EP1380913A1 - Linear voltage regulator - Google Patents

Linear voltage regulator Download PDF

Info

Publication number
EP1380913A1
EP1380913A1 EP03300056A EP03300056A EP1380913A1 EP 1380913 A1 EP1380913 A1 EP 1380913A1 EP 03300056 A EP03300056 A EP 03300056A EP 03300056 A EP03300056 A EP 03300056A EP 1380913 A1 EP1380913 A1 EP 1380913A1
Authority
EP
European Patent Office
Prior art keywords
output
input
transistor
voltage
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP03300056A
Other languages
German (de)
French (fr)
Other versions
EP1380913B1 (en
Inventor
Alexandre Pons
Christophe Bernard
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
STMicroelectronics SA
Original Assignee
STMicroelectronics SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by STMicroelectronics SA filed Critical STMicroelectronics SA
Publication of EP1380913A1 publication Critical patent/EP1380913A1/en
Application granted granted Critical
Publication of EP1380913B1 publication Critical patent/EP1380913B1/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F3/00Non-retroactive systems for regulating electric variables by using an uncontrolled element, or an uncontrolled combination of elements, such element or such combination having self-regulating properties
    • G05F3/02Regulating voltage or current
    • G05F3/08Regulating voltage or current wherein the variable is dc
    • G05F3/10Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics
    • G05F3/16Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices
    • G05F3/20Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices using diode- transistor combinations
    • G05F3/24Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices using diode- transistor combinations wherein the transistors are of the field-effect type only
    • G05F3/242Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices using diode- transistor combinations wherein the transistors are of the field-effect type only with compensation for device parameters, e.g. channel width modulation, threshold voltage, processing, or external variations, e.g. temperature, loading, supply voltage
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/10Regulating voltage or current
    • G05F1/46Regulating voltage or current wherein the variable actually regulated by the final control device is dc
    • G05F1/56Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F3/00Non-retroactive systems for regulating electric variables by using an uncontrolled element, or an uncontrolled combination of elements, such element or such combination having self-regulating properties
    • G05F3/02Regulating voltage or current
    • G05F3/08Regulating voltage or current wherein the variable is dc
    • G05F3/10Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics
    • G05F3/16Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices
    • G05F3/20Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices using diode- transistor combinations
    • G05F3/24Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices using diode- transistor combinations wherein the transistors are of the field-effect type only
    • G05F3/242Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices using diode- transistor combinations wherein the transistors are of the field-effect type only with compensation for device parameters, e.g. channel width modulation, threshold voltage, processing, or external variations, e.g. temperature, loading, supply voltage
    • G05F3/247Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices using diode- transistor combinations wherein the transistors are of the field-effect type only with compensation for device parameters, e.g. channel width modulation, threshold voltage, processing, or external variations, e.g. temperature, loading, supply voltage producing a voltage or current as a predetermined function of the supply voltage
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F3/00Non-retroactive systems for regulating electric variables by using an uncontrolled element, or an uncontrolled combination of elements, such element or such combination having self-regulating properties
    • G05F3/02Regulating voltage or current
    • G05F3/08Regulating voltage or current wherein the variable is dc
    • G05F3/10Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics
    • G05F3/16Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices
    • G05F3/20Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices using diode- transistor combinations
    • G05F3/26Current mirrors
    • G05F3/262Current mirrors using field-effect transistors only

