EP1358083A1 - Dispositif de refroidissement et de chauffage de vehicule - Google Patents

Dispositif de refroidissement et de chauffage de vehicule

Info

Publication number
EP1358083A1
EP1358083A1 EP02701407A EP02701407A EP1358083A1 EP 1358083 A1 EP1358083 A1 EP 1358083A1 EP 02701407 A EP02701407 A EP 02701407A EP 02701407 A EP02701407 A EP 02701407A EP 1358083 A1 EP1358083 A1 EP 1358083A1
Authority
EP
European Patent Office
Prior art keywords
fluid
threshold
valve
temperature
circulation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP02701407A
Other languages
German (de)
English (en)
Inventor
Ngy Srun Ap
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Valeo Systemes Thermiques SAS
Original Assignee
Valeo Thermique Moteur SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Valeo Thermique Moteur SA filed Critical Valeo Thermique Moteur SA
Publication of EP1358083A1 publication Critical patent/EP1358083A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/02Heating, cooling or ventilating [HVAC] devices the heat being derived from the propulsion plant
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/02Heating, cooling or ventilating [HVAC] devices the heat being derived from the propulsion plant
    • B60H1/04Heating, cooling or ventilating [HVAC] devices the heat being derived from the propulsion plant from cooling liquid of the plant
    • B60H1/08Heating, cooling or ventilating [HVAC] devices the heat being derived from the propulsion plant from cooling liquid of the plant from other radiator than main radiator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • F01P7/16Controlling of coolant flow the coolant being liquid by thermostatic control
    • F01P7/165Controlling of coolant flow the coolant being liquid by thermostatic control characterised by systems with two or more loops
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2060/00Cooling circuits using auxiliaries
    • F01P2060/08Cabin heater
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2070/00Details
    • F01P2070/04Details using electrical heating elements

