EP1386172A1 - Gebersystem für einen ferraris-bewegungsgeber - Google Patents

Gebersystem für einen ferraris-bewegungsgeber

Info

Publication number
EP1386172A1
EP1386172A1 EP02729879A EP02729879A EP1386172A1 EP 1386172 A1 EP1386172 A1 EP 1386172A1 EP 02729879 A EP02729879 A EP 02729879A EP 02729879 A EP02729879 A EP 02729879A EP 1386172 A1 EP1386172 A1 EP 1386172A1
Authority
EP
European Patent Office
Prior art keywords
magnetic field
shaft
encoder system
device shaft
sensors
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
EP02729879A
Other languages
English (en)
French (fr)
Inventor
Roland Finkler
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Transpacific Activa LLC
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP1386172A1 publication Critical patent/EP1386172A1/de
Ceased legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/003Kinematic accelerometers, i.e. measuring acceleration in relation to an external reference frame, e.g. Ferratis accelerometers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P3/00Measuring linear or angular speed; Measuring differences of linear or angular speeds
    • G01P3/42Devices characterised by the use of electric or magnetic means
    • G01P3/44Devices characterised by the use of electric or magnetic means for measuring angular speed
    • G01P3/49Devices characterised by the use of electric or magnetic means for measuring angular speed using eddy currents