Definitions

  • the present invention relates generally to the regulation of a voltage across a load. More specifically, the present invention relates to such regulation performed in a linear fashion.
  • FIG. 1 schematically and partially illustrates, a classic example of a linear regulator of a voltage Vout across a load (LD) 1.
  • the regulator includes a transistor P 2 channel MOS whose source is connected to a rail high voltage supply Vdd and the drain of which constitutes the output terminal OUT of the regulator.
  • Load 1 is connected between the OUT terminal and a low or voltage supply rail GND reference or mass.
  • the transistor 2 works in regime linear, that is to say that we use its transconductance to vary its output current according to the voltage of control applied to its grid G.
  • the control voltage of the grid G is regulated as a function of the voltage Vout at the terminals of load 1. Regulation is carried out by a comparator differential 3 comprising an input / output stage 4 and a stage 5.
  • the input / output stage 4 comprises two branches differentials each with a P channel MOS transistor 61, 62 connected in series with an N-channel MOS transistor 63, 64.
  • the sources of transistors 61 and 62 are connected to a output terminal of a current source 60 including one terminal input is connected to the high Vdd power supply.
  • the sources of transistors 63 and 64 are connected to the GND low power supply.
  • the gates of the transistors 63 and 64 are interconnected.
  • a branch 61-63 constitutes an input branch, while the other branch 62-64 constitutes an output branch.
  • the transistor 61 of the input branch receives a DC voltage setpoint constant Vreg supplied by a voltage generator 8, connected between the gate of transistor 61 and GND ground.
  • the grid of transistor 63 is connected to its drain, i.e. also to the drain of transistor 61.
  • the gate of transistor 63 receives the voltage Vout at the terminals of load 1 by a connection to the output terminal OUT of the regulator, possibly to a socket through a resistance bridge.
  • Connection point 65 of the drains of the transistors 62 and 64 constitutes the output of the input / output stage 4 of the comparator 3.
  • the output stage 5 consists of the connection in series, between the high Vdd and low GND power supplies, of a generally resistive impedance 9 (R) and of a MOS transistor channel N 10.
  • the connection point of impedance 9 and the transistor 10 constitutes the output terminal of the differential comparator 3 connected to the gate G of the regulation transistor 2.
  • the gate of transistor 10 is connected to point 65 of the branch input / output differential 62-64.
  • the regulator also has an impedance (C) 11, generally capacitive, intended to stabilize the voltage of Vout exit.
  • C impedance
  • FIGS. 2A-2C illustrate, by timing diagrams, an example of variation as a function of time t of the setpoint of Vreg voltage across source 8, output voltage Vout at the terminals of the load 1, and of the voltage Vds between the drain and source terminals of transistor 2.
  • the voltage generator is validated constant constant 8 so that it delivers a setpoint of stable non-zero nominal regulation Vref up to an instant t1 circuit extinction.
  • the 3 force differential comparator then, as illustrated in FIG. 2B, the output voltage Vout to follow the regulation voltage Vreg and align with the reference level Vref.
  • the voltage Vout is then regulated by stably at level Vref by gate control up to the instant t1 of circuit extinction or standby. This regulation is carried out by a command in linear mode of the transistor 2 which is used as a variable transconductance whose output current depends on the control voltage on grid G.
  • the load 1 must be supplied with a voltage level of around 3.3 to 5.5 volts. Such a value is relatively high compared to the 2.4 to 2.8 volts maximum voltage that can hold the components (in particular the MOS 2 transistor) used in standard integration technology streams. However, during periods of load 1 extinction, the MOS transistor 2 must hold the voltage Vdd across its terminals.
  • bipolar regulating transistor which has the advantage of requiring less integration area compared to the specific MOS, in particular because it can more easily be vertically integrated into a substrate of silicon.
  • a bipolar transistor poses many problems.
  • BiCMOS sector which is more complex than the MOS sector.
  • a bipolar regulating transistor leads to higher waste voltages than a transistor MOS with a narrower range of linearity. This is particularly disadvantageous in the case of devices of the type portable for which it is desirable to reduce the most possible waste voltage, that is to make it, to preferably less than 200 mV.
  • the present invention aims to propose a regulator linear which overcomes the drawbacks of known circuits.
  • the present invention aims in particular to propose a linear regulator which has a reduced waste voltage.
  • the present invention aims to propose such a regulator which can be manufactured using a standard MOS die.
  • this invention provides a linear regulator comprising a stage of output including first and second channel MOS transistors P, connected in series between a first supply terminal DC and an output terminal providing a voltage of regulated output, and a control circuit for the first and second transistors capable of providing first and second signals of control according to the output voltage and the voltage at midpoint of the serial connection.
  • the control circuit includes an input / output circuit and a reference circuit, the input / output circuit comprising a first input, receiving a first voltage setpoint supplied by said reference circuit; a second input, connected at said output terminal; a third entry receiving a second voltage setpoint supplied by said circuit reference; a fourth input connected to said midpoint; a first output connected to the gate of the first transistor ; and a second output connected to the gate of the second transistor.
  • the input / output circuit is a double differential comparator with four inputs and two outputs.
  • the input / output circuit includes first and second comparators differential with two inputs and two outputs, the terminals input of the first differential comparator being the first and second input terminals of the input / output circuit and its output being the second output of said input / output circuit; and the input terminals of the second differential comparator being the third and fourth input terminals of said input / output circuit and its exit being the first exit.
  • the first differential comparator has an input / output stage and an output stage, said input / output stage comprising two differential branches each of which includes a transistor P channel MOS connected in series with a first transistor N-channel MOS, sources of P-channel transistors being interconnected to an output terminal of a source of current of which one input terminal is connected to said terminal DC power sources, the sources of the first transistors N channel being interconnected to a ground terminal, the grids said first N-channel MOS transistors being interconnected, the gates of the P channel transistors constituting the first and second input terminals of the input / output circuit, the gate of the first N-channel MOS transistor of the branch comprising the first input being connected to its drain, the connection point of the transistors drains complementary to the other branch being connected to the grid of a second N-channel MOS transistor connected, in said stage of output, in series between the supply terminals, with a first impedance, the midpoint of the serial connection of said first impedance and the second transistor constituting the output terminal
  • the second differential comparator has two differential branches symmetrical each consisting of the connection in series of a second impedance, and of a third MOS transistor to N channel, respectively, the sources of the third transistors with N channel being interconnected to the drain of a fourth N-channel MOS transistor whose source is connected to the ground, the gate of the fourth N-channel transistor being connected to the gate of the second N-channel MOS transistor of the stage of output of the first differential comparator.
  • FIG. 3 represents, in the form of a block diagram, a linear regulator 30 according to one embodiment of the present invention.
  • the regulator 30 has an output stage 31 consisting of the series connection, between a power rail high Vdd and one output terminal OUT, of two transistors P channel MOS 32 and 33.
  • the output terminal OUT is intended for be connected to a first load supply terminal (LD) 1, a second supply terminal of which is connected to a GND low or ground power rail.
  • LD load supply terminal
  • linear regulator 30 also preferably includes a stabilization impedance 11, for example a capacitor C.
  • the regulation of the voltage Vout at the terminals of the load 1, i.e. on the output terminal OUT, is carried out by modulating control signals of the grids G1 and G2 of the transistors 32 and 33, respectively, so as to modify their transconductance.
  • the control signals of the output stage 31 are produced by a control circuit 35.
  • Circuit 35 modulates the control signal of the gate G1 of the transistor 32 so as to regulate the voltage at the midpoint MID of the series connection transistors 32 and 33 of the output stage 31. It modulates also the control signal of the gate G2 of the transistor 32 so as to regulate the output voltage Vout.
  • Circuit 35 has an input / output stage (IN / OUT) 36 intended for producing the control signals and a reference stage (REF) 37.
  • the input / output stage 36 includes four input terminals I1, 12, 13 and 14 and two output terminals 01 and 02.
  • Terminal I1 receives a voltage regulation set point V1 of the Vout exit.
  • Terminal I2 receives the output voltage Vout.
  • the terminal I3 receives a regulation voltage setpoint V2 from the voltage at midpoint MID.
  • Terminal I4 receives the voltage Vmid from the midpoint MID by a direct connection to this point.
  • the output terminals O1 and 02 are respectively connected to the grids G1, G2.
  • FIGS. 4A, 4B, 4C and 4D respectively illustrate, by chronograms, the variation as a function of time t of the regulation setpoint V1 of the output voltage Vout of regulator 30 of FIG. 3, of the output voltage Vout, of the V2 midpoint voltage regulation setpoint and of the current voltage Vmid at the midpoint MID, that is to say the drain voltage of transistor 32.
  • the output voltage Vout follows, from at time t10, the first setpoint V1 until it stabilizes at the instant t11 at the nominal value Vref.
  • the voltage Vmid at midpoint MID illustrated in FIG. 4D, decreases by controlled way of half the high feed (Vdd / 2) up to the stable value (Vdd-Vref) / 2.
  • Vdd / 2 the stable value
  • Vdd-Vref stable value
  • the control circuit 35 ensures that any possible fluctuation in power at load level 1 results in a variation of the setpoints V1 and V2 so as to restore the nominal speed and distribute the power variation symmetrically on both power transistors 32 and 33.
  • the control circuit 35 ensures that neither of the two transistors 32 and / or 33 does not face tension excessive drain / source.
  • FIG. 4 shows boot ramps and of different respective slope extinction. More specifically, we represented a faster extinction (t12-t13) than priming (t10-t11).
  • the slope of the ramps depends technical performance of the circuits and in particular of the ability of the control circuit 35 to track, transform and transmit, the variation of the first setpoint V1.
  • the hills may be faster or slower than shown. In in addition, they can be symmetrical or present an asymmetry opposite to that shown, that is to say that the priming can be faster than extinction.
  • FIG. 5 illustrates, schematically and partially, the structure of an embodiment of the input / output stage 36 a control circuit 35 of an output stage 31 of a regulator 30 according to the present invention.
  • Input / output circuit 36 with four inputs and two outputs is a differential comparator. More specifically, circuit 36 consists of the association of a first differential comparator 50 and a second differential comparator 51 intertwined as follows.
  • the first comparator 50 delimited by a frame in dotted in Figure 5, is intended to regulate the voltage of Vout output from the first setpoint V1.
  • the comparator 50 therefore has a structure similar to that of a comparator known differential such as comparator 3 described in relation with Figure 1. For clarity, the structure of the comparator 50 is described below using the same references as in figure 1.
  • Comparator 50 has an input / output stage 4 and an output stage 5.
  • Stage 4 comprises two differential branches each comprising a P-channel MOS transistor 61, 62 connected in series with an N-channel MOS transistor 63, 64.
  • the sources of transistors 61 and 62 are connected to a terminal of output of a current source 60 of which an input terminal is connected to the high Vdd power supply.
  • the sources of the transistors 63 and 64 are connected to the GND low power supply.
  • Grates transistors 63 and 64 are interconnected.
  • the grid of transistor 61 constitutes the terminal I1 and receives the setpoint V1.
  • the gate of transistor 63 is connected to its drain, i.e. also to the drain of transistor 61.
  • the gate of transistor 62 constitutes the terminal I2 and receives the current voltage Vout aux load 1 terminals by connection to the OUT output terminal of the regulator.
  • the connection point 65 of the drains of the transistors 62 and 64 constitute the output of the input / output stage 4 of comparator 50.
  • the output stage 5 consists of the connection in series, between the high Vdd supply and GND ground, of a impedance 9, preferably resistive (R), and a MOS transistor N channel 10.
  • the connection point of impedance 9 and transistor 10 constitutes the output terminal 02 providing the control signal of the gate G2 of the transistor 33.
  • the gate of transistor 10 is connected to midpoint 65 of the branch differential 62-64 of the input stage 4.
  • the second differential comparator 51 is intended for control the voltage regulation at the MID point. He gives on the output terminal 01 the control signal from the gate G1.
  • the second comparator 51 has two differential branches symmetrical, each consisting of the series connection an impedance 52, 53, preferably resistive, and a N-channel MOS transistor 54, 55, respectively.
  • the sources of transistors 54 and 55 are connected to the drain of a transistor N-channel MOS 56 whose source is connected to GND ground.
  • the gate of transistor 56 is connected to output 65 of the stage input / output 4 and to the gate of transistor 10 of the stage of output 5 of the first differential comparator 50. Consequently, the operating point of the second differential comparator 51 depends on that of the output stage 5 of the first comparator differential 50.
  • FIG. 6 represents, schematically and partially, an embodiment of a generator 37 of the setpoints V1 and V2.
  • the reference circuit 37 is, according to one embodiment of the present invention, a resistive voltage divider.
  • the resistive divider has the series connection between the high Vdd and low GND power rails of three resistors 71, 72 and 73.
  • the connection point 74 of the resistors 72 and 73 is the output terminal of a differential comparator 75 with two inputs and one output, for example similar to comparator 3 of figure 1.
  • the non-inverting input terminal of comparator 75 receives the Vreg regulation setpoint from the output voltage Vout of regulator 30, for example, by a connection to the source 38.
  • the inverting input terminal of the comparator 75 is connected to the output terminal 74.
  • the present invention advantageously provides a regulator linear power fully achievable by a die Low-voltage standard MOS with small dimensions. Indeed, replacement of the high-voltage regulator MOS transistor known by two low voltage transistors reduces the integration surface. In addition, the increased surface area of the control part 35 with respect to the control circuit of a known regulator is negligible compared to the surface gain related to the change of power switch.
  • the linear regulator according to this invention has a lower waste voltage than known regulators.
  • Vdd the high supply voltage
  • each transistor 32 and 33 of the output stage 31 of the linear regulator 30 of the present invention is a standard MOS transistor suitable for holding a drain / source voltage of approximately 2.5 volts.
  • the regulator waste voltage is then reduced to values of the order of 200 mV.
  • the present invention is capable of various variations and modifications that will appear to humans art.
  • the capacitor C (impedance 11) stabilization of the output voltage Vout has been described as functionally part of the regulator linear 30.
  • the value of the capacitance of the capacitor C is relatively high and varies depending on the application, that is to say of the charge 1.
  • the capacitor C is therefore, preferably made outside a circuit chip integrated with the regulator assembly 30, and is mounted directly in parallel on the load 1.
  • the man of the trade will be able to modify the characteristics of the various components to the sector used.

Abstract

The linear regulator (30) has a control unit (35) and output circuit (31) to supply a load (1) and smoothing capacitor (11). The output circuit consists of two MOS transistors (32,33) which supply an output terminal (OUT) and are controlled by connections to their grids (G1,G2) from the input/output stage (36) of the control unit. The input/output stage uses data from a reference unit (37) and the output circuit for regulation

Description

La présente invention concerne de façon générale la régulation d'une tension aux bornes d'une charge. Plus particulièrement, la présente invention concerne une telle régulation effectuée de façon linéaire.The present invention relates generally to the regulation of a voltage across a load. More specifically, the present invention relates to such regulation performed in a linear fashion.

La figure 1 illustre, de façon schématique et partielle, un exemple classique de régulateur linéaire d'une tension Vout aux bornes d'une charge (LD) 1. Le régulateur comporte un transistor MOS à canal P 2 dont la source est connectée à un rail d'alimentation de tension haute Vdd et dont le drain constitue la borne de sortie OUT du régulateur. La charge 1 est connectée entre la borne OUT et un rail d'alimentation basse ou de tension de référence ou masse GND. Le transistor 2 fonctionne en régime linéaire, c'est-à-dire que l'on utilise sa transconductance pour faire varier son courant de sortie en fonction de la tension de commande appliquée sur sa grille G. La tension de commande de la grille G est régulée en fonction de la tension Vout aux bornes de la charge 1. La régulation est effectuée par un comparateur différentiel 3 comportant un étage d'entrée/sortie 4 et un étage de sortie 5. L'étage d'entrée/sortie 4 comprend deux branches différentielles comportant chacune un transistor MOS à canal P 61, 62 connecté en série avec un transistor MOS à canal N 63, 64. Les sources des transistors 61 et 62 sont connectées à une borne de sortie d'une source de courant 60 dont une borne d'entrée est reliée à l'alimentation haute Vdd. Les sources des transistors 63 et 64 sont connectées à l'alimentation basse GND. Les grilles des transistors 63 et 64 sont interconnectées. Une branche 61-63 constitue une branche d'entrée, alors que l'autre branche 62-64 constitue une branche de sortie. Le transistor 61 de la branche d'entrée reçoit une consigne de tension continue constante Vreg fournie par un générateur de tension 8, connecté entre la grille du transistor 61 et la masse GND. La grille du transistor 63 est connectée à son drain, c'est-à-dire également au drain du transistor 61. La grille du transistor 63 reçoit la tension Vout aux bornes de la charge 1 par une connexion à la borne de sortie OUT du régulateur, éventuellement à une prise intermédiaire d'un pont de résistances. Le point de connexion 65 des drains des transistors 62 et 64 constitue la sortie de l'étage d'entrée/sortie 4 du comparateur 3.FIG. 1 schematically and partially illustrates, a classic example of a linear regulator of a voltage Vout across a load (LD) 1. The regulator includes a transistor P 2 channel MOS whose source is connected to a rail high voltage supply Vdd and the drain of which constitutes the output terminal OUT of the regulator. Load 1 is connected between the OUT terminal and a low or voltage supply rail GND reference or mass. The transistor 2 works in regime linear, that is to say that we use its transconductance to vary its output current according to the voltage of control applied to its grid G. The control voltage of the grid G is regulated as a function of the voltage Vout at the terminals of load 1. Regulation is carried out by a comparator differential 3 comprising an input / output stage 4 and a stage 5. The input / output stage 4 comprises two branches differentials each with a P channel MOS transistor 61, 62 connected in series with an N-channel MOS transistor 63, 64. The sources of transistors 61 and 62 are connected to a output terminal of a current source 60 including one terminal input is connected to the high Vdd power supply. The sources of transistors 63 and 64 are connected to the GND low power supply. The gates of the transistors 63 and 64 are interconnected. A branch 61-63 constitutes an input branch, while the other branch 62-64 constitutes an output branch. The transistor 61 of the input branch receives a DC voltage setpoint constant Vreg supplied by a voltage generator 8, connected between the gate of transistor 61 and GND ground. The grid of transistor 63 is connected to its drain, i.e. also to the drain of transistor 61. The gate of transistor 63 receives the voltage Vout at the terminals of load 1 by a connection to the output terminal OUT of the regulator, possibly to a socket through a resistance bridge. Connection point 65 of the drains of the transistors 62 and 64 constitutes the output of the input / output stage 4 of the comparator 3.

