EP1367351B1 - Heat exchanger - Google Patents

Heat exchanger Download PDF

Info

Publication number
EP1367351B1
EP1367351B1 EP03009456A EP03009456A EP1367351B1 EP 1367351 B1 EP1367351 B1 EP 1367351B1 EP 03009456 A EP03009456 A EP 03009456A EP 03009456 A EP03009456 A EP 03009456A EP 1367351 B1 EP1367351 B1 EP 1367351B1
Authority
EP
European Patent Office
Prior art keywords
heat exchanger
chamber
cooling medium
tubes
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP03009456A
Other languages
German (de)
French (fr)
Other versions
EP1367351A1 (en
Inventor
Hermann Göhna
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Air Liquide Global E&C Solutions Germany GmbH
Original Assignee
Lurgi GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lurgi GmbH filed Critical Lurgi GmbH
Publication of EP1367351A1 publication Critical patent/EP1367351A1/en
Application granted granted Critical
Publication of EP1367351B1 publication Critical patent/EP1367351B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/16Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation
    • F28D7/1607Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation with particular pattern of flow of the heat exchange media, e.g. change of flow direction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/22Arrangements for directing heat-exchange media into successive compartments, e.g. arrangements of guide plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/22Arrangements for directing heat-exchange media into successive compartments, e.g. arrangements of guide plates
    • F28F2009/222Particular guide plates, baffles or deflectors, e.g. having particular orientation relative to an elongated casing or conduit
    • F28F2009/224Longitudinal partitions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/22Arrangements for directing heat-exchange media into successive compartments, e.g. arrangements of guide plates
    • F28F2009/222Particular guide plates, baffles or deflectors, e.g. having particular orientation relative to an elongated casing or conduit
    • F28F2009/226Transversal partitions