Definitions

  • the invention relates to a sensor system for a Ferraris motion sensor, in which one or more magnetic field generators, together with a moving, electrically conductive, rotating measuring body, form at least one magnetic measuring arrangement, with the magnetic field sensors coupled to it being dependent on rotational speed or rotational acceleration
  • Encoder systems of this type are known, for example, from the article "Transducers for Measuring Rapidly Changing Rotational Accelerations and Torques", A. Denne, H. Rausch and W. Freise, Technisches Messen 48th Volume 1981, Issue 10, pages 339 to 342.
  • a bell runner serves as the rotating measuring body.
  • another sensor system of this type is known from DE 37 30 841 AI, in which a disk serves as the rotating measuring body. If the speed of rotation or the acceleration of rotation of a motor, preferably an electric motor, is to be recorded with such encoder systems, it is therefore always necessary that the measuring body specially adapted to the encoder system is also attached to the shaft.
  • any play between the rotating measuring body and the stationary parts of the encoder system must also be taken into account. This play can be caused, among other things, by the fact that the axis of symmetry of the measuring body cannot be exactly aligned with the shaft and / or that the measuring body is not completely rotationally symmetrical. If there is such a game, it interferes with the distance. As a result, this cannot be chosen to be arbitrarily small. Therefore, overall larger geometric dimensions of the system have to be accepted. However, this also requires larger time constants and thus poorer dynamic behavior. In addition, a larger distance results in a lower sensitivity of the sensor.
  • the object of the invention is to design a sensor system of the type mentioned in the introduction in such a way that a high-quality measurement behavior can be achieved with little technical effort.
  • a device shaft preferably a device shaft whose movement is to be recorded.
  • the shaft does not necessarily have to be solid, but it is also possible that a hollow shaft is provided as the device shaft. In principle, it is of course possible that the device shaft is made up of several parts.
  • the elements of the encoder system required in addition to the rotating measuring body can be configured in an advantageous manner. Fertilize the invention structurally relatively simple so that on a support body, which at least partially engages around the device shaft, at its two free ends then sit two outer magnetic field generators, between which a central magnetic field generator is arranged on the support body that between the outer and a magnetic field sensor is arranged on the supporting body for each of the central magnetic field generators and that magnetic field generators and sensors are directed against the device shaft with predetermined air gap widths.
  • a support body which at least partially engages around the device shaft, at its two free ends then sit two outer magnetic field generators, between which a central magnetic field generator is arranged on the support body that between the outer and a magnetic field sensor is arranged on the supporting body for each of the central magnetic field generators and that magnetic field generators and sensors are directed against the device shaft with predetermined air gap widths.
  • a low-effort solution results from the fact that permanent magnets are provided as magnetic field generators and that coils connected in anti-serial fashion are provided as magnetic field sensors. In this case, the spin is measured.
  • the anti-serial switching eliminates interference caused by the environment. If not a rotational acceleration but a rotational speed measurement is desired, this can be done with commercially available elements either by providing permanent magnets as magnetic field generators and by Hall sensors as magnetic field sensors or by electromagnets controlled as magnetic field sensor generators and by Hall sensors or antiserially connected coils as magnetic field sensors ,
  • the sensor output signal results in an alternating voltage of the same frequency as the exciting voltage. Their amplitude is proportional to the speed of rotation.
  • a cylindrical shaft W1 for example the motor shaft of an electric motor, which is not shown for the sake of clarity, is in a direction indicated by a curved arrow about an axis denoted by x rotates.
  • the shaft W1 consists of electrically conductive, non-magnetic material.
  • a support body T made of soft iron is arranged around the shaft Wl and has a permanent magnet Ml or M3 at its free ends, the north poles "N” of the permanent magnets Ml and M3 facing the support body T, while the south poles "S” the permanent magnets Ml and M3 are directed towards the surface of the shaft Wl.
  • a third permanent magnet is arranged on the support body T between the permanent magnets M1 and M2 so that the south pole "S” of this permanent magnet M2 points to the support body T, while the north pole "N” of this permanent magnet M2 points to the shaft Wl.
  • the permanent magnets M1 to M3 serve as magnetic field generators, whereas coils S1 and S2 serve as magnetic field sensors.
  • coils S1 and S2 are also attached to the support body T and are located between the permanent magnets M1 and M2 or M2 and M3.
  • the coils S1 and S2 are connected in series so that disturbing environmental fields are eliminated and act on a converter U, which generates an output signal from the received signals, which the loading acceleration of the wave Wl corresponds. This signal then reaches a processing device VE.
  • FIG. 2 shows the side view of the shaft W1, so that the cylindrical shape of the shaft Wl can be seen.
  • a conical or slightly curved shaft end could also be used in the invention.
  • the dashed line indicated in the right part of the illustration shows that hollow cylinders could also be used instead of cylinders, which may apply to the shaft W2.
  • the dashed left line shows that the shaft W2 can also be produced in an axial segment design.
  • Two shaft segments WS1 and WS2 are arranged one behind the other.
  • the connection can be produced in any way, for example by a press fit.
  • a shaft W3 which may also consist of segments, in this case shaft segments WS3 and WS4, which in this case, however, are not arranged in the axial direction, as described above, but in the radial direction. It is thus possible for a shaft segment WS4 in the form of a hollow shaft to rest on the shaft segment WS3 at the end of the shaft W3, an electrically insulating hollow cylinder being able to sit between the shaft segments WS3 and WS4. This enables the measuring system to be further improved in its effect against interference.
  • the end position is not absolutely necessary, but an axially displaced position can be provided.
  • the shaft diameter does not have to be the same everywhere, but especially in the encoder area, rotation sensor variations are conceivable not only in the negative direction as in FIG. 4, but in principle also in the positive direction.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Arrangements For Transmission Of Measured Signals (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)

Abstract

Ein technisch äusserst einfaches Gebersystem für einen Ferraris-Bewegungsgeber, bei dem mehrere Magnetfelderzeuger (M1,M2,M3) zusammen mit einem bewegten, nicht magnetischen, elektrisch leitenden rotierenden Messkörper mindestens einen Magnetkreis bilden, wobei durch daran angekoppelte Magnetfeldsensoren (S1,S2) drehgeschwindigkeits- oder drehbeschleunigungsabhängige Ausgangssignale generierbar sind, ist so gestaltet, dass als Messkörper eine vorzugsweise zylindrische Gerätewelle (W1,W2,W3) vorgesehen ist.