L'étage de sortie 5 est constitué de la connexion en série, entre les alimentations haute Vdd et basse GND, d'une impédance 9 généralement résistive (R) et d'un transistor MOS à canal N 10. Le point de connexion de l'impédance 9 et du transistor 10 constitue la borne de sortie du comparateur différentiel 3 reliée à la grille G du transistor de régulation 2. La grille du transistor 10 est connectée au point 65 de la branche différentielle d'entrée/sortie 62-64.The output stage 5 consists of the connection in series, between the high Vdd and low GND power supplies, of a generally resistive impedance 9 (R) and of a MOS transistor channel N 10. The connection point of impedance 9 and the transistor 10 constitutes the output terminal of the differential comparator 3 connected to the gate G of the regulation transistor 2. The gate of transistor 10 is connected to point 65 of the branch input / output differential 62-64.

Le régulateur comporte en outre une impédance (C) 11, généralement capacitive, destinée à stabiliser la tension de sortie Vout.The regulator also has an impedance (C) 11, generally capacitive, intended to stabilize the voltage of Vout exit.

Les figures 2A-2C illustrent, par des chronogrammes, un exemple de variation en fonction du temps t de la consigne de tension Vreg aux bornes de la source 8, de la tension de sortie Vout aux bornes de la charge 1, et de la tension Vds entre les bornes de drain et de source du transistor 2. Lors du démarrage du circuit, à un instant t0, on valide le générateur de tension constante continue 8 de façon qu'il délivre une consigne de régulation nominale non nulle stable Vref jusqu'à un instant t1 d'extinction du circuit. Le comparateur différentiel 3 force alors, comme l'illustre la figure 2B, la tension de sortie Vout à suivre la tension de régulation Vreg et à s'aligner sur le niveau de référence Vref. La tension Vout est ensuite régulée de façon stable au niveau Vref par la commande de grille jusqu'à l'instant t1 d'extinction ou de mise en veille du circuit. Cette régulation est effectuée par une commande en mode linéaire du transistor 2 qui est utilisé comme une transconductance variable dont le courant de sortie dépend de la tension de commande sur la grille G.FIGS. 2A-2C illustrate, by timing diagrams, an example of variation as a function of time t of the setpoint of Vreg voltage across source 8, output voltage Vout at the terminals of the load 1, and of the voltage Vds between the drain and source terminals of transistor 2. When starting of the circuit, at an instant t0, the voltage generator is validated constant constant 8 so that it delivers a setpoint of stable non-zero nominal regulation Vref up to an instant t1 circuit extinction. The 3 force differential comparator then, as illustrated in FIG. 2B, the output voltage Vout to follow the regulation voltage Vreg and align with the reference level Vref. The voltage Vout is then regulated by stably at level Vref by gate control up to the instant t1 of circuit extinction or standby. This regulation is carried out by a command in linear mode of the transistor 2 which is used as a variable transconductance whose output current depends on the control voltage on grid G.

On considère plus particulièrement dans la présente description les applications dans lesquelles la charge 1 doit être alimentée à un niveau de tension de l'ordre de 3,3 à 5,5 volts. Une telle valeur est relativement élevée par rapport à la tension maximale de l'ordre de 2,4 à 2,8 volts que peuvent tenir les composants (en particulier le transistor MOS 2) utilisés dans des filières technologiques d'intégration standard. Toutefois, lors des périodes d'extinction de la charge 1, le transistor MOS 2 doit tenir la tension Vdd à ses bornes.We consider more particularly in the present description of the applications in which the load 1 must be supplied with a voltage level of around 3.3 to 5.5 volts. Such a value is relatively high compared to the 2.4 to 2.8 volts maximum voltage that can hold the components (in particular the MOS 2 transistor) used in standard integration technology streams. However, during periods of load 1 extinction, the MOS transistor 2 must hold the voltage Vdd across its terminals.

En effet, comme l'illustre la figure 2C, lors des phases d'extinction de la charge 1 (Vreg=0, figure 2A), c'est-à-dire avant l'instant de démarrage t0 et après l'instant d'extinction t1, le transistor 2 de commande de la charge 1 doit supporter, entre ses bornes de drain et de source, une différence de potentiels Vds égale à l'amplitude d'alimentation Vdd-GND. Par contre, pendant le fonctionnement de la charge 1 (Vreg=Vref), la tension Vds est réduite à la différence entre l'alimentation haute Vdd et la tension Vout aux bornes de la charge 1, c'est-à-dire la valeur de régulation nominale Vref.Indeed, as illustrated in Figure 2C, during the phases extinction of load 1 (Vreg = 0, FIG. 2A), that is to say before the start time t0 and after the shutdown time t1, the load control transistor 2 must support, between its drain and source terminals, a difference of potentials Vds equal to the amplitude of supply Vdd-GND. Through against, during the operation of load 1 (Vreg = Vref), the Vds voltage is reduced to the difference between the power supply high Vdd and the voltage Vout at the terminals of load 1, that is to say the nominal control value Vref.

Pour permettre la tenue en tension du transistor 2 pendant les phases d'extinction, on a modifié la filière de fabrication standard 2,5 volts pour insérer des transistors MOS susceptibles de tenir une tension maximale supérieure à 5 volts entre leur drain et leur source. On a notamment modifié les masques de définition du transistor de régulation 2 par rapport aux transistors voisins, de façon à accroítre considérablement l'épaisseur d'une partie d'un isolant de grille proche d'une des régions de drain/source et à augmenter la surface de cette même région de drain/source. Mais alors, la capacité parasite de grille du transistor 2 est accrue, et sa transconductance est réduite. Or, pour permettre une commande linéaire du transistor 2 telle que décrite précédemment avec des niveaux de commande suffisamment faibles, il faut que la transconductance soit relativement élevée. Pour l'augmenter, on doit alors accroítre encore plus la surface d'intégration du transistor 2.To allow the voltage withstand of transistor 2 during the extinction phases, we changed the 2.5 volt standard manufacturing to insert MOS transistors likely to hold a maximum voltage greater than 5 volts between their drain and their source. In particular, the definition masks for regulating transistor 2 with respect to to neighboring transistors, so as to increase considerably the thickness of part of a gate insulator close to one of the drain / source regions and to increase the area of that same drain / source region. But then, the stray capacity of gate of transistor 2 is increased, and its transconductance is scaled down. However, to allow linear control of the transistor 2 as described above with control levels sufficiently weak, the transconductance must be relatively high. To increase it, we must then increase it further plus the integration surface of transistor 2.

L'accroissement de surface entraíne qu'il faut parfois intégrer ces commutateurs de commande en dehors de la puce dans laquelle est réalisé le reste du circuit de puissance constituant le régulateur de tension. En outre, il faut alors tenir compte d'une capacité parasite relativement élevée par rapport aux capacités parasites des autres éléments du circuit. De plus, la tension de déchet, c'est-à-dire l'écart entre la consigne de régulation Vref et la tension de sortie Vout peut difficilement être réduite à moins de 500 mV. Ceci est particulièrement désavantageux dans des dispositifs portables tels que des agendas électroniques, des téléphones satellites, des ordinateurs portables ou des organiseurs de poche. En effet, obtenir le niveau de sortie nominal nécessaire au bon fonctionnement de la charge, impose le recours à une consigne d'un niveau plus élevé. Ceci accroít l'encombrement du circuit et/ou, plus généralement, provoque alors une décharge accélérée des batteries alimentant l'ensemble du circuit et permettant de fournir la consigne de référence Vref. Dans ce dernier cas, il faut effectuer de fréquentes recharges des batteries du dispositif, ce qui est en contradiction avec leur caractère portable.The increase in surface area that sometimes takes integrate these command switches outside the chip in which is carried out the rest of the power circuit constituting the voltage regulator. In addition, it is necessary to hold account of a relatively high parasitic capacity compared to the parasitic capacities of the other elements of the circuit. Moreover, the waste voltage, i.e. the difference between the regulation Vref and the output voltage Vout can hardly be reduced to less than 500 mV. This is particularly disadvantageous in portable devices such as calendars electronics, satellite phones, laptops or pocket organizers. Indeed get the output level nominal necessary for the proper functioning of the load, imposes the use of a higher level deposit. This increases the congestion of the circuit and / or, more generally, causes then an accelerated discharge of the batteries supplying the assembly of the circuit and allowing to provide the reference setpoint Vref. In the latter case, frequent recharges the device’s batteries, which is contradiction with their portable nature.

Par ailleurs, les modifications de la filière de fabrication nécessaires à la formation du transistor MOS de régulation sont particulièrement gênantes en termes de complication du procédé global et de coût. In addition, changes in the manufacturing chain necessary for the formation of the regulating MOS transistor are particularly annoying in terms of complication of the overall process and cost.

