EP1381764A1 - Procede et dispositif pour commander un piezo-actionneur - Google Patents

Procede et dispositif pour commander un piezo-actionneur

Info

Publication number
EP1381764A1
EP1381764A1 EP02721984A EP02721984A EP1381764A1 EP 1381764 A1 EP1381764 A1 EP 1381764A1 EP 02721984 A EP02721984 A EP 02721984A EP 02721984 A EP02721984 A EP 02721984A EP 1381764 A1 EP1381764 A1 EP 1381764A1
Authority
EP
European Patent Office
Prior art keywords
internal combustion
combustion engine
piezo actuator
fuel
operating situation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP02721984A
Other languages
German (de)
English (en)
Other versions
EP1381764B1 (fr
Inventor
Johannes-Joerg Rueger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP1381764A1 publication Critical patent/EP1381764A1/fr
Application granted granted Critical
Publication of EP1381764B1 publication Critical patent/EP1381764B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • F02D41/2096Output circuits, e.g. for controlling currents in command coils for controlling piezoelectric injectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • F02D2041/202Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit
    • F02D2041/2034Control of the current gradient

Definitions

  • the invention is based on a method or a control unit or a fuel injection system, in which a piezo actuator is electrically charged to change its length by applying an electric current.
  • a method is already known from DE 199 21 456, in which the time derivation of the am
  • Piezo actuator applied electrical voltage is changed.
  • the method according to the invention and the devices according to the invention with the characterizing features of the independent claims have the advantage of reducing the noise emissions of the injection system precisely in the operating situations in which they are significantly influenced by the control of the piezo actuators used.
  • the main advantage is that, in particular in the case of common rail injection systems, especially at high rail pressures, the system behavior, ie the accuracy of the timing and the metering of the injection quantities, remain unaffected, ie that the tolerances to be met with regard to timing and metering quantity accuracy are easily met, especially at high speeds or high load of the internal combustion engine.
  • FIG. 3 shows a block diagram and FIG. 4 shows a further block diagram.
  • Fig. La shows a voltage-time diagram. It shows the voltage curve over time on a piezo actuator, which controls the injection of fuel into the combustion chamber of an internal combustion engine via a valve.
  • Two basic control curves are shown; with the first activation, the voltage U is linearly increased from zero to a value ⁇ Ul within the charging time 1, which is maintained for a while (eg ⁇ Ul «200 V). In the subsequent discharge time 2, the voltage applied to the piezo actuator is again linearly reduced to zero.
  • the second control has an intermediate level .DELTA.U2 (for example .DELTA.U2 ⁇ 100 V), to which the voltage is initially within the range Charging time 3 is increased.
  • Fig. Lb shows similar voltage profiles with the same voltage levels ⁇ Ul and ⁇ U2. However, the loading and unloading times 7, 8, 9, 11, 12 and 13 are greater than the loading and unloading times 1 to 6 from FIG.
  • a control valve which controls the movement of the nozzle needle is generally not controlled directly, but rather via a hydraulic coupler, as described, for example, in German patent application DE 197 32 802.
  • This coupler essentially has two functions: on the one hand it increases the stroke of the piezo actuator and on the other hand it decouples the control valve from the static temperature expansion of the actuator.
  • the control voltage that is required to correctly position the control valve and thus to achieve a desired injection is generally heavily dependent on the fuel pressure, in a common rail system on the rail pressure of the fuel. This is explained by the fact that the control valve works against or with the rail pressure, depending on the switching direction of the valve.
  • the time derivative of the control voltage U should be chosen such that the charging or discharging time corresponds precisely to the time constant of the mechanical system. In this case, the system's vibration excitation is minimized. From different For reasons, however, it is desirable to keep the charging or discharging time as short as possible, in particular in order to achieve the shortest possible activation times in order to provide the smallest injection quantities, which is particularly important at high rail pressures.
  • the noise emission increases significantly with the gradient or the time derivative of the voltage curve, since the control valve is also moved at the appropriate speed due to the high speed of the actuator movement. This effect is the case in certain operating situations
  • the term “operating situation” is not to be understood as meaning a specific time period within a control of the piezo actuator, but rather the operating state that generally exists over several injection cycles, such as idling, which is characterized by low load and low speed FIG. 1 a is to be used, for example, in normal driving under load, while in the “idle” operating situation a control according to FIG. 1 b with flatter ones
  • Control gradients is preferable, in order to achieve a reduction in noise emissions, particularly where the noise caused by the control of the injection system is noticeable relative to other vehicle noises.
  • FIG. 2 illustrates the process sequence for controlling a piezo actuator, which controls the injection of diesel fuel into the combustion chamber of the diesel engine, for example in a common rail injector.
  • a piezo actuator which controls the injection of diesel fuel into the combustion chamber of the diesel engine, for example in a common rail injector.
  • After switching on the engine 10 or the injection system it is first waited in query 20 whether a charging / discharging process is requested. If this is the case, the operating state of the engine is detected (method step 30).