Description

Beschreibung
GEBERSYSTEM FÜR EINEN FERRARIS BEWEGUNGSGEBER
Die Erfindung bezieht sich auf ein Gebersystem für einen Ferraris-Bewegungsgeber, bei dem ein oder mehrere Magnetfelderzeuger zusammen mit einem bewegten, elektrisch leitenden, rotierenden Messkörper mindestens eine magnetische Messanordnung bilden, wobei durch daran angekoppelte Magnetfeldsenso- ren drehgeschwindigkeits- oder drehbeschleunigungsabhangige
Ausgangssignale generierbar sind. Derartige Gebersysteme sind beispielsweise aus dem Aufsatz "Aufnehmer zur Messung schnell veränderlicher Drehbeschleunigungen und Drehmomente", A. Den- ne, H. Rausch und W. Freise, Technisches Messen 48. Jahrgang 1981, Heft 10, Seite 339 bis 342 bekannt. Dabei dient als rotierender Messkörper ein Glockenläufer. Ferner ist aus der DE 37 30 841 AI ein weiteres Gebersystem dieser Art bekannt, bei welchem als rotierender Messkörper eine Scheibe dient. Wenn die Drehgeschwindigkeit oder Drehbeschleunigung eines Motors, vorzugsweise eines Elektromotors, mit derartigen Gebersystemen erfasst werden soll, ist es daher stets notwendig, dass an der Welle auch der auf das Gebersystem speziell angepasste Messkörper angebracht wird.
Damit stellt nicht nur der Messkörper ein spezifisches Bauteil dar, sondern es ist auch eine zugeschnittene Verbindungstechnik mit der jeweiligen Gerätewelle erforderlich. Dabei kann es dazu kommen, dass die Verbindung zwischen Messkörper und Welle bei begrenzter Steifigkeit zu Messverfäl- schungen führt. Ebenso ist bei den bekannten Lösungen auch ein eventuelles Spiel zwischen dem rotierenden Messkörper und den stationären Teilen des Gebersystems zu berücksichtigen. Dieses Spiel kann unter anderem dadurch verursacht werden, dass die Symmetrieachse des Messkörpers nicht exakt mit der Welle zur Deckung gebracht werden kann und/oder dass der Messkörper nicht vollkommen rotationssymmetrisch ist. Wenn ein solches Spiel vorliegt, wirkt dieses störend auf den Abstand ein. Dieser kann dadurch nicht beliebig klein gewählt werden. Daher müssen insgesamt größere geometrische Abmessungen des Systems in Kauf genommen werden. Das bedingt jedoch auch größere Zeitkonstanten und damit ein schlechteres dynamisches Verhalten. Außerdem bewirkt ein größerer Abstand eine geringere Empfindlichkeit des Sensors.
Aufgabe der Erfindung ist es, ein Gebersystem der eingangs genannten Art so auszubilden, dass mit geringem technischen Aufwand ein qualitativ hochwertiges Messverhalten erreichbar ist.
Gemäß der Erfindung wird dies für ein Gebersystem der ein- gangs genannten Art dadurch erreicht, dass als Messkörper eine vorzugsweise zylindrische Gerätewelle vorgesehen ist und zwar vorzugsweise eine Gerätewelle, deren Bewegung erfasst werden soll. Seitens des Erfinders ist nämlich erkannt worden, dass es durchaus möglich ist, von speziell zugeschnitte- nen Messkörpern ganz abzugehen, weil die üblichen Gerätewellen durchaus die Funktion des Messkörpers übernehmen können. Diese Erkenntnis ist umso überraschender, als trotz der seit langem bekannten Gebertechnik nach dem Ferrarisprinzip nie ein Vorschlag für einen solchen einfachen Aufbau bekannt ge- worden ist.
Die Welle muss dabei nicht zwangsweise massiv sein, sondern es ist auch möglich, dass als Gerätewelle eine Hohlwelle vorgesehen ist. Dabei ist es selbstverständlich prinzipiell mög- lieh, dass die Gerätewelle mehrteilig ausgebildet ist.
Es bietet sich dabei an, dass als Gerätewelle die Standardwelle eines Elektromotors verwendet wird, was den häufigsten Einsatzfall abdeckt.
Die zusätzlich zum rotierenden Messkörper erforderlichen Elemente des Gebersystems können in einer vorteilhaften Ausbil- düng der Erfindung konstruktiv relativ einfach so angeordnet sein, dass auf einem Tragkörper, der mindestens teilweise um die Gerätewelle greift, an dessen dann beiden freien Enden zwei äußere Magnetfelderzeuger aufsitzen, zwischen denen auf dem Tragkörper ein zentraler Magnetfelderzeuger angeordnet ist, dass zwischen dem äußeren und dem zentralen Magnetfelderzeuger jeweils ein Magnetfeldsensor auf dem Tragkörper angeordnet ist und dass Magnetfelderzeuger und -Sensoren mit vorgegebenen Luftspaltbreiten gegen die Gerätewelle gerichtet sind. Für den Fall des vollständigen Umgreifens könnte ein
"äußerer" Magnet entfallen und die "freien" Enden wären miteinander vereinigt.
Bei einem solchen Gebersystem ergibt sich eine aufwandsarme Lösung dadurch, dass als Magnetfelderzeuger Permanentmagnete und dass als Magnetfeldsensoren antiseriell geschaltete Spulen vorgesehen sind. In diesem Fall wird die Drehbeschleunigung gemessen. Durch das Antiseriellschalten werden Störbeeinflussungen durch ümgebungsfeider eliminiert. Wenn nicht eine Drehbeschleunigung sondern eine Drehgeschwindigkeitsmessung gewünscht wird, kann dies mit handelsüblichen Elementen entweder dadurch erfolgen, dass als Magnetfelderzeuger Permanentmagnete und dass als Magnetfeldsensoren Hallsensoren vorgesehen sind oder dadurch, dass als Magnetfeldsensorerzeuger moduliert angesteuerte Elektromagnete und dass als Magnetfeldsensoren Hallsensoren oder antiseriell geschaltete Spulen vorgesehen sind.