Definitions

  • the invention relates to a device for cooling the heat engine and heating the passenger compartment of a motor vehicle, comprising a first heat exchanger capable of contributing to a transfer of heat from a heat transfer fluid to the atmosphere, a second heat exchanger capable of contributing to a transfer of heat from the heat transfer fluid to the passenger compartment, a pump capable of circulating the fluid in the engine and in two branches in parallel containing respectively the first and second exchangers, and switching means allowing the fluid driven by the pump to circulate or not in each of said exchangers, the switching means comprising a first valve adapted to prohibit the circulation of the fluid in the first exchanger when its temperature is below a first threshold and to authorize it when said temperature is above the first threshold.
  • a temperature of the heat transfer fluid below the first threshold means that the engine itself is at a temperature too low to have optimal operating characteristics. To allow the engine to pass as quickly as possible this initial heating phase, it is necessary to prevent the heat transfer fluid from circulating in the first heat exchanger to be cooled there. This is the role of the first valve.
  • the object of the invention is to optimize the conditions for circulation of the fluid in the second exchanger.
  • the invention relates in particular to a device of the kind defined in the introduction, and provides that the switching means further comprise a second valve capable of providing a passage section for the circulation of the fluid in the second exchanger which depends on the temperature of the fluid: maximum below a second threshold greater than the first threshold, gradually decreasing between the second threshold and a third threshold higher than this, and zero beyond the third threshold.
  • the third threshold represents a limit which is reached only under exceptional engine load conditions, for example when the vehicle is towing a caravan on a prolonged climb, and it is desirable to exceed as little as possible to avoid deterioration of the engine or its performance. To do this, the circulation of the fluid in the second exchanger is stopped and the total flow rate of the pump passes through the first exchanger, which offers a higher cooling capacity than the second exchanger.
  • the second valve is a three-way valve in which said variable passage section is located between first and second channels connected respectively to the engine and to the second exchanger, and adapted to allow a circulation of fluid between the third channel, connected to a bypass line, and one of the first and second channels only when the temperature of the fluid is below the third threshold.
  • the first channel is an input and the second and third channels are outputs, or vice versa.
  • the circulation of fluid between the third channel and one of the first and second channels is authorized even when the temperature of the fluid is below the second threshold.
  • the first and second channels are inputs and the third channel is an output, or vice versa.
  • the three-way valve has a movable member which moves between first and second extreme positions when the temperature of the fluid varies between the second and third thresholds, said movable member comprising a first shutter element which isolates the first track from the other two tracks and 'a second shutter element which isolates the third channel from the other two channels, in the second position, the shutter elements freeing the corresponding channels out of the second position.
  • the movable member comprises a third shutter element which isolates the third channel from the other two channels in the first position and releases it out of the first position.
  • the second valve is also capable of preventing the circulation of the fluid in the second exchanger when the following two conditions are satisfied: temperature of the fluid below the first threshold and absence of heating demand from the passenger compartment.
  • the second valve contains a medium in thermal contact with the coolant and whose thermal expansion causes the displacement of the movable member, means being provided for heating said medium independently of the temperature of the fluid to bring the movable member into its second position in response to said two conditions.
  • the means for heating said medium include an electrical resistance in thermal contact therewith, in series with a switch which is closed in response to said conditions.
  • At least one of said thresholds is as defined below: first threshold: approximately 80 ° C second threshold: approximately 100 ° C third threshold: approximately 110 ° C.
  • the second valve is of the thermostatic, electric or pneumatic type.
  • Figure 1 is a schematic representation of a heat transfer fluid circuit in a device according to the invention.
  • Figures 2a to 2d are sectional views of a three-way thermostatic valve belonging to the circuit of Figure 1, for different temperatures of the fluid.
  • Figure 3 is a representation similar to Figure 1, relating to a modified circuit.
  • FIGS. 4a to 4c are views similar to FIGS. 2a to 2d, showing a valve which is part of the circuit of FIG. 3.
  • Each of the circuits shown in FIGS. 1 and 3 comprises three main components capable of being traversed by a heat transfer fluid, namely the heat engine 1 for driving a motor vehicle, a radiator 2 provided for cooling the engine 1, and a radiator 3 provided for heating the passenger compartment of the vehicle.
  • the circuit has, outside the engine, two main branches in which the fluid can circulate by being driven by a pump 4, for example electric, namely a first branch 5 into which the fluid penetrates, coming from of the engine, through a thermostatic valve 6, passing through the radiator 2 and ending at the pump 4, and a second branch 7 which starts from the engine, crosses the radiator 3 and also ends at the pump 4.
  • a complementary branch 8 containing an expansion vessel 9 starts from the outlet of the valve 6 and joins the branch 5 in one Junction point A located downstream of the radiator 2.
  • the pump 4 brings back to the motor 1 all the fluid circulating in the branches 5 and 7.
  • a three-way thermostatic valve 10 is interposed on the branch 7, upstream of the radiator 3, and communicates by a pipe 11 with a junction point B located on the branch 7 downstream of the radiator 3.
  • the inlet of the valve 10 connected to the engine 1, its outlet connected to the radiator 3 and its outlet connected to the point B are designated respectively by the references 10-1, 10-2 and 10-3.
  • FIG. 2a to 2d An exemplary embodiment of the valve 10 is shown in Figures 2a to 2d.
  • This valve comprises a valve body formed of two parts 21 and 22 substantially of revolution around an axis 23, mutually assembled in a fluid-tight manner.
  • the part 21 comprises a tube 24 extending along the axis 23 and defining the inlet 10-1 of the valve.
  • the outputs 10-2 and 10-3 are defined by pipes 25 and 26 attached respectively to the parts 21 and 22, and extending respectively perpendicular to the axis 23 and obliquely with respect thereto.
  • a bulb 30 containing a fluid substance with a high coefficient of thermal expansion, and in which a rod 31 can slide, the latter protruding from the bulb of a length all the more greater than the temperature of the fluid substance and therefore its volume are higher.
  • the rod 31 is fixed by its free end to the part 22 and extends along the axis 23, so that the bulb 30 moves along this axis as a function of the temperature.
  • An electrical resistor 32 connected to a voltage source by means of a switch 33, is placed inside the bulb 30.
  • the valve 10 and oriented as shown in FIGS. 2a to 2d, the axis 23 being vertical, the part 22 being located at the bottom and the tube 24 being turned upwards.
