EP1368026A1 - Utilisation de combinaisons de principes actifs issues d'acide alpha-lipoique et de substances absorbant la lumiere dans la plage des uv-a ou des uv-b pour traiter et/ou assurer la prophylaxie de pigmentation cutanee indesirable - Google Patents

Utilisation de combinaisons de principes actifs issues d'acide alpha-lipoique et de substances absorbant la lumiere dans la plage des uv-a ou des uv-b pour traiter et/ou assurer la prophylaxie de pigmentation cutanee indesirable

Info

Publication number
EP1368026A1
EP1368026A1 EP02732456A EP02732456A EP1368026A1 EP 1368026 A1 EP1368026 A1 EP 1368026A1 EP 02732456 A EP02732456 A EP 02732456A EP 02732456 A EP02732456 A EP 02732456A EP 1368026 A1 EP1368026 A1 EP 1368026A1
Authority
EP
European Patent Office
Prior art keywords
polyethylene glycol
acid
oil
ether
combined
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP02732456A
Other languages
German (de)
English (en)
Inventor
Claudia Mundt
Jens Schulz
Uwe SCHÖNROCK
Rainer Wolber
Inge Kruse
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beiersdorf AG
Original Assignee
Beiersdorf AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beiersdorf AG filed Critical Beiersdorf AG
Publication of EP1368026A1 publication Critical patent/EP1368026A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q17/00Barrier preparations; Preparations brought into direct contact with the skin for affording protection against external influences, e.g. sunlight, X-rays or other harmful rays, corrosive materials, bacteria or insect stings
    • A61Q17/04Topical preparations for affording protection against sunlight or other radiation; Topical sun tanning preparations
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/49Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing heterocyclic compounds
    • A61K8/494Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing heterocyclic compounds with more than one nitrogen as the only hetero atom
    • A61K8/4966Triazines or their condensed derivatives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/49Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing heterocyclic compounds
    • A61K8/4986Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing heterocyclic compounds with sulfur as the only hetero atom
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • A61P17/16Emollients or protectives, e.g. against radiation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q19/00Preparations for care of the skin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q19/00Preparations for care of the skin
    • A61Q19/02Preparations for care of the skin for chemically bleaching or whitening the skin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2800/00Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
    • A61K2800/40Chemical, physico-chemical or functional or structural properties of particular ingredients
    • A61K2800/52Stabilizers
    • A61K2800/522Antioxidants; Radical scavengers