Wenn als Magnetfelderzeuger mit Wechselspannung erregte Spu- len oder Elektromagnete vorgesehen sind, ergibt sich als Sensorausgangssignal eine Wechselspannung gleicher Frequenz wie die erregende Spannung. Deren Amplitude ist proportional zur Drehgeschwindigkeit .
Dadurch, dass die Gerätewelle mit einem Lager gestützt ist und dass die Elemente des Gebersystems fest mit dem Lager verbunden sind, ergibt sich eine besonderes spielfreie Anordnung. Diea wird durch kurze Abstände noch gefördert.
Ausführungsbeispiele der Erfindung sind in der Zeichnung dargestellt und werden im folgenden näher erläutert. Dabei zeigen:
FIG 1 ein erstes Gebersystem,
FIG 2, 3 und 4 Varianten der Messkörper.
In der Darstellung gemäß FIG 1 ist das Gebersystem für einen Ferraris-Bewegungsgeber gezeigt, bei dem eine zylindrische Welle Wl, beispielsweise die Motorwelle eines der Übersichtlichkeit halber nicht weiter dargestellten Elektromotors, sich in einer durch einen gebogenen Pfeil angedeuteten Richtung um eine durch x bezeichnete Achse dreht. Die Welle Wl besteht in diesem Fall aus elektrisch leitendem, nicht magnetischem Material.
Um die Welle Wl ist segmentartig ein Tragkörper T aus Weicheisen angeordnet, der an seinen freien Enden jeweils einen Permanentmagneten Ml bzw. M3 aufweist, wobei die Nordpole "N" der Permanentmagnete Ml und M3 dem Tragkörper T zugewandt sind, während die Südpole "S" der Permanentmagnete Ml und M3 zur Oberfläche der Welle Wl hin gerichtet sind. Ein dritter Permanentmagnet ist am Tragkörper T zwischen den Permanentmagneten Ml und M2 so angeordnet, dass der Südpol "S" dieses Permanentmagneten M2 zum Tragkörper T hinweist, während der Nordpol "N" dieses Permanentmagneten M2 zur Welle Wl hin- weist. Die Permanentmagnete Ml bis M3 dienen als Magnetfelderzeuger, wohingegen Spulen Sl und S2 als Magnetfeldsensoren dienen. Diese Spulen Sl und S2 sind ebenfalls am Tragkörper T angebracht und befinden sich zwischen den Permanentmagneten Ml und M2 bzw. M2 und M3. Die Spulen Sl und S2 sind antise- riell geschaltet, damit störende Umgebungsfelder eliminiert werden, und beaufschlagen einen Umsetzer U, der aus den empfangenen Signalen ein Ausgangssignal generiert, das der Be- schleunigung der Welle Wl entspricht. Dieses Signal gelangt dann an eine Verarbeitungseinrichtung VE.
Für den Fall, dass nicht die Drehbeschleunigung, sondern die Drehgeschwindigkeit einer Welle, beispielsweise der Welle Wl, zu erfassen ist, wäre es möglich, dass anstelle der Spulen Sl und S2 nach dem Hall-Prinzip arbeitende Sensoren eingesetzt würden und/oder dass anstelle der Permanentmagnete Ml bis M3 modulierte Elektromagnete, d.h. Spulenanordnungen, treten würden.
In der Darstellung gemäß FIG 2 ist die Seitenansicht der Welle Wl gezeigt, so dass die zylindrische Form der Welle Wl erkennbar ist. Prinzipiell wäre bei der Erfindung jedoch auch ein konisches oder leicht gekrümmtes Wellenende verwendbar.
In der Darstellung gemäß FIG 3 ist durch die im rechten Teil der Darstellung angedeutete gestrichelte Linie gezeigt, dass auch Hohlzylinder anstelle von Zylindern verwendbar wären, was für die Welle W2 zutreffen möge, zum anderen ist durch die gestrichelte linke Linienführung gezeigt, dass die Welle W2 auch in axialer Segmentbauweise erzeugbar ist. Dabei sind zwei Wellensegmente WS1 und WS2 hintereinander angeordnet. Die Verbindung kann dabei in beliebiger Art und Weise, bei- spielsweise durch Presssitz erzeugt werden.
In der Darstellung gemäß FIG 4 ist eine Welle W3 gezeigt, die ebenfalls aus Segmenten, in diesem Fall aus Wellensegementen WS3 und WS4, bestehen möge, die in diesem Fall jedoch nicht wie zuvor beschrieben in Axial- sondern in Radialrichtung angeordnet sind. So ist es möglich, dass am Ende der Welle W3 ein Wellensegment WS4 in Form einer Hohlwelle auf dem Wellensegment WS3 aufliegt, wobei zwischen den Wellensegmenten WS3 und WS4 ein elektrisch isolierender Hohlzylinder sitzen kann. Damit kann das Messsystem in seiner Wirkung gegenüber Störbeeinflussungen noch verbessert werden. Die Endlage ist allerdings nicht zwingend erforderlich, sondern es kann eine axial verschobene Lage vorgesehen sein. E- benso muss der Wellendurchmesser nicht überall gleich sein, sondern gerade auch im Geberbereich sind Drehsensorvariationen nicht nur in negativer Richtung wie bei FIG 4, sondern prinzipiell auch in positiver Richtung denkbar.

