EP1360259A1 - Procede de fabrication d'un materiau a changement de phase, quasi-incompressible, fluidifie sous cisaillement et a faible conductivite thermique - Google Patents

Procede de fabrication d'un materiau a changement de phase, quasi-incompressible, fluidifie sous cisaillement et a faible conductivite thermique

Info

Publication number
EP1360259A1
EP1360259A1 EP02701389A EP02701389A EP1360259A1 EP 1360259 A1 EP1360259 A1 EP 1360259A1 EP 02701389 A EP02701389 A EP 02701389A EP 02701389 A EP02701389 A EP 02701389A EP 1360259 A1 EP1360259 A1 EP 1360259A1
Authority
EP
European Patent Office
Prior art keywords
phase change
pcm
change material
material according
pipes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP02701389A
Other languages
German (de)
English (en)
Inventor
Angèle CHOMARD
Jean-François Argillier
Jean-Claude Hipeaux
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IFP Energies Nouvelles IFPEN
Saipem SA
Original Assignee
IFP Energies Nouvelles IFPEN
Saipem SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from FR0101892A external-priority patent/FR2820426B1/fr
Priority claimed from FR0101770A external-priority patent/FR2820752B1/fr
Application filed by IFP Energies Nouvelles IFPEN, Saipem SA filed Critical IFP Energies Nouvelles IFPEN
Publication of EP1360259A1 publication Critical patent/EP1360259A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/02Materials undergoing a change of physical state when used
    • C09K5/06Materials undergoing a change of physical state when used the change of state being from liquid to solid or vice versa
    • C09K5/063Materials absorbing or liberating heat during crystallisation; Heat storage materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/0052Preparation of gels
    • B01J13/0065Preparation of gels containing an organic phase
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/09Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in organic liquids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L59/00Thermal insulation in general
    • F16L59/14Arrangements for the insulation of pipes or pipe systems

