EP1357342B1 - Drei-Säulen-System zur Tieftemperaturzerlegung mit Argongewinnung - Google Patents

Drei-Säulen-System zur Tieftemperaturzerlegung mit Argongewinnung Download PDF

Info

Publication number
EP1357342B1
EP1357342B1 EP02011458A EP02011458A EP1357342B1 EP 1357342 B1 EP1357342 B1 EP 1357342B1 EP 02011458 A EP02011458 A EP 02011458A EP 02011458 A EP02011458 A EP 02011458A EP 1357342 B1 EP1357342 B1 EP 1357342B1
Authority
EP
European Patent Office
Prior art keywords
argon
column
pressure column
pressure
medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP02011458A
Other languages
English (en)
French (fr)
Other versions
EP1357342A1 (de
Inventor
Dietrich Rottmann
Christian Kunz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Linde GmbH
Original Assignee
Linde GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Linde GmbH filed Critical Linde GmbH
Publication of EP1357342A1 publication Critical patent/EP1357342A1/de
Application granted granted Critical
Publication of EP1357342B1 publication Critical patent/EP1357342B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04187Cooling of the purified feed air by recuperative heat-exchange; Heat-exchange with product streams
    • F25J3/04193Division of the main heat exchange line in consecutive sections having different functions
    • F25J3/04206Division of the main heat exchange line in consecutive sections having different functions including a so-called "auxiliary vaporiser" for vaporising and producing a gaseous product
    • F25J3/04212Division of the main heat exchange line in consecutive sections having different functions including a so-called "auxiliary vaporiser" for vaporising and producing a gaseous product and simultaneously condensing vapor from a column serving as reflux within the or another column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04078Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression
    • F25J3/0409Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression of oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04187Cooling of the purified feed air by recuperative heat-exchange; Heat-exchange with product streams
    • F25J3/0423Subcooling of liquid process streams
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/0429Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of feed air, e.g. used as waste or product air or expanded into an auxiliary column
    • F25J3/04303Lachmann expansion, i.e. expanded into oxygen producing or low pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/04309Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/04327Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of argon or argon enriched stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04375Details relating to the work expansion, e.g. process parameter etc.
    • F25J3/04393Details relating to the work expansion, e.g. process parameter etc. using multiple or multistage gas work expansion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04436Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using at least a triple pressure main column system
    • F25J3/04454Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using at least a triple pressure main column system a main column system not otherwise provided, e.g. serially coupling of columns or more than three pressure levels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04642Recovering noble gases from air
    • F25J3/04648Recovering noble gases from air argon
    • F25J3/04654Producing crude argon in a crude argon column
    • F25J3/04709Producing crude argon in a crude argon column as an auxiliary column system in at least a dual pressure main column system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/50Processes or apparatus using separation by rectification using multiple (re-)boiler-condensers at different heights of the column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2215/00Processes characterised by the type or other details of the product stream
    • F25J2215/50Oxygen or special cases, e.g. isotope-mixtures or low purity O2
    • F25J2215/54Oxygen production with multiple pressure O2
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2235/00Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams
    • F25J2235/50Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams the fluid being oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2235/00Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams
    • F25J2235/58Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams the fluid being argon or crude argon
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2240/00Processes or apparatus involving steps for expanding of process streams
    • F25J2240/40Expansion without extracting work, i.e. isenthalpic throttling, e.g. JT valve, regulating valve or venturi, or isentropic nozzle, e.g. Laval
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2245/00Processes or apparatus involving steps for recycling of process streams
    • F25J2245/50Processes or apparatus involving steps for recycling of process streams the recycled stream being oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2245/00Processes or apparatus involving steps for recycling of process streams
    • F25J2245/58Processes or apparatus involving steps for recycling of process streams the recycled stream being argon or crude argon
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2250/00Details related to the use of reboiler-condensers
    • F25J2250/20Boiler-condenser with multiple exchanger cores in parallel or with multiple re-boiling or condensing streams