Definitions

  • the invention relates to a heat exchanger with a cylindrical steel shell and two hemispherical head pieces, in which hot medium flows in the longitudinal axis through the heat exchanger and is cooled by a cooling medium, which is laterally in the heat exchanger and discharged.
  • heat exchangers are used to recover heat or to selectively cool or heat a medium, which may be gaseous or liquid.
  • a shell-and-tube heat exchanger is used to cool hot fission gases from a partial oxidation. These fission gases are to be cooled from 520 ° C. to 350 ° C., at the same time preheating gaseous process mixture (or in other cases steam) from about 200 ° C. to 420 ° C. These fission gases have a high potential for " metal dusting", a process which leads to the destruction of the metallic materials, if the metal temperatures on the cracked gas side become too high.
  • metal dusting is meant a high-temperature corrosion, which usually takes place in highly carburizing gas atmospheres and leads to the removal and thus destruction of the metallic material. As ablation products, metal, metal oxide, carbon and metal carbides are typically found. If the heat exchanger described were carried out in a countercurrent apparatus, the heat exchanger tubes and the tube plates would be on the hot side in the temperature range of “metal dusting". By a DC heat exchanger, the required preheating temperature can not be achieved due to overlap.
  • the present invention seeks to develop a heat exchanger that allows a high temperature balance between the media, while it is inexpensive to manufacture and the thermal and chemical stresses is justified, and has a high resistance to high temperature corrosion.
  • the object is achieved in that the heat exchanger consists of a cylindrical steel shell and two hemispherical head pieces, wherein a first distribution chamber is connected by means of tubes for the passage of hot medium with a second distribution chamber, wherein the tubes penetrate an inlet region of the cooling medium and an outer chamber in that lateral stubs guide the cooling medium into the inlet region, followed by an inner chamber delimited by a sealing plate for the flow deflection of the cooling medium, in that the sealing plate directs the cooling medium from the inner chamber into an outer chamber, wherein the outer chamber surrounds the inner chamber, and this outer chamber is provided with nozzles for the discharge of the cooling medium.
  • the insulation of the separating wall between inner chamber and outer chamber has the effect that the cooling medium on the hot side does not undergo cooling.
  • the pipes are welded.
  • the inlet area is thermally isolated from the distribution chamber by a thermally insulating mass. Through this heat-insulating material are inserted into the bottom of the distribution chamber Einsteckrohre, which receive the cooling tubes.
  • a further embodiment of the invention provides that the heat-insulating mass is catalytically active.
  • creepage currents are continuously catalytically converted by cracks in the lining during the continuous cooling, whereby no "metal dusting" reaction can take place.
  • the inner parts of the heat exchanger are designed in floating head construction. That is, the components that are exposed to a large thermal expansion, are stored only on one side. The other side is freely movable in the longitudinal direction.
  • the outlet of the hot medium is equipped with a compensator.
  • the introduced hot media can be gases or liquids. They are introduced at a temperature of 150 ° C to 550 ° C in the heat exchanger and discharged in a temperature range of 400 ° C to 50 ° C.
  • the cooling medium usually consists of gases, vapors or liquids and is introduced at 30 ° C to 350 ° C. After heat transfer, the cooling medium heats up to 450 ° C.
  • the heat exchanger (1) consists of a cylindrical steel jacket (13) with hemispherical head pieces (21, 15).
  • Hot medium (2) flows through an inlet port (4) into a distribution chamber (5) and flows through a plurality of tubes (6), which are arranged parallel to the longitudinal axis of the heat exchanger (1), into a second one Distribution chamber (7) and is discharged there via the outlet port (8).
  • Cooling medium (3) is introduced through lateral nozzles (9) in the heat exchanger (1).
  • the cooling medium (3) is introduced into an inlet region (10), which is adjoined by the inner chamber (11) of the heat exchanger (1).
  • the inner chamber (11) is substantially smaller in diameter than the inlet portion (10) because it is surrounded by an outer chamber (12) bounded outwardly by the steel jacket (13) of the heat exchanger and inwardly by a wall (14) is separated from the inner chamber (11). This wall (14) is carried out in isolation.
  • the tubes (6) penetrate after the distribution chamber (5) first the inlet region (10), then the outer chamber (12) and terminate in the second distribution chamber (7).
  • the cooling medium (3) flows through the inner chamber (11) and impinges on a sealing plate (16), which separates the cooling medium (3) from the medium to be cooled (2) in the distribution chamber (7). At this sealing plate (16), the cooling medium (3) is deflected in the direction and thereby guided into the outer chamber (12) of the heat exchanger (1).
  • sheets (17) provide for a deflection of the cooling medium (3).
  • the cooling medium (3) flows around the tubes (6) of the hot medium in countercurrent.
  • the cooling medium (3) is thereby guided in its flow direction by sheets (17) so that it alternately flows against the cylindrical steel jacket (13) and the separating wall (14) of the inner chamber (11).
  • the cooling medium leaves the heat exchanger (1).
  • the sheets (17) in addition to the deflection of the flow for increased stability and guidance of the tubes (6).
  • the cooling medium (3) flows from the inlet region (10) to the inner chamber (11) in the same direction with the introduced hot medium (2), which flows through the tubes (6) in this area.
  • the cooling medium (3) With deflection of the cooling medium through the sealing plate (16) in the outer chamber (12) of the heat exchanger (1), the cooling medium (3) flows against the flow direction of the hot medium (2).
  • a compensator (19) is attached to the outlet port (8).
  • the internal fittings are designed in floating design.
  • the heat exchanger is made of heat-resistant steel. Depending on the media, a corrosion-resistant material can also be used.
  • the insulation of the wall (14) consists of ceramic or mineral fibers, which are surrounded by a protective jacket.
  • the hemispherical head pieces (21, 15) of the heat exchanger (1) are insulated with ramming mass.

Abstract

The heat exchanger for high temperature fluids has a first separation chamber (5) connected to a second chamber (7) by tubes (22,6). The tubes have an inlet for the coolant and pass through an outer chamber (12) with lateral stub pipes (9) to guide the coolant to an inlet connected to an inner chamber (11) with a sealed plate (16) for flow control of the coolant.

Description

Die Erfindung betrifft einen Wärmetauscher mit einem zylindrischen Stahlmantel und zwei halbkugelförmigen Kopfstücken, bei dem heißes Medium in Längsachse durch den Wärmetauscher fließt und durch ein Kühlmedium gekühlt wird, welches seitlich in den Wärmetauscher ein- und abgeleitet wird.The invention relates to a heat exchanger with a cylindrical steel shell and two hemispherical head pieces, in which hot medium flows in the longitudinal axis through the heat exchanger and is cooled by a cooling medium, which is laterally in the heat exchanger and discharged.

