
  • the control valve member 25 is coupled to a two-part armature in the form of an armature bolt 27 and an armature plate 28, which armature is connected to an electromagnet 29 of the solenoid valve 30 interacts.
  • the solenoid valve 30 further comprises a housing part 60 which accommodates the electromagnet 29 and which is firmly connected to the valve housing 4 via screwable connecting means 7.
  • the anchor plate 28 is dynamically slidably supported on the anchor bolt 27 under the action of its inertial mass against the biasing force of a return spring 35 and is pressed by this return spring in the idle state against a stop 26 fixed on the anchor bolt, which in the form of a Anchor bolt pushed on sickle disc is formed.
  • the return spring 35 is supported on the flange 32 of the slide 34, which guides the anchor bolt 27 in a through opening.
  • the armature bolt 27 and with it the armature disk 28 and the control valve member 25 coupled to the armature bolt 27 are constantly acted upon in the closing direction by a locking spring 31 which is fixed to the housing, so that the control valve member 25 normally abuts the valve seat 24 in the closed position.
  • the armature plate 28 and with it the armature bolt 27 is attracted by the electromagnet and the drain channel 17 is opened toward the relief chamber 19.
  • the armature bolt 27 has at the end facing away from the electromagnet 29 an annular shoulder 33 which strikes the slide 34 when the electromagnet is excited and thus limits the opening stroke of the control valve member 25.
  • the adjusting disk 38 is used to set the opening stroke.
  • the opening and closing of the injection valve is controlled by the solenoid valve 30 as described below.
  • the anchor bolt 27 is constantly acted upon by the closing spring 31 in the closing direction, so that the control valve member 25 rests on the valve seat 24 in the closed position when the electromagnet is not energized and the control pressure chamber 14 is closed to the relief side 19, so that there it is via the inlet channel the high pressure builds up very quickly, which is also present in the high-pressure fuel accumulator.
  • the pressure in the control pressure chamber 14 generates a closing force on the valve piston 6 and the associated valve needle, which is greater than the forces acting in the opening direction due to the high pressure.
  • control pressure chamber 14 If the control pressure chamber 14 is opened towards the relief side 19 by opening the solenoid valve, the pressure in the small volume of the control pressure chamber 14 decreases very quickly, since it is decoupled from the high pressure side via the inlet throttle 15. As a result, the force acting on the valve needle in the opening direction outweighs the high fuel pressure applied to the valve needle, so that the valve needle moves upward and the at least one injection opening is opened for injection. However, if the solenoid valve 30 closes the fuel outlet channel 17, the pressure in the pressure chamber 14 can be built up again by the fuel flowing in via the inlet channel 15, so that the original closing force is applied and the valve needle of the fuel injection valve closes.
  • the closing spring 31 suddenly presses the armature pin 27 with the control valve member 25 against the valve seat 24.
  • a disadvantageous bouncing off or swinging of the control valve member arises in that the impact of the armature pin on the valve seat causes the same to deform, which acts as an energy store, whereby a portion of the energy is in turn transferred to the control valve member 25, which then bounces off the valve seat 24 together with the anchor bolt.
  • the known solenoid valve shown in FIG. 1 therefore uses a two-part armature with an armature plate 28 decoupled from the armature bolt 27. In this way, the mass impinging on the valve seat 24 as a whole can be reduced, but the armature plate 28 can oscillate in a disadvantageous manner.
  • an overstroke stop 37 is provided in the known solenoid valve, which is formed by an end section, facing the armature plate, of a section of the slider 34 designed as a guide sleeve.
  • the over Stroke stop 37 limits the maximum Uberhubweg by which the anchor plate 28 after the impact of the control valve member 25 on the valve seat 24 along the anchor bolt 27 starting from the stop fixed on the anchor bolt 27
  • FIG. 2 shows the stroke profile of the anchor plate as a function of the time when the solenoid valve is opened.
  • the solenoid valve closes, the armature plate 28 initially moves with the armature bolt in a first time interval I.
  • the anchor plate 28 then moves in the time interval I by the overtravel distance until it hits the overtravel stop 37 at a maximum overtravel distance h.2 of, for example, about 20 micrometers and is braked there.
  • time interval II the anchor plate is moved back to the sickle disk 26 by the return spring 35.
  • time interval III the anchor bolt and the control valve member are lifted off the valve seat by the anchor plate. The solenoid valve therefore opens briefly.
  • the anchor plate swings back, the control valve member hits the valve seat again at the beginning of time interval IV.
  • the vibration process of the anchor plate means that the solenoid valve must not be activated again in time interval III, since the solenoid valve opens briefly in this time interval.
  • the solenoid valve may therefore only be actuated by applying voltage to the electromagnet, either only beforehand in time interval II or later in time interval IV.
  • FIG. 3 shows a detail from a cross-sectional illustration of the solenoid valve according to the invention.
  • the solenoid valve 30 according to the invention differs from that in Fig. 1 shown known solenoid valve in that no return spring is provided on the solenoid valve.
  • the electromagnet 29 is switched off, the armature with the armature plate 28, armature bolt 27 and control valve member 25 is moved by the closing spring 31 toward the valve seat 24.
  • the anchor plate 28 continues to move due to its inert mass on the now fixed anchor bolt. This movement of the anchor plate 28 is now only subject to the laws of inertia, gravity, friction and the hydrodynamics of the fuel and is free of any action by a resilient elastic spring force.
  • FIG. 4 The resulting movement of the anchor plate 28 is shown in FIG. 4.
  • the anchor plate 28 moves in the time interval I first with the anchor bolt by the opening stroke h1 and then after the control valve member has hit the valve seat with the fixed anchor bolt by the excess stroke h.2 to the excess stroke 37
  • the anchor plate 28 remains there.
  • the circular surface 39 of the connecting piece 40 which is formed on the anchor plate 28 and is pushed over the anchor bolt 27, forms a hydraulic damping space, through which the impact of the anchor plate 28 on the Uberhubanschlag is damped.
  • the solenoid valve according to the invention can therefore be activated again at any time as soon as the armature plate has reached its position on the overstroke stop.
  • the armature plate 28 When a voltage is applied to the electromagnet when the solenoid valve is opened, the armature plate 28 is conveyed very quickly by the distance h2 to the stop 26 fixed on the armature bolt due to the magnetic force then acting. The time delay until the anchor plate reaches the stop 26 is negligible. This requires, that the maximum overtravel distance h2 is not too large. The maximum overtravel distance by which the armature plate 28 can move after the control valve member 25 strikes the valve seat 24 when the solenoid valve closes along the armature bolt 27, starting from the stop 26 fixed on the armature bolt, until it strikes the overtravel stop 37 than 100 microns and preferably less than 30 microns.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Electromagnetism (AREA)
  • Fuel-Injection Apparatus (AREA)