Definitions

  • the present invention relates to a process for manufacturing a material based on phase change materials (PCM), quasi-incompressible and having a low thermal conductivity, as well as the product obtained by the process and applications.
  • the material has the characteristic of being able to be fluidized under shear, then to gel at rest.
  • the material according to the invention can be used as thermal insulator in many fields, in particular for the thermal insulation of conduits or pipes where fluids which are susceptible to significant changes of state under the influence of temperature circulate: crystallization of paraffins, deposits hydrates, ice creams, etc.
  • the thermal insulation can be carried out by various methods. On land or in low immersion, porous cellular or woolly solid materials are used blocking the convection of gases with low thermal conductivity. The compressibility of these porous materials prohibits the use of this technique at a relatively high depth.
  • Another known technique consists in wrapping the pipe with a first layer of a porous material soaked in paraffin for example, the coefficient of thermal insulation of which is lower than those obtained with the gas trapping technique mentioned above, and a second layer of refractory material enhancing the effect of the first layer.
  • a solution cannot be used in water.
  • syntactic materials consisting of hollow balls containing a gas and resistant to external pressure, embedded in binders such as concrete, epoxy resin, etc., whose conductivity is lower than that of compact materials but which are significantly more expensive.
  • an external pipe resistant to hydrostatic pressure.
  • Phase change materials behave like heat accumulators. They restore this energy during their solidification (crystallization) or absorb this energy during their fusion and this, in a reversible manner. These materials can therefore make it possible to increase the duration of production stoppages without risking clogging of the pipes by premature cooling of their contents.
  • phase change materials mention may be made of chemical compounds of the family of alkanes C n H 2n + 2] such as for example n-paraffins (C 12 to C 60 ), which exhibit a good compromise thermal and thermodynamic properties (melting temperature, latent heat of fusion, thermal conductivity, heat capacity) and cost. These compounds are thermally stable in the range of envisaged use temperatures and they are compatible with use in a marine environment because of their insolubility in water and their very low level of toxicity, they are therefore for example well suited to thermal insulation of deep sea pipes.
  • phase change materials The temperature of change of state of these phase change materials is linked to the number of carbon in the hydrocarbon chain and is therefore adaptable to a particular application.
  • a phase change around 30 ° C. it is possible for example to use a mixture of paraffins predominantly in 8 such as Linpar 18-20 sold by the company CONDEA Augusta S. p. AT..
  • phase change materials are in the liquid phase and their viscosity is low.
  • a thickening agent such as silica to solidify them and prevent leaks.
  • Phase change materials also have the disadvantage that their liquid state promotes thermal losses by convection.
  • the method according to the invention makes it possible to manufacture a material or product based on quasi-incompressible phase change materials (PCM) having a low thermal conductivity at a temperature above their melting temperature Tf and fluidized under shear.
  • PCM quasi-incompressible phase change materials
  • It comprises the combination, with a phase change material, of a texturing agent chosen to very greatly reduce thermal convection at a temperature higher than the melting temperature of the phase change material.
  • the texturing agent is dissolved in the PCM in question so as to give the phase change material a gel consistency once the material is at rest.
  • the texturing agent is chosen so that it has the function of fluidification under shear. Thus, the flow of material in a tank, or a pipe can be done more easily, in particular by pumping or pouring. Once in place, the texturing agent gels the material in the place where its primary function as thermal insulator is sought.
  • the product may optionally include antioxidants or antibacterial agents, corrosion inhibitors or an insoluble filler intended to adjust its density or thermal conductivity, additives intended to improve its stability or a solvent intended to control viscosity.
  • the product according to the invention finds applications for thermal insulation in general. It can be applied in particular for the thermal insulation of hydrocarbon transport pipes, where it is used as a direct or interposed (injected) coating between the pipes and an external protective envelope.
  • thermal insulation in general. It can be applied in particular for the thermal insulation of hydrocarbon transport pipes, where it is used as a direct or interposed (injected) coating between the pipes and an external protective envelope.
  • the manufacturing process as we have seen, consists in dissolving, in a phase change material (hereinafter PCM), a texturing agent chosen to increase the viscosity of the PCM and decrease the thermal convection of the PCM to 1 liquid state, so as to form an insulating substance with blocked convection having a gelled consistency at rest, and fluidized under shear.
  • PCM phase change material
  • the liquid component constituting the continuous phase, can be a mixture of chemical compounds of the family of alkanes C n H 2n + 2 such as for example paraffins (C 12 to C 6 o) or waxes, normal paraffins, very weakly branched long chain isoparaffins (C 0 - C 0 (1 or 2 branches), branched long chain alkylcycloalkanes or branched long chain alkylaromatics, fatty alcohols or fatty acids.
  • the liquid component represents from 60% to 99.99% of the mass of the product, the complement being the texturing agent.
  • the texturing agent is:
  • high-mass polymer molecular weight by weight of the order of 25,000 to 2 million g / mole: hydrocarbon polymers, polymers of esters or ethers or mixed polymers;
  • the ionomer polymers are macromolecules with a molecular mass of between 1000 and 5 million, preferably between 20,000 and 1 million g / mole, which contain a small percentage of ionic groups (between 0.005% and 10% by mole, preferably between 0.01 % and 5% and more preferably between 0.2% and 3%) chemically bonded and distributed along the nonionic polymer chains. These polymers are obtained:
  • a monomer functionalized with a hydrophobic monomer such as an olefin. (for example: acrylic or methacrylic acid with ethylene).
  • Block copolymers are thermoplastic elastomers in which the polymer chains have a di-block, tri-block, or multi-block configuration.
  • the tri-block copolymers have polystyrene (S) segments at the ends of the molecule (preferably close to 30% by mass) and an elastomer segment in its center.
  • S polystyrene
  • the di-block molecule simply has a polystyrene segment attached to an elastomer segment.
  • the configuration and the molecular mass vary with the grade of the copolymer (the molecular mass of the polystyrene will preferably be between 5000 and 30,000 g / mol and that of the elastomer will be approximately 5000 g / mol).
  • the strong interactions between the high-mass polymer and the PCM allow penetration of the PCM molecules into the polymer macromolecules. These having very large dimensions in solution, they intermingle by slowing the flow of the PCM layers to which they belong, which produces an increase in the viscosity of the composition.