Definitions

  • the invention relates to a method for the cryogenic separation of air according to the preamble of claim 1.
  • a medium-pressure column is used which is operated at a pressure which is between the operating pressures of the high-pressure column and the low-pressure column (see also Plank, Vol. Handbook of Refrigeration, Volume 8, 1957, page 194/195).
  • the feed fraction used for the medium-pressure column is either at least part of an oxygen-enriched liquid from the high-pressure column or a partial stream of the feed air or both.
  • the medium-pressure column can be equipped with a bottom evaporator and / or with a top condenser. Head and / or bottom products of the medium-pressure column are usually fed to the low-pressure column and / or withdrawn as a product under intermediate pressure.
  • FIG. 8 the crude argon column-analogous to a two-column system with high-pressure column and low-pressure column-is designed as a side column to the low-pressure column. This connection between low-pressure column and crude argon column is also in the three-column processes of not previously published applications DE 10113791 A1 and DE 10113790 A1 realized.
  • argon-enriched here a fraction is referred to, if their argon content is higher than that of the atmospheric air and, for example, 3 to 14 mol%, preferably 5 to 14 mol%.
  • the invention has for its object to provide such a 3-pillar system, which allows a particularly efficient argon production.
  • the first argon-enriched stream which serves as an insert for the crude argon column, is taken from the medium-pressure column.
  • argon belly a relatively high argon concentration (the "argon belly") forms at an intermediate point.
  • This argon enrichment is used in the invention for argon recovery by at least part of the use of the crude argon column is deducted from approximately this intermediate point of the medium-pressure column.
  • This argon-enriched fraction is under a higher pressure than the low-pressure column (about 5.5 bar when the low-pressure column is operated below about atmospheric pressure) and thus further contains a pressure potential which is available in the invention for improving the argon recovery.
  • the rectification system for nitrogen-oxygen separation can be formed in the invention by any type of three- or multi-column system, for example by a pure gas apparatus, an internal compression unit or a liquid system (optionally with two- or multi-turbine air). or nitrogen cycle).
  • the customary connection between low-pressure column and crude argon column can exist, via which a second argon-enriched stream is withdrawn from the low-pressure column and introduced into the crude argon column.
  • argon enrichment in the medium-pressure column and the low-pressure column further increases the economic efficiency of argon recovery.
  • the bottom liquid of the crude argon column is at least partially recycled to the medium-pressure column. Since the crude argon column in the invention is usually operated at a pressure lower than the medium-pressure column pressure (and approximately equal to the low-pressure column pressure, for example), a liquid pump is generally used for the recycling of the crude argon column bottoms liquid.
  • One way of utilizing the aforementioned pressure potential available in the invention is to at least partially condense at least a portion of the first argon-enriched stream upstream of introduction into the crude argon column in a condenser-evaporator.
  • the condenser-evaporator is preferably designed as an intermediate or bottom evaporator of the crude argon column by a part of a liquid from the crude argon column, in particular a part of the bottom liquid, is evaporated there.
  • the pressure gradient between medium-pressure column and crude argon column is thus utilized to operate the condenser-evaporator.
  • the first argon-enriched stream is expanded between condenser-evaporator and feed into the medium-pressure column and / or upstream of the condenser-evaporator.
  • the feed into the crude argon column is preferably carried out at an intermediate point, for example, 1 to 8 theoretical plates, preferably 2 to 6 theoretical plates above the bottom of the crude argon column, for a total of, for example, 45 to 200 theoretical plates, preferably 45 to 180 theoretical plates in the crude argon column. If, in addition, a second argon-enriched stream is introduced from the low-pressure column, its feed into the crude argon column takes place deeper, for example directly above the bottom.
  • the above-mentioned pressure potential can be exploited by at least part of the first argon-enriched stream upstream of the introduction into the crude argon column being expanded to perform work and thus used to produce process refrigeration.
  • Upstream of the work-performing expansion of the stream is heated to an intermediate temperature, preferably in indirect heat exchange against feed air, for example in the main heat exchanger.
  • the invention also relates to a device for the cryogenic separation of air according to claim 7.
  • a first feed air stream 1 in a first air compressor 2 with aftercooler 3 is compressed to approximately the operating pressure of the high-pressure column described below (plus line losses).
  • the first air stream 4 then branches into a direct air stream 5 and a turbine air stream 6.
  • the direct air 5 is fed directly to the warm end of a main heat exchanger 7 and cooled there to about dew point.
  • the cooled direct air 8 flows without further pressure-changing measures of the high-pressure column 9.
  • the high-pressure column 9 is part of a rectification system for nitrogen-oxygen separation, which also comprises a medium-pressure column 10 and a low-pressure column 11. Their operating pressures are (at the top of each head): High-pressure column 14.5 to 17 bar, for example about 15 bar Medium pressure column 5 to 6 bar, for example about 5.5 bar Low-pressure column 1.2 to 1.5 bar, for example about 1.3 bar
  • the columns are connected via a first main capacitor 12 between the high-pressure column and the medium-pressure column or a second main capacitor 13 between the medium-pressure column and low-pressure column in heat-exchanging connection.
  • head gas of the respective lower column is condensed in a known manner in indirect heat exchange with evaporating bottom liquid of the respective upper column.
  • the turbine air stream 6, 16 is post-compacted in a secondary compressor 14 with aftercooler 15, cooled in the main heat exchanger 7 to an intermediate temperature and fed via line 17 of the work-performing expansion in a relaxation machine (injection turbine) 18, which is mechanically coupled to the booster 14.
  • the relaxed turbine air 19 is finally injected directly into the low-pressure column 11.
  • the exemplary embodiment relates to an application in which air is already available to a limited extent under a superatmospheric pressure, for example the medium-pressure column pressure (plus line losses).
  • a superatmospheric pressure for example the medium-pressure column pressure (plus line losses).
  • Oxygen-enriched liquid 22 is withdrawn from the bottom of the high-pressure column 9, cooled in a first supercooling countercurrent 23, introduced via line 24 and throttle valve 25 in the medium-pressure column and there subjected to the first part of a further countercurrent rectification. To another part 26 it is forwarded by a second supercooling countercurrent 27.
  • the supercooled oxygen-enriched liquid 28 under intermediate pressure branches into two parts 29, 31, one of which is throttled via valve 30 into the low-pressure column 11.
  • a portion 33 of the gaseous overhead nitrogen of the high pressure column 9 is heated in the main heat exchanger 7 to about ambient temperature and recovered under the pressure of the high pressure column as product 34 (GAN).