Pour pallier ces problèmes, on a proposé d'utiliser un transistor de régulation de type bipolaire haute tension, qui présente l'avantage de demander une moindre surface d'intégration par rapport au MOS spécifique, notamment car il peut plus facilement être intégré de façon verticale dans un substrat de silicium. Toutefois, le recours à un transistor bipolaire pose de nombreux problèmes.To overcome these problems, it has been proposed to use a high voltage bipolar regulating transistor, which has the advantage of requiring less integration area compared to the specific MOS, in particular because it can more easily be vertically integrated into a substrate of silicon. However, the use of a bipolar transistor poses many problems.

Notamment, il faut recourir à une filière BiCMOS qui est plus complexe que la filière MOS. Il faut également prévoir un circuit spécifique pour fixer le point de fonctionnement du transistor bipolaire, et notamment prévoir une limitation du courant de base. En outre, un transistor de régulation bipolaire conduit à des tensions de déchet plus élevées qu'un transistor MOS avec une plage de linéarité plus restreinte. Ceci est particulièrement désavantageux dans le cas de dispositifs de type portable pour lesquels il est souhaitable de réduire le plus possible la tension de déchet, c'est-à-dire de la rendre, de préférence, inférieure à 200 mV.In particular, it is necessary to use a BiCMOS sector which is more complex than the MOS sector. You also have to plan a specific circuit to fix the operating point of the bipolar transistor, and in particular provide for a limitation of the basic current. In addition, a bipolar regulating transistor leads to higher waste voltages than a transistor MOS with a narrower range of linearity. This is particularly disadvantageous in the case of devices of the type portable for which it is desirable to reduce the most possible waste voltage, that is to make it, to preferably less than 200 mV.

La présente invention vise à proposer un régulateur linéaire qui pallie les inconvénients des circuits connus.The present invention aims to propose a regulator linear which overcomes the drawbacks of known circuits.

La présente invention vise en particulier à proposer un régulateur linéaire qui présente une tension de déchet réduite.The present invention aims in particular to propose a linear regulator which has a reduced waste voltage.

La présente invention vise à proposer un tel régulateur qui peut être fabriqué à l'aide d'une filière MOS standard.The present invention aims to propose such a regulator which can be manufactured using a standard MOS die.

Pour atteindre ces objets et d'autres, la présente invention prévoit un régulateur linéaire comportant un étage de sortie comprenant des premier et second transistors MOS à canal P, connectés en série entre une première borne d'alimentation continue et une borne de sortie fournissant une tension de sortie régulée, et un circuit de commande des premier et second transistors propre à fournir des premier et second signaux de commande en fonction de la tension de sortie et de la tension au point milieu de la connexion en série.To achieve these and other objects, this invention provides a linear regulator comprising a stage of output including first and second channel MOS transistors P, connected in series between a first supply terminal DC and an output terminal providing a voltage of regulated output, and a control circuit for the first and second transistors capable of providing first and second signals of control according to the output voltage and the voltage at midpoint of the serial connection.

Selon un mode de réalisation de la présente invention, le circuit de commande comprend un circuit d'entrée/sortie et un circuit de référence, le circuit d'entrée/sortie comportant une première entrée, recevant une première consigne de tension fournie par ledit circuit de référence ; une deuxième entrée, connectée à ladite borne de sortie ; une troisième entrée recevant une seconde consigne de tension fournie par ledit circuit de référence ; une quatrième entrée connectée audit point milieu ; une première sortie connectée à la grille du premier transistor ; et une deuxième sortie connectée à la grille du deuxième transistor.According to an embodiment of the present invention, the control circuit includes an input / output circuit and a reference circuit, the input / output circuit comprising a first input, receiving a first voltage setpoint supplied by said reference circuit; a second input, connected at said output terminal; a third entry receiving a second voltage setpoint supplied by said circuit reference; a fourth input connected to said midpoint; a first output connected to the gate of the first transistor ; and a second output connected to the gate of the second transistor.

Selon un mode de réalisation de la présente invention, le circuit d'entrée/sortie est un double comparateur différentiel à quatre entrées et deux sorties.According to an embodiment of the present invention, the input / output circuit is a double differential comparator with four inputs and two outputs.

Selon un mode de réalisation de la présente invention, le circuit d'entrée/sortie comporte des premier et second comparateurs différentiels à deux entrées et deux sorties, les bornes d'entrée du premier comparateur différentiel étant les première et deuxième bornes d'entrée du circuit d'entrée/sortie et sa sortie étant la deuxième sortie dudit circuit d'entrée/sortie ; et les bornes d'entrée du second comparateur différentiel étant les troisième et quatrième bornes d'entrée dudit circuit d'entrée/sortie et sa sortie en étant la première sortie.According to an embodiment of the present invention, the input / output circuit includes first and second comparators differential with two inputs and two outputs, the terminals input of the first differential comparator being the first and second input terminals of the input / output circuit and its output being the second output of said input / output circuit; and the input terminals of the second differential comparator being the third and fourth input terminals of said input / output circuit and its exit being the first exit.

Selon un mode de réalisation de la présente invention, le premier comparateur différentiel comporte un étage d'entrée/sortie et un étage de sortie, ledit étage d'entrée/sortie comportant deux branches différentielles dont chacune comprend un transistor MOS à canal P connecté en série avec un premier transistor MOS à canal N, les sources des transistors à canal P étant interconnectées à une borne de sortie d'une source de courant dont une borne d'entrée est reliée à ladite borne d'alimentation continue, les sources des premiers transistors à canal N étant interconnectées à une borne de masse, les grilles desdits premiers transistors MOS à canal N étant interconnectées, les grilles des transistors à canal P constituant les première et deuxième bornes d'entrée du circuit d'entrée/sortie, la grille du premier transistor MOS à canal N de la branche comportant la première entrée étant connectée à son drain, le point milieu de connexion des drains des transistors complémentaires de l'autre branche étant relié à la grille d'un deuxième transistor MOS à canal N connecté, dans ledit étage de sortie, en série entre les bornes d'alimentation, avec une première impédance, le point milieu de la connexion en série de ladite première impédance et du deuxième transistor constituant la borne de sortie dudit premier comparateur différentiel.According to an embodiment of the present invention, the first differential comparator has an input / output stage and an output stage, said input / output stage comprising two differential branches each of which includes a transistor P channel MOS connected in series with a first transistor N-channel MOS, sources of P-channel transistors being interconnected to an output terminal of a source of current of which one input terminal is connected to said terminal DC power sources, the sources of the first transistors N channel being interconnected to a ground terminal, the grids said first N-channel MOS transistors being interconnected, the gates of the P channel transistors constituting the first and second input terminals of the input / output circuit, the gate of the first N-channel MOS transistor of the branch comprising the first input being connected to its drain, the connection point of the transistors drains complementary to the other branch being connected to the grid of a second N-channel MOS transistor connected, in said stage of output, in series between the supply terminals, with a first impedance, the midpoint of the serial connection of said first impedance and the second transistor constituting the output terminal of said first differential comparator.

Selon un mode de réalisation de la présente invention, le second comparateur différentiel comporte deux branches différentielles symétriques constituées chacune de la connexion en série d'une seconde impédance, et d'un troisième transistor MOS à canal N, respectivement, les sources des troisièmes transistors à canal N étant interconnectées au drain d'un quatrième transistor MOS à canal N dont la source est connectée à la masse, la grille du quatrième transistor à canal N étant connectée à la grille du deuxième transistor MOS à canal N de l'étage de sortie du premier comparateur différentiel.According to an embodiment of the present invention, the second differential comparator has two differential branches symmetrical each consisting of the connection in series of a second impedance, and of a third MOS transistor to N channel, respectively, the sources of the third transistors with N channel being interconnected to the drain of a fourth N-channel MOS transistor whose source is connected to the ground, the gate of the fourth N-channel transistor being connected to the gate of the second N-channel MOS transistor of the stage of output of the first differential comparator.

Ces objets, caractéristiques et avantages, ainsi que d'autres de la présente invention seront exposés en détail dans la description suivante de modes de réalisation particuliers faite à titre non-limitatif en relation avec les figures jointes parmi lesquelles :

  • la figure 1, qui a été décrite précédemment, représente de façon partielle et schématique la structure d'un régulateur linéaire connu associé à une charge ;
  • les figures 2A à 2C, qui ont été décrites précédemment, sont des chronogrammes illustrant le fonctionnement du régulateur de la figure 1 ;
  • la figure 3 représente, sous forme d'un schéma-blocs partiel et schématique, un régulateur linéaire selon un mode de réalisation de la présente invention associé à une charge ;
  • la figure 4A est un chronogramme illustrant une première consigne de tension du régulateur de la figure 3 ;
  • la figure 4B est un chronogramme illustrant la tension de sortie du régulateur de la figure 3 ;
  • la figure 4C est un chronogramme illustrant une deuxième consigne de tension du régulateur de la figure 3 ;
  • la figure 4D est un chronogramme illustrant une tension aux bornes d'un composant d'un étage de sortie du régulateur de la figure 3 ;
  • la figure 5 représente, partiellement et schématiquement, un mode de réalisation d'un étage d'entrée/sortie du régulateur de la figure 3 ; et
  • la figure 6 représente un mode de réalisation d'un générateur de première et deuxième consignes de tension utilisable dans le régulateur de la figure 3.
  • These objects, characteristics and advantages, as well as others of the present invention will be explained in detail in the following description of particular embodiments given without limitation in relation to the attached figures, among which:
  • FIG. 1, which has been described previously, partially and schematically represents the structure of a known linear regulator associated with a load;
  • FIGS. 2A to 2C, which have been described previously, are timing diagrams illustrating the operation of the regulator of FIG. 1;
  • FIG. 3 represents, in the form of a partial and schematic block diagram, a linear regulator according to an embodiment of the present invention associated with a load;
  • FIG. 4A is a timing diagram illustrating a first voltage setpoint of the regulator of FIG. 3;
  • FIG. 4B is a timing diagram illustrating the output voltage of the regulator of FIG. 3;
  • FIG. 4C is a timing diagram illustrating a second voltage setpoint of the regulator of FIG. 3;
  • FIG. 4D is a timing diagram illustrating a voltage across a component of an output stage of the regulator of FIG. 3;
  • FIG. 5 represents, partially and schematically, an embodiment of an input / output stage of the regulator of FIG. 3; and
  • FIG. 6 represents an embodiment of a generator of first and second voltage set points usable in the regulator of FIG. 3.
  • Par souci de clarté, de mêmes éléments ont été désignés aux différentes figures par de mêmes références. En outre, seuls les éléments qui sont nécessaires à la compréhension de la présente invention ont été représentés. Ainsi, d'éventuels circuits de validation des générateurs de tension de référence ne sont ni représentés, ni décrits.For the sake of clarity, the same elements have been designated to the different figures by the same references. In addition, only the elements that are necessary for understanding the present invention have been shown. So, possible circuits validation of the reference voltage generators are neither shown or described.