  • the operating state of the engine is characterized by the speed and / or the load on the internal combustion engine and / or by the fuel pressure in the injection system. Further characteristic variables can be the temperature of the piezo actuator, the temperature of the fuel or further characteristic data.
  • the target value of the time gradient which is in the loading
  • the gradient setpoint is set so that the while maintaining the functionality of the injection system
  • the speed of the load torque and / or the rail pressure (e.g. speed ⁇ 2000 revolutions / min., The load is less than 10% of the maximum load and the rail pressure is below 500 bar) becomes a smooth transition of the gradient setpoint compared to “normal operation”, so that below the threshold values mentioned the time gradient of the voltage to be applied continuously changes to smaller values.
  • the charging or discharging time typically moves (for example at 50% of the maximum load) in one area from 80 ⁇ s to 100 ⁇ s, while it takes on values from 100 ⁇ s to 150 ⁇ s below the threshold values. In the following query 50 it is checked whether this is the first request of the injection system after switching on.
  • the driver which controls the loading / unloading means, is activated until the final value to be achieved electrical voltage at the piezo actuator is reached.
  • the actual value of the time that was required to charge or discharge the piezo actuator to the voltage to be achieved is determined. The query 20 is then returned to.
  • the control deviation ie the deviation of the last actual value of the time required for the reloading from the calculated target value is determined in a method step 60 and in the subsequent method step 70 when calculating the driver signal considered for the next reloading of the piezo actuator.
  • the control device has a control unit 150, to which operating state variables 210 of the internal combustion engine are supplied. These operating state variables are the speed, the load torque, the rail pressure and / or the piezo actuator temperature and / or the fuel temperature and / or further parameters.
  • the control unit 150 determines the target value for the charging / discharging times or the charging / discharging gradients and transmits them to the logic circuit 130.
  • the logic circuit 130 is connected to an actual value determination unit 140 which, as shown in FIG. 3, can be integrated into the control unit or can be arranged separately, for example in the immediate vicinity of the charging / discharging means 110.
  • the actual value determination unit 140 is connected to the charging / discharging means 110.
  • the logic circuit 130 can receive a request signal from higher-level engine control units (not shown in detail) via the line 220.
  • Logic circuit 130 is connected to a driver 120, which in turn is connected to the charging / discharging means 110, which are used for the time-dependent application of an electrical voltage to the piezo actuator 100.
  • the setpoint for the charging / discharging time is determined taking into account the variables of speed, load and rail pressure in the control unit 150, which forwards the determined value to the logic circuit 130.
  • This logic circuit 130 computes when requested via the signal line 220, taking into account the actual value of the charging / discharging time or the charging / discharging gradient measured by the actual value determination unit 140, a driver signal.
  • the logic circuit 130 forwards the driver signal to the driver 120, which controls the charging / discharging means 110 accordingly in order to implement the voltage gradients to be achieved on the piezo actuator 100.
  • variables other than speed load and / or rail pressure can be used to determine the operating state of the
  • Internal combustion engine and / or the injection system can be used to regulate the control gradients in the reloading phases.
  • FIG. 4 shows a component 131 of the logic circuit 130 shown in the form of a block diagram.
  • the actual value determined by the actual value determination unit 140 or the setpoint value calculated by the control unit 150 are fed to a summation node 255 via the lines 250 and 260, respectively ,
  • the summation node calculates the summation node
  • Control deviation ie the difference between the setpoint and the actual value and feeds this difference to the PI controller 270, that is to say a proportional amplifier which is connected in parallel with an integrator.
  • the output of the PI controller 270 is connected to a second summation node 275, which adds the output value of the PI controller and the setpoint from the control unit 150.
  • the electrical voltage levels before and after the recharging process to be calculated are fed to a third summation node 285, which calculates their difference and feeds them to a multiplier 295, which in turn consists of the difference and the value supplied via line 300 the capacity of the piezo actuator calculates the amount of charge required for the transfer process.
  • the divider 305 divides the electrical value obtained from the multiplier 295 Charging with the value of the charging or discharging time obtained from the summing node 275, so that the information about the current value required for the recharging process at the piezo actuator can be tapped at the output 310 of the divider 305.
  • the output 310 of the divider 305 is connected to the driver 120 and is available to the driver for controlling the charging / discharging means 110 (cf. FIG. 3).
  • the lines 280, 290 and 300 are either connected to a memory element or memory elements in which the voltage or capacitance values to be retrieved are stored, or they are connected to separate circuit units (not shown in more detail) which, depending on the control requirement or circuit state, thechros sec. Redetermine or redefine capacity values.
  • the component 131 implements the method steps 60 and 70 shown in FIG. 2.
  • the charging or discharging time is regulated by a PI controller, the difference between the voltage levels to be bridged and the actuator capacity of the associated charging or discharging current being determined.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fuel-Injection Apparatus (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