  • the bulb 30 can thus move between a lower extreme position shown in FIG. 2b, the rod 31 being retracted as far as possible, and an upper extreme position shown in FIGS. 2a and 2d, the rod 31 being extended as far as possible.
  • the bulb 30 carries three valves " in the form of profiled sheet metal rings, of revolution about the axis 23, each suitable for cooperating with a seat formed by an annular surface of the body oriented radially, for closing and freeing a passage for the fluid inside the valve.
  • a first valve 34 cooperates with a seat 35 facing downwards, formed in the part 21 below the pipe 24 and above the pipe 25.
  • a conical coil spring 36 compressed axially between a shoulder of the bulb 30 and the valve 34, applies the latter against the seat 34, in the high position of the bulb, so as to isolate the inlet 10-1 from the interior of the valve.
  • valve 37 located immediately above the valve 37 cooperates with a seat 40 formed in part 21, facing downwards and facing seat 38, so as to separate the interior of the valve, in the high position of the bulb, into an upper chamber communicating with channels 10-1 and 10-2 and a lower chamber 42 communicating with the track 10-3.
  • the valve 37 is welded to the bulb 30 and the valve 39 is welded to the upper face of the previous one.
  • a helical spring 43 compressed axially between the valve 39 and an internal shoulder 44 of the part 21, promotes the return of the bulb to its low position.
  • the circuit of Figure 1 operates as follows.
  • the low temperature of the heat transfer fluid contained therein causes the closing of the thermostatic valve 6, so that the fluid does not circulate in the branch 5 and consequently in the cooling radiator 2.
  • the switch 33 is controlled jointly as a function of the temperature of the fluid and of the demand heating the passenger compartment so as to be closed only when the fluid is cold and in the absence of heating demand.
  • the closing of the switch 33 causes the supply of the resistor 32 and the heating of the substance contained in the bulb 30, bringing the latter in its upper position where the valve 34 closes the inlet 10-1 connected to the motor.
  • the fluid therefore does not circulate in the branches 7 and 11 either, and remains inside the motor 1, ensuring that the latter swells as quickly as possible. Pump 4 then turns to no load.
  • the switch 33 is open, as shown in FIG. 2b, so that the resistor 32 is not supplied and the bulb is kept in the low position by the low temperature fluid.
  • the outlet 10-3 is therefore closed by the valve 37, while the valve 34 releases the communication between the inlet 10-1 and the outlet 10-2.
  • the only flow of fluid in circulation is that required in the radiator 3 for heating the passenger compartment.
  • the thermostatic valve 6 opens and the fluid circulates in the cooling radiator 2.
  • the same temperature threshold at least approximately, is used for the control of the switch 33, so that the configuration of FIG. 2b, in which a maximum flow circulates in the heating radiator 3, is then also obtained although in the event of a heating demand than in the contrary case, the radiator 3 is of course not swept by an air flow in the latter case.
  • a second threshold for example 100 ° C.
  • valve 37 then moves away from the seat 38, releasing the outlet 10- 3, so that the fluid entering the valve 10 through the inlet 10-1 is distributed between the outlet 10-2 leading to the radiator 3 and the outlet 10-3 bringing back to the pump 4, the fluid flow rate in the radiator 3 being a decreasing function of its temperature.
  • the bulb 30 arrives at its high position, as shown in FIG. 2d, preventing any circulation of the fluid in the branches 7 and 11 as indicated above. about Figure 2a.
  • a third threshold for example 110 ° C.
  • the bulb 30 arrives at its high position, as shown in FIG. 2d, preventing any circulation of the fluid in the branches 7 and 11 as indicated above. about Figure 2a.
  • the bulb 30 is raised (FIG. 2c)
  • the passage section between the valve 34 and its seat 35 decreases progressively, so that an increasing fraction of the flow created by the pump 4 passes through the radiator 2, improving the efficiency of the cooling.
  • This efficiency is maximum in the position of FIG. 2d, which is only reached in exceptional circumstances, for example in the case of traction of a heavy trailer such as a caravan during a prolonged climb.
  • Figure 3 shows an engine 1, a cooling radiator 2, a heating radiator 3, a branch 5, a thermostatic valve 6, a branch 8 and an expansion tank 9 similar to the elements designated by the same references in the figure 1.
  • a branch 7 of the circuit goes from the output of the motor 1 to the pump 4 passing through a three-way valve 10 and through the radiator 3, the valve 10 being connected to the motor 1 by an input 10-1 and to the radiator 3 by an output 10-2.
  • the third channel 10-3 of the valve 10 is an inlet which is connected to the outlet of the pump 4 by a branch 12.
  • the valve 10 used in the circuit of Figure 3, shown in detail in Figures 4a to 4c, has the same structure as that of Figures 2a to 2d, but is connected differently, channels 10-1, 10-2 and 10 -3 being defined respectively by the pipes 26, 25 and 24.
  • the switch 33 associated with the resistor 32 is controlled as described above with reference to FIGS. 2a and 2b, so that, when the engine is cold and in the absence of heating demand, the configuration of FIG. 4a is obtained. , identical to that of FIG. 2a, isolating from each other the channels 10-1 to 10-3 and preventing any circulation of fluid in the branches 7 and 12.
  • the rod 31 has a minimum length of protrusion outside the bulb 30 greater than in the valve of FIGS. 2a to 2d, so that, in the lowest position that can be reached by the bulb 30, the switch 33 being open and the engine being cold, the valve 37 is detached from the seat 38 (FIG. 4b) allowing communication between the channels 10-1 to 10-3 and the circulation of the fluid both in the radiator 3 than in branch 12.
  • the rod 31 From the second temperature threshold (100 ° C), the rod 31 gradually leaves the bulb 30, lifting the latter and bringing the valves 34 and 39 closer to the seats 35 and 40 respectively, which decreases the flow rate of the fluid entering through the input 10-1 from the engine and the one entering through input 10-3 from branch 12, and consequently the flow rate of the fluid in the radiator 3, which is the sum of the previous two.
  • These two valves close the corresponding passages (FIG. 4c) when the temperature of the fluid reaches or exceeds the third threshold (110 ° C.), so that the entire flow produced by the pump 4 passes through the cooling radiator 2.
  • valve shown in Figures 2a to 2d, used in the circuit of Figure 1, and the one shown in Figures 4a to 4c, used in the circuit of FIG. 3, are identical except for the length of the rod 31.
  • the valve 39 is not necessary for the operation of the circuit of FIG. 1 since, each time that it is closed ( Figures 2a and 2d), the valve 34 is also closed, preventing any entry of fluid into the valve. The valve 39 can then be removed, the spring 44 pressing directly on the valve 37.
  • the valve 37 is not necessary for the operation of the circuit of FIG. 3, since it never comes into contact with the seat 38.
  • the valves 37 and 39 can then be replaced by a single valve fixed to the bulb 30 and coming into contact with the seat 40 in the high position of the bulb.
  • the three-way thermostatic valve may be of a different type from that with an expandable substance in thermal contact with the heat transfer fluid. It may for example be an electrically controlled valve.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

