EP1364489A2 - Power margin control - Google Patents

Power margin control

Info

Publication number
EP1364489A2
EP1364489A2 EP01963668A EP01963668A EP1364489A2 EP 1364489 A2 EP1364489 A2 EP 1364489A2 EP 01963668 A EP01963668 A EP 01963668A EP 01963668 A EP01963668 A EP 01963668A EP 1364489 A2 EP1364489 A2 EP 1364489A2
Authority
EP
European Patent Office
Prior art keywords
trx
peripheral
power
ack
esl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP01963668A
Other languages
German (de)
French (fr)
Inventor
Björn Nilsson
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pricer AB
Original Assignee
Pricer AB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from SE0003202A external-priority patent/SE0003202D0/en
Application filed by Pricer AB filed Critical Pricer AB
Publication of EP1364489A2 publication Critical patent/EP1364489A2/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/36TPC using constraints in the total amount of available transmission power with a discrete range or set of values, e.g. step size, ramping or offsets
    • H04W52/367Power values between minimum and maximum limits, e.g. dynamic range
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/06Testing, supervising or monitoring using simulated traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/32TPC of broadcast or control channels
    • H04W52/325Power control of control or pilot channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/38TPC being performed in particular situations
    • H04W52/48TPC being performed in particular situations during retransmission after error or non-acknowledgment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/10Small scale networks; Flat hierarchical networks
    • H04W84/12WLAN [Wireless Local Area Networks]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices

Definitions

  • This invention relates generally to wireless communication systems, and more specifically to wireless Local Area Networks (LAN) and peripherals used for Electronic Shelf Labelling (ESL) in retail environments, and to devices and methods for checking signal power margins is such systems.
  • LAN Local Area Networks
  • ESL Electronic Shelf Labelling
  • Wireless systems for example, systems for electronic pricing are rapidly gaining popularity.
  • Several hundred supermarkets are using such systems today.
  • These systems all have a wireless communication network, which consists of a wireless infrastructure and peripherals (e.g. Electronic Shelf Labels, ESLs) connected to the infrastructure.
  • ESLs Electronic Shelf Labels
  • peripherals e.g. Electronic Shelf Labels, ESLs
  • ESLs wireless peripherals
  • the disadvantage with the first method is that it just gives the answer "GO/NO GO", where "GO” means that communication was established and "NO GO” means that no communication was established. No information about the signal-strength margin is obtained.
  • a signal-strength margin is needed in order to be able to handle signal-strength variations due to rearrangements of, and ageing of, components, etc. This means, for example, that a system that shows 100 % communication at a specific time, for example, at the customer acceptance test for such a system, may, after a rearrangement or manipulation of the installation environment, fail to communicate with some peripherals.
  • the disadvantages with the second method are that this method is very time-consuming, and that it does not take into consideration the different variations (e.g. due to component variations and manufacturing tolerances) in performance of the units in the communication infrastructure and the peripherals.
  • TRX transceiver units
  • the invention is based on the insight that the most cost-efficient way of designing such systems is to keep the peripherals as simple as possible, and to solve any technical problems in the (TRX) instead.
  • power-levels and detection-levels can be manipulated in the TRX, in order to be able to produce a simple peripheral unit.
  • other parameters such as, the detection-level in the peripheral and/or the output power of the peripheral.
  • a method of measuring the signal-strength and reporting this back to the communication infrastructure system, and then calculating the power margin there is, also within the scope of the present invention.
  • signal power margin we mean the ratio between the actual signal power and the minimum signal power that is required to be able to transmit the signal from the transmitter part to the receiver part of a communication link.
  • the signal power margin is normally expressed in percentage of the minimum required signal.
  • the present invention therefore comprises measuring the power margin (i.e. the robustness) in wireless systems, by the manipulation of signal-levels and detection levels, and in this way emulating a real-life situation with ageing of components and rearranging/relocating peripherals/communication infrastructure units etc., in such a system.
  • the power margin i.e. the robustness
  • the inventive features of the method according to the present invention are set forth in claim 1.
  • the inventive method of testing signal power margin in a wireless local area network comprising transceivers and peripherals, comprises setting transmission and/or receiving parameters (herein collectively referred to as "transmission power parameters") in at least one transceiver unit in said local area network such that a situation is simulated that corresponds to a system where the power margin is reduced; sending a message to said peripheral from said transceiver; and registering whether or not an acknowledgement from said peripheral is received by the transceiver unit.
  • Figure 1 is a schematic view of a wireless communication system, with communication infrastructure units, and wireless communicating peripherals, having a power margin test system in accordance with the present invention.
  • Figure 2 is a schematic illustration an embodiment of a power margin test system in accordance with the present invention.
  • Figure 3 is a schematic illustration of a further embodiment
  • FIG. 4 illustrates an Infrastructure Test Tool (ISTT).
  • transmission power parameter shall mean any parameter in the system that can be used to control the level of power in transmitted signals, the signal detection threshold level in a receiver, the signal power level in acknowledgment messages from peripherals, or any other parameter that can be used to adjust the relative levels of transmitted and received signal power (or strength) in the system units.
  • TRX is a part of a wireless communication infrastructure 1 and is able to receive and transmit wireless data (shown by zigzag arrows). It is controlled by a communication controller CC. TRX could use infrared signals and/or radio frequency signals or other techniques for the physical link in the wireless communication system. The signal- power P for the transmitting part TX TRX and/or the receiver sensitivity D (detection level) in the receiver part RX TRX can be adjusted.