In verfahrenstechnischen Anlagen werden Wärmetauscher zur Rückgewinnung von Wärme oder zur gezielten Abkühlung oder Erwärmung eines Mediums verwendet, welches gasförmig oder flüssig sein kann. So wird zum Beispiel ein Rohrbündelwärmetauscher zur Abkühlung heißer Spaltgase aus einer partiellen Oxidation verwendet. Diese Spaltgase sind von 520 °C auf 350 °C abzukühlen, wobei gleichzeitig gasförmiges Prozeßeinsatzgemisch (oder in anderen Fällen Wasserdampf) von ca. 200 °C auf 420 °C vorzuwärmen ist. Diese Spaltgase haben ein hohes Potential zu "metal dusting", einem Prozeß, der zur Zerstörung der metallischen Werkstoffe führt, wenn die Metalltemperaturen auf der Spaltgasseite zu hoch werden. Unter "metal dusting" wird eine Hochtemperaturkorrosion verstanden, die üblicherweise in stark aufkohlenden Gasatmosphären erfolgt und zum Abtrag und damit Zerstörung des metallischen Werkstoffs führt. Als Abtragprodukte werden typischerweise Metall, Metalloxid, Kohlenstoff und Metallcarbide gefunden. Würde der beschriebene Wärmetauscher in einem Gegenstromapparat durchgeführt, kämen die Wärmetauscherrohre sowie die Rohrplatten auf der heißen Seite in den Temperaturbereich des "metal dusting". Durch einen Gleichstromwärmetauscher kann die geforderte Vorwärmtemperatur wegen Überschneidung nicht erreicht werden.In process plants, heat exchangers are used to recover heat or to selectively cool or heat a medium, which may be gaseous or liquid. For example, a shell-and-tube heat exchanger is used to cool hot fission gases from a partial oxidation. These fission gases are to be cooled from 520 ° C. to 350 ° C., at the same time preheating gaseous process mixture (or in other cases steam) from about 200 ° C. to 420 ° C. These fission gases have a high potential for " metal dusting", a process which leads to the destruction of the metallic materials, if the metal temperatures on the cracked gas side become too high. By " metal dusting" is meant a high-temperature corrosion, which usually takes place in highly carburizing gas atmospheres and leads to the removal and thus destruction of the metallic material. As ablation products, metal, metal oxide, carbon and metal carbides are typically found. If the heat exchanger described were carried out in a countercurrent apparatus, the heat exchanger tubes and the tube plates would be on the hot side in the temperature range of "metal dusting". By a DC heat exchanger, the required preheating temperature can not be achieved due to overlap.

In der DE-A-3039787 wird ein Wärmetauscher beschrieben, in dem heißes Medium seitlich in den Wärmetauscher eingeleitet wird und nach verschiedener Umlenkung im Bereich der Kühlrohre am Kopf des Wärmetauschers wieder abgezogen wird. Das kalte Medium wird am Boden des Wärmetauschers eingeführt und durchströmt doppelwandige Kühlrohre, wobei das kalte Medium erst durch das innere Rohr bis zum Ende des Rohres geleitet wird, um dann in entgegengesetzter Strömungsrichtung durch das äußere Rohr zurückgeführt wird. Dabei findet eine Abkühlung des heißen Medium im Gegenstromverfahren statt. Der mit diesem Wärmetauscher mögliche Temperaturausgleich ist nicht ausreichend, so dass mehrere Wärmetauscher nötig sind.In DE-A-3039787 a heat exchanger is described in which hot medium is introduced laterally into the heat exchanger and is withdrawn again after various deflection in the region of the cooling tubes at the head of the heat exchanger. The cold medium is introduced at the bottom of the heat exchanger and flows through double-walled cooling tubes, wherein the cold medium is first passed through the inner tube to the end of the tube, and then returned through the outer tube in the opposite direction of flow. Here, a cooling of the hot medium takes place in countercurrent process. The possible with this heat exchanger temperature compensation is not sufficient, so that several heat exchangers are necessary.

Ausgehend von diesem Stand der Technik liegt der Erfindung die Aufgabe zugrunde, einen Wärmetauscher zu entwickeln, der einen hohen Temperaturausgleich zwischen den Medien ermöglicht, dabei gleichzeitig kostengünstig herzustellen ist und den thermischen und chemischen Beanspruchungen gerecht wird, sowie eine hohe Beständigkeit gegen Hochtemperaturkorrosion aufweist.Based on this prior art, the present invention seeks to develop a heat exchanger that allows a high temperature balance between the media, while it is inexpensive to manufacture and the thermal and chemical stresses is justified, and has a high resistance to high temperature corrosion.