Definitions

  • the present invention relates to the use of active ingredient combinations of ⁇ -lipoic acid and dermatologically tolerable substances which produce light absorption in the UV-A and / or UV-B range, for the production of cosmetic or dermatological preparations for the prophylaxis and treatment of cosmetic or dermatological skin changes such as e.g. unwanted pigmentation, for example local hyper- and incorrect pigmentation (e.g. liver spots, freckles), but also for purely cosmetic lightening of larger areas of the skin, which are pigmented to suit the individual skin type.
  • unwanted pigmentation for example local hyper- and incorrect pigmentation (e.g. liver spots, freckles)
  • cosmetic or dermatological skin changes such as e.g. unwanted pigmentation, for example local hyper- and incorrect pigmentation (e.g. liver spots, freckles)
  • cosmetic or dermatological skin changes such as e.g. unwanted pigmentation, for example local hyper- and incorrect pigmentation (e.g. liver spots, freckles), but also for purely cosmetic lightening of larger areas of the skin,
  • Melanocytes are responsible for the pigmentation of the skin, which can be found in the bottom layer of the epidermis, the stratum basale, next to the basal cells as - depending on the skin type, either isolated or more or less frequently occurring pigment-forming cells.
  • melanocytes contain melanosomes which, when stimulated by UV radiation, form increased melanin. This is transported into the keratinocytes and causes a more or less pronounced brown or brown skin color.
  • Melanin is formed as the final stage of an oxidative process in which tyrosine with the help of the enzyme tyrosinase via 3,4-dihydroxyphenylalanine (dopa), dopa-quinone, leucodopachrome, dopachrome, 5,6-dihydroxyindole and indole-5,6-quinone finally in Melanin is converted.
  • tyrosine with the help of the enzyme tyrosinase via 3,4-dihydroxyphenylalanine (dopa), dopa-quinone, leucodopachrome, dopachrome, 5,6-dihydroxyindole and indole-5,6-quinone finally in Melanin is converted.
  • problems with hyperpigmentation of the skin have various causes or are side effects of many biological processes, e.g. UV radiation (e.g. freckles, Epheides), genetic disposition, incorrect pigmentation of the skin during wound healing or scar
  • the object of the present invention was to remedy these shortcomings.
  • the active substance combinations according to the invention or cosmetic or dermatological preparations containing such active substance combinations are extremely satisfactory preparations in every respect. It was not foreseeable for the person skilled in the art that the preparations according to the invention act better against pigment disorders than the preparations of the prior art.
  • active substance combinations used according to the invention When using the active substance combinations used according to the invention or cosmetic or topical dermatological preparations with an effective content of active substance combinations used according to the invention, surprisingly an effective treatment, but also a prophylaxis of pigmentation disorders, is possible.
  • the active ingredient combinations according to the invention act synergistically with respect to the individual components in all these uses.
  • ⁇ -Lipoic acid was isolated from liver tissue in 1952 and its structure as a sulfur-containing fatty acid was elucidated. Bacteria, plants and higher organisms can produce ⁇ -lipoic acid in their metabolism themselves, for humans the question of their own biosynthesis is still open.
  • ⁇ -Lipoic acid is used to treat polyneuropathy, a sensory disorder on the hands and feet as a late consequence of diabetes. 200 to 600 milligrams of ⁇ -lipoic acid per day lead to a significant reduction in pain intensity. The energy metabolism of the hand and foot nerves is activated by ⁇ -lipoic acid, which leads to better nerve conductivity and thus less numbness and reflex failures.
  • ⁇ -Lipoic acid lowers pathologically increased liver values and promotes the healing of hepatitis. Most foods contain small amounts of ⁇ -lipoic acid, only relatively high levels can be found in meat. It is recognized that ⁇ -lipoic acid has strong anti-oxidative properties.
  • WO97 / 10808 and US Pat. No. 5,472,698 describe the cosmetic use of ⁇ -lipoic acid against symptoms of skin aging.
  • DE-42 42 876 describes active ingredient combinations of biotin and antioxidants with ⁇ -lipoic acid for the cosmetic and / or dermatological care of the skin and / or the appendages of the skin as well as cosmetic and / or dermatological preparations containing such active ingredient combinations.
  • the preparations according to the invention advantageously contain 0.001-10% by weight of ⁇ -lipoic acid, based on the total weight of the preparations.
  • the preparations according to the invention contain substances which absorb UV radiation in the UV-A and / or UV-B range, the total amount of filter substances, for. B. 0.1 wt .-% to 30 wt .-%, preferably 0.5 to 20 wt .-%, in particular 1.0 to 15.0 wt .-%, based on the total weight of the preparations to cosmetic
  • 0.1 wt .-% to 30 wt .-% preferably 0.5 to 20 wt .-%, in particular 1.0 to 15.0 wt .-%, based on the total weight of the preparations to cosmetic
  • UV-A filter substances for the purposes of the present invention are dibenzoyl methane derivatives, in particular 4- (tert-butyl) -4'-methoxydibenzoyl methane (CAS No. 70356-09-1), which is available from Givaudan under the Parsol brand ® 1789 and is sold by Merck under the trade name Eusolex® 9020.
  • dibenzoyl methane derivatives in particular 4- (tert-butyl) -4'-methoxydibenzoyl methane (CAS No. 70356-09-1), which is available from Givaudan under the Parsol brand ® 1789 and is sold by Merck under the trade name Eusolex® 9020.
  • UV-A filter substances are phenylene-1,4-bis (2-benzimidazyl) -3,3'-5,5'-tetrasulfonic acid
  • salts especially the corresponding sodium, potassium or triethanolammonium salts, in particular the phenylene-1,4-bis (2-benzimidazyl) -3,3'-5,5'-tetrasulfonic acid bis-sodium salt
  • 1,4-di (2-oxo-10-sulfo-3-bornylidenemethyl) benzene and its salts especially the corresponding 10-sulfato compounds, especially the corresponding sodium, potassium or triethanolammonium salt
  • benzene-1,4-di (2-oxo-3-bornylidenemethyl-10-sulfonic acid is also called benzene-1,4-di (2-oxo-3-bornylidenemethyl-10-sulfonic acid
  • Advantageous UV filter substances in the sense of the present invention are also so-called broadband filters, i.e. Filter substances that absorb both UV-A and UV-B radiation.
  • Advantageous broadband filters or UV-B filter substances are, for example, bis-resorcinyltriazine derivatives with the following structure:
  • R 1 , R 2 and R 3 are independently selected from the group of branched and unbranched alkyl groups having 1 to 10 carbon atoms or a single hydrogen atom. Particularly preferred are 2,4-bis - ⁇ [4- (2-ethylhexyloxy) -2-hydroxy] phenyl ⁇ -6- (4-methoxyphenyl) -1,3,5-triazine (INCI: Aniso triazine ), which is available under the trade name Tinosorb® S from CIBA-Chemikalien GmbH and the 4,4, 4 "- (1,3,5-triazine-2,4 I 6-triyltriimino) -tris-benzoic acid tris (2-ethylhexyl ester), synonymous: 2,4,6-tris [anilino- (p-carbo-2'-ethyl-1 , -hexyloxy)] - 1,3,5-triazine (INCI: octyl triazone)
  • UV filter substances which the structural motif
  • UV filter substances for the purposes of the present invention, for example the s-triazine derivatives described in European patent application EP 570 838 A1, the chemical structure of which is given by the generic formula
  • R represents a branched or unbranched C 8 alkyl radical, a C 5 -C 12 cycloalkyl radical, optionally substituted with one or more CC 4 alkyl groups,
  • X represents an oxygen atom or an NH group
  • Ri is a branched or unbranched CrC 18 alkyl radical, a C 5 -C 12 cycloalkyl radical, optionally substituted with one or more CC alkyl groups, or a hydrogen atom, an alkali metal atom, an ammonium group or a group of the formula
  • A represents a branched or unbranched CrC ⁇ 8 alkyl radical, a C 5 -C 12 cycloalkyl or aryl radical, optionally substituted by one or more CC 4 -
  • R 3 represents a hydrogen atom or a methyl group
  • n represents a number from 1 to 10
  • R 2 represents a branched or unbranched CC 18 alkyl radical, a C 5 -C 12 cycloalkyl radical, optionally substituted with one or more CC 4 alkyl groups
  • X represents the NH group
  • A represents a branched or unbranched C t -C 18 alkyl radical, a C 5 -C 12 cycloalkyl or aryl radical, optionally substituted by one or more CC 4 -
  • R 3 represents a hydrogen atom or a methyl group
  • n represents a number from 1 to 10 when X represents an oxygen atom.
  • a particularly advantageous UV filter substance in the sense of the present invention is also an asymmetrically substituted s-triazine, the chemical structure of which is represented by the formula
  • dioctylbutylamidotriazon (INCI: Diocylbutamidotriazone) and is available under the trade name UVASORB HEB from Sigma 3V.
  • R- *, R 2 and A ⁇ represent a wide variety of organic radicals.
  • Also advantageous for the purposes of the present invention are 2,4-bis - ⁇ [4- (3-sulfonato) -2-hydroxypropyloxy) -2-hydroxy] phenyl ⁇ -6- (4-methoxyphenyl) -1, 3,5-triazine sodium salt, the 2,4-bis - ⁇ [4- (3- (2-propyloxy) -2-hydroxypropyloxy) -2-hydroxy] phenyl ⁇ -6- (4-methoxyphenyl) - 1,3,5-triazine, the 2,4-bis - ⁇ [4- (2-ethylhexyloxy) -2-hydroxy] phenyl ⁇ -6- [4- (2-methoxyethylcarboxyl) phenylamino] -1, 3,5-triazine, the 2,4-bis - ⁇ [4- (3- (2-propyloxy) -2-hydroxypropyloxy) - 2-hydroxy] phenyl ⁇ -6- [4- (2
  • An advantageous broadband filter in the sense of the present invention is 2,2'-methylene-bis- (6- (2H-benzotriazol-2-yI) -4- (1,1,3,3-tetramethylbutyl) phenol) [INCI : Bisoctyltriazole], which is characterized by the chemical structural formula
  • Tinosorb® M is marked and is available under the trade name Tinosorb® M from CIBA Chemical GmbH.
  • Another advantageous broadband filter for the purposes of the present invention is 2- (2H-benzotriazol-2-yl) -4-methyl-6- [2-methyl-3- [1,3,3,3-tetramethyl-1 - [( trimethylsiiyl) oxy] disiloxanyl] propyl] phenol (CAS No .: 155633-54-8) with the INCI name Drometrizole Trisiloxane, which is characterized by the chemical structural formula
  • the UV-B filters can be oil-soluble or water-soluble.
  • Advantageous oil-soluble UV-B filter substances are e.g. B .:
  • 3-benzylidene camphor derivatives preferably 3- (4-methylbenzylidene) camphor, 3-benzylidene camphor;
  • 4-aminobenzoic acid derivatives preferably 4- (dimethylamino) benzoic acid (2-ethylhexyl) ester, 4- (dimethylamino) benzoic acid amyl ester;
  • esters of benzalmalonic acid preferably 4-methoxybenzalmalonic acid di (2-ethylhexyl) ester
  • esters of cinnamic acid preferably 4-methoxycinnamic acid (2-ethylhexyl) ester, 4-methoxycinnamic acid isopentyl ester;
  • benzophenone preferably 2-hydroxy-4-methoxybenzophenone, 2-hydroxy-4-methoxy-4'-methylbenzophenone, 2,2'-dihydroxy-4-methoxybenzophenone
  • Advantageous water-soluble UV-B filter substances are e.g. B .:
  • ⁇ sulfonic acid derivatives of 3-benzylidene camphor such as.
  • a further light protection filter substance to be used advantageously according to the invention is ethylhexyl-2-cyano-3,3-diphenylacrylate (octocrylene), which is available from BASF under the name Uvinul ® N 539 and is characterized by the following structure:
  • preparations containing the active compound combinations according to the invention, customary antioxidants can be used.
  • the antioxidants are advantageously selected from the group consisting of amino acids (eg glycine, histidine, tyrosine, tryptophan) and their derivatives, imidazoles (eg urocanic acid) and their derivatives, peptides such as D, L-carnosine, D-carnosine, L- Carnosine and its derivatives (e.g. anserine), carotenoids, carotenes (e.g. ⁇ -carotene, ⁇ -carotene, lycopene) and their derivatives, aurothioglucose, propylthiouracil and other thiols (e.g.
  • amino acids eg glycine, histidine, tyrosine, tryptophan
  • imidazoles eg urocanic acid
  • peptides such as D, L-carnosine, D-carnosine, L- Carnosine and its derivatives (e.g. anserine)
  • thioredoxin glutathione, cysteine, cystine, cystamine and their glycosyl, N-acetyl, methyl, ethyl, propyl, amyl, butyl and lauryl, palmitoyl, oleyl, ⁇ -linoleyl, cholesteryl and glyceryl esters) and their salts, dilauryl thiodipropionate, distearyl thiodipropionate, thiodipropionic acid and their derivatives (esters, ethers, peptides, lipids, nucleotides, nucleosides and salts) as well as sulf oximine compounds (e.g.
  • buthioninsulfoximines homocysteine sulfoximine, buthioninsulfones, penta-, hexa-, heptathioninsulfoximine) in very low tolerable dosages (e.g. pmol to ⁇ mol / kg), also (metal) chelators (e.g.
  • ⁇ -hydroxy fatty acids palmitic acid, phytic acid, lactoferrinic acid
  • ⁇ -hydroxy acids eg citric acid, lactic acid, malic acid
  • humic acid bile acid, bile extracts, bilirubin, biliverdin, EDTA, EGTA and their derivatives, unsaturated fatty acids and their derivatives (eg ⁇ -linolenic acid, linoleic acid, oleic acid), folic acid and their derivatives, alanine diacetic acid, flavonoids, polyphenols, catechins, vitamin C and derivatives (for example ascorbyl palmitate, Mg ascorbyl phosphate, ascorbyl acetate), tocopherols and derivatives (for example vitamin E acetate), and also coniferyl benzoate of the benzoin resin, rutinic acid and its derivatives , Ferulic acid and its derivatives, butylated hydroxytoluene, butylated
  • zinc and its derivatives for example ZnO, ZnSO 4
  • selenium and its derivatives for example selenium methionine
  • stilbenes and their derivatives for example stilbene oxide, trans-stilbene oxide
  • the derivatives suitable according to the invention salts, esters, ethers, sugars, Nucleotides, nucleosides, peptides and lipids of these active ingredients.
  • the amount of the antioxidants (one or more compounds) in the preparations is preferably 0.001 to 30% by weight, particularly preferably 0.05 to 20% by weight, in particular 1 to 10% by weight, based on the total weight of the preparation ,
  • the prophylaxis or the cosmetic or dermatological treatment with the active ingredient used according to the invention or with the cosmetic or topical dermatological preparations with an effective content of active ingredient used according to the invention is carried out in the usual way, namely in such a way that the active ingredient used according to the invention or the cosmetic or topical dermatological preparations with an effective content of active ingredient used according to the invention is applied to the affected skin areas.
  • the active ingredient used according to the invention can advantageously be incorporated into customary cosmetic and dermatological preparations, which can be in various forms.
  • they can be a solution, an emulsion of the type water-in-oil (W / O) or of the type oil-in-water (O / W), or a multiple emulsions, for example of the type water-in-oil-in -Water (W / O / W) or oil-in-water-in-oil (O / W / O), a hydrodispersion or lipodispersion, a gel, a solid stick or an aerosol.
  • Emulsions according to the invention in the sense of the present invention are advantageous and contain e.g. Fats, oils, waxes and / or other fat bodies, as well as water and one or more emulsifiers, as are usually used for such a type of formulation.
  • the cosmetic preparations according to the invention can therefore contain cosmetic auxiliaries as are usually used in such preparations, e.g. Preservatives, bactericides, deodorizing substances, antiperspirants, insect repellents, vitamins, anti-foaming agents, dyes, pigments with a coloring effect, thickening agents, softening substances, moisturizing and / or moisturizing substances, fats, oils, waxes or other common components of a cosmetic Formulation such as alcohols, polyols, polymers, foam stabilizers, electrolytes, organic solvents or silicone derivatives.
  • cosmetic auxiliaries as are usually used in such preparations, e.g. Preservatives, bactericides, deodorizing substances, antiperspirants, insect repellents, vitamins, anti-foaming agents, dyes, pigments with a coloring effect, thickening agents, softening substances, moisturizing and / or moisturizing substances, fats, oils, waxes or other common components of a cosmetic Formulation such as alcohol
  • Medical topical compositions in the sense of the present invention generally contain one or more medicaments in an effective concentration.
  • medicaments in an effective concentration.
  • Cosmetic and dermatological preparations according to the invention advantageously also contain inorganic pigments based on metal oxides and / or others in water poorly soluble or insoluble metal compounds, especially the oxides of titanium (TiO 2 ), zinc (ZnO), iron (e.g. Fe 2 O 3 ), zirconium (ZrO 2 ), silicon (SiO 2 ), manganese (e.g. MnO), aluminum (AfeO ; *)), Cerium (eg Ce 2 O 3 ), mixed oxides of the corresponding metals and mixtures of such oxides. Pigments based on TiO 2 are particularly preferred.
  • the inorganic pigments are in hydrophobic form, i.e. that they have been treated to be water-repellent on the surface.
  • This surface treatment can consist in that the pigments are provided with a thin hydrophobic layer by methods known per se.
  • One such method consists, for example, in that the hydrophobic surface layer after a rectification
  • n and m are stoichiometric parameters to be used at will, R and R 'are the desired organic radicals.
  • hydrophobized pigments shown in analogy to DE-OS 33 14 742 are advantageous.
  • Advantageous TiO 2 pigments are available, for example, under the trade names MT 100 T from TAYCA, M 160 from Kemira and T 805 from Degussa.
  • Preparations according to the invention can also contain anionic, nonionic and / or amphoteric surfactants, especially if crystalline or microcrystalline solids, for example inorganic micropigments, are to be incorporated into the preparations according to the invention.
  • Surfactants are amphiphilic substances that can dissolve organic, non-polar substances in water.
  • hydrophilic parts of a surfactant molecule are mostly polar functional groups, for example -COO " , -OSO 3 2" , -SO 3 " , while the hydrophobic parts generally represent non-polar hydrocarbon residues.
  • Surfactants generally become Type and charge of the hydrophilic part of the molecule classified. There are four groups:
  • Anionic surfactants generally have carboxylate, sulfate or sulfonate groups as functional groups. In an aqueous solution they form negatively charged organic ions in an acidic or neutral environment. Cationic surfactants are characterized almost exclusively by the presence of a quaternary ammonium group. In aqueous solution they form positively charged organic ions in an acidic or neutral environment. Amphoteric surfactants contain both anionic and cationic groups and accordingly behave like anionic or cationic surfactants in aqueous solution depending on the pH. They have a positive charge in a strongly acidic environment and a negative charge in an alkaline environment. In the neutral pH range, however, they are zwitterionic, as the following example should illustrate:
  • Non-ionic surfactants do not form ions in an aqueous medium.
  • acylglutamates for example sodium acylglutamate, di-TEA-palmitoylaspartate and sodium caprylic / capric glutamate,
  • acyl peptides for example palmitoyl-hydrolyzed milk protein, sodium cocoyl-hydrolyzed soy protein and sodium / potassium cocoyl-hydrolyzed collagen,
  • sarcosinates for example myristoyl sarcosin, TEA-lauroyl sarcosinate, sodium lauroyl sarcosinate and sodium cocoyl sarcosinate
  • taurates for example sodium lauroyl taurate and sodium methyl cocoyl taurate
  • carboxylic acids for example lauric acid, aluminum stearate, magnesium alkanolate and zinc undecylenate,
  • ester carboxylic acids for example calcium stearoyl lactylate, laureth-6 citrate and sodium PEG-4 lauramide carboxylate,
  • ether carboxylic acids for example sodium laureth-13 carboxylate and sodium PEG-6 cocamide carboxylate,
  • Phosphoric acid esters and salts such as DEA-oleth-10-phosphate and dilaureth-4-phosphate
  • acyl isethionates e.g. Sodium / ammonium cocoyl isethionate
  • alkyl sulfonates for example sodium coconut monoglyceride sulfate, sodium C 12 u olefin sulfonate, sodium lauryl sulfoacetate and magnesium PEG-3 cocamide sulfate,
  • Sulfosuccinates for example dioctyl sodium sulfosuccinate, disodium laureth sulfosuccinate, disodium lauryl sulfosuccinate and disodium undecylenamido MEA sulfosuccinate
  • sulfuric acid esters such as
  • alkyl ether sulfate for example sodium, ammonium, magnesium, MIPA, TIPA laureth sulfate, sodium myreth sulfate and sodium C- * 2- ⁇ 3 pareth sulfate,
  • Alkyl sulfates for example sodium, ammonium and TEA lauryl sulfate.
  • Quaternary surfactants contain at least one N atom which is covalently linked to 4 alkyl or aryl groups. Regardless of the pH value, this leads to a positive charge.
  • Alkyl betaine, alkyl amidopropyl betaine and alkyl amidopropyl hydroxysulfain are advantageous.
  • the cationic surfactants used in the invention can be also preferably selected from the group of quaternary ammonium compounds, in particular benzene zyltrialkylammoniumchloride or bromides, such as Benzyldimethylstea- rylammoniumchlorid, also alkyltrialkylammonium, such as for example Ce tyltrimethylammoniumchlorid or bromide, alkyldimethylhydroxyethylammonium chlorides or bromides, dialkyldimethylammonium chlorides or bromides, alkylamidethyltrimethylammonium ether sulfates, alkylpyridinium salts, for example lauryl or cetylpyrimidinium chloride, imidazoline derivatives and compounds with a cationic character, such as amine oxides, for example alkyldimethylamine oxides or alkylaminoethyldimethylamine oxides. Cetyltrimethylammonium salt
  • acyl / dialkyl ethylenediamine for example sodium acyl amphoacetate, disodium acyl amphodipropionate, disodium alkyl amphodiacetate, sodium acylamphohydroxypropyl sulfonate, disodium acylamphodiacetate and sodium acylamphopropionate,
  • N-alkylamino acids for example aminopropylalkylglutamide, alkylaminopropionic acid, sodium alkylimidodipropionate and lauroamphocarboxyglycinate.
  • alkanolamides such as Cocamide MEA / DEA / MIPA
  • amine oxides such as cocoamidopropylamine oxide
  • esters which are formed by esterification of carboxylic acids with ethylene oxide, glycerol, sorbitan or other alcohols,
  • ethers for example ethoxylated / propoxylated alcohols, ethoxylated / propoxylated esters, ethoxylated / propoxylated glycerol esters, ethoxylated / propoxylated cholesterols, ethoxylated / propoxylated triglyceride esters, ethoxylated propoxylated lanolin, ethoxy lated / propoxylated polysiloxanes, propoxylated POE ethers and alkyl polyglycosides such as