    La figure 3 représente, sous forme d'un schéma-blocs, un régulateur linéaire 30 selon un mode de réalisation de la présente invention. Le régulateur 30 comporte un étage de sortie 31 constitué de la connexion en série, entre un rail d'alimentation haute Vdd et une borne de sortie OUT, de deux transistors MOS à canal P 32 et 33. La borne de sortie OUT est destinée à être connectée à une première borne d'alimentation d'une charge (LD) 1 dont une deuxième borne d'alimentation est reliée à un rail d'alimentation basse ou masse GND. Pour stabiliser rapidement la tension de sortie régulée, le régulateur linéaire 30 comprend également, de préférence, une impédance de stabilisation 11, par exemple un condensateur C.FIG. 3 represents, in the form of a block diagram, a linear regulator 30 according to one embodiment of the present invention. The regulator 30 has an output stage 31 consisting of the series connection, between a power rail high Vdd and one output terminal OUT, of two transistors P channel MOS 32 and 33. The output terminal OUT is intended for be connected to a first load supply terminal (LD) 1, a second supply terminal of which is connected to a GND low or ground power rail. To stabilize quickly regulated output voltage, linear regulator 30 also preferably includes a stabilization impedance 11, for example a capacitor C.

    La régulation de la tension Vout aux bornes de la charge 1, c'est-à-dire sur la borne de sortie OUT, est effectuée en modulant des signaux de commande des grilles G1 et G2 des transistors 32 et 33, respectivement, de façon à modifier leur transconductance.The regulation of the voltage Vout at the terminals of the load 1, i.e. on the output terminal OUT, is carried out by modulating control signals of the grids G1 and G2 of the transistors 32 and 33, respectively, so as to modify their transconductance.

    Les signaux de commande de l'étage de sortie 31 sont produits par un circuit de commande 35. Le circuit 35 module le signal de commande de la grille G1 du transistor 32 de façon à réguler la tension au point milieu MID de la connexion en série des transistors 32 et 33 de l'étage de sortie 31. Il module également le signal de commande de la grille G2 du transistor 32 de façon à réguler la tension de sortie Vout. Le circuit 35 comporte un étage d'entrée/sortie (IN/OUT) 36 destiné à produire les signaux de commande et un étage de référence (REF) 37. L'étage d'entrée/sortie 36 comprend quatre bornes d'entrée I1, 12, 13 et 14 et deux bornes de sortie 01 et 02. La borne I1 reçoit une consigne de tension de régulation V1 de la tension de sortie Vout. La borne I2 reçoit la tension de sortie Vout. La borne I3 reçoit une consigne de tension de régulation V2 de la tension au point milieu MID. La borne I4 reçoit la tension Vmid du point milieu MID par une connexion directe à ce point. Les bornes de sortie O1 et 02 sont respectivement connectées aux grilles G1, G2.The control signals of the output stage 31 are produced by a control circuit 35. Circuit 35 modulates the control signal of the gate G1 of the transistor 32 so as to regulate the voltage at the midpoint MID of the series connection transistors 32 and 33 of the output stage 31. It modulates also the control signal of the gate G2 of the transistor 32 so as to regulate the output voltage Vout. Circuit 35 has an input / output stage (IN / OUT) 36 intended for producing the control signals and a reference stage (REF) 37. The input / output stage 36 includes four input terminals I1, 12, 13 and 14 and two output terminals 01 and 02. Terminal I1 receives a voltage regulation set point V1 of the Vout exit. Terminal I2 receives the output voltage Vout. The terminal I3 receives a regulation voltage setpoint V2 from the voltage at midpoint MID. Terminal I4 receives the voltage Vmid from the midpoint MID by a direct connection to this point. The output terminals O1 and 02 are respectively connected to the grids G1, G2.

    Les consignes de régulation V1 et V2 reçues sur les bornes I1 et I3 de l'étage 36, respectivement, sont fournies par le circuit de référence (REF) 37 à partir d'une source variable 38 de tension continue (Vreg). Plus particulièrement, pour réguler le point milieu MID de façon à garantir une équipartition des tensions aux bornes de chacun des deux transistors en série 32 et 33, la consigne de régulation V2 du point milieu MID est égale à la moitié de la somme de la tension d'alimentation haute Vdd et de la première consigne de régulation V1 (V2=(Vdd+V1)/2). La source 38 fournit donc, de préférence, directement la première consigne V1 (Vreg=V1) à partir de laquelle le circuit 37 fournit la seconde consigne V2 selon la relation précédente.The regulation instructions V1 and V2 received on the terminals I1 and I3 of stage 36, respectively, are supplied by the reference circuit (REF) 37 from a variable source 38 of direct voltage (Vreg). More specifically, to regulate the midpoint MID in order to guarantee an equipartition voltages across each of the two transistors in series 32 and 33, the midpoint V2 regulation setpoint is equal to half the sum of the high supply voltage Vdd and the first regulation setpoint V1 (V2 = (Vdd + V1) / 2). The source 38 therefore preferably provides directly the first setpoint V1 (Vreg = V1) from which circuit 37 provides the second setpoint V2 according to the previous relationship.

    Les figures 4A, 4B, 4C et 4D illustrent respectivement, par des chronogrammes, la variation en fonction du temps t de la consigne de régulation V1 de la tension de sortie Vout du régulateur 30 de la figure 3, de la tension de sortie Vout, de la consigne de régulation V2 de la tension du point milieu MID et de la tension courante Vmid au point milieu MID, c'est-à-dire la tension de drain du transistor 32.FIGS. 4A, 4B, 4C and 4D respectively illustrate, by chronograms, the variation as a function of time t of the regulation setpoint V1 of the output voltage Vout of regulator 30 of FIG. 3, of the output voltage Vout, of the V2 midpoint voltage regulation setpoint and of the current voltage Vmid at the midpoint MID, that is to say the drain voltage of transistor 32.

    Lors d'une mise en route du régulateur 30, à un instant t10, le circuit de référence 37 est validé par une mise en route de la source 38 et produit les consignes de régulation V1 et V2. Comme l'illustrent les figures 4A et 4C, les consignes de régulation V1 et V2 sont, pendant une phase d'amorçage (instants t10 à t11), des rampes parallèles. En effet, comme cela a été indiqué précédemment, pour assurer un équilibre de répartition des tensions aux bornes des transistors 32 et 33, il faut assurer qu'à tout instant le potentiel au point milieu MID est égal à la moitié de la différence entre la tension d'alimentation haute Vdd et la tension Vout aux bornes de la charge 1 (Vmid=(Vdd-Vout)/2). Pour ce faire, il faut appliquer une consigne égale à la demi-somme de la tension d'alimentation haute Vdd et de la première consigne V1. Lors de la variation de la consigne V1 d'une valeur nulle à une consigne nominale Vref, le circuit de commande 35 doit pouvoir assurer une telle condition. Pour permettre un suivi linéaire, il est alors préférable que la consigne V1 varie lentement plutôt que brutalement comme dans le cas d'une consigne standard (figure 2A).When the regulator 30 is started, at an instant t10, the reference circuit 37 is validated by a start-up from source 38 and produces the regulation setpoints V1 and V2. As illustrated in FIGS. 4A and 4C, the regulation instructions V1 and V2 are, during a priming phase (instants t10 at t11), parallel ramps. Indeed, as has been indicated previously, to ensure a balanced distribution of voltages at the terminals of transistors 32 and 33, it is necessary to ensure that at all times the potential at midpoint MID is equal to the half the difference between high supply voltage Vdd and the voltage Vout at the terminals of the load 1 (Vmid = (Vdd-Vout) / 2). To do this, you must apply a setpoint equal to the half sum of the high supply voltage Vdd and the first setpoint V1. When changing the setpoint V1 from a zero value to a nominal setpoint Vref, the command 35 must be able to ensure such a condition. To allow linear monitoring, then it is preferable that the setpoint V1 varies slowly rather than suddenly as in the case of a standard setpoint (Figure 2A).

    Comme l'illustre la figure 4B, pendant la phase d'amorçage, la tension de sortie Vout suit, à partir de l'instant t10, la première consigne V1 jusqu'à se stabiliser à l'instant t11 à la valeur nominale Vref. La tension Vmid au point milieu MID, illustrée en figure 4D, décroít par contre de façon contrôlée de la moitié de l'alimentation haute (Vdd/2) jusqu'à la valeur stable (Vdd-Vref)/2. En fonctionnement nominal, entre les instants t11 et t12, les tensions de sortie Vout et du point milieu Vmid sont maintenues stables par des consignes V1 et V2 stables. Lors d'une commande d'extinction de la charge 1 à un instant t12, pour permettre un suivi linéaire de la deuxième consigne V2, la première consigne V1 est progressivement ramenée à zéro selon une rampe jusqu'à un instant t13. L'alimentation Vdd se répartit alors symétriquement sur les transistors 32 et 33.As illustrated in Figure 4B, during the phase the output voltage Vout follows, from at time t10, the first setpoint V1 until it stabilizes at the instant t11 at the nominal value Vref. The voltage Vmid at midpoint MID, illustrated in FIG. 4D, decreases by controlled way of half the high feed (Vdd / 2) up to the stable value (Vdd-Vref) / 2. In nominal operation, between times t11 and t12, the output voltages Vout and from the midpoint Vmid are kept stable by stable V1 and V2 setpoints. When an extinction command load 1 at time t12, to allow linear monitoring of the second setpoint V2, the first setpoint V1 is gradually brought back to zero along a ramp up to an instant t13. The Vdd power supply is then distributed symmetrically over the transistors 32 and 33.