Claims

Patentansprüche
1. Gebersystem für einen Ferraris-Bewegungsgeber, bei dem ein oder mehrere Magnetfelderzeuger zusammen mit einem bewegten, elektrisch leitenden, rotierenden Messkörper mindestens eine magnetische Messanordnung bilden, wobei durch daran angekoppelte Magnetfeldsensoren drehgeschwindigkeits- oder drehbeschleunigungsabhangige Ausgangssignale generierbar sind, d a d u r c h g e k e n n z e i c h n e t , dass als Messkörper eine vorzugsweise zylindrische Gerätewelle (W1,W2, WS4) vorgesehen ist und zwar vorzugsweise eine Gerätewelle, deren Bewegung erfasst werden soll.
2. Gebersystem nach Anspruch 1, d a d u r c h g e - k e n n z e i c h n e t, dass als Gerätewelle eine Hohlwelle (W2) vorgesehen ist.
3. Gebersystem nach Anspruch 1 oder 2, d a d u r c h g e k e n n z e i c h n e t, dass als Gerätewelle eine mehrteilige Welle (W2) vorgesehen ist.
4. Gebersystem nach einem der vorstehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t, dass als Gerätewelle die Standardwelle eines Elektromotors vorgesehen ist.
5. Gebersystem nach einem der vorstehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t, dass auf einem Tragkörper (T) , der mindestens teilweise um die Gerätewelle
(Wl) greift, an dessen dann beiden freien Enden zwei äußere Magnetfelderzeuger (M1,M3) aufsitzen, zwischen denen auf dem Tragkörper (T) ein zentraler Magnetfelderzeuger (M2) angeordnet ist, dass zwischen den äußeren (Ml,M3) und dem zentralen Magnetfelderzeuger jeweils ein Magnetfeldsensor (Sl, S2) auf dem Tragkörper (T) angeordnet ist und dass Magnetfelderzeuger (Ml,M2,M3) und -sensoren (S1,S2) mit vorgegebenen Luftspaltbreiten gegen die Gerätewelle (Wl) gerichtet sind.
6. Gebersystem nach Anspruch 5 zur Drehbeschleunigungsmessung, d a d u r c h g e k e n n z e i c h n e t, dass als Magnetfelderzeuger Permanentmagnete (Ml,M2,M3) und dass als Magnetfeldsensoren antiseriell geschaltete Spulen (Sl, S2) vorgesehen sind.
7. Gebersystem nach Anspruch 5 zur Drehgeschwindigkeitsmessung, d a d u r c h g e k e n n z e i c h n e t, dass als Magnetfelderzeuger Permanentmagnete und dass als Magnet- feldsensoren Hallsensoren vorgesehen sind.
8. Gebersystem nach Anspruch 5 zur Drehgeschwindigkeitsmessung, d a d u r c h g e k e n n z e i c h n e t, dass als Magnetfelderzeuger moduliert angesteuerte Elektromagnete und dass als Magnetfeldsensoren antiseriell geschaltete Spulen vorgesehen sind.
9. GeberSystem nach einem der vorstehenden Ansprüche, d a - d u r c h g e k e n n z e i c h n e t , dass die Geräte- welle mit einem Lager gestützt ist und dass die Elemente des Gebersystems fest mit dem Lager verbunden sind.
EP02729879A 2001-05-11 2002-04-26 Gebersystem für einen ferraris-bewegungsgeber Ceased EP1386172A1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10122872 2001-05-11
DE10122872 2001-05-11
PCT/DE2002/001544 WO2002093179A1 (de) 2001-05-11 2002-04-26 Gebersystem für einen ferraris bewegungsgeber

Publications (1)

Publication Number Publication Date