Abstract

Die Erfindung betrifft ein Magnetventil zur Steuerung eines Einspritzventils einer Brennkraftmaschine mit einem Elektromagneten (29), einem Anker, der einen in bezug auf den Elektromagneten beweglich gelagerten Ankerbolzen und eine auf dem Ankerbolzen (27) gleitend verschiebbar gelargerte Ankerplatte (28) umfasst, und mit einem mit dem Anker bewegten und mit einem Ventilsitz (24) zusammenwirkenden Steuerventilglied (25) zum Öffnen und Schliessen eines Kraftstoffdurchgangs (17), wobei die Ankerplatte (28) beim Auftreffen des Steuerventilgliedes auf den Ventilsitz (24) beim Schliessen des Magnetventils unter dem Einflussihrer trägen Masse von einem am Ankerbolzen (27) festgelegten Anschlag (26) um einen Überhubweg (24) bis zu einem ortsfesten Überhubanschlag (39) entlang des Ankerbolzens verschiebbar ist. Zur Vermeidung eines Nachschwingens der Ankerplatte (27) auf dem Ankerbolzen beim Schliessen des Magnetventils wird vorgeschlagen, dass die Ankerplatte (27) zwischen dem Überhubanschlag (39) und dem am Ankerbolzen festgelegten Anschlag (26) dem Ankerbolzen frei von rückstellenden elastischen Federkräften verschiebbar gelagert ist.