  • A, B, C, ... , N are peripherals in the wireless communication infrastructure which TRX is intended to communicate with. These peripherals could be, for example, some or all of the electronic shelf labels, ESL's A-N in shop. Peripherals A-N, each have at least a receiver unit RX n , but preferably also a transmitting unit TX n (shown in dotted lines).
  • a reference transmission by TRX is made, with a nominal setting of transmission power (Pnominai) and a nominal setting of detection threshold level (DnominaO- Then a transmission is made to each of the peripherals A, B, C,...N in turn and any replies received from the peripherals A, B, C,...N are recorded. If a reply is received from every peripheral, then the transmission power is sufficient to reach every peripheral A, B, C 5 ...N but the signal-strength power margin in the wireless communication infrastructure 1 is unknown. In the next step, the power-level is reduced to a predefined value (P reduced ) corresponding to the desired power margin in the system.
  • P reduced a predefined value
  • the transmitter power is set to P nom i na i • Then the system transmits a test message to peripheral A. If the message is correctly received, A sends back an acknowledgement (ACK). If there is no ACK within a set period of time, a no acknowledgement (NO ACK) is recorded for this peripheral. Alternatively, a new test message is sent, and an ACK is waited for. This procedure could be repeated a desired number of times. When ACK has been verified or a 0 NO ACK has been recorded, the system goes on to perform the same procedure for all installed peripherals.
  • ACK acknowledgement
  • NO ACK no acknowledgement
  • This process can be schematically illustrated with the sequence of steps below, which represents a successful testing with 100% functionality, i.e. the system function is verified in 5 the nominal transmission power mode.
  • this sequence gives information about functional units where the system is able to make a wireless connection.
  • a new transmitter power should be set.
  • the output power in the power margin test should be reduced by 50 %.
  • the power margin in this case is > Pnominai/ P r educ ed -
  • the transmission power parameter that is manipulated is the transmitter power.
  • the detection threshold for the ACK signal in the TRX is increased, thereby simulating a weaker transmitted ACK signal. This can be illustrated with the following sequence:
  • the transmission power parameter is the detection threshold for the ACK signal.
  • the ESL will contain more "intelligence". Namely, there will be means for reducing the power of the ACK signal to be transmitted to the TRX, in response to a REDUCE POWER message from the TRX. In this way, a factual reduction of the performance of the ESL can be simulated. Of course there will be means for resetting the power to nominal after the test has been performed. This could be done by a further RESET POWER message from the TRX, or simply a reset after a predetermined time delay. In this case the transmission power parameter is the signal power in the acknowledgement signal.
  • an infrastructure test tool (ISTT). This is a tool for testing of infrastructure installations comprising a number of units (such as ESL's) communicating with a base station.
  • the main purpose with ISTT is to communicate with all units in the infrastructure and to verify the communication link performance of an installation.
  • the test tool can be connected to the infrastructure in a number of possible ways. One example is shown in Fig. 4.
  • Communication link test is a test method to investigate the coverage of the down and up link in a store environment.
  • the test tool sends a frame to a specific test PL which will send an acknowledgement (ACK) pulse.
  • ACK or no ACK is detected by all Transceivers (TRX's).
  • TRX's Transceivers
  • the test tool evaluates the ACK information and sends a new frame down to the test PL. All frames sent to the test PL updates the display with the following information:
  • a counter that shows how many ACKs that was received.
  • TRX Transciever
  • the ACK counter (item 1.) counts from 0 to 99 and starts over on 0 again.
  • the counter shows if there exists a valid up link signal (ACK).
  • the counter stops to count on the test PL when the up link gets below the minimum requirements for the TRX.
  • the Down link toggler (item 2.) is toggling as long as the PL receives frames. When downlink gets below the minimum requirements for the PL, the toggling stops.
  • Item 3. shows which TRX that received the strongest ACK when last frame was sent. If more than one TRX have the same strength, the TRX with the highest number will be displayed.
  • Item 4. shows how many TRX that received an ACK for last frame. This value is used for detecting whether the coverage is "too good” (i.e. to small TRX grid).
  • the Communication link test can record data to a file during the test.
  • the test tool creates a log file.
  • the test tool has to ask the recording TRX for the ACK levels after each transmitted frame.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Small-Scale Networks (AREA)
  • Maintenance And Management Of Digital Transmission (AREA)
  • Monitoring And Testing Of Transmission In General (AREA)