EP1386172A1 true EP1386172A1 (de) 2004-02-04

Family

ID=7684381

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02729879A Ceased EP1386172A1 (de) 2001-05-11 2002-04-26 Gebersystem für einen ferraris-bewegungsgeber

Country Status (3)

Country Link
US (1) US6992476B2 (de)
EP (1) EP1386172A1 (de)
WO (1) WO2002093179A1 (de)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10216635B4 (de) * 2002-04-15 2008-03-13 Siemens Ag Bewegungsdetektor nach dem Ferrarisprinzip
DE10219091A1 (de) * 2002-04-29 2003-11-20 Siemens Ag Drehbewegungsdetektor
DE102004004099B3 (de) * 2004-01-27 2005-07-14 Siemens Ag Positionssensor und entsprechendes Verfahren zum Detektieren der Position eines Rotationskörpers
EP1621891A1 (de) * 2004-07-28 2006-02-01 ALSTOM Technology Ltd Vorrichtung zur Messung von Beschleunigungen
DE102006016503A1 (de) 2006-04-07 2007-10-18 Siemens Ag Gebervorrichtung für eine elektrische Maschine
DE102008040530A1 (de) * 2008-07-18 2010-01-21 Robert Bosch Gmbh Ermitteln einer Drehzahl einer elektrischen Maschine
US8111062B2 (en) * 2009-02-23 2012-02-07 Hamilton Sundstrand Corporation Low mass driveshaft speed sensor assembly
CN104483510B (zh) * 2014-11-03 2017-06-06 杭州电子科技大学 一种测量旋转加速度传感器的测量方法
CN108398569B (zh) * 2018-02-26 2020-04-07 杭州电子科技大学 滚动式永磁旋转加速度传感器及其测量方法和装配方法
CN112379117B (zh) * 2020-11-16 2021-12-07 北京理工大学 磁电式旋转角速度和角加速度一体化传感器
CN112379118B (zh) * 2020-11-16 2021-12-07 北京理工大学 一种旋转角速度和旋转角加速度一体化测量装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1929259A (en) * 1930-06-30 1933-10-03 Gen Electric Speed and frequency indicator
US2090521A (en) * 1934-05-02 1937-08-17 Gen Electric Accelerometer
US2460115A (en) 1946-06-18 1949-01-25 Gen Electric Rotation rate change generator
FR1232969A (fr) 1959-03-03 1960-10-12 Normacem Sa Perfectionnement aux moyens de mesure des accélérations angulaires
US3932813A (en) * 1972-04-20 1976-01-13 Simmonds Precision Products, Inc. Eddy current sensor
US4095177A (en) 1973-05-29 1978-06-13 Square D Company Transducer
US4751459A (en) 1986-09-18 1988-06-14 Synektron Corporation Magnetic tachometer or accelerometer having highly permeable eddy current flux circuit
US5367257A (en) * 1992-05-14 1994-11-22 Garshelis Ivan J Non-contact, magnetic sensor for determining direction of motion and velocity of a movable member
AU6443994A (en) * 1993-03-08 1994-09-26 Noise Cancellation Technologies, Inc. Methods and apparatus for closed-loop control of magnetic bearings
US5467654A (en) * 1993-12-20 1995-11-21 Union Switch & Signal Inc. Method and apparatus for determining the operating speed of a rail vehicle
SE9503690L (sv) 1995-10-20 1997-04-21 Asea Brown Boveri Förfarande och anordning för att bestämma vinkelhastigheten hos en roterande cylindrisk axel av elektriskt ledande meterial
US6282961B1 (en) * 1999-09-24 2001-09-04 Cda Astro Intercorp Permanent magnet rotary accelerometer
DE10032143C2 (de) * 1999-09-30 2002-07-18 Heidenhain Gmbh Dr Johannes Ferraris-Sensor und Verfahren zum Betrieb eines Ferraris-Sensors