Le dispositif comprend, outre le thermostat principal (6) qui permet d'interrompre la circulation du fluide caloporteur dans le radiateur de refroidissement (2) pour accélérer l'échauffement du moteur thermique (1) lors du démarrage à froid, une vanne à trois voies (10) qui permet, lorsque la température s'élève au-delà du seuil d'ouverture du thermostat principal (6), de réduire progressivement le débit de fluide dans le radiateur de chauffage (3) puis de l'annuler de manière à augmenter le débit de fluide dans le radiateur de refroidissement et par suite l'efficacité du refroidissement du moteur.

Description

Dispositif de refroidissement et de chauffage de véhicule
L'invention concerne un dispositif pour le refroidissement du moteur thermique et le chauffage de l'habitacle d'un véhicule automobile, comprenant un premier échangeur de chaleur propre à contribuer à un transfert de chaleur d'un fluide caloporteur à l'atmosphère, un second échangeur de chaleur propre à contribuer à un transfert de chaleur du fluide caloporteur à l'habitacle, une pompe propre à faire circuler le fluide dans le moteur et dans deux branches en parallèle contenant respectivement les premier et second échangeurs, et des moyens de commutation permettant au fluide entraîné par la pompe de circuler ou non dans chacun desdits échangeurs, les moyens de commutation comprenant une première vanne propre à interdire la circulation du fluide dans le premier échangeur lorsque sa température est inférieure à un premier seuil et à l'autoriser lorsque ladite température est supérieure au premier seuil.
Une température du fluide caloporteur inférieure au premier seuil, qui est par exemple de 80 °C, signifie que le moteur est lui-même à une température trop basse pour présenter des caractéristiques de fonctionnement optimales. Pour permettre au moteur de franchir le plus rapidement possible cette phase initiale d'échauffement, il convient d'empêcher que le fluide caloporteur circule dans le premier échangeur de chaleur pour y être refroidi. Tel est le rôle de la première vanne.
Le but de l'invention est d'optimiser les conditions de circulation du fluide dans le second échangeur.
L'invention vise notamment un dispositif du genre défini en introduction, et prévoit que les moyens de commutation comprennent en outre une seconde vanne propre à offrir une section de passage pour la circulation du fluide dans le second échangeur qui dépend de la température du fluide: maximale en-deçà d'un second seuil supérieur au premier seuil, progressivement décroissante entre le second seuil et un troisième seuil supérieur a celui-ci, et nulle au-delà du troisième seuil.
Lorsque la température du fluide dépasse le second seuil, il est possible de réduire son débit dans le second échangeur tout en satisfaisant les besoins éventuels de chauffage de l'habitacle, réduisant ainsi les nuisances sonores résultant de la circulation dans cet échangeur. Le troisième seuil représente une limite qui n'est atteinte que dans conditions exceptionnelles de charge du moteur, par exemple lorsque le véhicule tracte une caravane dans une montée prolongée, et qu'il est souhaitable de dépasser le moins possible pour éviter une détérioration du moteur ou de ses performances . Pour ce faire, la circulation du fluide dans le second échangeur est arrêtée et le débit total de la pompe traverse le premier échangeur, qui offre une capacité de refroidissement plus élevée que le second échangeur.
Des caractéristiques optionnelles de l'invention, complémen- taires ou alternatives, sont énoncées ci-après:
- La seconde vanne est une vanne à trois voies dans laquelle ladite section de passage variable se situe entre des première et seconde voies reliées respectivement au moteur et au second échangeur, et propre à permettre une circulation de fluide entre la troisième voie, reliée à une conduite de dérivation, et l'une des première et seconde voies seulement lorsque la température du fluide est inférieure au troisième seuil.
- La circulation de fluide entre la troisième voie et l'une des première et seconde voies est autorisée seulement lorsque la température du fluide est comprise entre les second et troisième seuils.
- La première voie est une entrée et les seconde et troisième voies sont des sorties, ou inversement. - La circulation de fluide entre la troisième voie et l'une des première et seconde voies est autorisée même lorsque la température du fluide est inférieure au second seuil.
- Les première et seconde voies sont des entrées et la troisième voie est une sortie, ou inversement.
- La vanne à trois voies possède un organe mobile qui se déplace entre des première et seconde positions extrêmes lorsque la température du fluide varie entre les second et troisième seuils, ledit organe mobile comportant un premier élément obturateur qui isole la première voie des deux autres voies et 'un second élément obturateur qui isole la troisième voie des deux autres voies, dans la seconde position, les éléments obturateurs libérant les voies correspondantes hors de la seconde position.
- L'organe mobile comporte un troisième élément obturateur qui isole la troisième voie des deux autres voies dans la première position et la libère hors de la première position.
- La seconde vanne est propre en outre à interdire la circulation du fluide dans le second échangeur lorsque les deux conditions suivantes sont satisfaites: température du fluide inférieure au premier seuil et absence de demande de chauffage de l'habitacle.
- La seconde vanne contient un milieu en contact thermique avec le fluide caloporteur et dont la dilatation thermique provoque le déplacement de l'organe mobile, des moyens étant prévus pour échauffer ledit milieu indépendamment de la température du fluide pour amener l'organe mobile dans sa seconde position en réponse auxdites deux conditions .
- Les moyens pour échauffer ledit milieu comprennent une résistance électrique en contact thermique avec celui-ci, en série avec un interrupteur qui est fermé en réponse auxdites conditions . - L'un au moins dèsdits seuils est tel que défini ci-après: premier seuil: 80 °C environ second seuil: 100 °C environ troisième seuil: 110 °C environ.
- La seconde vanne est du type thermostatique, électrique ou pneumatique .
Les caractéristiques et avantages de l'invention seront exposés plus en détail dans la description ci-après, en se référant aux dessins annexés.