  • the ionic groups distributed along the chains form, by association of pairs of intermolecular ions, aggregates rich in ions.
  • the aggregates formed have the consequence of increasing, in a semi-diluted regime, the viscosity of the solution compared to the same uncharged polymer of equivalent molar mass.
  • the block copolymer is dissolved in the PCM by softening the polystyrene segments under the effect of temperature. The molecules are then free to move when a shear is applied. Polystyrene and elastomeric blocks are thermodynamically incompatible. Thus, the polystyrene segments at the end of the chain combine to form polystyrene domains. The elastomeric segments form separate domains. Above a critical copolymer concentration, tri-block rubbers form PCM gels with elastic behavior (cohesive gels), while di-block rubbers tend to form "greases".
  • PCM-CB blocked convection phase change material
  • the rate of charged groups eg for anionic: carboxylate, sulfonate, phenate, salicylate, phosphonate
  • type of counterion eg for anionic: cations: amine, metal, monovalent, multivalent, ...
  • compositions The PCMs with blocked convection can be formed by dissolution: la) of hydrocarbon polymers (apolar) such as polyisobutylenes or polyisobutenes (PIB); polymers of ethylene, propylene or higher carbons; copolymers of ethylene, propylene or higher carbons and their derivatives; linear, tri-block (e.g. styrene-etylene-butadiene-styrene) copolymers based on conjugated dienes (hydrogenated polybutadiene, copolymers of hydrogenated butadiene-hydrogenated styrene, hydrogenated ethylene-butadiene and hydrogenated isoprene-styrene) from home
  • hydrocarbon polymers apolar
  • PIB polyisobutenes
  • ester polymers such as polyalkyl acrylates; polymethyl alkyl methacrylates; maleates and fumarates; itaconates; le) of mixed ester-hydrocarbon polymers such as olefin copolymers combined with esters (OCP-esters); alkyl acrylate or methacrylate - styrene polymers; alkyl acrylate or methacrylate copolymers - ⁇ olefins or polyolefins.
  • ester polymers polar
  • OCP-esters mixed ester-hydrocarbon polymers
  • alkyl acrylate or methacrylate - styrene polymers alkyl acrylate or methacrylate copolymers - ⁇ olefins or polyolefins.
  • polymers can be used alone or as a mixture (mixture of polyisobutene and hydrogenated diene-styrene, olefin polymers or copolymers, hydrogenated dienes-styrene with ester polymers or copolymers, etc.) and can be functionalized with polar patterns such as imides, succimides, vinylpyrolidone, etc.
  • the blocked convection PCMs can also be formed by dissolving ionomeric polymers such as (generally the ionic polymer is neutralized by a metallic or arganometallic counterion):
  • the ionic groups can be anionic (carboxylate, sulfonate, phosphonate, thioglyconate group), cationic (ammonium or pyridium salts, alkaline (Na, K) or alkaline-ferrous (Mg, Ca, Ba)), or amphoteric, or zwitterioniques (example: carboxylbétaine).
  • the main known industrial ionomers are those comprising carboxylate or sulfonate groups.
  • the following list is not exhaustive: - Carboxylated Ionomers: Copolymer of ethylene and methacrylic acid;
  • Carboxylated elastomers polymers composed of monomers containing a carboxylic acid (generally acrylic or methacrylic acid) and monomers used to form elastomers. These are, for example, polymers of styrene-butadiene-acrylic acid, butadiene-acrylonitrile-acrylic acid, butadiene-acrylic acid, etc.; Perfluorocarboxylated Ionomers; - Sulfonated Ionomers:
  • sulphonated EPDM ethylene-propylene-diene terpolymers
  • a preferred diene is 5-ethylidene-2-norbornene (ENB);
  • - Sulfonated elastomers polymers composed of sulfonated monomers
  • the sulfonated elastomers are derived from the elastomeric polymers chosen from the group consisting of copolymers of isoprene and sulfonated styrene, copolymers of chloroprene and sulfonated styrene, copolymers of isoprene and butadiene, copolymers of styrene and sulfonated styrene, butadiene and sulfonated styrene copolymers, butadiene and styrene copolymers, isoprene, styrene and sulfonated styrene terpolymers, butadiene, styrene and sulfonated styrene terpolymers, butyl rubber, partially hydrogen
  • the ionomeric polymer can be added to the PCM at concentrations varying between 0.01 to 10%, and preferably from 0.1 to 3% by mass relative to the total mass.
  • Antioxidant additives can be added either during processing if the temperature is high (eg Irganox 1010 from Ciba), or when the product (PCM with blocked convection) is subjected to a temperature rise in service.
  • the most frequently encountered are phenolic derivatives (dibutylparacresol, etc.), phenolic derivatives containing sulfur and aromatic amines (phenyl ⁇ or ⁇ naphthylamine or alkylated amino diphenyls).
  • c) corrosion inhibitors cl) soluble in liquid PCM, consist of chemical compounds of a polar nature which are easily adsorbed on the metal surface forming a hydrophobic film (amines or fatty amides and derivatives, alkali sulfonates- earthy, etc.); c2) soluble in water and acting by passivation of the water phase (sodium nitrite for example).
  • Insoluble fillers such as hollow glass microbeads, fly ash, macrobeads, hollow fibers, clay compounds, etc., will advantageously be added to the PCM-CB to adjust its density and / or its thermal conductivity.
  • hydrocarbons of petroleum origin such as hydrocarbon solvents, distillation cups, predominantly aromatic, naphthenic or paraffmic oils obtained by solvent extraction processes or by processes of deep hydrotreating, solvents or sections obtained by the hydroisomerization process of paraffinic extracts of petroleum origin or of synthesis of Fischer Tropsch type, solvents and compounds obtained by synthesis, such as for example oxygenated compounds of ester type, synthetic hydrocarbons such as hydrogenated polyolefins, etc.
  • a PCM co-solvent can also be used to control and adjust the influence of temperature on viscosity.
  • PCM blocked convection material typically consists of 60 to 99.99% liquid PCM and a texturing agent in addition. Additives ( ⁇ 10%), fillers (5 to 60%) and solvents (0.2 to 20%) may be added.
  • PCM materials with blocked convection which have been described can be used for example for the thermal insulation of subsea pipes.
  • the device comprises an outer coating composed of an almost incompressible liquid / solid phase change (PCM) material having an intermediate melting temperature between the temperature of the effluents flowing in the pipe (s) and the temperature of the outside medium, and an absorbent matrix surrounding as close as possible to the pipe (s).
  • PCM liquid / solid phase change
  • the external coating made up of the matrix impregnated with PCM described in the previous document can here be advantageously replaced by one of the PCMs with blocked convection which have just been described, with as a result an improvement in the thermal insulation of the pipes. and a simplification of the positioning operations around the pipe or pipes, for example by pumping at a temperature above the melting temperature Tf, very appreciable when the assembly of pipes to be isolated is complex. Pumping is facilitated in that under shear, the viscosity of the material decreases.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Engineering & Computer Science (AREA)
  • Dispersion Chemistry (AREA)
  • Materials Engineering (AREA)
  • Thermal Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Lubricants (AREA)