L'invention concerne un procédé pour commander un piézo-actionneur commandant l'injection de carburant dans la chambre de combustion d'un moteur à combustion interne par l'intermédiaire d'une soupape. Ce procédé consiste à détecter la situation de fonctionnement du moteur à combustion et à sélectionner la dérivation temporelle de la tension électrique, pouvant être prélevée au niveau du piézo-actionneur, en fonction de la situation de fonctionnement. L'invention concerne en outre un appareil de commande servant à commander un système d'injection de carburant, dans lequel un piézo-élément est commandé de sorte que la dérivation temporelle de la tension pouvant être prélevée au niveau du piézo-actionneur est adaptée à la situation de fonctionnement. L'invention concerne également un système d'injection de carburant comprenant au moins un piézo-actionneur commandé de manière correspondante.
EP02721984A 2001-03-21 2002-02-26 Procede et dispositif pour commander un piezo-actionneur Expired - Lifetime EP1381764B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10113670 2001-03-21
DE10113670A DE10113670A1 (de) 2001-03-21 2001-03-21 Verfahren und Vorrichtung zur Ansteuerung eines Piezoaktors
PCT/DE2002/000698 WO2002077432A1 (fr) 2001-03-21 2002-02-26 Procede et dispositif pour commander un piezo-actionneur

Publications (2)

Publication Number Publication Date
EP1381764A1 true EP1381764A1 (fr) 2004-01-21
EP1381764B1 EP1381764B1 (fr) 2006-05-24

Family

ID=7678337

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02721984A Expired - Lifetime EP1381764B1 (fr) 2001-03-21 2002-02-26 Procede et dispositif pour commander un piezo-actionneur

Country Status (5)

Country Link
US (1) US6863055B2 (fr)
EP (1) EP1381764B1 (fr)
JP (1) JP2004518884A (fr)
DE (2) DE10113670A1 (fr)
WO (1) WO2002077432A1 (fr)