Erfindungsgemäß wird die Aufgabe dadurch gelöst, dass der Wärmetauscher aus einem zylindrischen Stahlmantel und zwei halbkugelförmigen Kopfstücken besteht, wobei eine erste Verteilkammer mittels Rohren zur Durchströmung von heißem Medium mit einer zweiten Verteilkammer verbunden ist, wobei die Rohre einen Einlassbereich des Kühlmediums und eine äußere Kammer durchdringen, und dass seitliche Stutzen das Kühlmedium in den Einlassbereich leiten, an den sich eine innere Kammer anschließt, die durch eine dichtende Platte zur Strömungsumlenkung des Kühlmediums begrenzt ist, dass die dichtende Platte das Kühlmedium von der inneren Kammer in eine äußere Kammer leitet, wobei die äußere Kammer die innere Kammer umschließt, und diese äußere Kammer mit Stutzen zur Ableitung des Kühlmediums versehen ist.According to the invention, the object is achieved in that the heat exchanger consists of a cylindrical steel shell and two hemispherical head pieces, wherein a first distribution chamber is connected by means of tubes for the passage of hot medium with a second distribution chamber, wherein the tubes penetrate an inlet region of the cooling medium and an outer chamber in that lateral stubs guide the cooling medium into the inlet region, followed by an inner chamber delimited by a sealing plate for the flow deflection of the cooling medium, in that the sealing plate directs the cooling medium from the inner chamber into an outer chamber, wherein the outer chamber surrounds the inner chamber, and this outer chamber is provided with nozzles for the discharge of the cooling medium.

Mit dieser Anordnung wird erreicht, dass das Kühlmedium im Einlassbereich im Gleichstrom die Rohre mit dem heißen Medium umströmt, und nach der Umlenkung von der inneren Kammer in die äußere Kammer die Rohre im Gegenstrom kühlt. Aufgrund dieser Strömungsführung ist eine sehr große Wärmeübertragung möglich, wodurch die Abmessungen des Wärmetauschers klein gehalten werden können. Gleichzeitig wird damit die Gefahr des "metal dusting" reduziert, da die korrosionsanfälligen Bauteile in ihrer Temperatur abgesenkt werden. Die Gefahr des "metal dusting" ist um so größer, je höher die Temperatur der Bauteile ist. Durch die erfindungsgemäße Gestaltung des Wärmetauschers wird aufgrund der großen Wärmeübertragung die Standzeit deutlich erhöht, da die korrosionsgefährdeten Bauteile eine wesentlich höhere Lebensdauer aufweisen.With this arrangement it is achieved that the cooling medium flows around the tubes in the inlet region in direct current with the hot medium, and after the deflection of the inner chamber in the outer chamber, the tubes in countercurrent cooling. Due to this flow guidance a very large heat transfer is possible, whereby the dimensions of the heat exchanger can be kept small. At the same time the risk of "metal dusting" is reduced because the corrosion-prone components are lowered in their temperature. The danger of "metal dusting" is greater, the higher the temperature of the components. The inventive design of the heat exchanger, the service life is significantly increased due to the large heat transfer, since the corrosion-prone components have a much longer life.

Die Isolation der trennenden Wand zwischen innerer Kammer und äußerer Kammer hat den Effekt, dass das Kühlmedium auf der heißen Seite keine Abkühlung erleidet.The insulation of the separating wall between inner chamber and outer chamber has the effect that the cooling medium on the hot side does not undergo cooling.

Durch die wechselseitige Anordnung der Bleche in der äußeren Kammer wird die Strömung abwechselnd an dem äußeren Stahlmantel des Wärmetauschers und an der Wand zwischen innerer Kammer und äußerer Kammer vorbei geleitet. Damit ist ebenfalls ein größerer Wärmeübergang möglich.The mutual arrangement of the sheets in the outer chamber, the flow is alternately passed to the outer steel shell of the heat exchanger and the wall between the inner chamber and the outer chamber. Thus, a larger heat transfer is also possible.

Am Boden der Verteilkammer sind die Rohre eingeschweißt. Um beim Einsatz von Gasen mit hoher Temperatur diese Schweißnähte vor thermischer Spannung zu schützen, wird der Einlassbereich durch eine wärmeisolierende Masse thermisch von der Verteilkammer getrennt bzw. isoliert. Durch diese wärmeisolierende Masse werden Einsteckrohre in den Boden der Verteilkammer eingesetzt, die die Kühlrohre aufnehmen.At the bottom of the distribution chamber, the pipes are welded. To protect these welds from thermal stress when using high temperature gases, the inlet area is thermally isolated from the distribution chamber by a thermally insulating mass. Through this heat-insulating material are inserted into the bottom of the distribution chamber Einsteckrohre, which receive the cooling tubes.