Abstract

Le procédé selon l'invention comporte la combinaison avec un matériau à changement de phase à l'état liquide (PCM), d'un agent texturant choisi pour réduire très fortement la convection thermique et dont la viscosité est diminuée de façon réversible, sous cisaillement. Le matériau formé ayant une consistance gélifiée au repos, et fluidifiée sous cisaillement. Le PCM est constitué d'un mélange de composés chimiques de la famille des alcanes: paraffines, cires, alcools gras, acides gras, etc., et l'agent texturant est un polymère de forte masse (polymères hydrocarbonés, polymères d'esters ou d'éthers, polymères mixtes esters-hydrocarbures), un polymère ionomère ou un copolymère styrénique di, tri ou multi-blocs (SBS : styrène-butadiène-styrène, SEBS : styrène-éthylène-butadiène-styrène). Applications pour l'isolation thermique de récipients ou de conduites, et notamment pour l'isolation de conduite de transport d'hydrocarbures.

Description

PROCEDE DE FABRICATION D'UN MATERIAU A CHANGEMENT DE PHASE, QUASI-INCOMPRESSIBLE, FLUIDIFIE SOUS CISAILLEMENT ET A FAIBLE CONDUCTIVITE THERMIQUE
La présente invention concerne un procédé pour fabriquer un matériau à base de matériaux à changement de phase (PCM), quasi-incompressible et présentant une faible conductivité thermique, ainsi que le produit obtenu par le procédé et applications. Le matériau présente la caractéristique de pouvoir être fluidifié sous cisaillement, puis de gélifier au repos.
Le matériau selon l'invention peut servir comme isolant thermique dans de nombreux domaines, notamment pour l'isolation thermique de conduites ou pipes où circulent des fluides susceptibles de changements d'état importants sous l'influence de la température : cristallisation de paraffines, dépôts d'hydrates, glaces, etc.
C'est le cas par exemple dans le domaine de la production d'hydrocarbures. L'isolation thermique des conduites sous-marines notamment s'avère dans de nombreux cas nécessaire pour maintenir les fluides en écoulement et pour éviter le plus longtemps possible la formation d'hydrates ou de dépôt riches en paraffines ou en asphaltenes. Les développements en mer profonde, cumulent souvent ces inconvénients qui sont particulièrement à redouter dans le cas d'arrêts de production.
Etat de la technique
Différentes techniques de calorifugeage sont décrites par exemple dans les documents suivants : FR 98/16.791, JP 2 176 299, ou WP 97/47174.
Le calorifugeage peut être effectué par différents procédés. A terre ou en faible immersion, on utilise des matériaux solides poreux cellulaires ou laineux bloquant la convection de gaz à faible conductivité thermique. La compressibilité de ces matériaux poreux interdit d'utiliser cette technique à profondeur relativement élevée. Une autre technique connue consiste à envelopper la conduite d'une première couche d'un matériau poreux imbibé de paraffine par exemple dont le coefficient d'isolation thermique plus faible que ceux obtenus avec la technique de piégeage de gaz rappelée ci-dessus, et d'une deuxième couche d'un matériau réfractaire renforçant l'effet de la première couche. Une telle solution n'est cependant pas utilisable dans l'eau.
D'autres solutions existent convenant mieux pour des utilisations à des profondeurs d'immersion élevées. On peut utiliser par exemple : - des revêtements en matériaux polymères massifs quasi-incompressibles à base de polyuréthane, polyéthylène, polypropylène etc. qui cependant présentent une conductivité thermique assez moyenne, insuffisante pour éviter les inconvénients en cas d'arrêts de production ;
- des revêtements en matériaux syntactiques constitués de billes creuses contenant un gaz et résistantes à la pression extérieure, noyées dans des liants tels que du béton, une résine époxy, etc., dont la conductivité est plus faible que celle des matériaux compacts mais qui sont nettement plus coûteux.
On peut également protéger la conduite où circulent les fluides par une conduite extérieure résistant à la pression hydrostatique. Dans l'espace annulaire entre elles, on interpose par exemple un calorifuge à faible conductivité thermique laissé à la pression atmosphérique ou mis sous vide avec des cloisonnements placés à intervalles réguliers pour des raisons de sécurité.
Il est également connu d'interposer, entre la conduite et une enveloppe de protection déformable, une matrice absorbante gainant la conduite, imprégnée d'un matériau quasi incompressible à changement de phase liquide/solide à une température de fusion supérieure à celle du milieu environnant et inférieure à celles des fluides circulant dans la conduite.
Les matériaux à changement de phase (PCM) se comportent comme des accumulateurs de chaleur. Us restituent cette énergie au cours de leur solidification (cristallisation) ou absorbent cette énergie au cours de leur fusion et ce, de manière réversible. Ces matériaux peuvent donc permettre d'augmenter la durée des arrêts de production sans risquer le colmatage des conduites par refroidissement prématuré de leur contenu. Comme exemples connus de matériaux à changement de phase, on peut citer les composés chimiques de la famille des alcanes CnH2n+2] tels que par exemple des n-paraffines (C12 à C60), qui présentent un bon compromis entre les propriétés thermiques et thermodynamiques (température de fusion, chaleur latente de fusion, conductivité thermique, capacité calorifique) et le coût. Ces composés sont stables thermiquement dans la gamme des températures d'utilisation envisagées et ils sont compatibles avec une utilisation en milieu marin du fait de leur insolubilité dans l'eau et de leur très faible niveau de toxicité, us sont donc par exemple bien adaptés à l'isolation thermique des conduites pour grands fonds.
La température de changement d'état de ces matériaux à changement de phase est liée au nombre de carbone de la chaîne hydrocarbonée et est donc adaptable à une application particulière. Pour obtenir un changement de phase autour de 30°C, on pourra par exemple utiliser un mélange de paraffines majoritaire en 8 tel que le Linpar 18-20 commercialisé par la société CONDEA Augusta S. p. A..
L'utilisation de cires, de normal paraffines, d'isoparaffines à chaîne longue (C30 - C 0) très faiblement ramifiées (1 ou 2 ramifications), d'al ylcycloalcanes branchés à chaîne longue ou d'alkylaromatiques branchés à chaîne longue également faiblement ramifiés, d'alcools gras ou d'acides gras peut également être considérée. Au-dessus de leur température de fusion Tf, les matériaux à changement de phase (PCM) sont en phase liquide et leur viscosité est faible. Pour corriger ce défaut particulièrement gênant dans certaines applications, notamment dans la fabrication de récipients à double paroi ou de poches de stockage d'énergie, il est connu de leur ajouter un agent épaississant tel que de la silice pour les solidifier et éviter les fuites. Les matériaux à changement de phase (PCM) présentent également l'inconvénient que leur état liquide favorise les pertes thermiques par convection.
Le procédé selon l'invention permet de fabriquer un matériau ou produit à base de matériaux à changement de phase (PCM) quasi-incompressible présentant une faible conductivité thermique à une température supérieure à leur température de fusion Tf et fluidifié sous cisaillement.
Il comporte la combinaison, avec un matériau à changement de phase, d'un agent texturant choisi pour réduire très fortement la convection thermique à une température supérieure à la température de fusion du matériau à changement de phase.
L'agent texturant est mis en solution dans le PCM considéré de façon à donner au matériau à changement de phase une consistance de gel une fois le matériau au repos. L'agent texturant est choisi afin qu'il ait la fonction de fluidification sous cisaillement. Ainsi, l'écoulement du matériau dans un réservoir, ou une conduite peut se faire plus aisément, notamment par pompage ou coulage. Une fois en place, l'agent texturant gélifie le matériau dans le lieu où sa fonction première d'isolant thermique est recherchée.