  • the surface-active substance can be present in the preparations according to the invention in a concentration between 1 and 95% by weight, based on the total weight of the preparations.
  • the lipid phase of the cosmetic or dermatological emulsions according to the invention can advantageously be selected from the following group of substances: mineral oils, mineral waxes
  • Oils such as triglycerides of capric or caprylic acid as well as natural oils such as e.g. Castor oil;
  • Fats, waxes and other natural and synthetic fat bodies preferably esters of fatty acids with alcohols of low C number, e.g. with isopropanol, propylene glycol or glycerin, or esters of fatty alcohols with low C number alkanoic acids or with fatty acids; benzoates;
  • Silicone oils such as dimethylpolysiloxanes, diethylpolysiloxanes, diphenylpolysiloxanes and mixed forms thereof.
  • the oil phase of the emulsions of the present invention is advantageously selected from the group of the esters from saturated and / or unsaturated, branched and / or unbranched alkane carboxylic acids with a chain length of 3 to 30 carbon atoms and saturated and / or unsaturated, branched and / or unbranched alcohols a chain length of 3 to 30 carbon atoms, from the group of esters of aromatic carboxylic acids and saturated and / or unsaturated, branched and / or unbranched alcohols of a chain length of 3 to 30 carbon atoms.
  • ester oils can then advantageously be selected from the group of isopropyl myristate, isopropyl palmitate, isopropyl stearate, isopropyl oleate, n-butyl stearate, n-hexyl laurate, n-decyl oleate, isooctyl stearate, isononyl stearate, isononyl isononanoate, 2-ethylhexyl palmitate, 2-ethylhexyl laurate, 2-hexyldecyl stearate, 2-octyldodecyl palmitate, oleyl oleate, olefin erucate, synthetic, such as erucyl erucate, erucyl erucate, erucyl erucate, erucyl such as erucyl, such as erucyl erucate, eruc
  • the oil phase can advantageously be selected from the group of branched and unbranched hydrocarbons and waxes, the silicone oils, the dialkyl ethers, the group of saturated or unsaturated, branched or unbranched alcohols, and also the fatty acid triglycerides, especially the triglycerol esters of saturated and / or unsaturated, branched and / or unbranched alkane carboxylic acids with a chain length of 8 to 24, in particular 12 - 18 carbon atoms.
  • the fatty acid triglycerides can, for example, advantageously be selected from the group of synthetic, semisynthetic and natural oils, e.g. Olive oil, sunflower oil, soybean oil, peanut oil, rapeseed oil, almond oil, palm oil, coconut oil, palm kernel oil and the like.
  • any mixtures of such oil and wax components can also be used advantageously for the purposes of the present invention. It may also be advantageous to use waxes, for example cetyl palmitate, as the sole lipid component of the oil phase.
  • the oil phase is advantageously selected from the group 2-ethylhexyl isostearate, octyldodecanol, isotridecyl isononanoate, isoeicosane, 2-ethylhexyl icocoate, C 2-15 alkyl benzoate, caprylic capric acid triglyceride, dicaprylyl ether.
  • Particularly advantageous are mixtures of C 2-15 alkyl benzoate and 2-ethylhexyl isostearate, mixtures of C 12-15 -alkyl benzoate and isotridecyl isononanoate and mixtures of C ⁇ 2- 15-benzoate, 2-ethylhexyl isostearate and isotridecyl isononanoate.
  • hydrocarbons paraffin oil, squalane and squalene can be used advantageously for the purposes of the present invention.
  • the oil phase can advantageously also contain cyclic or linear silicone oils or consist entirely of such oils, although it is preferred, in addition to the silicone oil or the silicone oils, to have an additional content of other oil phase compounds.
  • Such silicones or silicone oils can be present as monomers, which are generally characterized by structural elements, as follows:
  • silicon atoms can be substituted with the same or different alkyl radicals and / or aryl radicals, which are generally represented here by the radicals R * ⁇ - R 4 (to say that the number of different radicals is not necessarily limited to up to 4), m can assume values from 2 - 200,000.
  • n can have values from 3/2 to 20.
  • R- * - R 4 to say that the number of different radicals is not necessarily limited to up to 4
  • n can have values from 3/2 to 20.
  • Broken values for n take into account that there may be odd numbers of siloxyl groups in the cycle.
  • Cyclomethicone for example decamethylcyclopentasiloxane is advantageously used as the silicone oil to be used according to the invention.
  • silicone oils can also be used advantageously for the purposes of the present invention, for example undecamethylcyclotrisiloxane, polydimethylsiloxane, poly (methylphenylsiloxane), cetyldimethicone, behenoxydimethicone.
  • silicone oils of a similar constitution to the compounds described above, the organic side chains of which are derivatized, for example polyethoxylated and / or polypropoxylated.
  • these include, for example, polysiloxane-polyalkyl-polyether copolymers such as the cetyl-dimethicone copolyol, the (cetyl-dimethicone copolyol (and) polyglyceryl-4-isostearate (and) hexyl laurate)
  • the aqueous phase of the preparations according to the invention advantageously advantageously contains alcohols, diols or polyols of low C number, and also their ethers, preferably ethanol, isopropanol, propylene glycol, glycerol, ethylene glycol, ethylene glycol monoethyl or monobutyl ether, propylene glycol monomethyl, monoethyl or monobutyl ether , Diethy- glycol monomethyl or monoethyl ether and analog products, furthermore alcohols of low C number, for example Ethanol, isopropanol, 1,2-propanediol, glycerol and in particular one or more thickeners, which one or more can advantageously be selected from the group consisting of silicon dioxide and aluminum silicates.
  • alcohols, diols or polyols of low C number and also their ethers, preferably ethanol, isopropanol, propylene glycol, glycerol, ethylene glyco
  • Preparations according to the invention which are present as emulsions particularly advantageously contain one or more hydrocolloids.
  • hydrocolloids can advantageously be selected from the group of the gums, polysaccharides, cellulose derivatives, phyllosilicates, polyacrylates and / or other polymers.
  • Preparations according to the invention which are present as hydrogels contain one or more hydrocolloids. These hydrocolloids can advantageously be selected from the aforementioned group.
  • Gums include plant or tree sap that harden in the air and form resins or extracts from aquatic plants. Gum arabic, locust bean gum, tragacanth, karaya, guar gum, pectin, gellan gum, carrageenan, agar, algine, chondrus, xanthan gum can advantageously be selected from this group for the purposes of the present invention.
  • derivatized gums such as e.g. Hydroxypropyl guar (Jaguar® HP 8).
  • polysaccharides and derivatives are e.g. Hyaluronic acid, chitin and chitosan, chondroitin sulfates, starch and starch derivatives.
  • cellulose derivatives are e.g. Methyl cellulose, carboxymethyl cellulose, hydroxyethyl cellulose, hydroxypropyl methyl celliulose.
  • Layered silicates contain naturally occurring and synthetic clays such as Montmorillonite, bentonite, hectorite, laponite, magnesium aluminum silicates such as Vegegum®. These can be used as such or in a modified form such as stearylalkonium hectorite.
  • silica gels can also advantageously be used.
  • the polyacrylates include e.g. Carbopol types from Goodrich (Carbopol 980, 981, 1382, 5984, 2984, EDT 2001 or Pemulen TR2).
  • polymers e.g. Polyacrylamides (Seppigel 305), polyvinyl alcohols, PVP, PVP / VA copolymers, polyglycols.
  • Preparations according to the invention in the form of emulsions contain one or more emulsifiers.
  • emulsifiers can advantageously be selected from the group of nonionic, anionic, cationic or amphoteric emulsifiers.
  • nonionic emulsifiers are a) partial fatty acid esters and fatty acid esters of polyhydric alcohols and their ethoxylated derivatives (e.g. glyceryl monostearates, sorbitan stearates, glyceryl stearyl citrates, sucrose stearates) b) ethoxylated fatty alcohols and fatty acids c) ethoxylated fatty amines, fatty acid amides, fatty acid alkolol amide polyglycols))
  • polyhydric alcohols and their ethoxylated derivatives e.g. glyceryl monostearates, sorbitan stearates, glyceryl stearyl citrates, sucrose stearates
  • ethoxylated fatty alcohols and fatty acids ethoxylated fatty amines, fatty acid amides, fatty acid alkolol amide polyglycol
  • the anionic emulsifiers include a) soaps (e.g. sodium stearate) b) fatty alcohol sulfates c) mono-, di- and trialkylphosphonic acid esters and their ethoxylates
  • the cationic emulsifiers include a) quaternary ammonium compounds with a long-chain aliphatic radical, e.g. Distearyldimonium Chloride
  • amphoteric emulsifiers include a) alkylamininoalkane carboxylic acids b) betaines, sulfobetaines c) imidazoline derivatives
  • emulsifiers which include beeswax, wool wax, lecithin and sterols.
  • O / W emulsifiers can, for example, advantageously be selected from the group of the polyethoxylated or polypropoxylated or polyethoxylated and polypropoxylated products, for example: the fatty alcohol ethoxylates of the ethoxylated wool wax alcohols, the polyethylene glycol ethers of the general formula RO - (- CH 2 -CH 2 - O-) n -R ', the fatty acid ethoxylates of the general formula
  • R-COO - (- CH 2 -CH 2 -O-) n -R ' the esterified fatty acid ethoxylates of the general formula R-COO - (- CH 2 -CH 2 -O-) n -C (O) -R ', the polyethylene glycol glycerol fatty acid ester of the ethoxylated sorbitan esters of cholesterol ethoxylates of the ethoxylated triglycerides of alkyl ether carboxylic acids of the general formula RO - (- CH 2 -CH 2 -O-) n -CH 2 -COOH and n represent a number from 5 to 30, the polyoxyethylene sorbitol fatty acid esters, the alkyl ether sulfates of the general formula RO - (- CH 2 -CH 2 -O-) n -SO 3 -H the fatty alcohol propoxylates of the general formula RO - (- CH 2 -
  • the polyethoxylated or polypropoxylated or polyethoxylated and polypropoxylated O / W emulsifiers chosen are particularly advantageously selected from the group of substances with HLB values of 11-18, very particularly advantageously with HLB values of 14.5-15. 5, provided the O / W emulsifiers have saturated radicals R and R '. If the O / W emulsifiers have unsaturated radicals R and / or R ', or if isoalkyl derivatives are present, the preferred HLB value of such emulsifiers can also be lower or higher.
  • fatty alcohol ethoxylates from the group of the ethoxylated stearyl alcohols, cetyl alcohols, cetylstearyl alcohols (cetearyl alcohols).
  • cetyl alcohols cetylstearyl alcohols
  • cetearyl alcohols cetearyl alcohols
  • Polyethylene glycol (12) lauryl ether (Laureth-12), polyethylene glycol (12) isolauryl ether (Isolureth-12).
  • the sodium laureth-11 carboxylate can advantageously be used as the ethoxylated alkyl ether carboxylic acid or its salt.
  • Sodium laureth 1-4 sulfate can advantageously be used as alkyl ether sulfate.
  • Polyethylene glycol (30) cholesteryl ether can advantageously be used as the ethoxylated cholesterol derivative.
  • Polyethylene glycol (25) soyasterol has also proven itself.