Eine weitere Ausgestaltung der Erfindung sieht vor, dass die wärmisolierende Masse katalytisch aktiv ist. Damit werden Kriechströme durch Risse in der Auskleidung während der fortlaufenden Abkühlung kontinuierlich katalytisch umgewandelt, wodurch keine "metal dusting"-Reaktion stattfinden kann.A further embodiment of the invention provides that the heat-insulating mass is catalytically active. Thus, creepage currents are continuously catalytically converted by cracks in the lining during the continuous cooling, whereby no "metal dusting" reaction can take place.

Um die thermischen Spannungen des Wärmetauschers zu reduzieren, sind die inneren Teile des Wärmetauschers in Schwimmkopfkonstruktion ausgeführt. Das heißt, die Bauteile, die einer großen Wärmedehnung ausgesetzt sind, werden nur an einer Seite fest gelagert. Die andere Seite ist in Längsrichtung frei beweglich.
Um die thermischen Spannungen des Stahlmantels auszugleichen, ist der Auslassstutzen des heißen Mediums mit einem Kompensator ausgestattet.
In order to reduce the thermal stresses of the heat exchanger, the inner parts of the heat exchanger are designed in floating head construction. That is, the components that are exposed to a large thermal expansion, are stored only on one side. The other side is freely movable in the longitudinal direction.
To compensate for the thermal stresses of the steel jacket, the outlet of the hot medium is equipped with a compensator.

Die eingeleiteten heißen Medien können Gase oder Flüssigkeiten sein. Sie werden mit einer Temperatur von 150 °C bis 550 °C in den Wärmetauscher eingeleitet und in einem Temperaturbereich von 400 °C bis 50 °C abgeführt. Das Kühlmedium besteht üblicherweise aus Gasen, Dämpfen oder Flüssigkeiten und wird mit 30 °C bis 350 °C eingeleitet. Nach der Wärmeübertragung erhitzt sich das Kühlmedium auf bis zu 450 °C auf.The introduced hot media can be gases or liquids. They are introduced at a temperature of 150 ° C to 550 ° C in the heat exchanger and discharged in a temperature range of 400 ° C to 50 ° C. The cooling medium usually consists of gases, vapors or liquids and is introduced at 30 ° C to 350 ° C. After heat transfer, the cooling medium heats up to 450 ° C.

Ausgestaltungsmöglichkeiten des Verfahrens werden mit Hilfe der Zeichnung beispielhaft erläutert.Design options of the method are exemplified with the aid of the drawing.