Le produit pourra éventuellement inclure des agents anti-oxydants ou antibactériens, des inhibiteurs de corrosion ou une charge insoluble destinée à ajuster sa densité ou sa conductivité thermique, des additifs destinés à améliorer sa stabilité ou encore un solvant destiné à contrôler la viscosité.
Le produit selon l'invention trouve des applications pour l'isolation thermique en général. Il peut être appliqué en particulier pour l'isolation thermique de conduites d'acheminement d'hydrocarbures, où il est utilisé comme revêtement direct ou interposé (injecté) entre les conduites et une enveloppe extérieure de protection. D'autres caractéristiques et avantages du procédé et du matériau produit selon l'invention, ainsi que des exemples d'application seront décrits ci-après.
DESCRIPTION DETAILLEE
Le procédé de fabrication comme on l'a vu, consiste à mettre en solution, dans un matériau à changement de phase (ci-après PCM), un agent texturant choisi pour augmenter la viscosité du PCM et diminuer la convection thermique du PCM à l'état liquide, de manière à former une substance isolante à convection bloquée ayant une consistance gélifiée au repos, et fluidifiée sous cisaillement. Le composant liquide, constituant la phase continue, peut être un mélange de composés chimiques de la famille des alcanes CnH2n+2 tels que par exemple les paraffines (C12 à C6o) ou des cires, des normales paraffines, des isoparaffines à chaîne longue (C 0 - C 0) très faiblement ramifiées (1 ou 2 ramifications), des alkylcycloalcanes branchés à chaîne longue ou des alkylaromatiques branchés à chaîne longue, des alcools gras ou des acides gras. Le composant liquide représente de 60% à 99.99% de la masse du produit, le complément étant l'agent texturant. L'agent texturant est:
- un polymère de forte masse (masse moléculaire en poids de l'ordre de 25000 à 2 millions g/mole): polymères hydrocarbonés, polymères d'esters ou d'éthers ou polymères mixtes;
- un polymère porteur de charges, et/ou des polymères ionomères. Les polymères ionomères sont des macromolécules de masse moléculaire comprise entre 1000 et 5 millions, preférentiellement entre 20000 et 1 million g/mole, qui contiennent un faible pourcentage de groupements ioniques (compris entre 0,005% et 10% en mole, preférentiellement entre 0,01% et 5% et plus preférentiellement entre 0,2% et 3%) liés chimiquement et distribués le long des chaînes polymères non ioniques. Ces polymères sont obtenus :
- soit par co-polymérisation entre un monomère fonctionnalisé avec un monomère hydrophobe tel qu'une oléfine. (par exemple: acide acrylique ou méthacrylique avec de l'éthylène).
- soit par modification d'un polymère peu polaire préformé: (exemple sulfonation contrôlée de polystyrène).
- un copolymère styrénique à blocs, de préférence hydrogéné. Les copolymeres à blocs sont des élastomères thermoplastiques dans lesquels les chaînes polymères ont une configuration di-bloc, tri-bloc, ou multi-bloc. Les copolymeres tri-bloc ont des segments polystyrène (S) aux extrémités de la molécule (de préférence proche de 30% en masse) et un segment élastomère en son centre. La molécule di-bloc a simplement un segment polystyrène attaché à un segment élastomère. La configuration et la masse moléculaire varient avec le grade du copolymère (la masse moléculaire du polystyrène sera preférentiellement comprise entre 5000 et 30000 g/mol et celle de l'élastomère sera d'environ 5000 g/mol).
Les fortes interactions entre le polymère de forte masse et le PCM permettent une pénétration des molécules de PCM dans les macromolécules de polymère. Celles ci ayant des dimensions en solution très importantes, elles s'entremêlent en freinant l'écoulement des couches de PCM auxquelles elles appartiennent, ce qui produit une augmentation de la viscosité de la composition.
Dans le cas de polymères non polaires chargés, les groupements ioniques distribués le long des chaînes forment, par association de paires d'ions intermoléculaires, des agrégats riches en ions. Les agrégats formés ayant pour conséquence d'augmenter, en régime semi-dilué, la viscosité de la solution par rapport au même polymère non chargé de masse molaire équivalente.
La mise en solution d'un copolymère à bloc dans le PCM s'effectue par ramollissement des segments polystyrène sous l'effet de la température. Les molécules sont alors libres de bouger quand un cisaillement est appliqué. Le polystyrène et les blocs élastomériques sont thermodynamiquement incompatibles. Ainsi, les segments polystyrène en bout de chaîne se regroupent pour former des domaines polystyrène. Les segments élastomères forment des domaines séparés. Au-dessus d'une concentration critique en copolymère, les caoutchoucs tri-bloc forment des gels de PCM avec un comportement élastique (gels cohésifs), tandis que les caoutchoucs di-bloc ont tendance à former des "graisses".
Sous cisaillement, dans le cas des polymères de forte masse, un laminage des pelotes macromoléculaires a lieu avec une orientation dans le sens de l'écoulement et le pouvoir épaississant s'en trouve abaissé temporairement. Dans le cas des polymères ioniques ou des copolymeres à blocs, le cisaillement rompt les liaisons réversibles (ioniques ou physiques) ce qui conduit également à un abaissement temporaire de la viscosité . Ce phénomène peut être accentué par une élévation de la température..
La consistance d'un matériau à changement de phase à convection bloquée (PCM-CB) tel que défini, dépend: - de la concentration en agent texturant,
- du type du squelette du polymère (plastique, élastomère, ...) ou du copolymère, masse moléculaire, flexibilité, nombre de blocs, etc,
- du pouvoir solvant du PCM vis-à-vis de l'agent texturant (nature des chaînes),
- des forces de dispersion, et en plus dans le cas de polymères chargés :
- de la faculté du solvant (PCM) à ioniser les paires d'ions. Les interactions seront d'autant plus fortes que le solvant est peu polaire.
- du taux de groupements chargés, nature du groupement ionique (ex pour anionique: carboxylate, sulfonate, phénate, salicylate, phosphonate), type de contre-ions (ex pour anionique: cations: aminé, métal, monovalent, multivalent, ...).
Une combinaison judicieuse de ces paramètres permet d'optimiser le pouvoir isolant du PCM-CB aux températures supérieures à la température de fusion Tf du PCM.
Exemples de compositions : Les PCM à convection bloquée peuvent être formés par mise en solution : la) de polymères hydrocarbonés (apolaires) tels que des polyisobutylènes ou des polyisobutènes (PIB); des polymères d'éthylène, de propylène ou de carbones supérieurs; des copolymeres d'éthylène, de propylène ou de carbones supérieurs et leurs dérivés; des copolymeres à base de diènes conjugués (polybutadiène hydrogéné, copolymeres de butadiène-styrène hydrogéné, d'éthylène-butadiène hydrogénés et d'isoprène-styrène hydrogéné) linéaires, tri-blocs (ex. styrène-étylène-butadiène-styrène, grade G1651 de chez
Kraton) ou en étoile; d'autres polymères à base de styrène, lb) de polymères d'esters (polaires) tels que les polyacrylates d'alkyles; les polyméthacrylates d'alkyles; les maléates et fumarates; les itaconates; le) de polymères mixtes esters-hydrocarbures tels que des copolymeres d'oléfines associés à des esters (OCP-esters); des polymères acrylates ou méthacrylates d'alkyle - styrène; des copolymeres acrylates ou méthacrylates d'alkyle -αoléfines ou polyoléfines. Ces polymères peuvent être utilisés seuls ou en mélange (mélange de polyisobutène et de diène-styrène hydrogéné, de polymères ou copolymeres d'oléfines, de diènes-styrène hydrogéné avec des polymères ou copolymeres d'esters, etc) et peuvent être fonctionnalisés par des motifs polaires tels que les imides, les succimides, la vinylpyrolidone, etc.