La figure 1 est une représentation schématique d'un circuit de fluide caloporteur dans un dispositif selon l'invention.
Les figures 2a à 2d sont des vues en coupe d'une vanne thermostatique à trois voies appartenant au circuit de la figure 1, pour différentes températures du fluide.
La figure 3 est une représentation analogue à la figure 1, relative à un circuit modifié.
Les figures 4a à 4c sont des vues analogues aux figures 2a à 2d, représentant une vanne qui fait partie du circuit de la figure 3.
Chacun des circuits représentés sur les figures 1 et 3 comprend trois composants principaux susceptibles d'être traversés par un fluide caloporteur, à savoir le moteur thermique 1 d'entraînement d'un véhicule automobile, un radiateur 2 prévu pour le refroidissement du moteur 1, et un radiateur 3 prévu pour le chauffage de l'habitacle du véhicule. De manière classique, le circuit présente, à l'extérieur du moteur, deux branches principales dans lesquelles le fluide peut circuler en étant entraîné par une pompe 4, par exemple électrique, à savoir une première branche 5 dans laquelle le fluide pénètre, en provenance du moteur, à travers une vanne thermostatique 6, traversant le radiateur 2 et aboutissant à la pompe 4, et une seconde branche 7 qui part du moteur, traverse le radiateur 3 et aboutit également à la pompe 4. De manière classique également, une branche complémentaire 8 contenant un vase d'expansion 9 part de la sortie de la vanne 6 et rejoint la branche 5 en un point de jonction A situé en aval du radiateur 2.
Dans le circuit de la figure 1, la pompe 4 ramène au moteur 1 la totalité du fluide circulant dans les branches 5 et 7. De plus, une vanne thermostatique à trois voies 10 est interposée sur la branche 7, en amont du radiateur 3, et communique par une conduite 11 avec un point de jonction B situé sur la branche 7 en aval du radiateur 3. L'entrée de la vanne 10 reliée au moteur 1, sa sortie reliée au radiateur 3 et sa sortie reliée au point B sont désignées respectivement par les références 10-1, 10-2 et 10-3.
Un exemple de réalisation de la vanne 10 est représenté sur les figures 2a à 2d. Cette vanne comprend un corps de vanne formé de deux pièces 21 et 22 sensiblement de révolution autour d'un axe 23, mutuellement assemblées de manière étanche au fluide. La pièce 21 comporte une tubulure 24 s 'étendant selon l'axe 23 et définissant l'entrée 10-1 de la vanne. Les sorties 10-2 et 10-3 sont définies par des tubulures 25 et 26 rapportées respectivement sur les pièces 21 et 22, et s 'étendant respectivement perpendiculairement à l'axe 23 et obliquement par rapport à celui-ci. À l'intérieur du corps 21, 22 est disposé un bulbe 30 contenant une substance fluide à coefficient de dilatation thermique élevé, et dans lequel peut coulisser une tige 31, celle-ci faisant saillie hors du bulbe d'une longueur d'autant plus grande que la température de la substance fluide et par conséquent son volume sont plus élevés. La tige 31 est fixée par son extrémité libre à la pièce 22 et s'étend selon l'axe 23, de telle sorte que le bulbe 30 se déplace le long de cet axe en fonction de la température. Une résistance électrique 32, reliée à une source de tension par l'intermédiaire d'un interrupteur 33, est placée à l'intérieur du bulbe 30. Pour la commodité de la description, on considère que la vanne 10 et orientée comme montré sur les figures 2a à 2d, l'axe 23 étant vertical, la pièce 22 étant située à la partie inférieure et la tubulure 24 étant tournée vers le haut. Le bulbe 30 peut ainsi se déplacer entre une position extrême inférieure montrée sur la figure 2b, la tige 31 étant rentrée au maximum, et une position extrême supérieure montrée sur les figures 2a et 2d, la tige 31 étant sortie au maximum.
Le bulbe 30 porte trois clapets" sous forme d'anneaux profilés en tôle, de révolution autour de l'axe 23, propre chacun à coopérer avec un siège formé par une surface annulaire du corps orientée radialement, pour obturer et libérer un passage pour le fluide à l'intérieur de la vanne. Un premier clapet 34 coopère avec un siège 35 tourné vers le bas, formé dans la pièce 21 au-dessous de la tubulure 24 et au-dessus de la tubulure 25. Un ressort à spires conique 36, comprimé axialement entre un épaulement du bulbe 30 et le clapet 34, applique ce dernier contre le siège 34, dans la position haute du bulbe, de manière à isoler l'entrée 10-1 de l'intérieur de la vanne. Un clapet 37 coopère avec un siège 38 de la pièce 22, tourné vers le haut et situé plus haut que la tubulure 26, pour isoler la sortie 10-3 de l'intérieur de la vanne dans la position basse du bulbe. Enfin, un clapet 39 situé immédiatement au-dessus du clapet 37 coopère avec un siège 40 formé dans la pièce 21, tourné vers le bas et faisant face au siège 38, de manière à séparer l'intérieur de la vanne, dans la position haute du bulbe, en une chambre supérieure communiquant avec les voies 10-1 et 10-2 et une chambre inférieure 42 communiquant avec la voie 10-3. Dans l'exemple illustré, le clapet 37 est soudé sur le bulbe 30 et le clapet 39 est soudé sur la face supérieure du précédent. Un ressort hélicoïdal 43, comprimé axialement entre le clapet 39 et un épaulement interne 44 de la pièce 21, favorise le retour du bulbe vers sa position basse.
Le circuit de la figure 1 fonctionne de la manière suivante. Lors du démarrage à froid du moteur 1, la température basse du fluide caloporteur contenu dans celui-ci provoque la fermeture de la vanne thermostatique 6, de sorte que le fluide ne circule pas dans la branche 5 et par conséquent dans le radiateur de refroidissement 2. Par ailleurs, l'interrupteur 33 est commandé conjointement en fonction de la température du fluide et de la demande de chauffage de l'habitacle de manière à être fermé seulement lorsque le fluide est froid et en l'absence de demande de chauffage. Lorsque ces deux conditions sont remplies, comme montré sur la figure 2a, la fermeture de l'interrupteur 33 provoque l'alimentation de la résistance 32 et l'échauffement de la substance contenue dans le bulbe 30, amenant celui-ci dans sa position supérieure où le clapet 34 obture l'entrée 10-1 reliée au moteur. Le fluide ne circule donc pas non plus dans les branches 7 et 11, et reste à l'intérieur du moteur 1, assurant un éc auffement aussi rapide que possible de celui- ci. La pompe 4 tourne alors à vide.