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO02093179A1 *

Also Published As

Publication number Publication date
WO2002093179A1 (de) 2002-11-21
US6992476B2 (en) 2006-01-31
US20040145363A1 (en) 2004-07-29

Similar Documents

Publication Publication Date Title
DE102007039050B4 (de) Linearsegment- oder Umdrehungszähler mit einem ferromagnetischen Element
DE60100393T2 (de) Drehwinkelsensor mit linearer Ausgangscharakteristik
DE60200499T3 (de) Stellungsfühler, besonders zur Feststellung von Verdrehung einer Lenksäule
DE4440214C2 (de) Drehgeber mit Hallsensoren
DE69103665T2 (de) Drehmomentmessvorrichtung an einer Welle.
EP0920604A1 (de) Messvorrichtung zur berührungslosen erfassung eines drehwinkels bzw. einer linearen bewegung
DE112008003911T5 (de) Magnetischer Encoder und Aktuator
EP1128159A2 (de) Mechanische Welle mit integrierter Magnetanordnung
EP0671008B1 (de) Vorrichtung zur messung von drehbewegungen
DE4141959A1 (de) Drehzahlsensor, insbesondere zahnradsensor
DE19507304B4 (de) Magnetfelddetektor
DE2934085C2 (de)
EP1386172A1 (de) Gebersystem für einen ferraris-bewegungsgeber
DE3877167T2 (de) Lager mit magnetfelddetektor.
WO2014167118A1 (de) Sensorvorrichtung mit einer drehmomentsensoreinrichtung und einer inkrementalsensoreinrichtung und kraftfahrzeug
DE2515977A1 (de) Messwertgeber zur erzeugung von signalen in abhaengigkeit von der drehbewegung eines umlaufenden koerpers
EP0336078B1 (de) Anordnung zur Drehzahl- und Rotorlageerfassung einer elektrischen Maschine
DE4307544C2 (de) Anordnung zur Erfassung der Drehstellung eines Rotationskörpers
EP0612974A2 (de) Magnetischer Winkellagegeber
DE2239926A1 (de) Stoerungsfreier elektromagnetischer aufnehmer
EP0425529B1 (de) Messeinrichtung zur bestimmung eines drehwinkels
DE102006020700A1 (de) Einrichtung zur Drehwinkelerfassung
DE102005061347A1 (de) Anordnung zur Messung des absoluten Drehwinkels einer Welle
EP1600737A2 (de) Vorrichtung zur rotativen Winkelmessung
DE102005025417B4 (de) Lagegeber

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20031022

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

17Q First examination report despatched

Effective date: 20080821

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: TRANSPACIFIC ACTIVA, LLC

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED

18R Application refused

Effective date: 20090913