Les PCM à convection bloquée peuvent être également formés par mise en solution de polymères ionomères tels que (généralement le polymère ionique est neutralisé par un contre-ion métallique ou arganométallique):
2a) des ionomères anioniques cationiques,ou amphotères. 2b) une combinaison des différents ionomères.
2c) des polymères téléchéliques, c'est-à-dire que les groupements ioniques constituent les extrémités des chaînes (dans ce cas, il n'y a que deux groupements ioniques par chaîne et la masse moléculaire est généralement assez faible).
Les groupements ioniques peuvent être anioniques (groupement carboxylate, sulfonate, phosphonate, thioglyconate), cationiques (sels d'ammonium ou de pyridium, sels alcalins (Na, K) ou alcalino-ferreux (Mg, Ca, Ba)), amphotériques, ou zwitterioniques (exemple : carboxylbétaine).
Les principaux ionomères industriels connus sont ceux comportant des groupements carboxylates ou sulfonates. La liste suivante n'est pas limitative : - Ionomères carboxylés : Copolymère d'éthylène et d'acide méthacrylique ;
Elastomères carboxylés: polymères composés de monomères contenant un acide carboxylique (généralement de l'acide acrylique ou méthacrylique) et des monomères permettant de former des élastomères. Il s'agit par exemple de polymères de styrène-butadiène-acide acrylique, butadiène-acrylonitrile-acide acrylique, butadiène-acide acrylique, .... ; Ionomères perfluorocarboxylés ; - Ionomères sulfonés :
- Terpolymères éthylène-propylène-diène sulfonés (EPDM sulfonés). Un diène préféré est le 5-éthylidène-2-norbornène (ENB) ; - Elastomères sulfonés: polymères composés de monomères sulfonés
(généralement du styrène sulfoné) et des monomères permettant de former des élastomères. Les élastomères sulfonés sont dérivés des polymères élastomères choisis dans le groupe constitué de copolymeres d'isoprène et de styrène sulfoné, de copolymeres de chloroprène et de styrène sulfoné, de copolymeres d'isoprène et de butadiene, de copolymeres de styrène et de styrène sulfoné, de copolymeres de butadiene et de styrène sulfoné, de copolymeres de butadiene et de styrène, de terpolymères d'isoprène, de styrène et de styrène sulfoné, de terpolymères de butadiene, de styrène et de styrène sulfoné, caoutchouc butyl, polyisoprène partiellement hydrogéné, polybutylène partiellement hydrogéné, caoutchouc naturel partiellement hydrogéné, polybutadiène partiellement hydrogéné, néoprène. Les méthodes et caractéristiques des ces élastomères sulfonés sont connus de l'homme de l'art (par exemple, dans les documents US-4,447,338, US-4,425, 462,) ;
- polyéthylène chlorosulfoné ;
- ionomères perfluorosulfonés ; - Ionomères téléchéliques : comme les élastomères téléchéliques carboxylés
(exemple copolymère de butadiene et d'acrylonitrile fonctionnalisés aux deux extrémités de chaîne) ou des élastomères téléchéliques sulfonés à base de polyisobutylène.
Le polymère ionomere peut être ajouté dans le PCM à des concentrations variant entre 0,01 à 10%, et preférentiellement de 0,1 à 3% en masse par rapport à la masse totale.
Additifs
Pour apporter certaines propriétés spécifiques, les composés suivants seront avantageusement inclus dans les compositions pour certaines applications. 1- Additifs solubles : a) Des additifs antioxydants peuvent être ajoutés soit lors de la mise en œuvre si la température est élevée (ex : Irganox 1010 de chez Ciba), soit lorsque le produit (PCM à convection bloquée) est soumise à une élévation de température en service. Dans ce cas, les plus fréquemment rencontrés sont les dérivés phénoliques (dibutylparacrésol, etc.), les dérivés phénoliques contenant du soufre et les aminés aromatiques (phényl α ou β naphtylamine ou les diphényles aminés alkylées). Ces antioxydants retardent le processus d'oxydation, grâce à leur action inhibitrice de formation de radicaux libres ou destructive vis-à-vis des hydropéroxydes formés. b) des agents antibactériens. c) des inhibiteurs de corrosion : cl) solubles dans le PCM liquide, sont constitués de composés chimiques à caractère polaire qui s'adsorbent facilement sur la surface métallique en formant un film hydrophobe (aminés ou amides grasses et dérivés, sulfonates d'alcalino-terreux, etc.) ; c2) solubles dans l'eau et agissant par passivation de la phase eau (nitrite de sodium par exemple).
2- Charges :
Des charges insolubles telles que microbilles de verres creuses, cendres volantes, macrobilles, fibres creuses, composés argileux, etc, seront avantgeusement ajoutées au PCM-CB pour ajuster sa densité et/ou sa conductivité thermique.
3- Solvants :
Pour fluidifier le PCM à convection bloquée, on peut utiliser des hydrocarbures d'origine pétrolière tels que des solvants hydrocarbonés, des coupes de distillation, des huiles à prédominance aromatique, naphténique ou paraffmique obtenues par procédés d'extraction au solvant ou par procédés d'hydrotraitement profond, des solvants ou des coupes obtenus par procédé d'hydroisomérisation d'extraits paraffiniques d'origine pétrolière ou de synthèse de type Fischer Tropsch, des solvants et des composés obtenus par synthèse, comme par exemple des composés oxygénés de type ester, des hydrocarbures de synthèse tels les polyoléfines hydrogénées, etc. Un co-solvant du PCM peut également être utilisé pour contrôler et régler l'influence de la température sur la viscosité.
Le matériau PCM à convection bloquée (PCM-CB) est typiquement constitué de 60 à 99,99 % de PCM liquide et d'agent texturant en complément. On ajoute éventuellement des additifs (<10%), des charges (5 à 60%), et des solvants (0,2 à 20%).
Exemples de formulation :
1) Dans le cas d'un PCM apolaire tel qu'un mélange de paraffines de viscosité proche de 5 mPa.s à 40°C. Une formulation à convection bloquée à base de ce PCM, contenant environ 15% d'un produit à base de butadiène-styrène hydrogéné (PBSH) et 0,5% d'agent antioxydant, possède une viscosité de 100000 mPa.s à 40°C. Cette viscosité est abaissée de
50% (50000 mPa.s) sous un cisaillement de 5 105 s-1 et de 70% (40000 mPa.s) sous le même cisaillement à 80°C. 2) La gélification d'un litre de PCM liquide est obtenue par dissolution de quelques dizaines de grammes/litre d'un ionomere sulfoné neutralisé par un sel de zinc et possédant un taux de sulfonate de l'ordre de 30 milléqui alent/100g.
Applications
Les matériaux PCM à convection bloquée qui ont été décrits peuvent être utilisés par exemple pour l'isolation thermique de conduites sous-marines.
Dans la demande de brevet FR 98/16.791 déjà citée, est décrit un dispositif d'isolation thermique de conduites sous-marines destinées à être posée sur le fond à grande profondeur. Le dispositif comporte un revêtement extérieur composé d'un matériau à changement de phase liquide/solide (PCM) quasiment incompressible ayant une température de fusion intermédiaire entre la température des effluents circulant dans la ou les conduites et la température du milieu extérieur, et d'une matrice absorbante entourant au plus près la ou les conduites. Les conduites et leur revêtement sont placées dans une enveloppe de protection résistante et déformable.
Le revêtement extérieur constitué de la matrice imprégnée de PCM décrite dans le document antérieur, pourra ici être avantageusement remplacé par l'un des PCM à convection bloquée qui viennent d'être décrits, avec comme résultat, une amélioration de l'isolation thermique des conduites et une simplification des opérations de mise en place autour de la ou des conduite(s), par pompage par exemple à une température supérieure à la température de fusion Tf, très appréciable quand l'assemblage de conduites à isoler est complexe. Le pompage est facilité en ce que sous cisaillement, la viscosité du matériau diminue.
On a décrit des applications du matériau à l'isolation thermique de conduites d'acheminement de fluides et notamment d'hydrocarbures. Il est bien évident cependant qu'un tel matériau peut servir dans tout autre application où l'on recherche une très faible conductivité thermique associée à une restitution d'énergie.