Si au contraire le chauffage de l'habitacle est demandé, l'interrupteur 33 est ouvert, comme montré sur la figure 2b, de sorte que la résistance 32 n'est pas alimentée et que le bulbe est maintenu en position basse par la température basse du fluide. La sortie 10-3 est donc fermée par le clapet 37, tandis que le clapet 34 libère la communication entre l'entrée 10-1 et la sortie 10-2. Ainsi, le seul débit de fluide en circulation est celui requis dans le radiateur 3 pour le chauffage de l'habitacle.
Lorsque la température du fluide dans le moteur atteint une valeur permettant à celui-ci de fonctionner dans des condi- tions à peu près optimales, par exemple 80 °C, la vanne thermostatique 6 s'ouvre et le fluide circule dans le radiateur de refroidissement 2. Le même seuil de température, au moins approximativement, est utilisé pour la commande de l'interrupteur 33, de sorte que la configuration de la figure 2b, dans laquelle un débit maximal circule dans le radiateur de chauffage 3, est alors obtenue aussi bien en cas de demande de chauffage que dans le cas contraire, le radiateur 3 n'étant bien entendu pas balayé par un flux d'air dans ce dernier cas . Lorsque la température du fluide dépasse un second seuil, par exemple 100 °C, la dilatation de la substance contenue dans le bulbe 30, du fait de son immersion dans le fluide, provoque son soulèvement, comme montré sur la figure 2c. Le clapet 37 s'écarte alors du siège 38, libérant la sortie 10- 3, de sorte que le fluide pénétrant dans la vanne 10 par l'entrée 10-1 se répartit entre la sortie 10-2 conduisant au radiateur 3 et la sortie 10-3 ramenant à la pompe 4, le débit de fluide dans le radiateur 3 étant fonction décroissante de sa température.
Enfin, lorsque la température du fluide caloporteur atteint un troisième seuil, par exemple 110 °C, le bulbe 30 arrive à sa position haute, comme montré sur la figure 2d, interdisant toute circulation du fluide dans les branches 7 et 11 comme indiqué plus haut à propos de la figure 2a. Lors du soulèvement du bulbe 30 (figure 2c), la section de passage entre le clapet 34 et son siège 35 diminue progressivement, de sorte qu'une fraction croissante du débit créé par la pompe 4 traverse le radiateur 2, améliorant l'efficacité du refroidissement. Cette efficacité est maximale dans la position de la figure 2d, qui n'est atteinte que dans des circonstances exceptionnelles, par exemple en cas de traction d'une remorque lourde telle qu'une caravane pendant une montée prolongée.
La figure 3 montre un moteur 1, un radiateur de refroidissement 2 , un radiateur de chauffage 3 , une branche 5 , une vanne thermostatique 6, une branche 8 et un vase d'expansion 9 semblables aux éléments désignés par les mêmes références sur la figure 1. De même, une branche 7 du circuit va de la sortie du moteur 1 à la pompe 4 en passant par une vanne à trois voies 10 et par le radiateur 3, la vanne 10 étant reliée au moteur 1 par une entrée 10-1 et au radiateur 3 par une sortie 10-2. À la différence de la figure 1, la troisième voie 10-3 de la vanne 10 est une entrée qui est reliée à la sortie de la pompe 4 par une branche 12. La vanne 10 utilisée dans le circuit de la figure 3, représentée en détail sur les figures 4a à 4c, a la même structure que celle des figures 2a à 2d, mais est raccordée différemment, les voies 10-1, 10-2 et 10-3 étant définies respective- ment par les tubulures 26, 25 et 24.
L'interrupteur 33 associé à la résistance 32 est commandé comme décrit plus haut à propos des figures 2a et 2b, de sorte que, lorsque le moteur est froid et en l'absence de demande de chauffage, on obtient la configuration de la figure 4a, identique à celle de la figure 2a, isolant les unes des autres les voies 10-1 à 10-3 et interdisant toute circulation de fluide dans les branches 7 et 12.
Dans la vanne des figures 4a à 4c, la tige 31 a une longueur minimale de dépassement hors du bulbe 30 plus grande que dans la vanne des figures 2a à 2d, de sorte que, dans la position la plus basse pouvant être atteinte par le bulbe 30, l'interrupteur 33 étant ouvert et le moteur étant froid, le clapet 37 est détaché du siège 38 (figure 4b) permettant la communication entre les voies 10-1 à 10-3 et la circulation du fluide aussi bien dans le radiateur 3 que dans la branche 12.
À partir du second seuil de température (100 °C), la tige 31 sort progressivement du bulbe 30, soulevant ce dernier et rapprochant les clapets 34 et 39 des sièges 35 et 40 respectivement, ce qui fait décroître le débit du fluide pénétrant par l'entrée 10-1 en provenance du moteur et celui pénétrant par l'entrée 10-3 en provenance de la branche 12, et par conséquent le débit du fluide dans le radiateur 3, qui est la somme des deux précédents. Ces deux clapets obturent les passages correspondants (figure 4c) lorsque la température du fluide atteint ou dépasse le troisième seuil (110 °C), de sorte que la totalité du débit produit par la pompe 4 passe par le radiateur de refroidissement 2.
Comme indiqué plus haut, la vanne représentée sur les figures 2a à 2d, utilisée dans le circuit de la figure 1, et celle représentée sur les figures 4a à 4c, utilisée dans le circuit de la figure 3, sont identiques à l'exception de la longueur de la tige 31. On notera cependant que le clapet 39 n'est pas nécessaire au fonctionnement du circuit de la figure 1 puisque, à chaque fois qu'il est fermé (figures 2a et 2d), le clapet 34 est également fermé, interdisant tout entrée de fluide dans la vanne. Le clapet 39 peut alors être supprimé, le ressort 44 s 'appuyant directement sur le clapet 37. De même, le clapet 37 n'est pas nécessaire au fonctionnement du circuit de la figure 3, puisqu'il ne vient jamais en contact avec le siège 38. Les clapets 37 et 39 peuvent alors être remplacés par un clapet unique fixé sur le bulbe 30 et venant en contact avec le siège 40 dans la position haute du bulbe.
En outre, la vanne thermostatique à trois voies peut être d'un autre type que celui à substance dilatable en contact thermique avec le fluide caloporteur. Il peut s'agir par exemple d'une vanne commandée électriquement.
Par ailleurs, la circulation du fluide dans la branche 7 et dans la branche de dérivation 11 ou 12 peut être inversée par rapport à celui montré sur les figures 1 et 3, les entrées de la vanne 10 devenant des sorties et inversement.