Description

Magnetventil zur Steuerung eines Einspritzventils einer Brennkraftmaschine
Stand der Technik
Die Erfindung betrifft ein Magnetventil zur Steuerung eines Einspritzventils einer Brennkraftmaschine nach dem Oberbegriff des Anspruchs 1.
Ein solches, beispielsweise aus der DE 196 50 865 AI bekanntes Magnetventil wird zur Steuerung des Kraftstoffdrucks im Steuerdruckraum eines Einspritzventils, beispielsweise eines Injektors einer Common-Rail-Einspritzanlage verwandt. Bei derartigen Einspritzventilen wird über den Kraftstoffdruck im Steuerdruckraum die Bewegung eines Ventilkolbens gesteuert, mit dem eine Einspritzöffnung des Einspritzventils geöffnet oder geschlossen wird. Das bekannte Magnetventil weist einen in einem Gehäuseteil angeordneten Elektromagneten, einen beweglichen Anker und ein mit dem Anker bewegtes, von einer Schließfeder in Schließrichtung beaufschlagtes Steuerventilglied auf, das mit einem Ventilsitz des Magnetventils zusammenwirkt und so den Kraftstoffabfluß aus dem Steuerdruckraum steuert.
Ein bekannter Nachteil derartiger Magnetventile besteht im sogenannten Ankerprellen. Beim Abschalten des Magneten wird der Anker und mit ihm das Steuerventilglied von der Schließfeder des Magnetventils zum Ventilsitz hin beschleunigt, um einen Kraftstoffablaufkanal aus dem Steuerdruckraum zu verschließen. Der Aufprall des Steuerventilgliedes am Ventilsitz hat ein nachteiliges Schwingen und/oder Prellen des Steuerventilgliedes am Ventilsitz zur Folge, wodurch die Steuerung des Einspritzvorgangs beeinträchtigt wird. Bei dem aus der DE 196 50 865 AI bekannten Magnetventil ist deshalb der Anker zweiteilig mit einem Ankerbolzen und einer auf dem Ankerbolzen gleitverschiebbar gelagerten Ankerplatte ausgeführt, so daß sich die Ankerplatte beim Aufprall des Steuerventilgliedes auf den Ventilsitz gegen die Spannkraft einer Rückholfeder weiterbewegt. Die Rückholfeder befördert die Ankerplatte anschließend wieder in ihre definierte Ausgangsposition an einem an dem Ankerbolzen festgelegten Anschlag zurück. Damit wird erreicht, daß beim erneuten Einschalten des Elektromagneten die Ankerplatte aus einem immer gleichen, definiert vorgegebenen Abstand angezogen wird.
Durch die zweiteilige Ausführung des Ankers mit Rückholfeder wird bei den bekannten Magnetventilen zwar die effektiv abgebremste Masse und damit die das Prellen verursachende kinetische Energie des auf den Ventilsitz auftreffenden Ankers verringert, jedoch kann die durch die Federkraft der Rückholfeder beaufschlagte Ankerplatte nach dem Schließen des Magnetventils auf dem Ankerbolzen in nachteiliger Weise nachschwingen. Während des Nachschwingvorgangs kann die Ankerplatte auf den am Ankerbolzen festgelegten Anschlag auftreffen und das Magnetventil dadurch kurzzeitig öffnen. Dieses kurze Öffnen führt zwar nicht zu einem signifikanten Druckabfall im Steuerdruckraum des Einspritzventils und damit zu einer unbeabsichtigten Einspritzung, jedoch darf während dieser kurzen Phase nicht mit der Ansteuerung des E- lektromagneten für die nächste Einspritzung begonnen werden, da dies die Menge des in den Brennraum der Brennkraftmaschine eingespritzten Kraftstoffs in nicht definierter Weise beeinflussen würde und starke Streuungen der Einspritzmenge zur Folge hätte. Eine Ansteuern des Magnetventils führt daher erst dann wieder zuverlässig zu einer definierten Einspritzmenge, wenn die Ankerplatte nicht mehr nachschwingt. Eine zeitliche Beschränkung des Nachschwingvorgangs ist insbesondere zur Darstellung kurzer zeitlicher Abstände zwischen beispielsweise einer Vor- und einer Haupteinspritzung von großer Bedeutung. Bei den bekannten Magnetventilen wird aus diesem Grund ein ortsfester Uberhubanschlag verwandt, welcher den maximalen Uberhubweg begrenzt, um den sich die Ankerplatte nach Auftreffen des Steuerventilgliedes auf den Ventilsitz auf dem Ankerbolzen verschieben kann. Durch diese Maßnahme läßt sich das Nachschwingen der Ankerplatte verringern, jedoch nicht abstellen.
Vorteile der Erfindung