Claims

REVENDICATIONS
1) Procédé pour fabriquer un matériau à base de matériau à changement de phase (PCM), présentant une faible conductivité thermique, caractérisé en ce qu'il comporte la combinaison avec un matériau à changement de phase, d'un agent texturant choisi pour réduire très fortement la convection thermique à une température supérieure à la température de fusion du matériau à changement de phase et dont la capacité gélifiante ou viscosifiante chute temporairement sous cisaillement.
2) Procédé selon la revendication 1, caractérisé en ce qu'il comporte la combinaison d'un agent texturant en solution dans le matériau à changement de phase.
3) Matériau à base de matériaux à changement de phase (PCM) présentant une faible conductivité thermique à une température supérieure à la température de fusion du matériau à changement de phase, caractérisé en ce qu'il comporte en combinaison un matériau à changement de phase (PCM) et un agent texturant choisi pour réduire très fortement la convection thermique à une température supérieure à la température de fusion du matériau à changement de phase, et dont la capacité gélifiante ou viscosifiante chute temporairement sous cisaillement.
4) Matériau selon la revendication 3, caractérisé en ce qu'il comporte en combinaison un matériau à changement de phase (PCM) et l'un au moins, ou leurs mélanges, des polymères choisis dans le groupe constitué par : les polymères hydrocarbonés (apolaires) non dispersants ou dispersants, les polymères d'ester (polaires) non dispersants ou dispersants, ou des polymères mixtes esters-hydrocarbures non dispersants ou dispersants.
5) Matériau selon la revendication 3, caractérisé en ce qu'il comporte en combinaison un matériau à changement de phase (PCM) et un polymère texturant ionomere défini comme constitué de macromolécules contenant un faible pourcentage de groupements ioniques liés chimiquement et distribués le long de chaînes (squelettes) non ioniques.
6) Matériau selon la revendication 5, caractérisé en ce que le polymère texturant dit ionomere comportent des groupements anioniques : tels carboxylate, sulfonate, phénate, salicylate, phosphonate, thioglyconate), et/ou des groupements cationiques : tels sel d'ammonium,de pyridium ou des sels organométalliques, alcalins ou alcalinoferreux, et/ou des groupements amphotériques, et/ou zwitterioniques, tels les carboxylbétaines.
7) Matériau selon l'une des revendications précédentes, caractérisé en ce qu'il comporte de 60 à 99,99% de PCM liquide et le complément en agent texturant, en masse.
8) Matériau selon l'une des revendications 3 à 7, caractérisé en ce qu'il comporte en outre au moins un additif soluble agissant comme anti-oxydant ou antibactérien ou un inhibiteur de corrosion.
9) Matériau selon l'une des revendications 3 à 8, caractérisé en ce qu'il comporte en outre au moins une charge insoluble destinée à ajuster sa densité ou sa conductivité thermique.
10) Matériau selon l'une des revendications 3 à 9, caractérisé en ce qu'il comporte en outre au moins un solvant destiné à contrôler la viscosité.
11) Application du matériau selon l'un des revendications 3 à 10 à l'isolation thermique de conduites d'acheminement de fluides et notamment d'hydrocarbures, le produit étant utilisé comme revêtement des conduites.
12) Application du matériau selon l'un des revendications 3 à 11 à l'isolation thermique de conduites d'acheminement de fluides et notamment d'hydrocarbures, le produit étant utilisé comme revêtement des conduites et interposé entre elles et une enveloppe extérieure de protection. 13) Application du matériau selon l'un des revendications 3 à 12 à l'isolation thermique de conduites d'acheminement de fluides et notamment d'hydrocarbures par injection du matériau dans l'intervalle entre les conduites et une enveloppe extérieure de protection.
EP02701389A 2001-02-07 2002-02-04 Procede de fabrication d'un materiau a changement de phase, quasi-incompressible, fluidifie sous cisaillement et a faible conductivite thermique Withdrawn EP1360259A1 (fr)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
FR0101892A FR2820426B1 (fr) 2001-02-07 2001-02-07 Gel d'isolation thermique a reticulation controlee pour les lignes de transport d'hydrocarbures petroliers
FR0101892 2001-02-07
FR0101770 2001-02-09
FR0101770A FR2820752B1 (fr) 2001-02-09 2001-02-09 Procede de fabrication d'un materiau a changement de phase, quasi-incompressible, fluidifie sous cisaillement a faible conductivite thermique
PCT/FR2002/000405 WO2002062918A1 (fr) 2001-02-07 2002-02-04 Procede de fabrication d'un materiau a changement de phase, quasi-incompressible, fluidifie sous cisaillement et a faible conductivite thermique

Publications (1)

Publication Number Publication Date
EP1360259A1 true EP1360259A1 (fr) 2003-11-12

Family

ID=26212872

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02701389A Withdrawn EP1360259A1 (fr) 2001-02-07 2002-02-04 Procede de fabrication d'un materiau a changement de phase, quasi-incompressible, fluidifie sous cisaillement et a faible conductivite thermique

Country Status (7)

Country Link
US (1) US7320770B2 (fr)
EP (1) EP1360259A1 (fr)
CN (1) CN1491270A (fr)
BR (1) BR0207031A (fr)
MX (1) MXPA03007041A (fr)
OA (1) OA13297A (fr)
WO (1) WO2002062918A1 (fr)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10303334A1 (de) * 2003-01-29 2004-08-12 Cognis Deutschland Gmbh & Co. Kg Zusammensetzung zur kontrollierten Temperierung durch Phasenwechsel, deren Herstellung und Verwendung
FR2853388B1 (fr) * 2003-04-01 2005-12-30 Coflexip Conduite tubulaire flexible a double enveloppe calorifugee pour le transport d'hydrocarbures
GB0312781D0 (en) 2003-06-04 2003-07-09 Ythan Environmental Services L Method
US20060231150A1 (en) * 2005-04-14 2006-10-19 Halliburton Energy Services, Inc. Methods and apparatus to reduce heat transfer from fluids in conduits
CN100436563C (zh) * 2006-04-24 2008-11-26 沈阳建筑大学 松香-氯化钙相变蓄能材料的制作方法
FR2957348B1 (fr) * 2010-03-10 2012-03-02 Inst Francais Du Petrole Composition et methode de gelification d'un materiau a changement de phase
US9556373B2 (en) * 2012-09-25 2017-01-31 Cold Chain Technologies, Inc. Gel comprising a phase-change material, method of preparing the gel, and thermal exchange implement comprising the gel
US9598622B2 (en) 2012-09-25 2017-03-21 Cold Chain Technologies, Inc. Gel comprising a phase-change material, method of preparing the gel, thermal exchange implement comprising the gel, and method of preparing the thermal exchange implement
EP3122335B1 (fr) * 2014-03-26 2022-02-16 Cold Chain Technologies, LLC Procédé de préparation d'un gelcomprenant un matériau à changement de phase
JP2020509304A (ja) 2017-01-30 2020-03-26 スイスポア マネージメント エージー 流体媒体の温度を維持するための方法
WO2019014215A1 (fr) * 2017-07-10 2019-01-17 Entropy Solutions Inc. Systèmes de stockage d'énergie thermique à forme stable et leurs procédés de fabrication et d'utilisation
CN111051464A (zh) 2017-09-01 2020-04-21 罗杰斯公司 用于热管理的可熔的相变粉末、其制造方法及包含所述粉末的制品
GB201715950D0 (en) * 2017-10-02 2017-11-15 Croda Int Plc Gel composition comprising a phase change material
US11162744B2 (en) 2018-01-08 2021-11-02 Hamilton Sundstrand Corporation Heat sink phase change material
GB2576072B (en) * 2018-06-07 2022-09-07 Rogers Corp Thermal Management Phase-Change Composition, Methods of Manufacture Thereof and Articles Containing the Composition
KR20200038395A (ko) * 2018-10-02 2020-04-13 오씨아이 주식회사 잠열 저장용 조성물