  • polyethylene glycol glycerol fatty acid esters from the group polyethylene glycol (20) glyceryl laurate, polyethylene glycol (21) glyceryl laurate, polyethylene glycol (22) glyceryl laurate, polyethylene glycol (23) glyceryl laurate, polyethylene glycol (6) glyceryl capethylene / caprinate 20, glyceryl oleate, polyethylene glycol (20) glyceryl isostearate, polyethylene glycol (18) glyceryl oleate / cocoat to choose.
  • sorbitan esters from the group consisting of polyethylene glycol (20) sorbitan monolaurate, polyethylene glycol (20) sorbitan monostearate, polyethylene glycol (20) sorbitan monoisostearate, polyethylene glycol (20) sorbitan monopalmitate, polyethylene glycol (20) sorbitan monooleate.
  • W / O emulsifiers that can be used are: fatty alcohols with 8 to 30 carbon atoms, monoglycerol esters of saturated and / or unsaturated, branched and / or unbranched alkane carboxylic acids with a chain length of 8 to 24, in particular 12 to 18 carbon atoms, diglycerol esters saturated and / or unsaturated, branched and / or unbranched alkane carboxylic acids with a chain length of 8 to 24, in particular 12 - 18 C atoms, monoglycerol ethers saturated and / or unsaturated, branched and / or unbranched alcohols with a chain length of 8 to 24, in particular 12 - 18 C - Atoms, diglycerin ethers of saturated and / or unsaturated, branched and / or unbranched alcohols with a chain length of 8 to 24, in particular 12-18 C atoms, propylene glycol esters of saturated and / or unsaturated, branched and atom
  • W / O emulsifiers are glyceryl stearate Glycerylmonoiso-, glyceryl monomyristate, glyceryl, diglyceryl monostearate, Diglycerylmono- isostearate, propylene glycol caprylate, propylene glycol monoisostearate, propylene glycol, propylene glycol, sorbitan, sorbitan, sorbitan monocaprylate, Sorbitanmonoisooleat, sucrose, cetyl alcohol, stearyl alcohol, Arachidyl alcohol, behenyl alcohol, isobehenyl alcohol, selachyl alcohol, chimyl alcohol, polyethylene glycol (2) stearyl ether (Steareth-2), glyceryl monolaurate, glyceryl monocaprinate, glyceryl monocaprylate.
  • Example 2 The components of the oil phase are combined and homogenized, then combined with the water phase and brought to a temperature of 80-85 ° C (ie, in the phase inversion temperature range of the system), then cooled to room temperature (i.e. brought out of the phase inversion temperature range of the system) ,
  • Example 2 The components of the oil phase are combined and homogenized, then combined with the water phase and brought to a temperature of 80-85 ° C (ie, in the phase inversion temperature range of the system), then cooled to room temperature (i.e. brought out of the phase inversion temperature range of the system) , Example 2
  • Example 3 The components of the oil phase are combined and homogenized, then combined with the water phase and brought to a temperature of 80-85 ° C (ie, in the phase inversion temperature range of the system), then cooled to room temperature (i.e. brought out of the phase inversion temperature range of the system) ,
  • Example 3 The components of the oil phase are combined and homogenized, then combined with the water phase and brought to a temperature of 80-85 ° C (ie, in the phase inversion temperature range of the system), then cooled to room temperature (i.e. brought out of the phase inversion temperature range of the system) , Example 3
  • Example 4 The components of the oil phase are combined and homogenized, then combined with the water phase and brought to a temperature of 80-85 ° C (ie, in the phase inversion temperature range of the system), then cooled to room temperature (i.e. brought out of the phase inversion temperature range of the system) ,
  • Example 4 The components of the oil phase are combined and homogenized, then combined with the water phase and brought to a temperature of 80-85 ° C (ie, in the phase inversion temperature range of the system), then cooled to room temperature (i.e. brought out of the phase inversion temperature range of the system) , Example 4
  • Example 5 The components of the oil phase are combined and homogenized, then combined with the water phase and brought to a temperature of 80-85 ° C (ie, in the phase inversion temperature range of the system), then cooled to room temperature (i.e. brought out of the phase inversion temperature range of the system) ,
  • Example 5 The components of the oil phase are combined and homogenized, then combined with the water phase and brought to a temperature of 80-85 ° C (ie, in the phase inversion temperature range of the system), then cooled to room temperature (i.e. brought out of the phase inversion temperature range of the system) , Example 5
  • the components of the oil phase are combined and homogenized, then combined with the water phase and brought to a temperature of 80-85 ° C (ie, in the phase inversion temperature range of the system), then cooled to room temperature (i.e. brought out of the phase inversion temperature range of the system) , 34
  • Example 7 The respective components of the oil or water phase are combined, the two phases are combined and homogenized at 70-75 ° C. and then cooled to room temperature.
  • Example 7 The respective components of the oil or water phase are combined, the two phases are combined and homogenized at 70-75 ° C. and then cooled to room temperature.
  • the respective components of the oil or water phase are combined, the two phases are combined and homogenized at 70-75 ° C. and then cooled to room temperature.
  • Example 10 The respective components of the oil or water phase are combined, the two phases are combined and homogenized at 70-75 ° C. and then cooled to room temperature.
  • Example 10 The respective components of the oil or water phase are combined, the two phases are combined and homogenized at 70-75 ° C. and then cooled to room temperature.
  • Example 11 The respective components of the oil or water phase are combined, the two phases are combined and homogenized at 70-75 ° C. and then cooled to room temperature.
  • Example 11 The respective components of the oil or water phase are combined, the two phases are combined and homogenized at 70-75 ° C. and then cooled to room temperature.
  • Example 12 The respective components of the oil or water phase are combined, the two phases are combined and homogenized at 70-75 ° C. and then cooled to room temperature.
  • Example 12 The respective components of the oil or water phase are combined, the two phases are combined and homogenized at 70-75 ° C. and then cooled to room temperature.
  • Example 13 The respective components of the oil or water phase are combined, the two phases are combined and homogenized at 70-75 ° C. and then cooled to room temperature.
  • Example 13 The respective components of the oil or water phase are combined, the two phases are combined and homogenized at 70-75 ° C. and then cooled to room temperature.
  • Example 14 The respective components of the oil or water phase are combined, the two phases are combined and homogenized at 70-75 ° C. and then cooled to room temperature.
  • Example 14 The respective components of the oil or water phase are combined, the two phases are combined and homogenized at 70-75 ° C. and then cooled to room temperature.
  • Example 15 The respective components of the oil or water phase are combined, the two phases are combined and homogenized at 70-75 ° C. and then cooled to room temperature.
  • Example 15 The respective components of the oil or water phase are combined, the two phases are combined and homogenized at 70-75 ° C. and then cooled to room temperature.
  • Example 17 The respective components of the oil or water phase are combined, the two phases are combined and homogenized at 70-75 ° C. and then cooled to room temperature.
  • Example 17 The respective components of the oil or water phase are combined, the two phases are combined and homogenized at 70-75 ° C. and then cooled to room temperature.
  • Example 18 The respective components of the oil or water phase are combined, the two phases are combined and homogenized at 70-75 ° C. and then cooled to room temperature.
  • Example 18 The respective components of the oil or water phase are combined, the two phases are combined and homogenized at 70-75 ° C. and then cooled to room temperature.
  • Example 19 The respective components of the oil or water phase are combined, the two phases are combined and homogenized at 70-75 ° C. and then cooled to room temperature.
  • Example 19 The respective components of the oil or water phase are combined, the two phases are combined and homogenized at 70-75 ° C. and then cooled to room temperature.
  • Example 20 The respective components of the oil or water phase are combined, the two phases are combined and homogenized at 70-75 ° C. and then cooled to room temperature.
  • Example 20 The respective components of the oil or water phase are combined, the two phases are combined and homogenized at 70-75 ° C. and then cooled to room temperature.
  • Example 21 The respective components of the oil or water phase are combined, the two phases are combined and homogenized at 70-75 ° C. and then cooled to room temperature.
  • Example 21 The respective components of the oil or water phase are combined, the two phases are combined and homogenized at 70-75 ° C. and then cooled to room temperature.
  • Example 22 The respective components of the oil or water phase are combined, the two phases are combined and homogenized at 70-75 ° C. and then cooled to room temperature.
  • Example 22 The respective components of the oil or water phase are combined, the two phases are combined and homogenized at 70-75 ° C. and then cooled to room temperature.
  • Example 23 The respective components of the oil or water phase are combined, the two phases are combined and homogenized at 70-75 ° C. and then cooled to room temperature.
  • Example 23 The respective components of the oil or water phase are combined, the two phases are combined and homogenized at 70-75 ° C. and then cooled to room temperature.
  • Example 24 The respective components of the oil or water phase are combined, the two phases are combined and homogenized at 70-75 ° C. and then cooled to room temperature.
  • Example 24 The respective components of the oil or water phase are combined, the two phases are combined and homogenized at 70-75 ° C. and then cooled to room temperature.
  • Example 25 The respective components of the oil or water phase are combined, the two phases are combined and homogenized at 70-75 ° C. and then cooled to room temperature.
  • Example 25 The respective components of the oil or water phase are combined, the two phases are combined and homogenized at 70-75 ° C. and then cooled to room temperature.
  • the respective components of the oil or water phase are combined, the two phases are combined and homogenized at 70-75 ° C. and then cooled to room temperature.
  • the respective components of the oil or water phase are combined, the two phases are combined and homogenized at 70-75 ° C. and then cooled to room temperature.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Dermatology (AREA)
  • Birds (AREA)
  • Epidemiology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Organic Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Toxicology (AREA)
  • Cosmetics (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