Es wurde gefunden, daß bei einem gänzlichen Verzicht auf die Rückholfeder bei einem Magnetventil mit zweiteiligem Anker sowohl ein nachteiliger Nachschwingvorgang der Ankerplatte vermieden werden kann als auch gleichzeitig bei einer erneuten Ansteuerung des Elektromagneten eine definierte Einspritzung erfolgt. Entgegen eines lange bestehenden Vorurteils, ist die Rückholfeder nicht unbedingt erforderlich, um eine definierte Neueinspritzung zu gewährleisten. Da der Ü- berhubweg, um den sich die Ankerplatte nach einem Auftreffen des Steuerventilgliedes auf den Ventilsitz auf dem Ankerbolzen verschieben kann, durch den Uberhubanschlag auf einen kleinen Wert begrenzbar ist, kann auch ohne Rückholfeder eine definierte Neueinspritzung erreicht werden. Zwar wird die Ankerplatte bei einem Verzicht auf die Rückholfeder nicht zu dem am Ankerbolzen festgelegten Anschlag zurück befördert, jedoch wird die Ankerplatte beim Einschalten des Elektromagneten so schnell angezogen, daß sie praktisch ohne erkennbare Zeitverzögerung den am Ankerbolzen festgelegten Anschlag erreicht. Sodann wird die Ankerplatte und der Ankerbolzen mit Steuerventilglied zum Elektromagneten hin beschleunigt und das Magnetventil geöffnet. Vorteilhaft wird hierdurch erreicht, daß das durch den Nachschwingvorgang der Ankerplatte bedingte unerwünschte Öffnen des Magnetventils unterbleibt. Das Magnetventil kann daher jederzeit, nachdem die Ankerplatte ihren Uberhubanschlag erreicht hat, wieder angesteuert werden. Zeichnungen
Ein Ausführungsbeispiel der Erfindung ist in den Zeichnungen dargestellt und wird in der nachfolgenden Beschreibung erläutert. Es zeigt
Fig. 1 einen Ausschnitt aus dem oberen Teil eines aus dem Stand der Technik bekannten Kraftstoffeinspritzventils mit einem Magnetventil,
Fig. 2 den Hubweg der Ankerplatte in Abhängigkeit von der Zeit für das bekannte Magnetventil,
Fig. 3 eine Querschnittsdarstellung des erfindungsgemäßen Magnetventil ,
Fig. 4 den Hubweg der Ankerplatte in Abhängigkeit von der Zeit für das erfindungsgemäße Magnetventil .
Beschreibung eines Ausführungsbeispiels
Fig. 1 zeigt den oberen Teil eines aus dem Stand der Technik bekannten Kraftstoffeinspritzventils, welches zur Verwendung in einer Kraftstoffeinspritzanlage bestimmt ist, insbesondere eines Common-Rail-Systems für Dieselkraftstoff, welches mit einem Kraftstoffhochdruckspeicher ausgerüstet ist, der durch eine Hochdruckförderpumpe kontinuierlich mit Hochdruckkraf - stoff versorgt wird. Das bekannte Kraftstoffeinspritzventil weist ein Ventilgehäuse 4 mit einer Längsbohrung auf, in der ein Ventilkolben 6 angeordnet ist, der mit seinem einen in Fig. 1 nicht dargestellten Ende auf eine in einem Düsenkörper angeordnete Ventilnadel einwirkt. Die Ventilnadel ist in einem Druckraum angeordnet, der über eine Druckbohrung mit unter Hochdruck stehendem Kraftstoff versorgt ist. Bei einer Öffnungshubbewegung des Ventilkolbens 6 wird die Ventilnadel durch den ständig an einer Druckschulter der Ventilnadel angreifenden Kraftstoffhochdruck im Druckraum entgegen der Schließkraft einer Feder angehoben. Durch eine dann mit dem Druckraum verbundene Einspritzöffnung erfolgt die Einspritzung des Kraftstoffs in den Brennraum der Brennkraftmaschine. Durch Absenken des Ventilkolbens 6 wird die Ventilnadel in Schließ- richtung in den Ventilsitz des Einspritzventils gedrückt und der Einspritzvorgang beendet. Der Ventilkolben 6 wird an seinem von der Ventilnadel abgewandten Ende in einer Zylinderbohrung geführt, die in einem Ventilstück 12 eingebracht ist, welches in das Ventilgehäuse 4 eingesetzt ist. In der Zylinderbohrung schließt die Stirnseite des Ventilkolbens 6 einen Steuerdruckraum 14 ein, der über einen Zulaufkanal mit einem nicht dargestellten Kraftstoffhochdruckanschluß verbunden ist. Der Zulaufkanal ist im wesentlichen dreiteilig ausgebildet. Eine radial durch die Wand des Ventilstücks 12 führende Bohrung, deren Innenwände auf einem Teil ihrer Länge eine Zulauf- drossel 15 ausbilden, ist mit einem das Ventilstück 12 um- fangsseitig umgebenden Ringraum 16 ständig verbunden, welcher Ringraum wiederum über in ständiger Verbindung mit dem Kraftstoffhochdruckanschluß steht. Über die Zulaufdrossel 15 ist der Steuerdruckraum 14 dem im Kraftstoffhochdruckspeicher herrschenden hohen Kraftstoffdruck ausgesetzt. Koaxial zum Ventilkolben 6 zweigt aus dem Steuerdruckraum 14 eine im Ventilstück 12 verlaufende Bohrung ab, die einen mit einer Ablaufdrossel 18 versehenen Kraftstoffablaufkanal 17 bildet, der in einen Entlastungsraum 19 einmündet, der mit einem in Fig. 1 nicht dargestellten Kraftstoffniederdruckanschluß verbunden ist, welcher wiederum mit einem Kraftstoffrücklauf des Einspritzventils in Verbindung steht. Der Austritt des Kraftstoffablaufkanals 17 aus dem Ventilstück 12 erfolgt im Bereich eines kegelförmig angesenkten Teiles 21 der außenliegenden Stirnseite des Ventilstückes 12. Das Ventilstück 12 ist zusammen mit einer Einstellscheibe 38 und dem Flansch 32 eines Gleitstücks 34 fest über ein Schraubglied 23 in dem Ventilgehäuse 4 eingespannt.