    En régime nominal (de t11 à t12), le circuit de commande 35 assure que toute fluctuation éventuelle de la puissance au niveau de la charge 1 se traduit par une variation des consignes V1 et V2 de façon à rétablir le régime nominal et à répartir la variation de puissance de façon symétrique sur les deux transistors de puissance 32 et 33. Ainsi, aucun des deux transistors 32 et/ou 33 ne se trouve confronté à une tension drain/source excessive.In nominal mode (from t11 to t12), the control circuit 35 ensures that any possible fluctuation in power at load level 1 results in a variation of the setpoints V1 and V2 so as to restore the nominal speed and distribute the power variation symmetrically on both power transistors 32 and 33. Thus, neither of the two transistors 32 and / or 33 does not face tension excessive drain / source.

    On a représenté en figure 4 des rampes d'amorçage et d'extinction de pente respective différente. Plus particulièrement, on a représenté une extinction plus rapide (t12-t13) que l'amorçage (t10-t11). En pratique, la pente des rampes dépend des performances techniques des circuits et notamment de la capacité du circuit de commande 35 à suivre, transformer et transmettre, la variation de la première consigne V1. Les pentes peuvent être plus rapides ou plus lentes que représentées. En outre, elles peuvent être symétriques ou présenter une asymétrie inverse de celle représentée, c'est-à-dire que l'amorçage peut être plus rapide que l'extinction.FIG. 4 shows boot ramps and of different respective slope extinction. More specifically, we represented a faster extinction (t12-t13) than priming (t10-t11). In practice, the slope of the ramps depends technical performance of the circuits and in particular of the ability of the control circuit 35 to track, transform and transmit, the variation of the first setpoint V1. The hills may be faster or slower than shown. In in addition, they can be symmetrical or present an asymmetry opposite to that shown, that is to say that the priming can be faster than extinction.

    La figure 5 illustre, schématiquement et partiellement, la structure d'un mode de réalisation de l'étage d'entrée/sortie 36 d'un circuit de commande 35 d'un étage de sortie 31 d'un régulateur 30 selon la présente invention.FIG. 5 illustrates, schematically and partially, the structure of an embodiment of the input / output stage 36 a control circuit 35 of an output stage 31 of a regulator 30 according to the present invention.

    Le circuit d'entrée/sortie 36 à quatre entrées et deux sorties est un comparateur différentiel. Plus particulièrement, le circuit 36 est constitué de l'association d'un premier comparateur différentiel 50 et d'un deuxième comparateur différentiel 51 entrelacés de la façon suivante.Input / output circuit 36 with four inputs and two outputs is a differential comparator. More specifically, circuit 36 consists of the association of a first differential comparator 50 and a second differential comparator 51 intertwined as follows.

    Le premier comparateur 50, délimité par un cadre en pointillés en figure 5, est destiné à réguler la tension de sortie Vout à partir de la première consigne V1. Le comparateur 50 a donc une structure similaire à celle d'un comparateur différentiel connu tel que le comparateur 3 décrit en relation avec la figure 1. Par souci de clarté, la structure du comparateur 50 est décrite ci-après à l'aide des mêmes références qu'en figure 1.The first comparator 50, delimited by a frame in dotted in Figure 5, is intended to regulate the voltage of Vout output from the first setpoint V1. The comparator 50 therefore has a structure similar to that of a comparator known differential such as comparator 3 described in relation with Figure 1. For clarity, the structure of the comparator 50 is described below using the same references as in figure 1.

    Le comparateur 50 comporte un étage d'entrée/sortie 4 et un étage de sortie 5. L'étage 4 comprend deux branches différentielles comportant chacune un transistor MOS à canal P 61, 62 connecté en série avec un transistor MOS à canal N 63, 64. Les sources des transistors 61 et 62 sont connectées à une borne de sortie d'une source de courant 60 dont une borne d'entrée est reliée à l'alimentation haute Vdd. Les sources des transistors 63 et 64 sont connectées à l'alimentation basse GND. Les grilles des transistors 63 et 64 sont interconnectées. La grille du transistor 61 constitue la borne I1 et reçoit la consigne V1. La grille du transistor 63 est connectée à son drain, c'est-à-dire également au drain du transistor 61. La grille du transistor 62 constitue la borne I2 et reçoit la tension courante Vout aux bornes de la charge 1 par une connexion à la borne de sortie OUT du régulateur. Le point de connexion 65 des drains des transistors 62 et 64 constitue la sortie de l'étage d'entrée/sortie 4 du comparateur 50.Comparator 50 has an input / output stage 4 and an output stage 5. Stage 4 comprises two differential branches each comprising a P-channel MOS transistor 61, 62 connected in series with an N-channel MOS transistor 63, 64. The sources of transistors 61 and 62 are connected to a terminal of output of a current source 60 of which an input terminal is connected to the high Vdd power supply. The sources of the transistors 63 and 64 are connected to the GND low power supply. Grates transistors 63 and 64 are interconnected. The grid of transistor 61 constitutes the terminal I1 and receives the setpoint V1. The gate of transistor 63 is connected to its drain, i.e. also to the drain of transistor 61. The gate of transistor 62 constitutes the terminal I2 and receives the current voltage Vout aux load 1 terminals by connection to the OUT output terminal of the regulator. The connection point 65 of the drains of the transistors 62 and 64 constitute the output of the input / output stage 4 of comparator 50.

    L'étage de sortie 5 est constitué de la connexion en série, entre l'alimentation haute Vdd et la masse GND, d'une impédance 9, de préférence résistive (R), et d'un transistor MOS à canal N 10. Le point de connexion de l'impédance 9 et du transistor 10 constitue la borne de sortie 02 fournissant le signal de commande de la grille G2 du transistor 33. La grille du transistor 10 est connectée au point milieu 65 de la branche différentielle 62-64 de l'étage d'entrée 4.The output stage 5 consists of the connection in series, between the high Vdd supply and GND ground, of a impedance 9, preferably resistive (R), and a MOS transistor N channel 10. The connection point of impedance 9 and transistor 10 constitutes the output terminal 02 providing the control signal of the gate G2 of the transistor 33. The gate of transistor 10 is connected to midpoint 65 of the branch differential 62-64 of the input stage 4.

    Le deuxième comparateur différentiel 51 est destiné à commander la régulation de la tension au point MID. Il fournit sur la borne de sortie 01 le signal de commande de la grille G1. Le deuxième comparateur 51 comporte deux branches différentielles symétriques constituées chacune de la connexion en série d'une impédance 52, 53, de préférence résistive, et d'un transistor MOS à canal N 54, 55, respectivement. Les sources des transistors 54 et 55 sont connectées au drain d'un transistor MOS à canal N 56 dont la source est connectée à la masse GND. La grille du transistor 56 est connectée à la sortie 65 de l'étage d'entrée/sortie 4 et à la grille du transistor 10 de l'étage de sortie 5 du premier comparateur différentiel 50. Par conséquent, le point de fonctionnement du deuxième comparateur différentiel 51 dépend de celui de l'étage de sortie 5 du premier comparateur différentiel 50. Ceci permet de stabiliser le signal de commande de la grille G1 du transistor 32 au plus à un niveau requis, qui dépend du niveau du signal de commande de la grille G2 du transistor 33 fourni par le premier comparateur 50. En particulier, lorsque la charge 1 est invalidée et que le transistor 33 est ouvert, le transistor 56 sera complètement passant et permettra une commande de la grille G1 propre à limiter la tension Vmid à la moitié (Vdd/2) de l'alimentation haute, comme cela a été décrit précédemment en relation avec la figure 4. Les grilles des transistors 54 et 55 constituent, respectivement, les bornes I3 et I4 d'application des tensions V2 et Vmid.The second differential comparator 51 is intended for control the voltage regulation at the MID point. He gives on the output terminal 01 the control signal from the gate G1. The second comparator 51 has two differential branches symmetrical, each consisting of the series connection an impedance 52, 53, preferably resistive, and a N-channel MOS transistor 54, 55, respectively. The sources of transistors 54 and 55 are connected to the drain of a transistor N-channel MOS 56 whose source is connected to GND ground. The gate of transistor 56 is connected to output 65 of the stage input / output 4 and to the gate of transistor 10 of the stage of output 5 of the first differential comparator 50. Consequently, the operating point of the second differential comparator 51 depends on that of the output stage 5 of the first comparator differential 50. This stabilizes the control signal of the gate G1 of the transistor 32 at most at a required level, which depends on the level of the gate G2 control signal of the transistor 33 provided by the first comparator 50. In particular, when load 1 is disabled and transistor 33 is open, transistor 56 will be completely on and allow a gate control G1 capable of limiting the voltage Vmid to half (Vdd / 2) of the high power supply, as has been described previously in relation to Figure 4. The grids transistors 54 and 55 constitute, respectively, the terminals I3 and I4 of application of the voltages V2 and Vmid.

    La figure 6 représente, schématiquement et partiellement, un mode de réalisation d'un générateur 37 des consignes V1 et V2. Le circuit de référence 37 est, selon un mode de réalisation de la présente invention, un diviseur de tension résistif. Le diviseur résistif comporte la connexion en série entre les rails d'alimentation haute Vdd et basse GND de trois résistances successives 71, 72 et 73. Le point de connexion 74 des résistances 72 et 73 est la borne de sortie d'un comparateur différentiel 75 à deux entrées et une sortie, par exemple similaire au comparateur 3 de la figure 1. La borne d'entrée non-inverseuse du comparateur 75 reçoit la consigne de régulation Vreg de la tension de sortie Vout du régulateur 30, par exemple, par une connexion à la source 38. La borne d'entrée inverseuse du comparateur 75 est reliée à la borne de sortie 74. Ainsi, on recopie aux bornes de la résistance 73 la première consigne nommée V1. En choisissant des résistances 71 et 72 de mêmes valeurs, le point milieu de ces deux résistances est contrôlé de façon linéaire par le comparateur 75 à la valeur voulue V2 de la demi-somme de la tension d'alimentation et de la première consigne V1.FIG. 6 represents, schematically and partially, an embodiment of a generator 37 of the setpoints V1 and V2. The reference circuit 37 is, according to one embodiment of the present invention, a resistive voltage divider. The resistive divider has the series connection between the high Vdd and low GND power rails of three resistors 71, 72 and 73. The connection point 74 of the resistors 72 and 73 is the output terminal of a differential comparator 75 with two inputs and one output, for example similar to comparator 3 of figure 1. The non-inverting input terminal of comparator 75 receives the Vreg regulation setpoint from the output voltage Vout of regulator 30, for example, by a connection to the source 38. The inverting input terminal of the comparator 75 is connected to the output terminal 74. Thus, we copies the first setpoint across the terminals of resistor 73 named V1. By choosing resistors 71 and 72 of the same values, the midpoint of these two resistors is controlled by linearly through comparator 75 to the desired value V2 of the half sum of the supply voltage and the first setpoint V1.