L'invention concerne l'utilisation de combinaisons de principes actifs comprenant (a) de l'acide α-lipoïque et (b) une ou plusieurs substances compatibles sur le plan dermatologique, qui induisent une absorption de la lumière dans la plage des UV-A et/ou dans celle des UV-B, pour produire des préparations cosmétiques ou dermatologiques pour traiter des troubles de la pigmentation ou assurer leur prophylaxie.
EP02732456A 2001-03-06 2002-03-05 Utilisation de combinaisons de principes actifs issues d'acide alpha-lipoique et de substances absorbant la lumiere dans la plage des uv-a ou des uv-b pour traiter et/ou assurer la prophylaxie de pigmentation cutanee indesirable Withdrawn EP1368026A1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10111046 2001-03-06
DE10111046A DE10111046A1 (de) 2001-03-06 2001-03-06 Verwendung von Wirkstoffkombinationen aus alpha-Liponsäure und dermatologisch verträglichen Substanzen, die Lichtabsorption im UV-A-Bereich und/oder UV-B-Bereich zeigen,zur Herstellung von kosmetischen oder dermatologischen Zubereitungen zur Behandlung und/oder Prophylaxe unerwünschter Hautpigmentierung
PCT/EP2002/002373 WO2002085349A1 (fr) 2001-03-06 2002-03-05 Utilisation de combinaisons de principes actifs issues d'acide alpha-lipoique et de substances absorbant la lumiere dans la plage des uv-a ou des uv-b pour traiter et/ou assurer la prophylaxie de pigmentation cutanee indesirable