Der Wärmetauscher (1) besteht aus einem zylindrischen Stahlmantel (13) mit halbkugelförmigen Kopfstücken (21, 15). Heißes Medium (2) strömt durch einen Einlassstutzen (4) in eine Verteilkammer (5) und strömt durch eine Vielzahl von Rohren (6), die parallel zur Längsachse des Wärmetauschers (1) angeordnet sind, in eine zweite Verteilkammer (7) und wird dort über den Auslassstutzen (8) abgeführt. In der Darstellung sind wegen der Übersichtlichkeit nur vier Rohre (6) dargestellt.
Kühlmedium (3) wird durch seitliche Stutzen (9) in den Wärmetauscher (1) eingeleitet. Das Kühlmedium (3) wird dabei in einen Einlassbereich (10) eingeleitet, an den sich die innere Kammer (11) des Wärmetauschers (1) anschließt. Die innere Kammer (11) ist im Durchmesser wesentlich kleiner als der Einlassbereich (10), da sie von einer äußeren Kammer (12) umgeben ist, die nach außen durch den Stahlmantel (13) des Wärmetauschers begrenzt ist, und nach innen durch eine Wand (14) von der inneren Kammer (11) getrennt wird. Diese Wand (14) wird isoliert ausgeführt. Die Rohre (6) durchdringen nach der Verteilkammer (5) zuerst den Einlassbereich (10), danach die äußere Kammer (12) und enden in der zweiten Verteilkammer (7).
Das Kühlmedium (3) strömt durch die innere Kammer (11) und trifft dabei auf eine dichtende Platte (16), die das Kühlmedium (3) von dem zu kühlenden Medium (2) in der Verteilkammer (7) trennt. An dieser dichtenden Platte (16) wird das Kühlmedium (3) in der Richtung umlenkt und dabei in die äußere Kammer (12) des Wärmetauschers (1) geleitet. In der äußeren Kammer (12) sorgen Bleche (17) für eine Umlenkung des Kühlmediums (3). Hier umströmt das Kühlmedium (3) die Rohre (6) des heißen Mediums im Gegenstrom. Das Kühlmedium (3) wird in seiner Strömungsrichtung dabei durch Bleche (17) so geleitet, dass es abwechselnd den zylindrischen Stahlmantel (13) und die trennende Wand (14) der inneren Kammer (11) anströmt. Durch den Stutzen (18) verläßt das Kühlmedium den Wärmetauscher (1).
Die Bleche (17) sorgen zusätzlich zur Umlenkung der Strömung für eine erhöhte Stabilität und Führung der Rohre (6).
Das Kühlmedium (3) strömt vom Einlassbereich (10) bis zur inneren Kammer (11) in gleicher Richtung mit dem eingeleiteten heißen Medium (2), das in diesem Bereich die Rohre (6) durchströmt. Mit Umlenkung des Kühlmediums durch die dichtende Platte (16) in die äußeren Kammer (12) des Wärmetauschers (1) strömt das Kühlmedium (3) gegen die Strömungsrichtung des heißen Mediums (2). Zum Ausgleich der Wärmedehnung ist am Auslassstutzen (8) ein Kompensator (19) angebracht. Damit kann die Dehnung des Stahlmantels (13) ausgeglichen werden. Die inneren Einbauten sind in schwimmender Ausführung gestaltet.
Der Wärmetauscher wird aus warmfestem Stahl gefertigt. In Abhängigkeit der Medien kann auch ein korrosionsbeständiger Werkstoff verwendet werden. Die Isolierung der Wand (14) besteht aus Keramik oder Mineralfasern, die mit einem Schutzmantel umgeben sind. Die halbkugelförmigen Kopfstücke (21, 15) des Wärmetauschers (1) sind mit Stampfmasse isoliert.
The heat exchanger (1) consists of a cylindrical steel jacket (13) with hemispherical head pieces (21, 15). Hot medium (2) flows through an inlet port (4) into a distribution chamber (5) and flows through a plurality of tubes (6), which are arranged parallel to the longitudinal axis of the heat exchanger (1), into a second one Distribution chamber (7) and is discharged there via the outlet port (8). In the illustration, only four tubes (6) are shown for clarity.
Cooling medium (3) is introduced through lateral nozzles (9) in the heat exchanger (1). The cooling medium (3) is introduced into an inlet region (10), which is adjoined by the inner chamber (11) of the heat exchanger (1). The inner chamber (11) is substantially smaller in diameter than the inlet portion (10) because it is surrounded by an outer chamber (12) bounded outwardly by the steel jacket (13) of the heat exchanger and inwardly by a wall (14) is separated from the inner chamber (11). This wall (14) is carried out in isolation. The tubes (6) penetrate after the distribution chamber (5) first the inlet region (10), then the outer chamber (12) and terminate in the second distribution chamber (7).
The cooling medium (3) flows through the inner chamber (11) and impinges on a sealing plate (16), which separates the cooling medium (3) from the medium to be cooled (2) in the distribution chamber (7). At this sealing plate (16), the cooling medium (3) is deflected in the direction and thereby guided into the outer chamber (12) of the heat exchanger (1). In the outer chamber (12) sheets (17) provide for a deflection of the cooling medium (3). Here, the cooling medium (3) flows around the tubes (6) of the hot medium in countercurrent. The cooling medium (3) is thereby guided in its flow direction by sheets (17) so that it alternately flows against the cylindrical steel jacket (13) and the separating wall (14) of the inner chamber (11). Through the nozzle (18), the cooling medium leaves the heat exchanger (1).
The sheets (17) in addition to the deflection of the flow for increased stability and guidance of the tubes (6).
The cooling medium (3) flows from the inlet region (10) to the inner chamber (11) in the same direction with the introduced hot medium (2), which flows through the tubes (6) in this area. With deflection of the cooling medium through the sealing plate (16) in the outer chamber (12) of the heat exchanger (1), the cooling medium (3) flows against the flow direction of the hot medium (2). To compensate for the thermal expansion, a compensator (19) is attached to the outlet port (8). Thus, the elongation of the steel shell (13) can be compensated. The internal fittings are designed in floating design.
The heat exchanger is made of heat-resistant steel. Depending on the media, a corrosion-resistant material can also be used. The insulation of the wall (14) consists of ceramic or mineral fibers, which are surrounded by a protective jacket. The hemispherical head pieces (21, 15) of the heat exchanger (1) are insulated with ramming mass.