  • Nitrogen recovered in the first main condenser 12 is partly undercooled (23) and fed as reflux 36 to the top of the medium-pressure column 10. Furthermore The second main condenser 13 generates return line 37 for the medium-pressure column and, if required, liquid nitrogen product 38.
  • oxygen 39 is withdrawn liquid with a purity of about 99.5 mol% and introduced into a secondary condenser 40. There it is partially vaporized in indirect heat exchange with condensing overhead nitrogen 41 of the high pressure column 9.
  • a first, somewhat impure oxygen product 42, 43 is recovered from the vapor formed at about the medium pressure column pressure (GOX), optionally after compression in the second stage 44 of an oxygen compressor 56/44 with aftercooling 45. From the proportion remaining liquid in the secondary condenser 40 46th By internal compression, a purer high pressure oxygen product 49 (GOX-IC) is produced.
  • GOX-IC medium pressure column pressure
  • the liquid 46 is brought by means of a pump 47 to a corresponding pressure, passed through a liquid line 48 to the cold end of the main heat exchanger and evaporated there and warmed.
  • a portion 82 of the gaseous nitrogen from the top of the medium pressure column is warmed in the main heat exchanger 7 and can be obtained via line 83 or - as shown - via line 86 after compression in a nitrogen compressor 84 with aftercooler 85 as a pressurized product (PGAN).
  • PGAN pressurized product
  • a first argon-enriched stream 59 is withdrawn in gaseous form from an intermediate point of the medium-pressure column 10, which is arranged below the feed 24/25 of oxygen-enriched liquid and below the air supply via line 21.
  • the current 59 is in a condenser-evaporator 60 at least partially, preferably completely condensed and finally introduced via line 61 and throttle valve 62 into a crude argon column 63, which is operated at about the same pressure as the low-pressure column 11.
  • the feed point of the first argon-enriched stream is, for example, 30 to 40 theoretical plates, preferably 33 to 38 theoretical plates above the sump for a total of 70 to 90 theoretical plates, preferably 78 to 85 theoretical plates in the crude argon column 63.
  • the condenser-evaporator 60 provides A portion 65 of the non-evaporated bottoms liquid 64 of the crude argon column 63 is returned to medium-pressure column pressure in a pump 66 and returned to the medium-pressure column 10 (66). The remainder 67 is introduced into the low-pressure column 11.
  • a second argon-enriched stream 68 in gaseous form from the low-pressure column 11 of the crude argon column is fed directly to the sump.
  • the top condenser 69 of the crude argon column 63 is operated with oxygen-enriched liquid 31, which has been expanded in a valve 32 to a suitable pressure (approximately equal to low-pressure column pressure).
  • a suitable pressure approximately equal to low-pressure column pressure.
  • steam 70 is introduced at a suitable location in the low-pressure column.
  • the crude argon product (the "argon-rich fraction") 75 is withdrawn in gaseous form from the top of the crude argon column 63 or from the liquefaction space of the top condenser 69.
  • the first argon-enriched stream 259 in the main heat exchanger 7 is warmed to an intermediate temperature, passed via line 271 to a flash-down machine 272 where it is expanded to about 0.2 bar over crude argon column pressure and finally into the evaporation space of the condenser-evaporator 60 (274 , 276).
  • the expansion machine 272 is preferably designed as a turbine and coupled to a braking device 273, preferably a generator.
  • FIG. 3 largely corresponds to FIG. 2, except that a bottom reboiler for the crude argon column 63 is dispensed with and the first argon-enriched stream 374, which has been released for work, is introduced into the bottom of the crude argon column in gaseous form.
  • the argon transition turbine (272 in FIG. 2) is also dispensed with, and the first argon-enriched stream 459 is throttled directly into the bottom of the crude argon column 63 (462).
  • FIGS. 2 to 4 show alternatives to the injection of turbine air 19 shown in Figure 1 in the low-pressure column. These deviating methods of refrigeration can also be combined with each of the methods of FIGS. 2 to 4.
  • the air turbine 518 relaxes in the method of Figure 5 only to about the operating pressure of the medium-pressure column 10. This variant is therefore in particular at relatively low cooling demand in question and increases the oxygen yield of the process.
  • the working expanded air 519 is fed together with the second feed air stream 20-21 via line 521 into the medium-pressure column 10.
  • FIG. 6 relates to a modification of FIG. 5, in which the turbine air 6 is compressed upstream of the turbine-driven secondary compressor 14 in a further after-compressor 681, which is driven by external energy, with after-cooling 682.
  • a higher pressure ratio can be achieved at the turbine 518 and thus produce more cold.
  • process refrigeration in a nitrogen turbine 718 according to FIG. 7 can be obtained.
  • a portion 787 of the withdrawn from the high-pressure column 9 nitrogen 33 is heated in the main heat exchanger 7 only to an intermediate temperature and working to relax to about medium pressure column pressure (718).
  • the expanded high pressure column nitrogen 788 is finally combined with the medium pressure column nitrogen 82 upstream of the main heat exchanger 7.
  • the nitrogen turbine 718 is not coupled to a generator or an oil brake as in FIG. 7, but is braked by means of a secondary compressor 814 which increases the pressure in the turbine stream 887 and thus the inlet pressure of the turbine 718.
  • the corresponding portion 887 of the high pressure column nitrogen is previously preheated to about ambient temperature and cooled downstream of the postcompressor 814 by means of an aftercooler 815.
  • a portion 988 of the gaseous nitrogen 82 is released from the intermediate pressure column 10 from an intermediate temperature to perform a work.
  • the expansion machine 918 is braked for example by an oil brake or a generator.
  • the expanded nitrogen gas 989 is virtually depressurized and is removed under ambient temperature via line 990 (GAN).
  • FIG. 10 is based on FIG. 1, but shows a modified guidance of the oxygen product from the low-pressure column 11.
  • the entire bottom product of the low-pressure column is removed in liquid form (line 1076).
  • the pumped low-pressure column oxygen 1079 is warmed in the first supercooling countercurrent 27 and finally introduced via line 1080 in the medium-pressure column 10.
  • Line 39 now promotes the entire gaseous oxygen to be obtained, which was produced in medium-pressure column 10 and low-pressure column 11.
  • This "pumping back" of the low-pressure column oxygen in the medium-pressure column can be applied in an analogous manner in the embodiments of Figures 2 to 9 and their variants.
  • the embodiments show a rectification system for nitrogen-oxygen separation, which is designed as a triple column in the strict sense, that is high-pressure column, medium pressure column and low pressure column are arranged one above the other and are in pairs via a main capacitor 12, 13 in heat exchanging connection.
  • the invention is also applicable to any other 3-pillar system.
  • the medium-pressure column may be arranged next to a classical Linde double column comprising high-pressure column and low-pressure column; alternatively, all three columns could be arranged side by side.
  • Other condenser configurations for the low pressure column, the medium pressure column and for the high pressure column can be used in the invention.