In dem kegelförmigen Teil 21 ist ein Ventilsitz 24 ausgebildet, mit dem ein Steuerventilglied 25 eines das Einspritzventil steuernden Magnetventils 30 zusammen wirkt. Das Steuerventilglied 25 ist mit einem zweiteiligen Anker in Form eines Ankerbolzens 27 und einer Ankerplatte 28 gekoppelt, welcher Anker mit einem Elektromagneten 29 des Magnetventils 30 zusammenwirkt. Das Magnetventil 30 umfaßt weiterhin ein den Elektromagneten 29 bergendes Gehäuseteil 60, das mit dem Ventilgehäuse 4 über schraubbare Verbindungsmittel 7 fest verbunden ist. Bei dem bekannten Magnetventil ist die Ankerplatte 28 unter Einwirkung ihrer trägen Masse gegen die Vor- spannkraft einer Rückholfeder 35 dynamisch verschiebbar auf dem Ankerbolzen 27 gelagert und wird durch diese Rückholfeder im Ruhezustand gegen einen am Ankerbolzen festgelegten Anschlag 26 gedrückt, welcher in Form einer auf den Ankerbolzen aufgeschobenen Sichelscheibe ausgebildet ist. Mit ihrem anderen Ende stützt sich die Rückholfeder 35 an dem Flansch 32 des Gleitstücks 34 ab, welches den Ankerbolzen 27 in einer Durchgangsöffnung führt. Der Ankerbolzen 27 und mit ihm die Ankerscheibe 28 und das mit dem Ankerbolzen 27 gekoppelte Steuerventilglied 25 sind ständig durch eine sich gehäusefest abstützende Schließfeder 31 in Schließrichtung beaufschlagt, so daß das Steuerventilglied 25 normalerweise in Schließstellung am Ventilsitz 24 anliegt. Bei Erregung des Elektromagneten wird die Ankerplatte 28 und mit ihr der Ankerbolzen 27 vom Elektromagneten angezogen und dabei der Ablaufkanal 17 zum Entlastungsraum 19 hin geöffnet. Der Ankerbolzen 27 weist an dem von dem Elektromagneten 29 abgewandten Ende eine Ringschulter 33 auf, die bei erregtem E- lektromagneten am Gleitstück 34 anschlägt und so den Öffnungshub des Steuerventilgliedes 25 begrenzt. Zur Einstellung des Öffnungshubes dient die Einstellscheibe 38.
Das Öffnen und Schließen des Einspritzventils wird wie nachfolgend beschrieben von dem Magnetventil 30 gesteuert. Wie bereits dargestellt, wird der Ankerbolzen 27 ständig durch die Schließfeder 31 in Schließrichtung beaufschlagt, so daß das Steuerventilglied 25 bei nicht erregtem Elektromagneten in Schließstellung am Ventilsitz 24 anliegt und der Steuerdruckraum 14 zur Entlastungsseite 19 hin verschlossen ist, so daß sich dort über den Zulaufkanal sehr schnell der hohe Druck aufbaut, der auch im Kraftstoffhochdruckspeicher ansteht. Der Druck im Steuerdruckraum 14 erzeugt eine Schließ- kraft auf den Ventilkolben 6 und die damit in Verbindung stehende Ventilnadel, die größer ist als die andererseits in Öffnungsrichtung in Folge des anstehenden Hochdrucks wirkenden Kräfte. Wird der Steuerdruckraum 14 durch Öffnen des Magnetventils zur Entlastungsseite 19 hin geöffnet, baut sich der Druck in dem geringen Volumen des Steuerdruckraumes 14 sehr schnell ab, da dieser über die Zulaufdrossel 15 von der Hochdruckseite abgekoppelt ist. Infolgedessen überwiegt die auf die Ventilnadel in Öffnungsrichtung wirkende Kraft aus dem an der Ventilnadel anstehenden Kraftstoffhochdruck, so daß die Ventilnadel nach oben bewegt und dabei die wenigstens eine Einspritzöffnung zur Einspritzung geöffnet wird. Schließt jedoch das Magnetventil 30 den Kraftstoffablaufkanal 17, kann der Druck im S euerdruckraum 14 durch den über den Zulaufkanal 15 nachfließenden Kraftstoff wieder aufgebaut werden, so daß die ursprüngliche Schließkraft ansteht und die Ventilnadel des Kraftstoffeinspritzventils schließt.
Beim Schließen des Magnetventils drückt die Schließfeder 31 den Ankerbolzen 27 mit dem Steuerventilglied 25 schlagartig gegen den Ventilsitz 24. Ein nachteiliges Abprellen oder Nachschwingen des Steuerventilgliedes entsteht dadurch, daß der Aufschlag des Ankerbolzen am Ventilsitz eine elastische Verformung desselben bewirkt, welche als Energiespeicher wirkt, wobei ein Teil der Energie wiederum auf das Steuerventilglied 25 übertragen wird, das dann zusammen mit dem Ankerbolzen vom Ventilsitz 24 abprellt. Das in Fig. 1 gezeigte bekannte Magnetventil verwendet daher einen zweiteiligen Anker mit einer vom Ankerbolzen 27 abgekoppelten Ankerplatte 28. Auf diese Weise läßt sich die insgesamt auf den Ventilsitz 24 auftreffende Masse verringern, jedoch kann die Ankerplatte 28 in nachteiliger Weise nachschwingen. Aus diesem Grund ist bei dem bekannten Magnetventil ein Uberhubanschlag 37 vorgesehen, welcher durch einen der Ankerplatte zugewandten Endabschnitt eines als Führungshülse ausgebildeten Abschnitts des Gleitstücks 34 gebildet wird. Der Über- hubanschlag 37 beschränkt den maximalen Uberhubweg, um den sich die Ankerplatte 28 nach dem Auftreffen des Steuerventilgliedes 25 auf den Ventilsitz 24 entlang des Ankerbolzens 27 ausgehend von dem am Ankerbolzen 27 festgelegten Anschlag