Abstract

A method of testing signal power margin in a wireless local area network (LAN). A peripheral unit is capable of responding to a message from said transceiver unit (TRX) by sending an acknowledgement signal (ACK) back to said transceiver unit (TRX). A situation in the network where the acknowledgement signal (ACK) power is reduced is simulated. Then, a message to said peripheral (ESL) is sent from said transceiver (TRX). It is registered whether or not an acknowledgement (ACK) from said peripheral (ESL) is received by the transceiver unit (TRX). A signal power margin test system for a local area network (LAN). A peripheral unit is capable of responding to a message from a transceiver unit (TRX) by sending an acknowledgement signal (ACK) back to said transceiver unit (TRX). The system comprises a control unit programmable to switch the relative signal power levels between a nominal power situation, and a simulated situation that corresponds to a system where the power margin is reduced.

Description

POWER MARGIN CONTROL
Field of the Invention.
This invention relates generally to wireless communication systems, and more specifically to wireless Local Area Networks (LAN) and peripherals used for Electronic Shelf Labelling (ESL) in retail environments, and to devices and methods for checking signal power margins is such systems.
Description of related art.
Wireless systems, for example, systems for electronic pricing are rapidly gaining popularity. Several hundred supermarkets are using such systems today. These systems all have a wireless communication network, which consists of a wireless infrastructure and peripherals (e.g. Electronic Shelf Labels, ESLs) connected to the infrastructure. Often several tens of thousands of wireless peripherals (e.g. ESLs) are used in these systems and this puts extreme requirements on connectivity. The extreme cost-pressure on such systems, and also the power and size constraints on the peripherals, set high requirements for power-efficient installations. It is equally important not to overinstall (e.g. have transmitters that are too powerful and therefore result in an increased initial cost) the systems in order to secure a good communication-coverage, as it is to avoid under-dimensioning the infrastructure (e.g. have transmitters which are too weak, which results in a signal-strength which does not reliably reach all the devices which the transmitter is intended to communicate with), which leads to malfunctions and increased maintenance costs. Tailoring or adjustments to peripherals or the communication infrastructure after a system has been placed in operation to correct malfunctions due to low signal-strengths is undesirable. This is due to cost and up-time reasons because if part of this system is down then some peripherals could, for example, have uncorrected, out-of-date pricing for certain items, which naturally is unacceptable. Restructuring of the environment where the system is installed, for example a retail store, due to seasonal-campaigns or other reasons can also stress the conditions for establishing a wireless link between the communication infrastructure and the peripherals. There are a few different ways known today for testing the power-levels in such systems. The most straightforward ways are to:
1) perform a functional communication-test to each peripheral and record the results; 2) use a signal-strength meter at the peripheral positions and communication infrastructure positions, to record the signal-strength levels.
The disadvantage with the first method is that it just gives the answer "GO/NO GO", where "GO" means that communication was established and "NO GO" means that no communication was established. No information about the signal-strength margin is obtained. A signal-strength margin is needed in order to be able to handle signal-strength variations due to rearrangements of, and ageing of, components, etc. This means, for example, that a system that shows 100 % communication at a specific time, for example, at the customer acceptance test for such a system, may, after a rearrangement or manipulation of the installation environment, fail to communicate with some peripherals.
The disadvantages with the second method are that this method is very time-consuming, and that it does not take into consideration the different variations (e.g. due to component variations and manufacturing tolerances) in performance of the units in the communication infrastructure and the peripherals.
In systems for electronic shelf labelling, a few transceiver units (TRX) connected in the wireless communication infrastructure communicate with perhaps more than 10 000 label units.
Summary of the Invention
Therefore, the invention is based on the insight that the most cost-efficient way of designing such systems is to keep the peripherals as simple as possible, and to solve any technical problems in the (TRX) instead. In devices and systems in accordance with the present invention, power-levels and detection-levels can be manipulated in the TRX, in order to be able to produce a simple peripheral unit. However, there are a few different additional possibilities for realising the objective of the invention, namely by adjusting other parameters, such as, the detection-level in the peripheral and/or the output power of the peripheral. A method of measuring the signal-strength and reporting this back to the communication infrastructure system, and then calculating the power margin there is, also within the scope of the present invention. By the expression "signal power margin" we mean the ratio between the actual signal power and the minimum signal power that is required to be able to transmit the signal from the transmitter part to the receiver part of a communication link. The signal power margin is normally expressed in percentage of the minimum required signal.
For example if the minimum required signal is 100 and the actual signal is 120 the power margin is [120/100=1,2] i.e. 20%.