Publications (1)

Publication Number Publication Date
EP1368026A1 true EP1368026A1 (fr) 2003-12-10

Family

ID=7676663

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02732456A Withdrawn EP1368026A1 (fr) 2001-03-06 2002-03-05 Utilisation de combinaisons de principes actifs issues d'acide alpha-lipoique et de substances absorbant la lumiere dans la plage des uv-a ou des uv-b pour traiter et/ou assurer la prophylaxie de pigmentation cutanee indesirable

Country Status (5)

Country Link
US (1) US20040131563A1 (fr)
EP (1) EP1368026A1 (fr)
JP (1) JP2004525186A (fr)
DE (1) DE10111046A1 (fr)
WO (1) WO2002085349A1 (fr)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004091558A2 (fr) * 2003-04-11 2004-10-28 New York University Composes de stimulation et d'inhibition de la pigmentation
TW200803911A (en) * 2005-12-30 2008-01-16 Shiseido Co Ltd Sunscreen cosmetics
JP4970805B2 (ja) * 2006-02-22 2012-07-11 株式会社コーセー 皮膚外用剤
CN107427433B (zh) * 2015-04-18 2020-10-20 捷鸥化妆品株式会社 酪氨酸酶活性抑制剂及皮肤外用剂

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS638315A (ja) * 1986-06-28 1988-01-14 Sansho Seiyaku Kk 外用剤
JP2565513B2 (ja) * 1987-09-25 1996-12-18 三省製薬株式会社 メラニン生成抑制外用薬剤
GB9110123D0 (en) * 1991-05-10 1991-07-03 Dow Corning Organosilicon compounds their preparation and use
IT1255729B (it) * 1992-05-19 1995-11-15 Giuseppe Raspanti Derivati di s-triazina come agenti fotostabilizzanti
DE4242876C2 (de) * 1992-12-18 1997-11-27 Beiersdorf Ag Kosmetische und/oder dermatologische Zubereitungen zur kosmetischen und/oder dermatologischen Pflege der Haut und/oder der Hautanhangsgebilde
JPH10501817A (ja) * 1994-06-15 1998-02-17 ザ、プロクター、エンド、ギャンブル、カンパニー 哺乳動物皮膚における色素過剰部位のライトニング方法
US5472698A (en) * 1994-12-20 1995-12-05 Elizabeth Arden Co., Division Of Conopco, Inc. Composition for enhancing lipid production in skin
US5709868A (en) * 1995-09-20 1998-01-20 Perricone; Nicholas V. Lipoic acid in topical compositions
DE19543730A1 (de) * 1995-11-23 1997-05-28 Ciba Geigy Ag Bis-Resorcinyl-Triazine
US5847003A (en) * 1996-06-04 1998-12-08 Avon Products, Inc. Oxa acids and related compounds for treating skin conditions
US7498310B1 (en) * 1998-08-13 2009-03-03 Beiersdorf Ag Cosmetic or dermatological preparations comprising oligopeptides for lightening the skin of age marks and/or for preventing tanning of the skin, in particular tanning of the skin caused by UV radiation
EP1231886A4 (fr) * 1999-11-24 2005-10-12 Access Business Group Int Llc Composition topique pour la peau
DE10036797A1 (de) * 2000-07-28 2002-02-07 Beiersdorf Ag Verwendung von Kombinationen mit einem Gehalt an Carnitinen