Claims

Revendications
1. Dispositif pour le refroidissement- du moteur thermique (1) et le chauffage de l'habitacle d'un véhicule automobile, comprenant un premier échangeur de chaleur (2) propre à contribuer à un transfert de chaleur d'un fluide caloporteur à l'atmosphère, un second échangeur de chaleur (3) propre à contribuer à un transfert de chaleur du fluide caloporteur à l'habitacle, une pompe (4) propre à faire circuler le fluide dans le moteur et dans deux branches (5, 7) en parallèle contenant respectivement les premier et second échangeurs, et des moyens de commutation (6, 10) permettant au fluide entraîné par la pompe de circuler ou non dans chacun desdits échangeurs, les moyens de commutation comprenant une première vanne (6) propre à interdire la circulation du fluide dans le premier échangeur lorsque sa température est inférieure à un premier seuil et à l'autoriser lorsque ladite température est supérieure au premier seuil, caractérisé en ce que les moyens de commutation comprennent en outre une seconde vanne (10) propre à offrir une section de passage pour la circulation du fluide dans le second échangeur qui dépend de la température du fluide: maximale en-deçà d'un second seuil supérieur au premier seuil, progressivement décroissante entre le second seuil et un troisième seuil supérieur à celui-ci, et nulle au-delà du troisième seuil.
2. Dispositif selon la revendication 1, dans lequel la seconde vanne est une vanne à trois voies (10) dans laquelle ladite section de passage variable se situe entre des première et seconde voies (10-1, 10-2) reliées respectivement au moteur et au second échangeur, et propre à permettre une circulation de fluide entre la troisième voie (10-3), reliée à une conduite de dérivation (11), et l'une des première et seconde voies seulement lorsque la température du fluide est inférieure au troisième seuil.
3. Dispositif selon la revendication 2, dans lequel la circulation de fluide entre la troisième voie et l'une des première et seconde voies est autorisée seulement lorsque la température du fluide est comprise entre les second et troisième seuils.
4. Dispositif selon la revendication 3, dans lequel la première voie (10-1) est une entrée et les seconde et troisième voies (10-2, 10-3) sont des sorties, ou inversement.
5. Dispositif selon la revendication 2, dans lequel la circulation de fluide entre la troisième voie et l'une des première et seconde voies est autorisée même lorsque la température du fluide est inférieure au second seuil.
6. Dispositif selon la revendication 5, dans lequel les première et seconde voies (10-1, 10-2) sont des entrées et la troisième voie (10-3) est une sortie, ou inversement.
7. Dispositif selon l'une des revendications 2 à 6, dans lequel la vanne à trois voies possède un organe mobile (30) qui se déplace entre des première et seconde positions extrêmes lorsque la température du fluide varie entre les second et troisième seuils, ledit organe mobile comportant un premier élément obturateur (34) qui isole la première voie (10-1) des deux autres voies (10-2, 10-3) et un second élément obturateur (39) qui isole la troisième voie des deux autres voies, dans la seconde position, les éléments obturateurs libérant les voies correspondantes hors de la seconde position.
8. Dispositif selon la revendication 7, rattachée à la revendication 3, dans lequel l'organe mobile comporte un troisième élément obturateur (37) qui isole la troisième voie des deux autres voies dans la première position et la libère hors de la première position.
9. Dispositif selon l'une des revendications précédentes, dans lequel la seconde vanne est propre en outre à interdire la circulation du fluide dans le second échangeur (3) lorsque les deux conditions suivantes sont satisfaites: température du fluide inférieure au premier seuil et absence de demande de chauffage de l'habitacle.
10. Dispositif selon la revendication 9, rattachée à la revendication 7, dans lequel la seconde vanne contient un milieu en contact thermique avec le fluide caloporteur et dont la dilatation thermique provoque le déplacement de l'organe mobile, des moyens (32, 33) étant prévus pour échauffer ledit milieu indépendamment de la température du fluide pour amener l'organe mobile (30) dans sa seconde position en réponse auxdites deux conditions.
11. Dispositif selon la revendication 10, dans lequel les moyens pour échauffer ledit milieu comprennent une résistance électrique (32) en contact thermique avec celui-ci, en série avec un interrupteur (33) qui est fermé en réponse auxdites conditions .
12. Dispositif selon l'une des revendications précédentes, dans lequel l'un au moins desdits seuils est tel que défini ci-après: premier seuil: 80 °C environ second seuil: 100 °C environ troisième seuil: 110 °C environ.
13 . Dispositif selon l 'une des revendications précédentes , dans lequel la seconde vanne ( 10 ) est du type thermostatique, électrique ou pneumatique .
EP02701407A 2001-02-06 2002-02-01 Dispositif de refroidissement et de chauffage de vehicule Withdrawn EP1358083A1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR0101589A FR2820371B1 (fr) 2001-02-06 2001-02-06 Dispositif de refroidissement et de chauffage de vehicule
FR0101589 2001-02-06
PCT/FR2002/000424 WO2002062603A1 (fr) 2001-02-06 2002-02-01 Dispositif de refroidissement et de chauffage de vehicule

Publications (1)

Publication Number Publication Date
EP1358083A1 true EP1358083A1 (fr) 2003-11-05

Family

ID=8859679

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02701407A Withdrawn EP1358083A1 (fr) 2001-02-06 2002-02-01 Dispositif de refroidissement et de chauffage de vehicule

Country Status (5)

Country Link
US (1) US20050098644A1 (fr)
EP (1) EP1358083A1 (fr)
JP (1) JP2004526616A (fr)
FR (1) FR2820371B1 (fr)
WO (1) WO2002062603A1 (fr)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0220480D0 (en) * 2002-09-04 2002-10-09 Ford Global Tech Inc A motor vehicle and a thermostatically controlled valve therefor
GB0220521D0 (en) * 2002-09-04 2002-10-09 Ford Global Tech Inc A motor vehicle and a thermostatically controlled valve therefor
EP1591627A1 (fr) * 2004-04-27 2005-11-02 Siemens Aktiengesellschaft Installation de réglage pour un compresseur et utilisation d'un réseau de Bragg dans une installation de réglage
DE102013221574A1 (de) * 2013-10-23 2015-04-23 Behr Thermot-Tronik Gmbh Thermostatventil