The present invention therefore comprises measuring the power margin (i.e. the robustness) in wireless systems, by the manipulation of signal-levels and detection levels, and in this way emulating a real-life situation with ageing of components and rearranging/relocating peripherals/communication infrastructure units etc., in such a system.
The inventive features of the method according to the present invention are set forth in claim 1. The inventive method of testing signal power margin in a wireless local area network comprising transceivers and peripherals, comprises setting transmission and/or receiving parameters (herein collectively referred to as "transmission power parameters") in at least one transceiver unit in said local area network such that a situation is simulated that corresponds to a system where the power margin is reduced; sending a message to said peripheral from said transceiver; and registering whether or not an acknowledgement from said peripheral is received by the transceiver unit.
In a further aspect of the present invention there is provided a system for ensuring adequate robustness in a wireless system after the installation of such a system, which system does not suffer from the problems associated with prior art systems. A system according to the invention is defined in claim 11. Brief description of the drawings
The present invention, both as to its organisation and way of operation, together with further objects and advantages, may best be understood by reference to the following non-limiting descriptions of embodiments of the present invention, taken in connection with the accompanying drawings, of which:
Figure 1 is a schematic view of a wireless communication system, with communication infrastructure units, and wireless communicating peripherals, having a power margin test system in accordance with the present invention.
Figure 2 is a schematic illustration an embodiment of a power margin test system in accordance with the present invention;
Figure 3 is a schematic illustration of a further embodiment;
Figure 4 illustrates an Infrastructure Test Tool (ISTT); and
Detailed description of preferred embodiments
The following description is provided to enable any person skilled in the art to make and use the invention and sets forth the best modes contemplated by the inventor of carrying out his invention. Various modifications, however, will remain readily apparent to those skilled in the art, since the generic principles of the present invention have been defined herein especially to provide methods for testing power margins and ensuring suitable power margins in any system incorporating wireless communication.
As used herein the expression "transmission power parameter" shall mean any parameter in the system that can be used to control the level of power in transmitted signals, the signal detection threshold level in a receiver, the signal power level in acknowledgment messages from peripherals, or any other parameter that can be used to adjust the relative levels of transmitted and received signal power (or strength) in the system units.
The present invention can best be understood by first considering Fig. 1, and the related sequence description. TRX is a part of a wireless communication infrastructure 1 and is able to receive and transmit wireless data (shown by zigzag arrows). It is controlled by a communication controller CC. TRX could use infrared signals and/or radio frequency signals or other techniques for the physical link in the wireless communication system. The signal- power P for the transmitting part TXTRX and/or the receiver sensitivity D (detection level) in the receiver part RXTRX can be adjusted. A, B, C, ... , N are peripherals in the wireless communication infrastructure which TRX is intended to communicate with. These peripherals could be, for example, some or all of the electronic shelf labels, ESL's A-N in shop. Peripherals A-N, each have at least a receiver unit RXn, but preferably also a transmitting unit TXn (shown in dotted lines).
When performing the power margin-test, first a reference transmission by TRX is made, with a nominal setting of transmission power (Pnominai) and a nominal setting of detection threshold level (DnominaO- Then a transmission is made to each of the peripherals A, B, C,...N in turn and any replies received from the peripherals A, B, C,...N are recorded. If a reply is received from every peripheral, then the transmission power is sufficient to reach every peripheral A, B, C5...N but the signal-strength power margin in the wireless communication infrastructure 1 is unknown. In the next step, the power-level is reduced to a predefined value (Preduced) corresponding to the desired power margin in the system. The transmissions to all of the peripherals A-N are repeated, but now with this lower power level Preduced, and the results of the answers from the peripherals for this transmission are recorded. If all the addressed peripherals replied then the power margin in the down-link is greater than or equal to the ratio P nominal/P reduced.
If one or more addressed peripheral did not reply then the power margin is less then the P nominal/P reduced. The system will create a list of those peripherals that failed, and these can then be replaced by new ones. The method described above constitutes a power margin test for the down-link, but could equally well be conducted on the up-link, by following the steps of:
1) make reference transmissions from all the peripherals in turn, with the TRX detection level j set to Unominalj
2) if all the reference transmissions are detected by TRX then increase the detection level in TRX by a predefined value to Dincreased which corresponds to the power margin that is wanted in the system. 0
Sequence description
1. Power margin reference test;