    La présente invention fournit avantageusement un régulateur linéaire de puissance réalisable totalement par une filière MOS standard basse tension et de petites dimensions. En effet, le remplacement du transistor MOS haute tension des régulateurs connus par deux transistors basse tension permet de réduire la surface d'intégration. De plus, l'accroissement de surface de la partie commande 35 par rapport au circuit de commande d'un régulateur connu est négligeable par rapport au gain de surface lié au changement de commutateur de puissance.The present invention advantageously provides a regulator linear power fully achievable by a die Low-voltage standard MOS with small dimensions. Indeed, replacement of the high-voltage regulator MOS transistor known by two low voltage transistors reduces the integration surface. In addition, the increased surface area of the control part 35 with respect to the control circuit of a known regulator is negligible compared to the surface gain related to the change of power switch.

    En outre, le régulateur linéaire selon la présente invention présente une tension de déchet inférieure à celle des régulateurs connus. A titre d'exemple non limitatif, si la tension d'alimentation haute Vdd vaut de 3,3 à 5,5 volts, chaque transistor 32 et 33 de l'étage de sortie 31 du régulateur linéaire 30 de la présente invention est un transistor MOS standard propre à tenir une tension drain/source d'environ 2,5 volts. La tension de déchet du régulateur est alors réduite jusqu'à des valeurs de l'ordre de 200 mV.In addition, the linear regulator according to this invention has a lower waste voltage than known regulators. By way of nonlimiting example, if the high supply voltage Vdd is 3.3 to 5.5 volts, each transistor 32 and 33 of the output stage 31 of the linear regulator 30 of the present invention is a standard MOS transistor suitable for holding a drain / source voltage of approximately 2.5 volts. The regulator waste voltage is then reduced to values of the order of 200 mV.

    Bien entendu, la présente invention est susceptible de diverses variantes et modifications qui apparaítront à l'homme de l'art. En particulier, on notera que le condensateur C (impédance 11) de stabilisation de la tension de sortie Vout a été décrit comme faisant fonctionnellement partie du régulateur linéaire 30. En pratique, la valeur de la capacité du condensateur C est relativement élevée et varie en fonction de l'application, c'est-à-dire de la charge 1. Le condensateur C est donc, de préférence, réalisé à l'extérieur d'une puce de circuit intégré comportant l'ensemble du régulateur 30, et est monté directement en parallèle sur la charge 1. Par ailleurs, l'homme du métier saura modifier les caractéristiques des divers composants à la filière utilisée.Of course, the present invention is capable of various variations and modifications that will appear to humans art. In particular, it will be noted that the capacitor C (impedance 11) stabilization of the output voltage Vout has been described as functionally part of the regulator linear 30. In practice, the value of the capacitance of the capacitor C is relatively high and varies depending on the application, that is to say of the charge 1. The capacitor C is therefore, preferably made outside a circuit chip integrated with the regulator assembly 30, and is mounted directly in parallel on the load 1. In addition, the man of the trade will be able to modify the characteristics of the various components to the sector used.

    Claims (6)

    Régulateur linéaire comportant un étage de sortie (31) comprenant des premier et second transistors MOS à canal P (32, 33), connectés en série entre une première borne d'alimentation continue (Vdd) et une borne de sortie (OUT) fournissant une tension de sortie régulée (Vout), et un circuit de commande (35) des premier et second transistors propre à leur fournir des premier et second signaux de commande en fonction de la tension de sortie et de la tension au point milieu (MID) de la connexion en série.Linear regulator with one output stage (31) comprising first and second P-channel MOS transistors (32, 33), connected in series between a first supply terminal continuous (Vdd) and an output terminal (OUT) providing a regulated output voltage (Vout), and a control circuit (35) first and second transistors capable of providing them with first and second control signals as a function of voltage output and voltage at the midpoint (MID) of the connection serial. Régulateur selon la revendication 1, caractérisé en ce que le circuit de commande (35) comprend un circuit d'entrée/sortie (36) et un circuit de référence (37), le circuit d'entrée/sortie comportant : une première entrée (I1), recevant une première consigne de tension (V1) fournie par ledit circuit de référence ; une deuxième entrée (I2), connectée à ladite borne de sortie (OUT) ; une troisième entrée (I3) recevant une seconde consigne de tension (V2) fournie par ledit circuit de référence ; une quatrième entrée (I4) connectée audit point milieu (MID) ; une première sortie (01) connectée à la grille (G1) du premier transistor (32) ; et une deuxième sortie (02) connectée à la grille (G2) du deuxième transistor (33). Regulator according to claim 1, characterized in that the control circuit (35) comprises an input / output circuit (36) and a reference circuit (37), the input / output circuit comprising: a first input (I1), receiving a first voltage setpoint (V1) supplied by said reference circuit; a second input (I2), connected to said output terminal (OUT); a third input (I3) receiving a second voltage setpoint (V2) supplied by said reference circuit; a fourth input (I4) connected to said midpoint (MID); a first output (01) connected to the gate (G1) of the first transistor (32); and a second output (02) connected to the gate (G2) of the second transistor (33). Régulateur selon la revendication 2, caractérisé en ce que le circuit d'entrée/sortie (36) est un double comparateur différentiel à quatre entrées et deux sorties.Regulator according to claim 2, characterized in that the input / output circuit (36) is a double differential comparator with four inputs and two outputs. Régulateur selon la revendication 2 ou 3, caractérisé en ce que le circuit d'entrée/sortie (36) comporte des premier (50) et second (51) comparateurs différentiels à deux entrées et deux sorties, les bornes d'entrée du premier comparateur différentiel étant les première (I1) et deuxième (I2) bornes d'entrée du circuit d'entrée/sortie et sa sortie étant la deuxième sortie (O2) dudit circuit d'entrée/sortie ; et les bornes d'entrée du second comparateur différentiel étant les troisième (13) et quatrième (14) bornes d'entrée dudit circuit d'entrée/sortie et sa sortie en étant la première sortie (01).Regulator according to claim 2 or 3, characterized in that the input / output circuit (36) comprises first (50) and second (51) differential comparators with two inputs and two outputs, the input terminals of the first comparator differential being the first (I1) and second (I2) input terminals of the input / output circuit and its output being the second output (O2) of said input / output circuit; and the input terminals of the second differential comparator being the third (13) and fourth (14) input terminals of said input / output circuit and its output being the first output (01). Régulateur selon la revendication 4, caractérisé en ce que le premier comparateur différentiel (50) comporte un étage d'entrée/sortie (4) et un étage de sortie (5), ledit étage d'entrée/sortie comportant deux branches différentielles dont chacune comprend un transistor MOS à canal P (61, 62) connecté en série avec un premier transistor MOS à canal N (63, 64), les sources des transistors à canal P étant interconnectées à une borne de sortie d'une source de courant (60) dont une borne d'entrée est reliée à ladite borne d'alimentation continue (Vdd), les sources des premiers transistors à canal N étant interconnectées à une borne de masse (GND), les grilles desdits premiers transistors MOS à canal N étant interconnectées, les grilles des transistors à canal P constituant les première (I1) et deuxième (12) bornes d'entrée du circuit d'entrée/sortie (36), la grille du premier transistor MOS à canal N de la branche (61-63) comportant la première entrée étant connectée à son drain, le point milieu (65) de connexion des drains des transistors complémentaires de l'autre branche (62-64) étant relié à la grille d'un deuxième transistor MOS à canal N (10) connecté, dans ledit étage de sortie (5), en série entre les bornes d'alimentation, avec une première impédance (9), le point milieu de la connexion en série de ladite première impédance et du deuxième transistor constituant la borne de sortie (02) dudit premier comparateur différentiel.Regulator according to claim 4, characterized in that the first differential comparator (50) comprises an input / output stage (4) and an output stage (5), said input / output stage comprising two differential branches each of which comprises a P-channel MOS transistor (61, 62) connected in series with a first N-channel MOS transistor (63, 64), the sources of the P-channel transistors being interconnected to an output terminal of a current source ( 60) an input terminal of which is connected to said continuous supply terminal (Vdd), the sources of the first N-channel transistors being interconnected to a ground terminal (GND), the gates of said first N-channel MOS transistors being interconnected, the gates of the P-channel transistors constituting the first (I1) and second (12) input terminals of the input / output circuit (36), the gate of the first N-channel MOS transistor of the branch (61- 63) with the first entry and ant connected to its drain, the midpoint (65) of connection of the drains of the complementary transistors of the other branch (62-64) being connected to the gate of a second N-channel MOS transistor (10) connected, in said output stage (5), in series between the supply terminals, with a first impedance (9), the midpoint of the series connection of said first impedance and of the second transistor constituting the output terminal (02) of said first differential comparator. Régulateur selon la revendication 5, caractérisé en ce que le second comparateur différentiel (51) comporte deux branches différentielles symétriques constituées chacune de la connexion en série d'une seconde impédance (52, 53), et d'un troisième transistor MOS à canal N (54, 55), respectivement, les sources des troisièmes transistors à canal N étant connectées au drain d'un quatrième transistor MOS à canal N (56) dont la source est connectée à la masse (GND), la grille du quatrième transistor à canal N étant connectée à la grille du deuxième transistor MOS à canal N (10) de l'étage de sortie (5) du premier comparateur différentiel (50).Regulator according to claim 5, characterized in that the second differential comparator (51) comprises two symmetrical differential branches each consisting of the series connection of a second impedance (52, 53), and of a third N-channel MOS transistor (54, 55), respectively, the sources of the third N-channel transistors being connected to the drain of a fourth N-channel MOS transistor (56) whose source is connected to ground (GND), the gate of the fourth transistor to N channel being connected to the gate of the second N channel MOS transistor (10) of the output stage (5) of the first differential comparator (50).
    EP03300056.3A 2002-07-09 2003-07-09 Linear voltage regulator Expired - Fee Related EP1380913B1 (en)