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT308994B (de) 1968-06-06 1973-07-25 Accessair Sa Lockenwickler
CH617716A5 (fr) * 1975-04-28 1980-06-13 Ciba Geigy Ag
JPS5790083A (en) 1980-11-22 1982-06-04 Ajinomoto Co Inc Heat insulation medium
DE3543089A1 (de) * 1985-12-05 1987-06-11 Siemens Ag Vorrichtung zur umsetzung von in einer speicherschicht getragenen strahlenbildinformationen in eine elektrische signalfolge
JPH02176299A (ja) 1988-12-28 1990-07-09 Tooa Tomiji Kk 蓄熱管
US5007478A (en) * 1989-05-26 1991-04-16 University Of Miami Microencapsulated phase change material slurry heat sinks
US5370814A (en) * 1990-01-09 1994-12-06 The University Of Dayton Dry powder mixes comprising phase change materials
JPH0532964A (ja) 1991-07-26 1993-02-09 Cosmo Sogo Kenkyusho:Kk 蓄熱材
US5637389A (en) * 1992-02-18 1997-06-10 Colvin; David P. Thermally enhanced foam insulation
US5709740A (en) * 1996-02-23 1998-01-20 Hoechst Celanese Corp. Thermally expandable, viscosity modified wax compositions and method of use in actuators
ZA974977B (en) 1996-06-12 1997-12-30 Univ Dayton Gel compositions for thermal energy storage.
US6000438A (en) * 1998-02-13 1999-12-14 Mcdermott Technology, Inc. Phase change insulation for subsea flowlines
FR2788100B1 (fr) 1998-12-31 2001-04-06 Bouygues Offshore Dispositif et procede d'isolation thermique d'au moins une conduite sous marine a grande profondeur
US6132665A (en) * 1999-02-25 2000-10-17 3D Systems, Inc. Compositions and methods for selective deposition modeling
US6652705B1 (en) * 2000-05-18 2003-11-25 Power Devices, Inc. Graphitic allotrope interface composition and method of fabricating the same
FR2823994B1 (fr) * 2001-04-27 2003-05-30 Inst Francais Du Petrole Procede de fabrication de microcapsules par polycondensation interfaciale avec de la polyoxyalkyneamine et des chlorures d'acide

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO02062918A1 *

Also Published As

Publication number Publication date
CN1491270A (zh) 2004-04-21
US7320770B2 (en) 2008-01-22
MXPA03007041A (es) 2004-01-15
BR0207031A (pt) 2004-02-17
WO2002062918A1 (fr) 2002-08-15
US20040092626A1 (en) 2004-05-13
OA13297A (fr) 2007-04-13

Similar Documents

Publication Publication Date Title
WO2002062918A1 (fr) Procede de fabrication d&#39;un materiau a changement de phase, quasi-incompressible, fluidifie sous cisaillement et a faible conductivite thermique
CA2409026C (fr) Procede pour fabriquer un materiau a changement de phase quasi-incompressible et a faible conductivite thermique, et produit obtenu par le procede
CA2407842C (fr) Composition lubrifiante biodegradable et ses utilisations, notamment dans un fluide de forage
WO2016162392A1 (fr) Additif dispersant des asphaltenes et ses utilisations
WO2002034809A1 (fr) Composition isolante a base de gel elastomere polyurethane et son utilisation
EP1513908B1 (fr) METHODE D ISOLATION THERMIQUE, PROCEDE DE PREPARATION D&amp;apos ;UN GEL ISOLANT ET GEL ISOLANT OBTENU
CA2778766C (fr) Utilisation de cires dans une composition bitume/polymere reticulee pour ameliorer sa resistance aux agressions chimiques et composition bitume/polymere reticulee comprenant lesdites cires
FR3013053A1 (fr) Composition bitume/polymere a proprietes mecaniques a froid ameliorees
EP2622024A1 (fr) Procede de preparation d&#39;enrobes et d&#39;asphaltes a basses temperatures
AU1859099A (en) Electrical cable with self-repairing protection
WO2002062874A1 (fr) Gel d&#39;isolation thermique a reticulation controlee pour les lignes de transport d&#39;hydrocarbures petroliers
WO2012131214A2 (fr) Materiau d&#39;isolation thermique et/ou de flottabilite rigide pour conduite sous-marine
Fu The development of advanced kinetic hydrate inhibitors
FR2820752A1 (fr) Procede de fabrication d&#39;un materiau a changement de phase, quasi-incompressible, fluidifie sous cisaillement a faible conductivite thermique
EP2164919B1 (fr) Utilisation d&#39;une composition fluide a reticulatiqn retardee pour le maintien d&#39;un tubage a l&#39;interieur d&#39;un puits de forage et procede de consolidation d&#39;un puits de forage
WO2014095995A1 (fr) Composition de liant bitumineux pour la preparation d&#39;enrobes a basses temperatures
WO2020039138A1 (fr) Composition bitumineuse thermoreversible
FR2859212A1 (fr) Fluxant, solumere et composition bitumineuse en contenant, preparation et application de ces produits
OA16919A (fr) Composant fileté tubulaire et procédé de revêtement d&#39;un tel composant fileté tubulaire.
JPH0630203B2 (ja) ポリブチレンゲル充填ケ−ブル
SHARIFI et al. EFFECT OF KINETIC INHIBITORS ON GAS HYDRATE NUCLEATION, GROWTH AND AGGLOMERATION IN NACL/n-HEPTANE SOLUTIONS
FR2851284A1 (fr) Methode permettant d&#39;eviter la sedimentation des cristaux d&#39;hydrates de gaz

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20030908

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

17Q First examination report despatched

Effective date: 20070816

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: C09K 5/06 20060101ALI20110901BHEP

Ipc: C08J 3/09 20060101ALI20110901BHEP

Ipc: B01J 13/00 20060101ALI20110901BHEP

Ipc: F16L 59/14 20060101AFI20110901BHEP

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20120216