26 verschieben kann. Das Nachschwingen der Ankerplatte 28 wird durch den Uberhubanschlag 37 reduziert und die Ankerplatte 28 gelangt schneller wieder in ihre Ausgangslage an dem als Sichelscheibe ausgebildeten Anschlag 26 zurück.
In Fig. 2 ist der Hubverlauf der Ankerplatte in Abhängigkeit von der Zeit beim Öffnen des Magnetventils dargestellt. Beim Schließen des Magnetventils bewegt sich die Ankerplatte 28 in einem ersten Zeitintervall I zunächst mit dem Ankerbolzen
27 um den Weg hl von beispielsweise 38 Mikrometer, bis das Steuerventilglied bei h = 0 auf den Ventilsitz auftrifft. Anschließend bewegt sich die Ankerplatte 28 in dem Zeitintervall I um den Uberhubweg weiter bis sie bei einem maximalen Uberhubweg h.2 von beispielsweise etwa 20 Mikrometer auf den Uberhubanschlag 37 trifft und dort abgebremst wird. In dem nun folgenden Zeitintervall II wird die Ankerplatte durch die Rückholfeder 35 bis zur Sichelscheibe 26 zurück bewegt. In dem Zeitintervall III wird der Ankerbolzen und das Steuerventilglied durch die Ankerplatte vom Ventilsitz abgehoben. Das Magnetventil öffnet daher kurz. Beim Zurückschwingen der Ankerplatte trifft das Steuerventilglied zu Beginn des Zeitintervalls IV wieder auf den Ventilsitz . Der SchwingungsVorgang der Ankerplatte führt dazu, daß mit einer erneuten Ansteuerung des Magnetventils im Zeitintervall III nicht begonnen werden darf, da das Magnetventil in diesem Zeitintervall kurz öffnet. Die Ansteuerung des Magnetventils durch Spannungsbeaufschlagung des Elektromagneten darf daher entweder nur vorher im Zeitintervall II oder später im Zeitintervall IV erfolgen.
In Fig. 3 ist eine Ausschnitt aus einer Querschnittsdarstellung des erfindungsgemäßen Magnetventils dargestellt. Das erfindungsgemäße Magnetventil 30 unterscheidet sich von dem in Fig. 1 dargestellten bekannten Magnetventil dadurch, daß keine Rückholfeder am Magnetventil vorgesehen ist. Beim Abschalten des Elektromagneten 29 wird der Anker mit Ankerplatte 28, Ankerbolzen 27 und Steuerventilgied 25 durch die Schließfeder 31 zum Ventilsitz 24 hin bewegt. Sobald das Steuerventilglied auf den Ventilsitz 24 trifft, bewegt sich die Ankerplatte 28 bedingt durch ihre träge Masse auf dem nun ortsfesten Ankerbolzen weiter. Diese Bewegung der Ankerplatte 28 unterliegt nur noch den Gesetzen von Trägheit, Schwerkraft, Reibung und der Hydrodynamik des Kraftstoffs und erfolgt frei von einer Beaufschlagung durch eine rückstellende elastische Federkraft. Die resultierende Bewegung der Ankerplatte 28 ist in Fig. 4 dargestellt. Wie bei dem bekannten Magnetventil in Fig. 2 dargestellt, bewegt sich die Ankerplatte 28 in dem Zeitintervall I zunächst mit dem Ankerbolzen um den Öffnungshubweg hl und anschließend nach Auftreffen des Steuerventilgliedes auf den Ventilsitz bei ortsfestem Ankerbolzen um den Uberhubweg h.2 bis zum Uberhubanschlag 37. Dort verharrt die Ankerplatte 28. Die sich an den Uberhubanschlag 37 annähernde kreisringförmige Fläche 39 eines an der Ankerplatte 28 ausgebildeten über den Ankerbolzen 27 geschobenen Stutzens 40 bildet dabei zusammen mit dem Uberhubanschlag 37 einen hydraulischen Dämpfungsraum, durch welchen der Aufprall der Ankerplatte 28 auf den Uberhubanschlag gedämpft wird. Wie in Fig. 4 zu erkennen ist, erfolgt im Zeitintervall II kein Nachschwingen der Ankerplatte und kein weiteres Öffnen des Magnetventils bei abgeschaltetem Elektromagneten. Daher kann das erfindungsgemäße Magnetventil jederzeit wieder angesteuert werden, sobald die Ankerplatte ihre Position am Uberhubanschlag erreicht hat.
Bei einer Spannungsbeaufschlagung des Elektromagneten beim Öffnen des Magnetventils wird die Ankerplatte 28 aufgrund der dann wirkenden Magnetkraft sehr schnell um den Weg h2 bis zu dem am Ankerbolzen festgelegten Anschlag 26 befördert. Die Zeitverzögerung bis die Ankerplatte den Anschlag 26 erreicht ist dabei zu vernachlässigen. Dies setzt voraus, daß der maximale Uberhubweg h2 nicht zu groß ist. Der maximale Uberhubweg, um den sich die Ankerplatte 28 nach einem Auftreffen des Steuerventilgliedes 25 auf den Ventilsitz 24 beim Schließen des Magnetventils entlang des Ankerbolzens 27 ausgehend von dem am Ankerbolzen festgelegten Anschlag 26 bis zu einem Aufprall auf den Uberhubanschlag 37 verschieben kann, sollte daher kleiner als 100 Mikrometer und vorzugsweise kleiner als 30 Mikrometer sein.