    Applications Claiming Priority (2)

    Application Number Priority Date Filing Date Title
    FR0208624 2002-07-09
    FR0208624A FR2842316A1 (en) 2002-07-09 2002-07-09 LINEAR VOLTAGE REGULATOR

    Publications (2)

    Publication Number Publication Date
    EP1380913A1 true EP1380913A1 (en) 2004-01-14
    EP1380913B1 EP1380913B1 (en) 2017-11-22

    Family

    ID=29725296

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP03300056.3A Expired - Fee Related EP1380913B1 (en) 2002-07-09 2003-07-09 Linear voltage regulator

    Country Status (3)

    Country Link
    US (1) US6894467B2 (en)
    EP (1) EP1380913B1 (en)
    FR (1) FR2842316A1 (en)

    Families Citing this family (17)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US8315588B2 (en) * 2004-04-30 2012-11-20 Lsi Corporation Resistive voltage-down regulator for integrated circuit receivers
    JP2006006004A (en) * 2004-06-16 2006-01-05 Ricoh Co Ltd Buck-boost dc-dc converter
    EP1669831A1 (en) * 2004-12-03 2006-06-14 Dialog Semiconductor GmbH Voltage regulator output stage with low voltage MOS devices
    EP1891741A4 (en) 2005-06-08 2011-08-24 Powercast Corp Powering devices using rf energy harvesting
    US20090102296A1 (en) * 2007-01-05 2009-04-23 Powercast Corporation Powering cell phones and similar devices using RF energy harvesting
    DE102007023652B4 (en) * 2007-05-22 2013-08-14 Austriamicrosystems Ag Voltage regulator and voltage regulation method
    US20090079406A1 (en) * 2007-09-26 2009-03-26 Chaodan Deng High-voltage tolerant low-dropout dual-path voltage regulator with optimized regulator resistance and supply rejection
    US20100109435A1 (en) * 2008-09-26 2010-05-06 Uti Limited Partnership Linear Voltage Regulator with Multiple Outputs
    US8352036B2 (en) * 2009-01-19 2013-01-08 Anthony DiMarco Respiratory muscle activation by spinal cord stimulation
    US9035626B2 (en) 2010-08-18 2015-05-19 Volterra Semiconductor Corporation Switching circuits for extracting power from an electric power source and associated methods
    DE102011053042A1 (en) 2011-08-26 2013-02-28 Verbindungstechnik und Metallverarbeitungs GmbH Seifart Sorting drawer for sorting letter mails, has slotted strip provided with parallel retaining slots extending in extension direction of loader, where support bracket for information card holder is releasably inserted in retaining slot
    US9831764B2 (en) 2014-11-20 2017-11-28 Stmicroelectronics International N.V. Scalable protection voltage generator
    FR3032309B1 (en) * 2015-02-02 2017-06-23 St Microelectronics Alps Sas VOLTAGE CONTROL CIRCUIT FOR STRONG AND LOW POWER
    US10484111B2 (en) 2017-09-01 2019-11-19 Powercast Corporation Methods, systems, and apparatus for automatic RF power transmission and single antenna energy harvesting
    WO2019113127A2 (en) 2017-12-04 2019-06-13 Greene Charles E Methods, systems, and apparatus for wireless recharging of battery-powered devices
    EP4057108A1 (en) * 2017-12-20 2022-09-14 Aptiv Technologies Limited A power supply unit for an electronic device
    DE102021106815B4 (en) * 2021-01-06 2023-06-01 Taiwan Semiconductor Manufacturing Company, Ltd. POWER SUPPLY GENERATOR AND OPERATING METHOD THEREOF

    Citations (3)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US6104179A (en) * 1998-07-23 2000-08-15 Nec Corporation Low-power consumption noise-free voltage regulator
    EP1089154A1 (en) * 1999-10-01 2001-04-04 STMicroelectronics SA Linear regulator with output voltage selection
    US20010007537A1 (en) * 2000-01-07 2001-07-12 Kabushiki Kaisha Toshiba Data transfer circuit

    Family Cites Families (5)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    JP3405871B2 (en) * 1995-11-28 2003-05-12 富士通株式会社 DC-DC conversion control circuit and DC-DC converter
    FR2755317B1 (en) * 1996-10-25 1999-01-15 Sgs Thomson Microelectronics VOLTAGE REGULATOR WITH INTERNAL GENERATION OF A LOGIC SIGNAL
    FR2768527B1 (en) * 1997-09-18 2000-07-13 Sgs Thomson Microelectronics VOLTAGE REGULATOR
    EP1028528B1 (en) * 1998-08-28 2005-05-04 Matsushita Electric Industrial Co., Ltd. Switching regulator and lsi system
    EP1061428B1 (en) * 1999-06-16 2005-08-31 STMicroelectronics S.r.l. BiCMOS/CMOS low drop voltage regulator

    Patent Citations (3)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US6104179A (en) * 1998-07-23 2000-08-15 Nec Corporation Low-power consumption noise-free voltage regulator
    EP1089154A1 (en) * 1999-10-01 2001-04-04 STMicroelectronics SA Linear regulator with output voltage selection
    US20010007537A1 (en) * 2000-01-07 2001-07-12 Kabushiki Kaisha Toshiba Data transfer circuit

    Also Published As

    Publication number Publication date
    FR2842316A1 (en) 2004-01-16
    US20040008015A1 (en) 2004-01-15
    US6894467B2 (en) 2005-05-17
    EP1380913B1 (en) 2017-11-22

    Similar Documents

    Publication Publication Date Title
    EP1380913B1 (en) Linear voltage regulator
    EP1916762B1 (en) Quartz oscillator with amplitude control and an extended temperature range.
    EP0733961B1 (en) Reference current generator in CMOS technology
    FR2755318A1 (en) Voltage regulator circuit integrated into semiconductor integrated circuit
    FR2677793A1 (en) Circuit for producing an internal supply voltage
    FR2819064A1 (en) VOLTAGE REGULATOR WITH IMPROVED STABILITY
    FR2807847A1 (en) LINEAR REGULATOR WITH LOW OVERVOLTAGE IN TRANSIENT REGIME
    EP0731562A1 (en) Logic circuit with a differential stage
    FR2896051A1 (en) Low drop-out voltage regulator for portable communication device e.g. mobile telephone, has transconductance amplifier including resistive load that has predetermined profile and is connected to supply potential
    FR2912013A1 (en) Polarization current generating device, has adjustable temperature coefficient current generator for generating and delivering adjustable temperature coefficient current, where current temperature coefficient is modified by adjusting values
    FR3032309A1 (en) VOLTAGE CONTROL CIRCUIT FOR STRONG AND LOW POWER
    EP1566717A1 (en) Device for the generation of an improved reference voltage and corresponding integrated circuit
    EP1089154A1 (en) Linear regulator with output voltage selection
    FR2819652A1 (en) Voltage regulator for use with voltage supply such as rechargeable battery, comprising control circuit and second transistor activated when current through first transistor reaches threshold value
    FR2957161A1 (en) INTERNAL POWER SUPPLY VOLTAGE CIRCUIT OF AN INTEGRATED CIRCUIT
    EP0723160A1 (en) Voltage detection circuit compensated for technology and for temperature
    EP1712973A2 (en) Circuit generating a reference current
    FR2835664A1 (en) METHOD OF GENERATING A VOLTAGE RAMP AT THE TERMINALS OF A CAPACITOR, AND CORRESPONDING ELECTRONIC DEVICE, IN PARTICULAR FOR A CUT-OFF POWER SUPPLY OF A CELLULAR MOBILE TELEPHONE
    EP1427105A2 (en) Pulse width modulator
    FR3102580A1 (en) Voltage Regulator
    EP1040580A1 (en) Cmos output amplifier independent of temperature, supply voltage and manufacturing quality of transistors
    WO2002045261A2 (en) Controllable set of current sources
    EP1352302A1 (en) Voltage regulator with static gain in reduced open loop
    EP0050583B1 (en) Alternating voltage to direct current converter and oscillator circuit comprising said converter
    FR2969328A1 (en) GENERATING CIRCUIT FOR REFERENCE VOLTAGE UNDER LOW POWER SUPPLY VOLTAGE

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    AK Designated contracting states

    Kind code of ref document: A1

    Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

    AX Request for extension of the european patent

    Extension state: AL LT LV MK

    17P Request for examination filed

    Effective date: 20040714

    AKX Designation fees paid

    Designated state(s): DE FR GB IT

    17Q First examination report despatched

    Effective date: 20100409

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R079

    Ref document number: 60350783

    Country of ref document: DE

    Free format text: PREVIOUS MAIN CLASS: G05F0003240000

    Ipc: G05F0001560000

    GRAP Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOSNIGR1

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: GRANT OF PATENT IS INTENDED

    RIC1 Information provided on ipc code assigned before grant

    Ipc: G05F 1/56 20060101AFI20170428BHEP

    Ipc: G05F 3/24 20060101ALI20170428BHEP

    Ipc: G05F 3/26 20060101ALI20170428BHEP

    INTG Intention to grant announced

    Effective date: 20170530

    GRAS Grant fee paid

    Free format text: ORIGINAL CODE: EPIDOSNIGR3

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: THE PATENT HAS BEEN GRANTED

    AK Designated contracting states

    Kind code of ref document: B1

    Designated state(s): DE FR GB IT

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: FG4D

    Free format text: NOT ENGLISH

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R096

    Ref document number: 60350783

    Country of ref document: DE

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R097

    Ref document number: 60350783

    Country of ref document: DE

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: IT

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20171122

    PLBE No opposition filed within time limit

    Free format text: ORIGINAL CODE: 0009261

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

    26N No opposition filed

    Effective date: 20180823

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R119

    Ref document number: 60350783

    Country of ref document: DE

    GBPC Gb: european patent ceased through non-payment of renewal fee

    Effective date: 20180709

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: GB

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20180709

    Ref country code: DE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20190201

    Ref country code: FR

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20180731