Claims (8)

  1. A heat exchanger with a cylindrical steel jacket (13) and two hemispherical head pieces (21, 15), with a first distribution chamber (5), which is connected with a second distribution chamber (7) by means of tubes (22, 6) for the passage of hot medium (2), the tubes (6) extending through the inlet region (11) of the cooling medium (3) and through an outer chamber (12), characterized in that lateral ports (9) introduce the cooling medium (3) into an inlet region (10) which is adjoined by an inner chamber (11) defined by a sealing plate (16) for flow deflection of the cooling medium (3), that the sealing plate (16) guides the cooling medium (3) from the inner chamber (11) into an outer chamber (12), the outer chamber (12) enclosing the inner chamber (11), and this outer chamber (11) is provided with ports (18) for discharging the cooling medium (3).
  2. The heat exchanger as claimed in claim 1, characterized in that the separation of the inner chamber (11) from the outer chamber (12) is effected by a heat-insulating wall (14).
  3. The heat exchanger as claimed in claim 1, characterized in that in the outer chamber (12) the flow of the cooling medium (3) is deflected by sheets (17).
  4. The heat exchanger as claimed in claim 1, characterized in that the inlet region (10) is insulated against the distribution chamber (5) by a heat-insulating mass (20).
  5. The heat exchanger as claimed in claim 4, characterized in that the heat-insulating mass (20) is catalytically active.
  6. The heat exchanger as claimed in claim 4, characterized in that in the vicinity of the heat-insulating mass (20) spigots (22) are mounted, which receive the tubes (6).
  7. The heat exchanger as claimed in claim 1, characterized in that the heat exchanger is fabricated in a floating head design.
  8. The heat exchanger as claimed in claim 1, characterized in that the outlet port (8) of the heat exchanger has a compensator (19).
EP03009456A 2002-05-29 2003-04-25 Heat exchanger Expired - Lifetime EP1367351B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10223788A DE10223788C1 (en) 2002-05-29 2002-05-29 Heat exchanger for high temperature gases has lateral stub pipes to guide coolant to inlet connected to inner chamber
DE10223788 2002-05-29

Publications (2)

Publication Number Publication Date
EP1367351A1 EP1367351A1 (en) 2003-12-03
EP1367351B1 true EP1367351B1 (en) 2006-11-15

Family

ID=7714589

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03009456A Expired - Lifetime EP1367351B1 (en) 2002-05-29 2003-04-25 Heat exchanger

Country Status (5)

Country Link
US (1) US7131489B2 (en)
EP (1) EP1367351B1 (en)
KR (1) KR100961597B1 (en)
AT (1) ATE345481T1 (en)
DE (2) DE10223788C1 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1825206A1 (en) * 2004-11-29 2007-08-29 AB K A Ekström&Son A pre-heater for an apparatus for the production of carbon black
CA2703317A1 (en) * 2010-05-06 2011-11-06 Aker Solutions Canada Inc. Shell and tube heat exchangers
PL2766685T3 (en) * 2011-10-10 2018-03-30 Intellihot, Inc. Combined gas-water tube hybrid heat exchanger
JP6092650B2 (en) * 2013-02-18 2017-03-08 三菱日立パワーシステムズ株式会社 Heat exchanger and gas turbine plant equipped with the same
DE102013003414B4 (en) 2013-02-28 2019-10-31 Webasto SE Heat exchanger
US10378826B2 (en) * 2016-10-14 2019-08-13 Colmac Coil Manufacturing, Inc. Heat Exchanger
DK3406999T3 (en) 2017-05-26 2021-02-01 Alfa Laval Olmi S P A SMOKE PART HEAT EXCHANGER
CN108195211B (en) * 2017-12-27 2019-11-05 浙江赫德科技有限公司 A kind of chemical industry, which is used, is convenient for cleaning-type tubulation heat-exchanger rig
CN108775825B (en) * 2018-05-24 2021-05-04 重庆美的通用制冷设备有限公司 Heat exchange assembly and refrigerating system with same
CH716236A2 (en) * 2019-05-28 2020-11-30 Streiff Felix Tube bundle heat exchanger with built-in elements made of deflection surfaces and guide bars.