Description

  • Die Erfindung betrifft ein Verfahren zur Tieftemperatur-Zerlegung von Luft gemäß dem Oberbegriff des Patentanspruchs 1. Ein solches Verfahren ist aus DE 19609490 (= US 5669237), Figur 8, bekannt.
  • Verfahren und Vorrichtungen zur Tieftemperaturzerlegung von Luft sind allgemein aus Hausen/Linde, Tieftemperaturtechnik, 2. Auflage 1985, Kapitel 4 (Seiten 281 bis 337) bekannt. Bei dem vorliegenden Verfahren wird zusätzlich zu der Hochdrucksäule und der Niederdrucksäule eines klassischen 2-Säulen-Systems zur Stickstoff-Sauerstoff-Trennung eine Mitteldrucksäule eingesetzt, die unter einem Druck betrieben wird, der zwischen den Betriebsdrücken von Hochdrucksäule und Niederdrucksäule liegt (siehe auch Plank, Handbuch der Kältetechnik, 8. Band, 1957, Seite 194/195). Als Einsatzfraktion für die Mitteldrucksäule dient entweder mindestens ein Teil einer sauerstoffangereicherten Flüssigkeit aus der Hochdrucksäule oder ein Teilstrom der Einsatzluft oder beides. Die Mitteldrucksäule kann mit einem Sumpfverdampfer und/oder mit einem Kopfkondensator ausgerüstet sein. Kopf- und/oder Sumpfprodukte der Mitteldrucksäule werden üblicherweise der Niederdrucksäule zugespeist und/oder als Produkt unter Zwischendruck abgezogen.
  • Drei-Säulen-Luftzerleger-Systeme sind außerdem bekannt aus DE 1041989 (=US 3091094), DE 1065867 (=US 3100696), US 3490246, DE 2903089 (=US 4356013), EP 768503 B1 (=US 5730004) und EP 949471 A1 (=US 6185960). Auch die noch zu veröffentlichenden Anmeldungen DE 10052180 A1 (und korrespondierende EP-Anmeldung 01103828.8), DE 10103968 A1 (und korrespondierende Anmeldungen), DE 10103957 A1 (und korrespondierende Anmeldungen) betreffen derartige Drei-Säulen-Verfahren.
  • Bei dem Drei-Säulen-Verfahren mit Argongewinnung aus DE 19609490 (=US 5669237), Figur 8, ist die Rohargonsäule - analog zu einem Zwei-Säulen-System mit Hochdrucksäule und Niederdrucksäule - als Seitenkolonne zu der Niederdrucksäule ausgebildet. Diese Verbindung zwischen Niederdrucksäule und Rohargonsäule ist auch bei den Drei-Säulen-Prozessen der nicht vorveröffentlichten Anmeldungen DE 10113791 A1 und DE 10113790 A1 realisiert.
  • Als "argonangereichert" wird hier eine Fraktion bezeichnet, wenn ihr Argongehalt höher als derjenige der atmosphärischen Luft ist und beispielsweise 3 bis 14 mol-%, vorzugsweise 5 bis 14 mol-% beträgt.
  • Der Erfindung liegt die Aufgabe zugrunde, ein derartiges 3-Säulen-System anzugeben, das eine besonders effiziente Argongewinnung ermöglicht.
  • Diese Aufgabe wird dadurch gelöst, dass der erste argonangereicherte Strom, der als Einsatz für die Rohargonsäule dient, aus der Mitteldrucksäule entnommen wird.
  • Auch in der Mitteldrucksäule bildet sich an einer Zwischenstelle eine relativ hohe Argonkonzentration (der "Argonbauch") aus. Diese Argon-Anreicherung wird im Rahmen der Erfindung zur Argongewinnung genutzt, indem mindestens ein Teil des Einsatzes der Rohargonsäule von ungefähr dieser Zwischenstelle der Mitteldrucksäule abgezogen wird.
  • Diese argonangereicherte Fraktion steht unter einem höherem Druck als die Niederdrucksäule (etwa 5,5 bar, wenn die Niederdrucksäule unter etwa Atmosphärendruck betrieben wird) und enthält damit femer ein Druckpotential, das im Rahmen der Erfindung für die Verbesserung der Argongewinnung zu Verfügung steht.
  • Das Rektifiziersystem zur Stickstoff-Sauerstoff-Trennung kann bei der Erfindung durch jede Art von Drei- oder Mehr-Säulen-System gebildet werden, beispielsweise durch einen reinen Gasapparat, eine Innenverdichtungsanlage oder eine Flüssiganlage (gegebenenfalls mit Zwei- oder Mehr-Turbinen-Luft- oder -Stickstoff-Kreislauf).
  • Zusätzlich kann bei dem erfindungsgemäßen Verfahren die übliche Verbindung zwischen Niederdrucksäule und Rohargonsäule bestehen, über die ein zweiter argonangereicherter Strom aus der Niederdrucksäule abgezogen und in die Rohargonsäule eingeleitet wird. Durch die gleichzeitige Ausnutzung der Argon-Anreicherung in Mitteldrucksäule und Niederdrucksäule lässt sich die Wirtschaftlichkeit der Argongewinnung weiter erhöhen.
  • Die Sumpfflüssigkeit der Rohargonsäule wird mindestens teilweise in die Mitteldrucksäule zurückgeführt. Da die Rohargonsäule bei der Erfindung in der Regel unter einem Druck betrieben wird, der niedriger als der Mitteldrucksäulendruck (und beispielsweise etwa gleich dem Niederdrucksäulendruck) ist, wird für die Rückführung der Rohargonsäulen-Sumpfflüssigkeit im Allgemeinen eine Flüssigpumpe eingesetzt.
  • Ein Möglichkeit, das oben erwähnte Druckpotential einzusetzen, das im Rahmen der Erfindung zur Verfügung steht, besteht darin, dass mindestens ein Teil des ersten argonangereicherten Stroms stromaufwärts der Einleitung in die Rohargonsäule in einem Kondensator-Verdampfer mindestens teilweise kondensiert wird. Der Kondensator-Verdampfer ist vorzugsweise als Zwischen- oder Sumpfverdampfer der Rohargonsäule ausgebildet, indem dort ein Teil einer Flüssigkeit aus der Rohargonsäule, insbesondere ein Teil deren Sumpfflüssigkeit, verdampft wird. Das Druckgefälle zwischen Mitteldrucksäule und Rohargonsäule wird somit zum Betreiben des Kondensator-Verdampfers ausgenutzt. Der erste argonangereicherte Strom wird zwischen Kondensator-Verdampfer und Einspeisung in die Mitteldrucksäule und/oder stromaufwärts des Kondensator-Verdampfers entspannt.
  • Die Einspeisung in die Rohargonsäule erfolgt vorzugsweise an einer Zwischenstelle, die beispielsweise 1 bis 8 theoretische Böden, vorzugsweise 2 bis 6 theoretische Böden oberhalb des Sumpfs der Rohargonsäule liegt, bei einer Gesamtzahl von beispielsweise 45 bis 200 theoretische Böden, vorzugsweise 45 bis 180 theoretischen Böden in der Rohargonsäule. Falls zusätzlich ein zweiter argonangereicherter Strom aus der Niederdrucksäule herangeführt wird, erfolgt dessen Zuspeisung in die Rohargonsäule tiefer, beispielsweise unmittelbar über dem Sumpf.
  • Alternativ oder zusätzlich kann das oben erwähnte Druckpotential ausgenutzt werden, indem mindestens ein Teil des ersten argonangereicherten Stroms stromaufwärts der Einleitung in die Rohargonsäule arbeitsleistend entspannt und damit zur Erzeugung von Verfahrenskälte eingesetzt werden. Stromaufwärts der arbeitsleistenden Entspannung wird der Strom auf eine Zwischentemperatur angewärmt, vorzugsweise in indirektem Wärmeaustausch gegen Einsatzluft, beispielsweise im Hauptwärmetauscher.
  • Die Erfindung betrifft außerdem eine Vorrichtung zur Tieftemperaturzerlegung von Luft gemäß Patentanspruch 7.
  • Die Erfindung sowie weitere Einzelheiten der Erfindung werden im Folgenden anhand von in den Zeichnungen schematisch dargestellten Ausführungsbeispielen näher erläutert. Hierbei zeigen:
  • Figur 1
    ein erstes Ausführungsbeispiel der Erfindung mit Sumpfheizung der Rohargonsäule mit der Argonübergangs-Fraktion aus der Mitteldrucksäule,
    Figur 2
    ein zweites Verfahren, bei dem die Argonübergangs-Fraktion aus der Mitteldrucksäule außerdem arbeitsleistend entspannt wird,
    Figur 3
    ein drittes Beispiel ohne Sumpfheizung der Rohargonsäule,
    Figur 4
    ein Verfahren mit direkter Einleitung der Argonübergangs-Fraktion aus der Mitteldrucksäule in die Rohargonsäule,
    Figuren 5 bis 9
    verschiedene Varianten der Kältegewinnung bei einem Verfahren der Figur 1 (auch auf die Verfahren der Figuren 2 bis 4 anwendbar) und
    Figur 10
    ein Prozess mit Zurückpumpen von Sauerstoff aus der Niederdrucksäule in die Mitteldrucksäule.
  • Bei dem Verfahren von Figur 1 wird ein erster Einsatzluftstrom 1 in einem ersten Luftverdichter 2 mit Nachkühler 3 auf etwa den Betriebsdruck der unten beschriebenen Hochdrucksäule (plus Leitungsverluste) verdichtet. Der erste Luftstrom 4 verzweigt anschließend in einen Direktluftstrom 5 und einen Turbinenluftstrom 6. Die Direktluft 5 wird unmittelbar dem warmen Ende eines Hauptwärmetauschers 7 zugeführt und dort auf etwa Taupunkt abgekühlt. Die abgekühlte Direktluft 8 strömt ohne weitere druckverändernde Maßnahmen der Hochdrucksäule 9 zu.
  • Die Hochdrucksäule 9 ist Teil eines Rektifiziersystems zur Stickstoff-Sauerstoff-Trennung, das außerdem eine Mitteldrucksäule 10 und eine Niederdrucksäule 11 umfasst. Ihre Betriebsdrücke betragen (jeweils am Kopf):
    Hochdrucksäule 14,5 bis 17 bar, beispielsweise etwa 15 bar
    Mitteldrucksäule 5 bis 6 bar, beispielsweise etwa 5,5 bar
    Niederdrucksäule 1,2 bis 1,5 bar, beispielsweise etwa 1,3 bar
  • Die Säulen stehen über einen ersten Hauptkondensator 12 zwischen Hochdrucksäule und Mitteldrucksäule beziehungsweise einen zweiten Hauptkondensator 13 zwischen Mitteldrucksäule und Niederdrucksäule in wärmetauschender Verbindung. In den Hauptkondensatoren wird auf bekannte Weise Kopfgas der jeweiligen unteren Säule in indirektem Wärmeaustausch mit verdampfender Sumpfflüssigkeit der jeweiligen oberen Säule kondensiert.
  • Der Turbinenluftstrom 6, 16 wird in einem Nachverdichter 14 mit Nachkühler 15 nachverdichtet, im Hauptwärmetauscher 7 auf eine Zwischentemperatur abgekühlt und über Leitung 17 der arbeitsleistenden Entspannung in einer Entspannungsmaschine (Einblaseturbine) 18 zugeleitet, die mechanisch mit dem Nachverdichter 14 gekoppelt ist. Die entspannte Turbinenluft 19 wird schließlich direkt in die Niederdrucksäule 11 eingeblasen.
  • Das Ausführungsbeispiel bezieht sich auf einen Anwendungsfall, in dem in begrenztem Umfang Luft bereits unter einem überatmosphärischen Druck zur Verfügung steht, beispielsweise dem Mitteldrucksäulendruck (plus Leitungsverluste). Ein solcher Luftstrom - beispielsweise aus einem gasturbinengetriebenen Verdichter oder aus anderer Quelle - strömt bei dem Ausführungsbeispiel als zweiter Einsatzluftstrom 20 dem warmen Ende des Hauptwärmetauschers zu, wird dort auf etwa Taupunkt abgekühlt und schließlich direkt der Mitteldrucksäule 10 zugeführt.
  • Sauerstoffangereicherte Flüssigkeit 22 wird vom Sumpf der Hochdrucksäule 9 abgezogen, in einem ersten Unterkühlungs-Gegenströmer 23 abgekühlt, über Leitung 24 und Drosselventil 25 in die Mitteldrucksäule eingeführt und dort zum ersten Teil einer weiteren Gegenstrom-Rektifikation unterworfen. Zu einem anderen Teil 26 wird er durch einen zweiten Unterkühlungs-Gegenströmer 27 weitergeleitet. Die unterkühlte sauerstoffangereicherte Flüssigkeit 28 unter Zwischendruck verzweigt in zwei Teile 29, 31, von denen einer über Ventil 30 in die Niederdrucksäule 11 eingedrosselt wird. Ein Teil 33 des gasförmigen Kopf-Stickstoffs der Hochdrucksäule 9 wird im Hauptwärmetauscher 7 auf etwa Umgebungstemperatur angewärmt und unter dem Druck der Hochdrucksäule als Produkt 34 (GAN) gewonnen.
  • Im ersten Hauptkondensator 12 gewonnener Stickstoff wird zum Teil 35 unterkühlt (23) und als Rücklauf 36 auf den Kopf der Mitteldrucksäule 10 aufgegeben. Außerdem erzeugt der zweite Hauptkondensator 13 Rücklauf 37 für die Mitteldrucksäule, sowie bei Bedarf flüssiges Stickstoffprodukt 38.
  • Vom Sumpf der Mitteldrucksäule wird Sauerstoff 39 mit einer Reinheit von etwa 99,5 mol-% flüssig abgezogen und in einen Nebenkondensator 40 eingeleitet. Dort wird er in indirektem Wärmeaustausch mit kondensierendem Kopf-Stickstoff 41 der Hochdrucksäule 9 teilweise verdampft. Ein erstes, etwas unreineres Sauerstoffprodukt 42, 43 wird aus dem dabei gebildeten Dampf unter etwa dem Mitteldrucksäulendruck gewonnen (GOX), gegebenenfalls nach Verdichtung in der zweiten Stufe 44 eines Sauerstoffverdichters 56/44 mit Nachkühlung 45. Aus dem im Nebenkondensator 40 flüssig verbliebenen Anteil 46 wird per Innenverdichtung ein reineres Hochdruck-Sauerstoffprodukt 49 (GOX-IC) erzeugt. Dazu wird die Flüssigkeit 46 mittels einer Pumpe 47 auf einen entsprechenden Druck gebracht, über eine Flüssigkeitsleitung 48 zum kalten Ende des Hauptwärmetauschers geführt und dort verdampft und angewärmt. Ein Teil 82 des gasförmigen Stickstoffs vom Kopf der Mitteldrucksäule wird im Hauptwärmetauscher 7 angewärmt und kann über Leitung 83 oder - wie dargestellt - über Leitung 86 nach Verdichtung in einem Stickstoff-Verdichter 84 mit Nachkühler 85 als Druckprodukt (PGAN) gewonnen werden.
  • Rücklaufflüssigkeit 50, 51 für den Kopf der Niederdrucksäule 11 wird von einer Zwischenstelle der Mitteldrucksäule 10 oberhalb der Zuspeisung 24/25 der sauerstoffangereicherten Flüssigkeit abgenommen. Vom Kopf der Niederdrucksäule wird unreiner Stickstoff 52 als Restgas entnommen und nach Anwärmung 27 - 23 - 7 über Leitung 53 aus der Anlage entfernt (UN2). Das Sumpfprodukt 54 der Niederdrucksäule 11 wird teilweise gasförmig abgezogen, nach Anwärmung 27 - 23 - 7 über Leitung 55 der ersten Stufe 56 (mit Zwischenkühlung 57) des Sauerstoffverdichters 56/44 auf etwa Mitteldrucksäulendruck gebracht und schließlich mit dem Mitteldrucksäulen-Sauerstoff 43 vermischt. Außerdem kann flüssiger Sauerstoff 58 als Produkt oder zur Spülung aus dem Niederdrucksäulensumpf abgezogen werden.