5 First the transmitter power is set to Pnominai • Then the system transmits a test message to peripheral A. If the message is correctly received, A sends back an acknowledgement (ACK). If there is no ACK within a set period of time, a no acknowledgement (NO ACK) is recorded for this peripheral. Alternatively, a new test message is sent, and an ACK is waited for. This procedure could be repeated a desired number of times. When ACK has been verified or a 0 NO ACK has been recorded, the system goes on to perform the same procedure for all installed peripherals.
This process can be schematically illustrated with the sequence of steps below, which represents a successful testing with 100% functionality, i.e. the system function is verified in 5 the nominal transmission power mode.
1. Set transmitter power = > Pnominai
2. TRX => A
3. A => TRX ; ACK received 0 4. TRX => B
5. B=> TRX; ACK received 6. TRX => C
7. C = TRX; ACK received
8. And so on....until, and including N
Thus, this sequence gives information about functional units where the system is able to make a wireless connection. When the actual power margin test is performed, a new transmitter power should be set.
As an example, if one should like to have 3 dB power margin, the output power in the power margin test should be reduced by 50 %.
2. Power margin test
The same procedure as above is run but with the power reduced so as to simulate a situation where the peripherals are not 100%) functional (relative the nominal).
1. Set transmitter power =/Preduced
2. TRX =» A
3. A => TRX ; ACK received 4. TRX => B
5. B=> TRX; ACK received
6. TRX => C
7. C = TRX; ACK received
8. And so on....until and including N
If the results from the second transmission are identical with the results from the first transmission, the power margin in this case is > Pnominai/ Preduced- Thus, in this case the transmission power parameter that is manipulated is the transmitter power.
The above procedure is based on manipulation of the down link power. However, it is equally possible to use the up link for the test. In a first embodiment of this variant, schematically illustrated in Fig. 2, the detection threshold for the ACK signal in the TRX is increased, thereby simulating a weaker transmitted ACK signal. This can be illustrated with the following sequence:
Set detection threshold in TRX = Tjncreased
TRX => A
A => TRX ; ACK detected
TRX => B
B=> TRX; ACK detected
TRX => C
C = TRX; ACK detected
And so on....until and including N
Thus, in this case the transmission power parameter is the detection threshold for the ACK signal.
In an another embodiment, schematically illustrated in Fig. 3, the ESL will contain more "intelligence". Namely, there will be means for reducing the power of the ACK signal to be transmitted to the TRX, in response to a REDUCE POWER message from the TRX. In this way, a factual reduction of the performance of the ESL can be simulated. Of course there will be means for resetting the power to nominal after the test has been performed. This could be done by a further RESET POWER message from the TRX, or simply a reset after a predetermined time delay. In this case the transmission power parameter is the signal power in the acknowledgement signal.
In a further embodiment of the invention there is provided an infrastructure test tool (ISTT). This is a tool for testing of infrastructure installations comprising a number of units (such as ESL's) communicating with a base station.
The main purpose with ISTT is to communicate with all units in the infrastructure and to verify the communication link performance of an installation. The test tool can be connected to the infrastructure in a number of possible ways. One example is shown in Fig. 4.
Communication link Test Function
Communication link test is a test method to investigate the coverage of the down and up link in a store environment. The test tool sends a frame to a specific test PL which will send an acknowledgement (ACK) pulse. ACK or no ACK is detected by all Transceivers (TRX's). The test tool evaluates the ACK information and sends a new frame down to the test PL. All frames sent to the test PL updates the display with the following information:
1. A counter that shows how many ACKs that was received.
2. A symbol that toggles between two states. Toggles for each frame that was sent.
3. Which Transciever (TRX) that receives the strongest ACK. 4. How many TRX'es that are receiving ACK.
The ACK counter (item 1.) counts from 0 to 99 and starts over on 0 again. The counter shows if there exists a valid up link signal (ACK). The counter stops to count on the test PL when the up link gets below the minimum requirements for the TRX.
The Down link toggler (item 2.) is toggling as long as the PL receives frames. When downlink gets below the minimum requirements for the PL, the toggling stops.
Item 3. shows which TRX that received the strongest ACK when last frame was sent. If more than one TRX have the same strength, the TRX with the highest number will be displayed. Item 4. shows how many TRX that received an ACK for last frame. This value is used for detecting whether the coverage is "too good" (i.e. to small TRX grid).
There is an option 'Set Down Link Level' and an option 'Set Up Link Level'. With these options the TRX down link output and up link sensitivity can be reduced, i. e. making a poorer link when running the Communication link Test. There is an option 'Find Link Margins'. When using this function the PL shall be in a fixed position and ISTT searches for the lowest down link output and lowest up link sensitivity in TRX with link established to the PL. When these levels are found the result is presented as link level settings on the PC monitor. (The function 'Find Link Margins' do not use the display of the PL.)
The Communication link test can record data to a file during the test. The test tool creates a log file. When data is collected to the log file, the test tool has to ask the recording TRX for the ACK levels after each transmitted frame.
Although the invention has been described with reference to an electronic shelf labelling system, it should be apparent to the skilled man that it can be implemented for any wireless communication system, where it is important that the signal-strength power margin be controlled.