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO02085349A1 *

Also Published As

Publication number Publication date
DE10111046A1 (de) 2002-09-12
JP2004525186A (ja) 2004-08-19
US20040131563A1 (en) 2004-07-08
WO2002085349A1 (fr) 2002-10-31

Similar Documents

Publication Publication Date Title
EP3406243B1 (fr) Combinaisons de substances actives de la licochalcone a ou d'un extrait de radix glycyrrhizae inflatae contenant de la licochalcone a, du phénoxyéthanol et éventuellement de la glycérine
DE10111049A1 (de) Verwendung von Substanzen, die verhindern, daß die NO-Synthese des warmblütigen Organismus ihre Wirkung entfaltet, zur Herstellung von kosmetischen oder dermatologischen Zubereitungen, zur Prophylaxe und Behandlung von entzündlichen Hautzuständen und/oder zum Hautschutz bei empfindlich determinierter trockener Haut
DE10356187A1 (de) Wirkstoffkombinationen aus Phytosterolen und/oder Cholesterin und Licochalcon A oder einem wäßrigen Extrakt aus Radix Glycyrrhizae inflatae, enthaltend Licochalcon A
DE10129504A1 (de) Verwendung von Carnitin und/oder einem oder mehreren Acyl-Carnitinen zur Herstellung von kosmetischen oder dermatologischen Zubereitungen zur Behandlung und/oder Prophylaxe von Pigmentierungsstörungen
EP1367987A2 (fr) Utilisation de combinaisons d'agents actifs composees d'acide alpha-liponique et de substances dermatologiquement acceptables presentant une absorption de lumiere dans la gamme des uv-a et uv-b, pour la fabrication de preparations cosmetiques et dermatologiques
EP1395239A1 (fr) Compositions cosmetiques ou dermatologiques contenant une ou plusieurs cetohexoses
WO2003015766A1 (fr) Utilisation de wogonine pour fabriquer des preparations cosmetiques ou dermatologiques destinees a la prophylaxie et au traitement d'etats inflammatoires cutanes et / ou a la protection de la peau en cas de peau sensible et seche
EP1676571A1 (fr) Composition comprenant au moins un isoflavone et du carnitine et/ ou au moins un acyl-carnitine
EP1449514A1 (fr) Préparations pour le soin de la peau contenant des rétinoides, des ubiquinones, et de la biotine ou de la carnitine
EP1368026A1 (fr) Utilisation de combinaisons de principes actifs issues d'acide alpha-lipoique et de substances absorbant la lumiere dans la plage des uv-a ou des uv-b pour traiter et/ou assurer la prophylaxie de pigmentation cutanee indesirable
DE10139791A1 (de) Verwendung von Oroxylin A zur Herstellung kosmetischer oder dermatologischer Zubereitungen zur Prophylaxe und Behandlung von entzündlichen Hautzuständen und/oder zum Hautschutz bei empfindlich determinierter und trockener Haut
DE10140538A1 (de) Verwendung von wässrig-alkoholischen Extrakten aus Pongamia pinnata zur Herstellung von kosmetischen oder dermatologischen Zubereitungen zur Prophylaxe und Behandlung von entzündlichen Hautzuständen und/oder zum Hautschutz bei empfindlich determinierter trockener Haut
DE10140539A1 (de) Verwendung von wässrig-alkoholischen Extrakten aus Terminalia arjuna zur Herstellung von kosmetischen oder dermatologischen Zubereitungen zur Prophylaxe und Behandlung von entzündlichen Hautzuständen und/oder zum Hautschutz bei empfindlich determinierter trockener Haut
WO2002069910A2 (fr) Utilisation de substances empechant que la synthase no des organismes a sang chaud se developpe, en vue de produire des preparations cosmetiques ou dermatologiques destinees au traitement et/ou a la prophylaxie de pigmentation cutanee indesirable
DE10148266A1 (de) Verwendung von Mevalonsäure und/oder Mevalonsäurelacton zur Herstellung von kosmetischen oder dermatologischen Zubereitungen zur Behandlung und/oder Prophylaxe der Symptome der intrinsischen und/oder extrinsischen Hautalterung sowie zur Behandlung und Prophylaxe der schädlichen Auswirkungen ultravioletter Strahlung auf die Haut
WO2003101407A1 (fr) Utilisation d'extrait de fleur de chevrefeuille dans la production de preparations cosmetiques ou dermatologiques de prophylaxie et traitement d'etats cutanes inflammatoires et/ou de protection pour peau sensible
WO2002069911A2 (fr) Combinaisons de principes actifs, reunissant de l'acide $g(a)-lipoique et des bioquinones
DE10126396A1 (de) Verwendung von Glucosamin zur Herstellung von kosmetischen oder dermatologischen Zubereitungen zur Prophylaxe und Behandlung von entzündlichen Hautzuständen und/oder zum Hautschutz bei empfindlich determinierter und trockener Haut
DE10111047A1 (de) Verwendung von Wirkstoffkombinationen aus alpha-Liponsäure und Dermatologisch verträglichen Substanzen, die Lichtabsorption im UV-A-Bereich und/oder UV-B-Bereich zeigen, zur Herstellung von kosmetischen oder dermatologischen Zubereitungen zur Stärkung der Barrierefunktion der Haut
DE10202251A1 (de) Kosmetische und/oder dermatologische Zubereitung
DE10252772A1 (de) Verwendung von einem oder mehreren Diethyldithiocarbamaten zur Herstellung von kosmetischen oder dermatologischen Zubereitungen zur Prophylaxe und Behandlung von entzündlichen Hautzuständen und/oder zum Hautschutz bei empfindlich determinierter und trockener Haut
DE10224459A1 (de) Verwendung von Wiesenknopfkrautextrakt zur Herstellung kosmetischer oder dermatologischer Zubereitungen zur Prophylaxe und Behandlung von entzündlichen Hautzuständen und/oder Hautschutz bei empfindlich determinierter Haut
DE10111051A1 (de) Verwendung von Wirkstoffkombinationen aus alpha-Liponsäure und dermatologisch verträglichen Substanzen, die Lichtabsorption im UV-A-Bereich und/oder UV-B-Bereich zeigen, zur Herstellung von kosmetischen oder dermatologischen Zubereitungen zur Steigerung der Ceramidbiosynthese
WO2003015767A2 (fr) Utilisation de tectorigenine pour fabriquer des preparations cosmetiques ou dermatologiques destinees a la prophylaxie et au traitement d'etats inflammatoires cutanes et / ou a la protection de la peau en cas de peau sensible et seche
DE10111040A1 (de) Verwendung von Wirkstoffkombinationen aus alpha-Liponsäure und dermatologisch verträglichen Substanzen, die Lichtabsorption im UV-A-Bereich und/oder UV-B-Bereich zeigen, zur Herstellung von kosmetischen oder dermatologischen Zubereitungen zur Prophylaxe und Behandlung von entzündlichen Hautzuständen und/oder zum Hautschutz bei empfindlich determinierter trockener Haut

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20031006

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20060919