  • Ein erster argonangereicherter Strom 59 wird gasförmig von einer Zwischenstelle der Mitteldrucksäule 10 abgezogen, die unterhalb der Zuspeisung 24/25 sauerstoffangereicherter Flüssigkeit und unterhalb der Luftzuspeisung über Leitung 21 angeordnet ist. Der Strom 59 wird in einem Kondensator-Verdampfer 60 mindestens teilweise, vorzugsweise vollständig kondensiert und schließlich über Leitung 61 und Drosselventil 62 in eine Rohargonsäule 63 eingeleitet, die unter etwa demselben Druck wie die Niederdrucksäule 11 betrieben wird. Die Einspeisestelle des ersten argonangereicherten Stroms liegt beispielsweise 30 bis 40 theoretische Böden, vorzugsweise 33 bis 38 theoretische Böden oberhalb des Sumpfs bei einer Gesamtzahl von 70 bis 90 theoretische Böden, vorzugsweise 78 bis 85 theoretischen Böden in der Rohargonsäule 63. Der Kondensator-Verdampfer 60 stellt gleichzeitig der Sumpfaufkocher der Rohargonsäule 63 dar. Ein Teil 65 der nicht verdampften Sumpfflüssigkeit 64 der Rohargonsäule 63 wird in einer Pumpe 66 wieder auf Mitteldrucksäulendruck gebracht und in die Mitteldrucksäule 10 zurückgeführt (66). Der Rest 67 wird in die Niederdrucksäule 11 eingeleitet.
  • Als weiterer Einsatz wird ein zweiter argonangereicherter Strom 68 in Gasform von der Niederdrucksäule 11 der Rohargonsäule direkt am Sumpf zugeführt.
  • Der Kopfkondensator 69 der Rohargonsäule 63 wird mit sauerstoffangereicherter Flüssigkeit 31 betrieben, die in einem Ventil 32 auf einen geeigneten Druck (etwa gleich Niederdrucksäulendruck) entspannt wurde. Im Kopfkondensator 69 gebildeter Dampf 70 wird an geeigneter Stelle in die Niederdrucksäule eingeführt. Das Rohargonprodukt (die "argonreiche Fraktion") 75 wird gasförmig vom Kopf der Rohargonsäule 63 beziehungsweise aus dem Verflüssigungsraum des Kopfkondensators 69 abgezogen.
  • In Figur 2 wird der erste argonangereicherte Strom 259 im Hauptwärmetauscher 7 auf eine Zwischentemperatur angewärmt, über Leitung 271 zu einer Entspannungsmaschine 272 geleitet und dort arbeitsleistend auf etwa 0,2 bar über Rohargonsäulendruck entspannt und schließlich in den Verdampfungsraum des Kondensator-Verdampfers 60 geführt (274, 276). Die Entspannungsmaschine 272 ist vorzugsweise als Turbine ausgebildet und mit einer Bremsvorrichtung 273 gekoppelt, vorzugsweise einem Generator.
  • Figur 3 entspricht weit gehend Figur 2, allerdings wird hier auf einen Sumpfaufkocher für die Rohargonsäule 63 verzichtet und der arbeitsleistend entspannte erste argonangereicherte Strom 374 wird gasförmig in den Sumpf der Rohargonsäule eingeführt.
  • Bei dem Verfahren von Figur 4 wird auch auf die Argonübergangsturbine (272 in Figur 2) verzichtet und der erste argonangereicherte Strom 459 wird direkt in den Sumpf der Rohargonsäule 63 eingedrosselt (462).
  • Die Figuren 5 bis 9 zeigen Alternativen zu der in Figur 1 dargestellten Einblasung von Turbinenluft 19 in die Niederdrucksäule. Diese abweichenden Methoden der Kälteerzeugung können auch mit jedem der Verfahren der Figuren 2 bis 4 kombiniert werden.
  • Die Luftturbine 518 entspannt in dem Verfahren der Figur 5 lediglich auf etwa den Betriebsdruck der Mitteldrucksäule 10. Diese Variante kommt also insbesondere bei relativ niedrigem Kältebedarf in Frage und erhöht die Sauerstoffausbeute des Prozesses. Die arbeitsleistend entspannte Luft 519 wird gemeinsam mit dem zweiten Einsatzluftstrom 20 - 21 über Leitung 521 in die Mitteldrucksäule 10 eingespeist.
  • Figur 6 betrifft eine Abwandlung von Figur 5, bei der die Turbinenluft 6 stromaufwärts des turbinengetriebenen Nachverdichters 14 in einem weiteren, mittels externer Energie angetriebenen Nachverdichter 681 mit Nachkühlung 682 verdichtet wird. Hierdurch lässt sich ein höheres Druckverhältnis an der Turbine 518 erreichen und damit mehr Kälte produzieren.
  • Als Alternative zur bisher gezeigten arbeitsleistenden Entspannung von Einsatzluft kann Verfahrenskälte in einer Stickstoff-Turbine 718 gemäß Figur 7 gewonnen werden. Hierzu wird ein Teil 787 des aus der Hochdrucksäule 9 abgezogenen Stickstoffs 33 im Hauptwärmetauscher 7 nur auf eine Zwischentemperatur angewärmt und arbeitsleistend auf etwa Mitteldrucksäulendruck entspannt (718). Der entspannte Hochdrucksäulen-Stickstoff 788 wird schließlich mit dem Mitteldrucksäulen-Stickstoff 82 stromaufwärts des Hauptwärmetauschers 7 vereinigt.
  • Bei Figur 8 ist die Stickstoff-Turbine 718 nicht wie in Figur 7 an einen Generator oder an eine Ölbremse gekoppelt, sondern wird mittels eines Nachverdichters 814 gebremst, der den Druck im Turbinenstrom 887 und damit den Eintrittsdruck der Turbine 718 erhöht. Der entsprechende Teil 887 des Hochdrucksäulen-Stickstoffs wird vorher auf etwa Umgebungstemperatur angewärmt und stromabwärts es Nachverdichters 814 mittels eines Nachkühlers 815 abgekühlt.
  • Im Verfahren von Figur 9 wird ein Teil 988 des gasförmigen Stickstoffs 82 aus der Mitteldrucksäule 10 von einer Zwischentemperatur aus arbeitsleistend entspannt. Die Entspannungsmaschine 918 wird beispielsweise durch eine Ölbremse oder einen Generator gebremst. Das entspannte Stickstoffgas 989 ist praktisch drucklos und wird unter Umgebungstemperatur über Leitung 990 abgezogen (GAN).
  • Figur 10 basiert auf Figur 1, zeigt aber eine veränderte Führung des Sauerstoffprodukts aus der Niederdrucksäule 11. Hier wird das gesamte Sumpfprodukt der Niederdrucksäule flüssig entnommen (Leitung 1076). Derjenige Teil, der nicht über Leitung 1058 als flüssiges Sauerstoffprodukt beziehungsweise Spülflüssigkeit abgeführt wird, strömt über Leitung 1077 einer Pumpe 1078 zu und wird dort auf etwa Mitteldrucksäulendruck gebracht. Der gepumpte Niederdrucksäulen-Sauerstoff 1079 wird im ersten Unterkühlungs-Gegenströmer 27 angewärmt und schließlich über Leitung 1080 in die Mitteldrucksäule 10 eingeleitet. Leitung 39 fördert nun den gesamten gasförmig zu gewinnenden Sauerstoff, der in Mitteldrucksäule 10 und Niederdrucksäule 11 hergestellt wurde. Dieses "Zurückpumpen" des Niederdrucksäulen-Sauerstoffs in die Mitteldrucksäule kann in analoger Weise bei den Ausführungsbeispielen der Figuren 2 bis 9 und ihren Varianten angewendet werden.
  • Die Ausführungsbeispiele zeigen ein Rektifiziersystem zur Stickstoff-Sauerstoff-Trennung, das als Dreifachsäule im engeren Sinne ausgeführt ist, das heißt Hochdrucksäule, Mitteldrucksäule und Niederdrucksäule sind übereinander angeordnet und stehen paarweise über je einen Hauptkondensator 12, 13 in wärmetauschender Verbindung. Die Erfindung ist aber auch bei jedem anderen 3-Säulen-System anwendbar. Beispielsweise kann die Mitteldrucksäule neben einer klassischen Linde-Doppelsäule angeordnet sein, die Hochdrucksäule und Niederdrucksäule umfasst; alternativ könnten alle drei Säulen nebeneinander angeordnet sein. Auch andere Kondensator-Konfigurationen für die Niederdrucksäule, die Mitteldrucksäule und für die Hochdrucksäule können im Rahmen der Erfindung eingesetzt werden.
  • Einige für die Erfindung nebensächliche Einzelheiten wie zum Beispiel die Reinigung der Einsatzluftströme ist in den Zeichnungen nicht dargestellt.