Claims

CLAIMS:
1. A method of testing signal power margin in a wireless local area network (LAN) for at least one transceiver unit (TRX), and at least one peripheral unit (ESL) in said local area network (LAN), wherein each at least one peripheral unit is capable of responding to a message from said transceiver unit (TRX) by sending an acknowledgement signal (ACK) back to said transceiver unit (TRX), and wherein the system function at nominal signal power has been verified, the method comprising:
simulating a situation in the network where the acknowledgement signal (ACK) power is reduced, by manipulating a transmission power parameter in the system;
sending a message to said peripheral (ESL) from said transceiver (TRX); and
registering whether or not an acknowledgement (ACK) from said peripheral
(ESL) is received by the transceiver unit (TRX).
2. The method as claimed in claim 1, wherein the simulation is performed by manipulating the transmission power and/or the signal detection threshold in the transceiver unit(s) (TRX), and/or in the peripheral(s) (ESL).
3. The method as claimed in claim 1 , wherein the transmission power in the transceiver (TRX) is set such that the message is sent at lower power than nominal.
4. The method as claimed in claim 1 , wherein the detection threshold level in said transceiver unit (TRX) is increased.
5. The method as claimed in claim 1, wherein the message contains an instruction to the peripheral unit (ESL) to reduce its signal power for the acknowledgement (ACK).
6. The method as claimed in claim 5, wherein the signal power for acknowledgment (ACK) is reset.
7. The method as claimed in claim 6, wherein said resetting is made by sending a RESET POWER instruction from the transceiver (TRX) to the peripheral (ESL).
8. The method as claimed in claim 6, wherein said resetting is made automatically after a predetermined time delay.
9. The method as claimed in claim 1 , comprising increasing the detection threshold of the transceiver (TRX) for detecting an acknowledgement signal (ACK) from the peripheral (ESL).
10. The method as claimed in claim 1, wherein the local area network (LAN) is an electronic shelf labelling system for retail environments, and wherein the peripheral units are electronic shelf labels (ESL).
11. A signal power margin test system for a local area network (LAN), comprising at least one transceiver unit (TRX) and at least one peripheral unit (ESL), wherein each at least one peripheral unit is capable of responding to a message from said transceiver unit
(TRX) by sending an acknowledgement signal (ACK) back to said transceiver unit (TRX), the test system comprising
a control unit programmable to switch the relative signal power levels between a nominal power situation, and a simulated situation that corresponds to a system where the power margin is reduced; and
a recording unit (CC) capable of registering whether or not an acknowledgement (ACK) from said peripheral (ESL) is received by the transceiver unit (TRX).
12. The system as claimed in claim 11 , wherein the local area network (LAN) is an electronic shelf labelling system for retail environments, and wherein the peripheral units are electronic shelf labels (ESL).
13. The system as claimed in claim 11 , wherein each peripheral unit (ESL) has a unique identifier associated therewith.
14. The system as claimed in claim 11 , comprising an error list generator for the presentation of peripheral units that failed in the power margin test.
EP01963668A 2000-09-08 2001-09-06 Power margin control Withdrawn EP1364489A2 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
SE0003202 2000-09-08
SE0003202A SE0003202D0 (en) 2000-09-08 2000-09-08 Power margin control
US24643300P 2000-11-03 2000-11-03
US246433P 2000-11-03
PCT/SE2001/001903 WO2002021704A2 (en) 2000-09-08 2001-09-06 Power margin control

Publications (1)

Publication Number Publication Date
EP1364489A2 true EP1364489A2 (en) 2003-11-26

Family

ID=26655228

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01963668A Withdrawn EP1364489A2 (en) 2000-09-08 2001-09-06 Power margin control

Country Status (4)