Claims

Ansprüche
1. Magnetventil zur Steuerung eines Einspritzventils einer Brennkraftmaschine, mit einem Elektromagneten (29) , einem Anker, der einen in bezug auf den Elektromagneten beweglich gelagerten Ankerbolzen (27) und eine auf dem Ankerbolzen gleitend verschiebbar gelagerte Ankerplatte (28) umfaßt, und mit einem mit dem Anker bewegten und mit einem Ventilsitz
(24) zusammenwirkenden Steuerventilglied (25) zum Öffnen und Schließen eines Kraftstoffdurchgangs (17) , wobei die Ankerplatte (28) beim Auftreffen des Steuerventilgliedes (25) auf den Ventilsitz (24) beim Schließen des Magnetventils unter dem Einfluß ihrer trägen Masse von einem am Ankerbolzen (27) festgelegten Anschlag (26) um einen Uberhubweg (h.2) bis zu einem ortsfesten Uberhubanschlag (39) entlang des Ankerbol- zens verschiebbar ist, dadurch gekennzeichnet, daß die Ankerplatte (27) zwischen dem Uberhubanschlag (39) und dem am Ankerbolzen (27) festgelegten Anschlag (26) auf dem Ankerbolzen frei von rückstellenden elastischen Federkräften verschiebbar gelagert ist.
2. Magnetventil nach Anspruch 1, dadurch gekennzeichnet, daß der maximale Uberhubweg (h2) , um den sich die Ankerplatte (28) nach einem Auftreffen des Steuerventilgliedes (25) auf den Ventilsitz (24) beim Schließen des Magnetventils entlang des Ankerbolzens (27) ausgehend von dem am Ankerbolzen festgelegten Anschlag (26) bis zum Auftreffen auf den Uberhubanschlag (39) verschieben kann, kleiner als 100 Mikrometer und vorzugsweise kleiner als 30 Mikrometer ist.
EP02729870A 2001-05-12 2002-04-17 Magnetventil zur steuerung eines einspritzventils einer brennkraftmaschine Expired - Lifetime EP1390614B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10123171A DE10123171A1 (de) 2001-05-12 2001-05-12 Magnetventil zur Steuerung eines Einspritzventils einer Brennkraftmaschine
DE10123171 2001-05-12
PCT/DE2002/001418 WO2002092991A1 (de) 2001-05-12 2002-04-17 Magnetventil zur steuerung eines einspritzventils einer brennkraftmaschine

Publications (2)

Publication Number Publication Date
EP1390614A1 true EP1390614A1 (de) 2004-02-25
EP1390614B1 EP1390614B1 (de) 2004-10-06

Family

ID=7684568

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02729870A Expired - Lifetime EP1390614B1 (de) 2001-05-12 2002-04-17 Magnetventil zur steuerung eines einspritzventils einer brennkraftmaschine

Country Status (6)

Country Link
US (1) US6997432B2 (de)
EP (1) EP1390614B1 (de)
JP (1) JP4058349B2 (de)
DE (2) DE10123171A1 (de)
ES (1) ES2229143T3 (de)
WO (1) WO2002092991A1 (de)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7156368B2 (en) * 2004-04-14 2007-01-02 Cummins Inc. Solenoid actuated flow controller valve
US20060138374A1 (en) * 2004-04-14 2006-06-29 Lucas Michael A Solenoid actuated flow control valve including adjustable spacer
DE102005053115A1 (de) * 2005-11-08 2007-05-10 Robert Bosch Gmbh Optimierte Ankergruppenführung für Magnetventile
DE102005058302A1 (de) * 2005-12-07 2007-06-14 Robert Bosch Gmbh Verformungsoptimierte Ankerführung für Magnetventile
DE102006041977A1 (de) 2006-09-07 2008-03-27 Robert Bosch Gmbh Injektor zum Einspritzen von Kraftstoff
US20080081632A1 (en) * 2006-09-29 2008-04-03 Symbol Technologies, Inc. Methods and apparatus for defining, storing, and identifying key performance indicators associated with an RF network
EP1918568B1 (de) * 2006-10-24 2009-02-25 C.R.F. Societa Consortile per Azioni Magnetdosierventil für ein Brennstoffeinspritzventil
DE102007060396A1 (de) 2007-12-03 2009-06-04 Robert Bosch Gmbh Mechanische Löschung von Schließprellern bei Einspritzdüsen
US8689772B2 (en) * 2011-05-19 2014-04-08 Caterpillar Inc. Fuel injector with telescoping armature overtravel feature
US9359985B2 (en) 2014-09-04 2016-06-07 Caterpillar Inc. Fluid injector actuator with resilient armature overtravel feature
US10180106B2 (en) 2016-05-17 2019-01-15 Hamilton Sundstrand Corporation Solenoids for gas turbine engine bleed valves
US20220218086A1 (en) * 2019-05-22 2022-07-14 Atech S.R.L. Tamper-proof bag and security system therefor
US11603815B1 (en) * 2021-11-04 2023-03-14 Standard Motor Products, Inc. Modular armature-needle assembly for fuel injectors
DE102022202027A1 (de) * 2022-02-28 2023-08-31 Robert Bosch Gesellschaft mit beschränkter Haftung Verfahren zur Ansteuerung eines elektromagnetisch ansteuerbaren Gasventils, Steuergerät
JP2024128777A (ja) * 2023-03-10 2024-09-24 三菱重工エンジン&ターボチャージャ株式会社 電磁式アクチュエータ及び燃料噴射装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT227711Y1 (it) * 1992-12-29 1997-12-15 Elasis Sistema Ricerca Fiat Valvola di dosaggio a comando elettromagnetico per un iniettore di combustibile
US6068010A (en) * 1995-06-09 2000-05-30 Marotta Scientific Controls, Inc. Microvalve and microthruster for satellites and methods of making and using the same
DE19650865A1 (de) * 1996-12-07 1998-06-10 Bosch Gmbh Robert Magnetventil
IT239878Y1 (it) * 1996-12-23 2001-03-13 Elasis Sistema Ricerca Fiat Perfezionamenti ad una valvola di dosaggio a comando elettromagneticoper un iniettore di combustibile.
DE19708104A1 (de) 1997-02-28 1998-09-03 Bosch Gmbh Robert Magnetventil
DE19820341C2 (de) * 1998-05-07 2000-04-06 Daimler Chrysler Ag Betätigungsvorrichtung für eine Hochdruck-Einspritzdüse für flüssige Einspritzmedien
DE19832826C2 (de) 1998-07-21 2000-08-17 Bosch Gmbh Robert Montageverfahren für Kraftstoff-Einspritzventil und Vorsteuerventil sowie Kraftstoff-Einspritzventil
UA67804C2 (uk) * 1998-10-02 2004-07-15 Роналд Нортедж Клапан
DE29905883U1 (de) * 1999-03-31 1999-06-17 Festo AG & Co, 73734 Esslingen Elektromagnetische Antriebsvorrichtung
DE10131201A1 (de) * 2001-06-28 2003-01-16 Bosch Gmbh Robert Magnetventil zur Steuerung eines Einspritzventils einer Brennkraftmaschine