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT278877B (en) * 1966-06-27 1970-02-10 Waagner Biro Ag Shell and tube heat exchanger
SU423371A1 (en) * 1969-04-04 1981-03-30 Zemlyanoj I S Case-tube condenser
SU494587A2 (en) * 1973-05-04 1975-12-05 Предприятие П/Я Р-6956 Thermally coil-type apparatus
US4204573A (en) * 1977-05-09 1980-05-27 Pvi Industries, Inc. Heat exchanger with concentric flow tubes
JPS55112992A (en) 1979-02-23 1980-09-01 Kawasaki Steel Corp Recuperator of heating furnace, etc.
JPS5677692A (en) * 1979-11-27 1981-06-26 Toyo Eng Corp Heat exchanger
JPS5677690A (en) * 1979-11-30 1981-06-26 Mitsubishi Heavy Ind Ltd Heat exchanger
DE3421746C2 (en) * 1984-06-12 1994-06-09 Apparatebau Wiesloch Gmbh Heat exchanger
JPS61256194A (en) 1985-05-07 1986-11-13 Asahi Glass Co Ltd Joint structure of ceramic tube
DE3643303A1 (en) * 1986-12-18 1988-06-30 Uhde Gmbh DEVICE FOR HEAT EXCHANGE, ESPECIALLY BETWEEN SYNTHESIS GAS AND BOILER FEED WATER
EP0864830B1 (en) 1997-03-14 2001-10-24 Borsig GmbH Heat exchanger with U-shaped tubes

Also Published As

Publication number Publication date
ATE345481T1 (en) 2006-12-15
KR100961597B1 (en) 2010-06-04
US7131489B2 (en) 2006-11-07
US20030226654A1 (en) 2003-12-11
DE50305662D1 (en) 2006-12-28
DE10223788C1 (en) 2003-06-18
KR20030093098A (en) 2003-12-06
EP1367351A1 (en) 2003-12-03

Similar Documents

Publication Publication Date Title
EP1939412B1 (en) Heat exchanger for cooling fission gas
EP1367351B1 (en) Heat exchanger
EP2881692B1 (en) Gas turbine cooling air cooler, gas turbine or gas and steam turbine power station and method for cooling cooling air
DE2457873A1 (en) HEAT EXCHANGER
DE2022867C3 (en) Device for length compensation in pipelines or the like.
DE2007528A1 (en) Method and device for gas management in high pressure heat exchangers
EP2278248B1 (en) Heat exchanger for cooling fission gas
EP0171583A2 (en) Tubular reaction system for a tubular cracking furnace
EP3159646A1 (en) Heat exchanger
DE3049409C2 (en) Equipment for steam generation in ammonia synthesis plants
DE2149536A1 (en) Method for heating a heat transfer liquid
DE3640970A1 (en) TUBE BUNDLE HEAT EXCHANGER
DE3714671C2 (en)
DE2317893A1 (en) DEVICE FOR CARRYING OUT CATALYTIC ENDOTHERMAL REACTIONS
DE3136860C2 (en) Cooling heat exchanger
EP0616679A1 (en) Cooling-air cooling unit for gas turbines.
EP3032209A1 (en) Quench cooling system
DE3000541C2 (en) Arrangement for supplying fluidizing gas into the chamber of a fluidized bed apparatus containing the fluidized bed
DE3523610A1 (en) Cooled screen as internal lining for the reaction spaces of furnace installations
DE2224899A1 (en) Heat-exchanger - for steam raising in pipes surrounding hot gas pipes fed from an inlet chamber
DE19959467B4 (en) Double tube safety heat exchangers
EP0070371B1 (en) Heat exchanger
DE2725347B2 (en) Heat exchange processes, in particular for cooling fission gases, and heat exchangers for carrying out the process
DE1009647B (en) Tube heat exchanger
EP4122594B1 (en) Heat exchanger for cooling cracked gas

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

17P Request for examination filed

Effective date: 20040603

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061115

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061115

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061115

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061115

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061115

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061115

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061115

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 50305662

Country of ref document: DE

Date of ref document: 20061228

Kind code of ref document: P

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070215

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070215

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070215

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070226

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070416

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
ET Fr: translation filed
GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

Effective date: 20061115

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20070817

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061115

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

BERE Be: lapsed

Owner name: LURGI A.G.

Effective date: 20070430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070430

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070216

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070425

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061115

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061115

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070425

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070516

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061115

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 50305662

Country of ref document: DE

Owner name: AIR LIQUIDE GLOBAL E&C SOLUTIONS GERMANY GMBH, DE

Free format text: FORMER OWNER: LURGI GMBH, 60439 FRANKFURT, DE

Effective date: 20140505

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20150421

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20150421

Year of fee payment: 13

Ref country code: IT

Payment date: 20150428

Year of fee payment: 13

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50305662

Country of ref document: DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20161230

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160502

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160425