Country Link
EP (1) EP1364489A2 (en)
JP (1) JP2004508764A (en)
AU (1) AU2001284597A1 (en)
WO (1) WO2002021704A2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8879445B2 (en) 2011-10-26 2014-11-04 Qualcomm Incorporated Mitigating impact of power imbalance on remote data rate in wireless local area network
CN112492563A (en) * 2020-11-17 2021-03-12 努比亚技术有限公司 Electronic price tag control method, electronic price tag, and computer-readable storage medium

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60165129A (en) * 1984-02-07 1985-08-28 Toyo Commun Equip Co Ltd Extension connecting system controlling communication possible range
PL307357A1 (en) * 1993-06-07 1995-05-15 Radio Local Area Networks Network link controller
SE502430C2 (en) * 1994-02-23 1995-10-16 Pricer Norden Ab Method and apparatus for acknowledging receipt of information sent to an addressed electronic price tag label.
JPH10107800A (en) * 1996-09-26 1998-04-24 Tec Corp Radio data communication system
US6028851A (en) * 1997-09-26 2000-02-22 Telefonaktiebolaget L M Ericsson (Publ) System and method for mobile assisted admission control
EP0913957A1 (en) * 1997-10-31 1999-05-06 Lucent Technologies Inc. Power control for mobile wireless communication system
US5991618A (en) * 1998-05-29 1999-11-23 Motorola, Inc. Method and system for estimating a communication mode quality in a wireless communications system
US6438116B1 (en) * 1998-07-16 2002-08-20 Telefonaktiebolaget L M Ericsson (Publ) Adaptive power margin for hard handoffs in code division multiple access based systems
EP1050977B1 (en) * 1999-05-06 2012-11-07 Alcatel Lucent Power control system using acknowledgements

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO0221704A2 *

Also Published As

Publication number Publication date
WO2002021704A3 (en) 2003-09-12
AU2001284597A1 (en) 2002-03-22
WO2002021704A2 (en) 2002-03-14
JP2004508764A (en) 2004-03-18

Similar Documents

Publication Publication Date Title
CA2164285C (en) Apparatus for improving the signal to noise ratio in wireless communication systems through message pooling and method of using the same
CN1977479B (en) Method for clear channel assessment optimization in a wireless local area network
EP2874429B1 (en) Placed wireless instruments for predicting quality of service
EP2025110B1 (en) Method and apparatus for controlling energy consumption of sensor network nodes
EP3657702A1 (en) Systems and methods for mobility testing of mu-mimo
CA2758776C (en) Communications effects in network simulations
US20030169700A1 (en) Power margin control
CN103945409A (en) Wireless link quality detection method and device
EP3419325B1 (en) Distance measurement method using wireless fidelity (wi-fi), related device, and system
US20070081503A1 (en) System and method for evaluating operation of a wireless device in a wireless network
EP1364489A2 (en) Power margin control
CN101119141B (en) Method for setting controller local network identification of antennafier unit and macro base station
EP2053764B1 (en) Method and device for transmitter calibration
CN101427504B (en) Method and device for transmitting data to several receivers using arq
CN103002514B (en) The method and apparatus of transmission information
CN1871793B (en) Method for operating a transmitting/receiving station of a wireless communication network in antenna diversity mode
CN101605389A (en) Actual energy model in the wireless sensor network and power optimization control method
RU2010115777A (en) MUTUAL INTERFERENCE MANAGEMENT USING PROFILES OF POWER AND SIGNAL ATTENUATION
CN101304299B (en) Method for improving symmetry in data transmission in logic link control layer
CN102017496B (en) Method for communicating in network and radio stations therefor
CN100365953C (en) Radio apparatus and base station apparatus
KR101581264B1 (en) Signal delay compensation method in distributed antenna system
US20240214048A1 (en) Channel state information reporting for multiple power offsets
Vanmunster et al. LightTour: Enabling Museum Audio Tour with Visible Light.
Van de Velde Multi-hop LoRaWAN: Including a forwarding node

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20030318

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

17Q First examination report despatched

Effective date: 20061120

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20070331