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO02092991A1 *

Also Published As

Publication number Publication date
JP2004519609A (ja) 2004-07-02
ES2229143T3 (es) 2005-04-16
DE50201241D1 (de) 2004-11-11
DE10123171A1 (de) 2002-11-14
WO2002092991A1 (de) 2002-11-21
EP1390614B1 (de) 2004-10-06
US6997432B2 (en) 2006-02-14
US20040026644A1 (en) 2004-02-12
JP4058349B2 (ja) 2008-03-05

Similar Documents

Publication Publication Date Title
EP0897469B1 (de) Magnetventil
EP1332282B1 (de) Magnetventil zur steuerung eines einspritzventils einer brennkraftmaschine
EP1259729B1 (de) Magnetventil zur steuerung eines einspritzventils einer brennkraftmaschine
EP1266135B1 (de) Magnetventil zur steuerung eines einspritzventils einer brennkraftmaschine
EP2220360B1 (de) Schaltventil für injektoren
EP0880647A1 (de) Magnetventil
EP1390614B1 (de) Magnetventil zur steuerung eines einspritzventils einer brennkraftmaschine
WO2009121646A1 (de) Magnetventil mit mehrteiligem anker ohne ankerführung
EP1203151B1 (de) Zweistufiges magnetventil für einen injektor von brennkarftmaschinen
EP1387937B1 (de) Kraftstoffeinspritzventil für brennkraftmaschinen mit einem druckschwingungen reduzierenden dämpfungsraum
EP1339969B1 (de) Magnetventil zur steuerung eines einspritzventils einer brennkraftmaschine
EP1348074A1 (de) Magnetventil zur steuerung eines einspritzventils einer brennkraftmaschine
WO2002050424A2 (de) Magnetventil zur steuerung eines einspritzventils einer brennkraftmaschine
DE10009037A1 (de) Steuerventil für eine Kraftstoff-Einspritzdüse
WO2010052099A1 (de) Brennstoffeinspritzventil
DE10113008A1 (de) Magnetventil zur Steuerung eines Einspritzventils einer Brennkraftmaschine
EP1256709A2 (de) Magnetventil zur Steuerung eines Einspritzventils einer Brennkraftmaschine
EP2229527B1 (de) Schaltventil für injektoren
EP1970557A2 (de) Ventil für Kraftstoffinjektoren

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20031212

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES FR GB IT SE

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

REF Corresponds to:

Ref document number: 50201241

Country of ref document: DE

Date of ref document: 20041111

Kind code of ref document: P

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20050208

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2229143

Country of ref document: ES

Kind code of ref document: T3

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20050707

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20110419

Year of fee payment: 10

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20120423

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120418

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20130422

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20140416

Year of fee payment: 13

Ref country code: IT

Payment date: 20140429

Year of fee payment: 13

Ref country code: DE

Payment date: 20140626

Year of fee payment: 13

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20140417

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140417

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20150527

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140418

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50201241

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150417

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151103

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20151231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150430