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10234091A1 (de) * 2002-07-26 2004-02-05 Robert Bosch Gmbh Verfahren zur Überwachung von wenigstens zwei elektromagnetischen Ventilen einer Brennkraftmaschine, insbesondere eines Kraftfahrzeugs
DE10237408A1 (de) * 2002-08-16 2004-02-19 Robert Bosch Gmbh Verfahren zum Betrieb einer Brennkraftmaschine
JP4161635B2 (ja) * 2002-08-19 2008-10-08 株式会社デンソー 燃料噴射制御装置
US6997159B2 (en) * 2003-02-21 2006-02-14 Caterpillar Inc. Electrically controlled fluid system with ability to operate at low energy conditions
DE10329280B4 (de) * 2003-06-30 2016-05-19 Daimler Ag Verfahren zum Betrieb einer fremdgezündeten Brennkraftmaschine
DE10331495B4 (de) * 2003-07-11 2015-08-06 Robert Bosch Gmbh Verfahren zum Betreiben einer Brennkraftmaschine
DE102004062073B4 (de) * 2004-12-23 2015-08-13 Continental Automotive Gmbh Verfahren und Vorrichtung zur Kompensation von Prelleffekten in einem piezogesteuerten Einspritzsystem einer Verbrennungskraftmaschine
ATE420489T1 (de) * 2005-10-06 2009-01-15 Delphi Tech Inc Verfahren zur steuerung eines einspritzventils
ATE406513T1 (de) * 2006-05-23 2008-09-15 Delphi Tech Inc Verbesserungen im zusammenhang mit der steuerung von brennstoffinjektoren
GB0616713D0 (en) * 2006-08-23 2006-10-04 Delphi Tech Inc Piezoelectric fuel injectors
JP4853201B2 (ja) * 2006-09-27 2012-01-11 株式会社デンソー インジェクタ駆動装置及びインジェクタ駆動システム
DE102006046470B4 (de) * 2006-09-29 2017-10-12 Robert Bosch Gmbh Verfahren zum Betrieb eines Einspritzventils
DE102006060311A1 (de) * 2006-12-20 2008-06-26 Robert Bosch Gmbh Verfahren zum Betrieb eines Einspritzventils
DE102007033469B4 (de) * 2007-07-18 2017-06-14 Continental Automotive Gmbh Verfahren und Vorrichtung zur Formung eines elektrischen Steuersignals für einen Einspritzimpuls
DE102008001971A1 (de) * 2008-05-26 2009-12-03 Robert Bosch Gmbh Verfahren zur Diagnose eines Lastabfalls
DE102008044047B4 (de) * 2008-11-25 2013-07-04 Robert Bosch Gmbh Verfahren und Vorrichtung zur Steuerung einer Brennkraftmaschine
WO2010144456A1 (fr) * 2009-06-09 2010-12-16 Analog Devices, Inc. Mécanisme intégré d'excitation de commande de pente permettant de distribuer graduellement de l'énergie à une charge capacitive
DE102009045867A1 (de) 2009-10-20 2011-04-21 Robert Bosch Gmbh Verfahren zum Bestimmen einer Einspritzdauer
US8304960B2 (en) * 2009-10-29 2012-11-06 New Scale Technologies Methods for reducing power consumption of at least partially resonant actuator systems and systems thereof
DE102011004613A1 (de) * 2011-02-23 2012-08-23 Continental Automotive Gmbh Verfahren zur Überwachung des Zustandes eines Piezoinjektors eines Kraftstoffeinspritzsystems
FR3002592B1 (fr) * 2013-02-26 2016-09-16 Continental Automotive France Procede de pilotage d'un injecteur piezoelectrique de carburant d'un moteur a combustion interne de vehicule, comportant une etape de polarisation de l'actionneur piezoelectrique
DE102013214912A1 (de) * 2013-07-30 2015-02-05 Continental Automotive Gmbh Verfahren zum Betreiben eines Einspritzsystems
DE102013220336B4 (de) * 2013-10-09 2019-02-07 Continental Automotive Gmbh Verfahren zum Mildern von Auswirkungen eines zu hohen Drucks in einem Common-Rail-Einspritzsystem
DE102014204093A1 (de) 2014-03-06 2015-09-10 Robert Bosch Gmbh Verfahren zum Betreiben eines piezoelektrischen Aktors und Mittel zu dessen Implementierung
DE102016205108A1 (de) * 2016-03-29 2017-10-05 Robert Bosch Gmbh Verfahren zur wiederholten Betätigung eines Aktors
DE102016206476B3 (de) * 2016-04-18 2017-06-14 Continental Automotive Gmbh Verfahren zum Betreiben eines diesel-common-rail-piezobetriebenen Servoinjektors und Kraftfahrzeug
FR3112572B1 (fr) * 2020-07-20 2022-06-17 Vitesco Technologies Dérive de débit statique d’un injecteur piézo-électrique

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62107265A (ja) * 1985-11-02 1987-05-18 Nippon Soken Inc 電歪式油圧制御弁
DE19652807C2 (de) 1996-12-18 2002-08-29 Siemens Ag Verfahren und Vorrichtung zum Ansteuern eines kapazitiven Stellgliedes
JPH10213041A (ja) * 1997-01-31 1998-08-11 Yamaha Motor Co Ltd 内燃機関用液体噴射装置
DE19732802A1 (de) 1997-07-30 1999-02-04 Bosch Gmbh Robert Kraftstoffeinspritzvorrichtung für Brennkraftmaschinen
DE19733560B4 (de) 1997-08-02 2007-04-05 Robert Bosch Gmbh Verfahren und Vorrichtung zum Laden und Entladen eines piezoelektrischen Elements
DE19921456A1 (de) 1999-05-08 2000-11-16 Bosch Gmbh Robert Verfahren und Vorrichtung zur Ansteuerung eines piezoelektrischen Aktors
DE19931235C2 (de) 1999-07-07 2001-08-30 Siemens Ag Verfahren und Vorrichtung zum Laden eines kapazitiven Stellgliedes