Claims (7)

  1. Verfahren zur Tieftemperatur-Luftzerlegung von Luft in einem Rektifiziersystem zur Stickstoff-Sauerstoff Trennung, das eine Hochdrucksäule (9), eine Niederdrucksäule (11) und eine Mitteldrucksäule (10) aufweist, und in einer Rohargonsäule (63), wobei bei dem Verfahren
    (a) mindestens ein Einsatzluftstrom in das Rektifiziersystem zur Stickstoff-Sauerstoff-Trennung eingeleitet (8,19. 21. 521) wird,
    (b)der Niederdrucksäule (11) mindestens ein Sauerstoff- oder Stickstoff-Produktstrom (52, 54, 58, 1076) entnommen wird,
    (c) mindestens ein erster argonangereicherter Strom (59, 61, 259, 271, 274, 276, 374) aus dem Rektifiziersystem zur Stickstoff-Sauerstoff-Trennung entnommen und der Rohargonsäule (63) zugeleitet wird und bei dem
    (d)der Rohargonsäule (63) eine argonreiche Fraktion (75) entnommen wird, deren Argongehalt größer als derjenige des ersten argonangereicherten Stroms (59, 61, 259, 271, 274, 276, 374) ist,
    dadurch gekennzeichnet, dass
    (e)der erste argonangereicherte Strom (59, 61, 259, 271, 274, 276, 374) aus der Mitteldrucksäule (10) entnommen wird.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass ein zweiter argonangereicherter Strom (68) aus der Niederdrucksäule abgezogen und in die Rohargonsäule (63) eingeleitet wird.
  3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Sumpfflüssigkeit (64) der Rohargonsäule (63) mindestens teilweise in die Mitteldrucksäule (10) zurückgeführt (65, 66) wird.
  4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass mindestens ein Teil des ersten argonangereicherten Stroms (59, 274) stromaufwärts der Einleitung (61, 276) in die Rohargonsäule (63) in einem Kondensator-Verdampfer (60) mindestens teilweise kondensiert wird.
  5. Verfahren nach Anspruch 4, dadurch gekennzeichnet, dass in dem Kondensator-Verdampfer (60) ein Teil einer Flüssigkeit, insbesondere der Sumpfflüssigkeit, aus der Rohargonsäule (63) verdampft wird.
  6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass mindestens ein Teil des ersten argonangereicherten Stroms (259, 271) stromaufwärts der Einleitung (276, 374) in die Rohargonsäule (63) arbeitsleistend entspannt (272) wird.
  7. Vorrichtung zur Tieftemperatur-Luftzerlegung von Luft mit einem Rektifiziersystem zur Stickstoff-Sauerstoff-Trennung, das eine Hochdrucksäule (9), eine Niederdrucksäule (11) und eine Mitteldrucksäule (10) aufweist, mit einer Rohargonsäule (63) und mit
    (a)mindestens einer Einsatzluftleitung (8, 19, 21, 521) zum Einleiten mindestens eines Einsatzluftstroms in das Rektifiziersystem zur Stickstoff-Sauerstoff-Trennung wird,
    (b)mindestens einer Produktleitung (52, 54, 58, 1076) zum Entnehmen mindestens eines Sauerstoff- oder Stickstoff-Produktstroms aus der Niederdrucksäule (11),
    (c) einer ersten Argonübergangs-Leitung (59, 61, 259, 271, 274, 276, 374) zur Einleitung eines argonangereicherten Stroms aus dem Rektifiziersystem zur Stickstoff-Sauerstoff-Trennung in die Rohargonsäule (63) und mit
    (d)einer Rohargon-Produktleitung (75) zum Entnehmen einer argonreichen Fraktion, deren Argongehalt größer als derjenige des ersten argonangereicherten Stroms ist, aus der Rohargonsäule (63),
    dadurch gekennzeichnet, dass
    (e)die erste Argonübergangs-Leitung (59, 61, 259, 271, 274, 276, 374) mit der Mitteldrucksäule (10) verbunden ist.
EP02011458A 2002-04-17 2002-05-24 Drei-Säulen-System zur Tieftemperaturzerlegung mit Argongewinnung Expired - Lifetime EP1357342B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10217091A DE10217091A1 (de) 2002-04-17 2002-04-17 Drei-Säulen-System zur Tieftemperatur-Luftzerlegung mit Argongewinnung
DE10217091 2002-04-17

Publications (2)

Publication Number Publication Date
EP1357342A1 EP1357342A1 (de) 2003-10-29
EP1357342B1 true EP1357342B1 (de) 2006-11-02

Family

ID=28685145

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02011458A Expired - Lifetime EP1357342B1 (de) 2002-04-17 2002-05-24 Drei-Säulen-System zur Tieftemperaturzerlegung mit Argongewinnung

Country Status (3)

Country Link
EP (1) EP1357342B1 (de)
AT (1) ATE344428T1 (de)
DE (2) DE10217091A1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009023900A1 (de) 2009-06-04 2010-12-09 Linde Aktiengesellschaft Dreisäulenverfahren und -vorrichtung zur Tieftemperaturzerlegung von Luft
CN110307695A (zh) * 2018-03-20 2019-10-08 乔治洛德方法研究和开发液化空气有限公司 产品氮气和产品氩的制造方法及其制造装置
US11852408B2 (en) 2020-05-20 2023-12-26 L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Method and apparatus for separating air by cryogenic distillation

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007031759A1 (de) 2007-07-07 2009-01-08 Linde Ag Verfahren und Vorrichtung zur Erzeugung von gasförmigem Druckprodukt durch Tieftemperaturzerlegung von Luft
DE102007031765A1 (de) 2007-07-07 2009-01-08 Linde Ag Verfahren zur Tieftemperaturzerlegung von Luft
DE102009034979A1 (de) 2009-04-28 2010-11-04 Linde Aktiengesellschaft Verfahren und Vorrichtung zur Erzeugung von gasförmigem Drucksauerstoff
EP2312248A1 (de) 2009-10-07 2011-04-20 Linde Aktiengesellschaft Verfahren und Vorrichtung Gewinnung von Drucksauerstoff und Krypton/Xenon
DE102010052545A1 (de) 2010-11-25 2012-05-31 Linde Aktiengesellschaft Verfahren und Vorrichtung zur Gewinnung eines gasförmigen Druckprodukts durch Tieftemperaturzerlegung von Luft
DE102010052544A1 (de) 2010-11-25 2012-05-31 Linde Ag Verfahren zur Gewinnung eines gasförmigen Druckprodukts durch Tieftemperaturzerlegung von Luft
FR2972794B1 (fr) * 2011-03-18 2015-11-06 Air Liquide Appareil et procede de separation d'air par distillation cryogenique
EP2520886A1 (de) 2011-05-05 2012-11-07 Linde AG Verfahren und Vorrichtung zur Erzeugung eines gasförmigen Sauerstoff-Druckprodukts durch Tieftemperaturzerlegung von Luft
DE102011112909A1 (de) 2011-09-08 2013-03-14 Linde Aktiengesellschaft Verfahren und Vorrichtung zur Gewinnung von Stahl
EP2600090B1 (de) 2011-12-01 2014-07-16 Linde Aktiengesellschaft Verfahren und Vorrichtung zur Erzeugung von Drucksauerstoff durch Tieftemperaturzerlegung von Luft
DE102011121314A1 (de) 2011-12-16 2013-06-20 Linde Aktiengesellschaft Verfahren zur Erzeugung eines gasförmigen Sauerstoff-Druckprodukts durch Tieftemperaturzerlegung von Luft
DE102012017488A1 (de) 2012-09-04 2014-03-06 Linde Aktiengesellschaft Verfahren zur Erstellung einer Luftzerlegungsanlage, Luftzerlegungsanlage und zugehöriges Betriebsverfahren
WO2014154339A2 (de) 2013-03-26 2014-10-02 Linde Aktiengesellschaft Verfahren zur luftzerlegung und luftzerlegungsanlage
EP2784420A1 (de) 2013-03-26 2014-10-01 Linde Aktiengesellschaft Verfahren zur Luftzerlegung und Luftzerlegungsanlage
EP2801777A1 (de) 2013-05-08 2014-11-12 Linde Aktiengesellschaft Luftzerlegungsanlage mit Hauptverdichterantrieb
FR3011916B1 (fr) * 2013-10-15 2015-11-13 Air Liquide Procede et appareil de separation d'air par distillation cryogenique
DE102013017590A1 (de) 2013-10-22 2014-01-02 Linde Aktiengesellschaft Verfahren zur Gewinnung eines Krypton und Xenon enthaltenden Fluids und hierfür eingerichtete Luftzerlegungsanlage
TR201808162T4 (tr) 2014-07-05 2018-07-23 Linde Ag Havanın düşük sıcaklıkta ayrıştırılması vasıtasıyla bir basınçlı gaz ürününün kazanılmasına yönelik yöntem ve cihaz.
PL2963370T3 (pl) 2014-07-05 2018-11-30 Linde Aktiengesellschaft Sposób i urządzenie do kriogenicznego rozdziału powietrza
PL2963369T3 (pl) 2014-07-05 2018-10-31 Linde Aktiengesellschaft Sposób i urządzenie do niskotemperaturowej separacji powietrza
EP2963367A1 (de) 2014-07-05 2016-01-06 Linde Aktiengesellschaft Verfahren und Vorrichtung zur Tieftemperaturzerlegung von Luft mit variablem Energieverbrauch
EP3559576A2 (de) 2016-12-23 2019-10-30 Linde Aktiengesellschaft Verfahren zur tieftemperaturzerlegung von luft und luftzerlegungsanlage
JP2020521098A (ja) 2017-05-16 2020-07-16 イーバート,テレンス,ジェイ. 気体を液化するための装置およびプロセス