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2656114A (en) * 1950-08-09 1953-10-20 Standard Thomson Corp System for controlling flow of circulating liquid
US3907199A (en) * 1974-11-18 1975-09-23 Ford Motor Co Combination engine cooling system and passenger compartment heating system for an automotive vehicle
FR2434723A1 (fr) * 1978-09-01 1980-03-28 Vernet Expl Procedes Perfectionnements aux installations de chauffage a air chaud pour habitacles de vehicules automobiles
US4398081A (en) * 1980-10-23 1983-08-09 Mark H. Moad Stand-by heating/power supply system for a motor vehicle
JPS58124017A (ja) * 1982-01-19 1983-07-23 Nippon Denso Co Ltd エンジンの冷却系制御装置
JP2531043B2 (ja) * 1991-03-26 1996-09-04 日本電装株式会社 車両用空調装置
US5184773A (en) * 1992-06-24 1993-02-09 Siemens Automotive Limited Pressure regulating heater control valve
US5743466A (en) * 1994-12-23 1998-04-28 J. Eberspacher Gmbh & Co. Heating system especially for motor vehicles
US5564627A (en) * 1995-09-12 1996-10-15 Webasto Thermosysteme Gmbh Heating cycle system of a vehicle
JPH1071833A (ja) * 1996-09-02 1998-03-17 Toyota Autom Loom Works Ltd 車両用暖房装置
JP4306036B2 (ja) * 1998-10-05 2009-07-29 株式会社デンソー 車両用空調装置
FR2792259B1 (fr) * 1999-04-15 2001-06-15 Valeo Thermique Moteur Sa Dispositif de refroidissement pour vehicule electrique a pile a combustible
JP4131308B2 (ja) * 1999-04-28 2008-08-13 トヨタ自動車株式会社 燃料電池の温度調節装置及び燃料電池の温度調節装置における燃料電池の起動方法
JP2003522066A (ja) * 1999-05-06 2003-07-22 ヨット エーバーシュペッヘル ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディトゲゼルシャフト 特に自動車用の暖房システム
FR2800016B1 (fr) * 1999-10-26 2002-01-11 Valeo Thermique Moteur Sa Dispositif de refroidissement a regulation optimisee pour un moteur thermique de vehicule automobile
DE10014011C1 (de) * 2000-03-22 2001-03-22 Webasto Thermosysteme Gmbh System zum Beheizen des Innenraums eines Kraftfahrzeugs

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO02062603A1 *

Also Published As

Publication number Publication date
FR2820371A1 (fr) 2002-08-09
FR2820371B1 (fr) 2003-05-09
US20050098644A1 (en) 2005-05-12
JP2004526616A (ja) 2004-09-02
WO2002062603A1 (fr) 2002-08-15

Similar Documents

Publication Publication Date Title
EP0780254B1 (fr) Dispositif de chauffage d'appoint pour véhicule utilisant le circuit de climatisation
EP0501854A1 (fr) Radiateur de véhicule automobile muni d'un dispositif de commande de circulation de fluide
EP0960755A1 (fr) Circuit de climatisation utilisant un fluide réfrigérant à l'état supercritique, notamment pour véhicule
FR2916479A1 (fr) Module pour un circuit de refroidissement d'un moteur de vehicule automobile.
FR2801637A1 (fr) Circuit de refroidissement pour un moteur a combustion interne
FR2853725A1 (fr) Module de refroidissement a derivation, notamment pour vehicule automobile
EP0292373A1 (fr) Installation de chauffage pour véhicule automobile comportant un générateur de chaleur
WO2005024193A1 (fr) Dispositif de regulation thermique de gaz d’echappement
EP1343963A1 (fr) Module echangeur de chaleur, specialement concu pour un systeme de recyclage des gaz d'echappement
EP2748022B1 (fr) Dispositif de controle d'une circulation de fluide refrigerant et circuit incorporant un tel dispositif
EP1358083A1 (fr) Dispositif de refroidissement et de chauffage de vehicule
EP1702149B1 (fr) PROCEDE DE REGULATION THERMIQUE D’UN CIRCUIT DE CIRCULATION DE FLUIDE EN PARTICULIER POUR UN CIRCUIT DE REFROIDISSEMENT D’UN MOTEUR
FR2976322A1 (fr) Repartiteur d'air comprenant un dispositif adapte a echanger de la chaleur avec de l'air de suralimentation, et systeme de transfert thermique comprenant un tel repartiteur
FR3091569A1 (fr) Vanne de circulation de fluide et système de traitement thermique pour véhicule comprenant une telle vanne
EP1669570A2 (fr) Système de refroidissement pour chaine de traction hybride de vehicule automobile
EP1697668B1 (fr) Vanne de regulation thermique pour un circuit de circulation de fluide, en particulier pour un circuit de refroidissement d'un moteur
WO2006070080A1 (fr) Systeme de gestion de l'energie thermique d'un moteur thermique de vehicule comportant des moyens de commutation temporisee
FR2932845A1 (fr) Procede et dispositif de refroidissement d'un moteur thermique.
WO2021058915A1 (fr) Dispositif de gestion thermique d'un véhicule automobile électrique ou hybride comportant un circuit de fluide caloporteur
FR2812027A1 (fr) "echangeur de chaleur pour gaz d'echappement d'un moteur a combustion interne"
FR3066536A3 (fr) Vanne by-pass echangeur moteur
WO2017203116A1 (fr) Groupe motopropulseur d'un vehicule
FR3067795A1 (fr) Installation thermique pour vehicule automobile etablissant une synergie entre un circuit de refrigeration et un circuit de refroidissement
FR3114127A3 (fr) Piquage de dégazage thermostaté
WO2024115507A1 (fr) Système de conditionnement thermique

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20030721

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: VALEO SYSTEMES THERMIQUES

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20071016