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO02077432A1 *

Also Published As

Publication number Publication date
WO2002077432A1 (fr) 2002-10-03
US6863055B2 (en) 2005-03-08
JP2004518884A (ja) 2004-06-24
EP1381764B1 (fr) 2006-05-24
US20030150429A1 (en) 2003-08-14
DE10113670A1 (de) 2002-09-26
DE50206903D1 (de) 2006-06-29

Similar Documents

Publication Publication Date Title
EP1381764B1 (fr) Procede et dispositif pour commander un piezo-actionneur
DE19652801C1 (de) Verfahren und Vorrichtung zum Ansteuern wenigstens eines kapazitiven Stellgliedes
EP0986702B1 (fr) Procede pour commander au moins un actionneur capacitif
EP1346140B1 (fr) Regulation d'actionneur et procede associe
EP2100020B1 (fr) Procédé d'utilisation d'un injecteur
EP2297444A1 (fr) Procédé et dispositif de compensation des ondes de pression lors des injections successives d'un système d'injection de moteur à combustion interne
EP0925434B1 (fr) Systeme d'exploitation d'un moteur a combustion interne, en particulier d'un vehicule a moteur
EP1505288B1 (fr) Méthode et dispositif pour surveiller le fonctionnement d'un actionneur piézoélectrique d'alimentation en carburant d'un moteur à combustion
DE102004044450B3 (de) Verfahren und Vorrichtung zur Leerhuberkennung von Injektoren
EP1704317B1 (fr) Procede de regulation et dispositif de regulation pour un actionneur
WO2019101518A1 (fr) Procédé et dispositif servant à déterminer le moment d'ouverture de la servovalve d'un injecteur piézoélectrique
DE10303573B4 (de) Verfahren, Computerprogramm, Speichermedium und Steuer- und/oder Regelgerät zum Betreiben einer Brennkraftmaschine, sowie Brennkraftmaschine insbesondere für ein Kraftfahrzeug
EP1567758B1 (fr) Procede et dispositif pour faire fonctionner un systeme d'injection d'un moteur a combustion interne
DE10336606B4 (de) Stellverfahren und Stellvorrichtung für einen Aktor
DE102010021448A1 (de) Verfahren und Vorrichtung zur Regelung der elektrischen Polarisation eines piezoelektrischen Aktuators
DE60007836T2 (de) Ausgleich der Spieltoleranzen in verschieden Losen wegen der Schwankungen der Schichtdicke oder der Zahl der Schichten in mehrschichtigen piezoelektrischen Elementen
EP1375882A1 (fr) Procédé de fonctionnement d'un moteur à combustion interne, en particulier d'automobile
DE10305525A1 (de) Verfahren und Vorrichtung zur Adaption der Druckwellenkorrektur in einem Hochdruck-Einspritzsystem eines Kraftfahrzeuges im Fahrbetrieb
DE102007058540B4 (de) Verfahren und Vorrichtung zum Laden und Entladen eines piezoelektrischen Elements
DE102007060018B3 (de) Verfahren und Steuereinheit zur elektrischen Ansteuerung eines Aktors eines Einspritzventils
DE10323488B4 (de) Verfahren und Vorrichtung zur betriebspunktabhängigen Steuerung von Injektoren eines Kraftstoffzumesssystems einer Brennkraftmaschine
DE60005786T2 (de) Optimierung von Einspritzsystemen, die piezoelektrische Elemente verwenden , durch Kompensation der Temperaturabhängigkeit
DE102010042844B4 (de) Verfahren zur Überwachung eines Steuergeräts für eine Einspritzanlage in einem Kraftfahrzeug
EP1902905A2 (fr) Procédé et dispositif de stabilisation de la tension d'alimentation dans un réseau de bord d'un véhicule automobile
DE102015221630A1 (de) Verfahren zum Ansteuern eines Stellers

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20031021

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

17Q First examination report despatched

Effective date: 20040218

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR

REF Corresponds to:

Ref document number: 50206903

Country of ref document: DE

Date of ref document: 20060629

Kind code of ref document: P

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20070227

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20140218

Year of fee payment: 13

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20151030

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150302

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20180426

Year of fee payment: 17

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50206903

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190903