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4604116A (en) * 1982-09-13 1986-08-05 Erickson Donald C High pressure oxygen pumped LOX rectifier
US5049173A (en) * 1990-03-06 1991-09-17 Air Products And Chemicals, Inc. Production of ultra-high purity oxygen from cryogenic air separation plants
DE4126945A1 (de) * 1991-08-14 1993-02-18 Linde Ag Verfahren zur luftzerlegung durch rektifikation
US5305611A (en) * 1992-10-23 1994-04-26 Praxair Technology, Inc. Cryogenic rectification system with thermally integrated argon column
GB9412182D0 (en) * 1994-06-17 1994-08-10 Boc Group Plc Air separation
US5669237A (en) * 1995-03-10 1997-09-23 Linde Aktiengesellschaft Method and apparatus for the low-temperature fractionation of air
GB9619687D0 (en) * 1996-09-20 1996-11-06 Boc Group Plc Air separation

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009023900A1 (de) 2009-06-04 2010-12-09 Linde Aktiengesellschaft Dreisäulenverfahren und -vorrichtung zur Tieftemperaturzerlegung von Luft
CN110307695A (zh) * 2018-03-20 2019-10-08 乔治洛德方法研究和开发液化空气有限公司 产品氮气和产品氩的制造方法及其制造装置
CN110307695B (zh) * 2018-03-20 2020-10-30 乔治洛德方法研究和开发液化空气有限公司 产品氮气和产品氩的制造方法及其制造装置
US11852408B2 (en) 2020-05-20 2023-12-26 L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Method and apparatus for separating air by cryogenic distillation

Also Published As

Publication number Publication date
EP1357342A1 (de) 2003-10-29
DE10217091A1 (de) 2003-11-06
ATE344428T1 (de) 2006-11-15
DE50208594D1 (de) 2006-12-14

Similar Documents

Publication Publication Date Title
EP1357342B1 (de) Drei-Säulen-System zur Tieftemperaturzerlegung mit Argongewinnung
EP2235460B1 (de) Verfahren und vorrichtung zur tieftemperatur-luftzerlegung
EP2015013A2 (de) Verfahren und Vorrichtung zur Erzeugung von gasförmigem Druckprodukt durch Tieftemperaturzerlegung von Luft
EP2236964B1 (de) Verfahren und Vorrichtung zur Tieftemperatur-Luftzerlegung
DE10139727A1 (de) Verfahren und Vorrichtung zur Gewinnung eines Druckprodukts durch Tieftemperaturzerlegung von Luft
EP1074805B1 (de) Verfahren und Vorrichtung zur Gewinnung von Sauerstoff unter überatmosphärischem Druck
EP2015012A2 (de) Verfahren zur Tieftemperaturzerlegung von Luft
EP0948730B1 (de) Verfahren und vorrichtung zur gewinnung von druckstickstoff
EP1482266A1 (de) Verfahren und Vorrichtung zur Gewinnung von Krypton und/oder Xenon durch Tieftemperaturzerlegung von Luft
DE102007035619A1 (de) Verfahren und Vorrichtung zur Gewinnung von Argon durch Tieftemperaturzerlegung von Luft
DE19609490A1 (de) Verfahren und Vorrichtung zur Tieftemperaturzerlegung von Luft
EP3870915A1 (de) Verfahren und anlage zur tieftemperaturzerlegung von luft
EP3290843A2 (de) Verfahren und vorrichtung zur erzeugung von druckstickstoff und flüssigstickstoff durch tieftemperaturzerlegung von luft
DE19537913A1 (de) Dreifachsäulenverfahren zur Tieftemperaturzerlegung von Luft
WO2021078405A1 (de) Verfahren und anlage zur tieftemperaturzerlegung von luft
EP2551619A1 (de) Verfahren und Vorrichtung zur Gewinnung von Druckstickstoff und Drucksauerstoff durch Tieftemperaturzerlegung von Luft
EP4065910A1 (de) Verfahren und anlage zur tieftemperaturzerlegung von luft
WO2014102014A2 (de) Verfahren und vorrichtung zur tieftemperatur-luftzerlegung
DE19933558C5 (de) Dreisäulenverfahren und -vorrichtung zur Tieftemperaturzerlegung von Luft
EP2600090B1 (de) Verfahren und Vorrichtung zur Erzeugung von Drucksauerstoff durch Tieftemperaturzerlegung von Luft
DE102017010001A1 (de) Verfahren und Anlage zur Tieftemperaturzerlegung von Luft
DE102010056569A1 (de) Verfahren und Vorrichtung zur Gewinnung von Druckstickstoff durch Tieftemperaturzerlegung von Luft
DE10045121A1 (de) Verfahren und Vorrichtung zur Gewinnung eines gasförmigen Produkts durch Tieftemperaturzerlegung von Luft
EP4320397A1 (de) Verfahren und anlage zur tieftemperaturzerlegung von luft
DE10251485A1 (de) Verfahren und Vorrichtung zur Argongewinnung durch Tieftemperaturzerlegung von Luft

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

17P Request for examination filed

Effective date: 20040427

AKX Designation fees paid

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIN1 Information on inventor provided before grant (corrected)

Inventor name: KUNZ, CHRISTIAN

Inventor name: ROTTMANN, DIETRICH

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20061102

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061102

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061102

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061102

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 50208594

Country of ref document: DE

Date of ref document: 20061214

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070202

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070202

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070213

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070402

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

Effective date: 20061102

EN Fr: translation not filed
REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20070803

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061102

BERE Be: lapsed

Owner name: LINDE A.G.

Effective date: 20070531

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070531

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070203

Ref country code: FR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070615

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070524

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061102

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070524

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061102

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20100519

Year of fee payment: 9

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50208594

Country of ref document: DE

Effective date: 20111201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111201