EP1352375B1 - Verfahren und vorrichtung zur schätzung von bewegungsparametern von zielen - Google Patents

Verfahren und vorrichtung zur schätzung von bewegungsparametern von zielen Download PDF

Info

Publication number
EP1352375B1
EP1352375B1 EP01991684A EP01991684A EP1352375B1 EP 1352375 B1 EP1352375 B1 EP 1352375B1 EP 01991684 A EP01991684 A EP 01991684A EP 01991684 A EP01991684 A EP 01991684A EP 1352375 B1 EP1352375 B1 EP 1352375B1
Authority
EP
European Patent Office
Prior art keywords
target object
relative
velocity
acceleration
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP01991684A
Other languages
English (en)
French (fr)
Other versions
EP1352375A1 (de
Inventor
Siegbert Steinlechner
Michael Schlick
Juergen Hoetzel
Thomas Brosche
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP1352375A1 publication Critical patent/EP1352375A1/de
Application granted granted Critical
Publication of EP1352375B1 publication Critical patent/EP1352375B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems
    • G08G1/161Decentralised systems, e.g. inter-vehicle communication

Definitions

  • the invention further relates to a device for outputting parameter values that relate to the relative kinematic behavior of an object, in particular a first vehicle, and a target object, in particular a second vehicle, wherein based on the parameter values, a statement can be made as to whether the object and the target object is expected to collide.
  • the device comprises: a sensor system which is arranged on the object, wherein the sensor system is, inter alia, provided to transmit and receive signals to readings r i , v r, i for the target distance r and / or for the to detect relative radial velocity v r of the target object, and means for evaluating the measured values r i , v r, i recorded by the sensor system and for outputting the parameter values.
  • sensors are used, for example optical sensors, capacitive sensors, ultrasonic sensors or radar sensors with which the distance r between the vehicles and / or the relative radial speed v r of the second vehicle are measured within an area to be monitored. It is known to determine the radial component of the relative radial acceleration a r of the second vehicle from these measured values by differentiation of the radial speed.
  • the radial velocity by evaluating the Doppler frequency or by differentiating the distance.
  • the normal components of the distance, the speed and the acceleration perpendicular to the front area of the motor vehicle are calculated from the measured values of a plurality of spatially distributed sensors by triangulation. For triangulation so several spatially distributed transmitting or receiving units or sensors are required, which causes a high hardware cost.
  • Another problem occurring in the prior art is that even when using multiple sensors under certain circumstances, only one sensor receives a usable signal for an evaluation. Since in this case the triangulation is not feasible, for example, an imminent collision can not be detected.
  • an alarm system for a driver, by means of a radar or laser measuring device, the relative speed of the vehicle to objects and the distance to the objects and from this the relative acceleration determined the detected object to own vehicle. Furthermore, a Speed sensor designed to determine your own speed as well a detection of the road condition. The determined values become a safe following distance calculated and compared with a current distance. This will be an expected Collision time calculated to the driver by means of a linear light indicator represents the risk of collision with the detected object.
  • a vehicle distance computing device which by means of a laser distance measuring device Emits light signals and receives again and out of the measured transit time of these light signals the distance and the current azimuth angle the optical scanner determines the position of the object with respect to of the sensor can be calculated.
  • the object positions obtained are compared to earlier ones Object positions compared and hereby carried out an object tracking, from which a relative velocity of the object is computable by the number of reflections and the strength of the laser reflections are taken into account.
  • step c) of the inventive method based on the received from only one receiver Signals is feasible, that is, no triangulation is performed, the hardware cost can be reduced and even if only one sensor is one for one appropriate evaluation receives usable signal Safe predictions can be made.
  • the parameter values preferably relate to one or more of the following: relative acceleration a of the target, relative radial acceleration a r of the target, relative velocity v of the target, relative radial velocity v r of the target, Offset ⁇ y between the object and the target object, the angle ⁇ between the vectors of the relative velocity v of the target object and the relative radial velocity v r of the target object or between the vectors of the relative acceleration a of the target object and the relative radial acceleration a r of the target object.
  • the parameter values for some of these parameters are estimated from the present measurements and the parameter values for other parameters are determined from the estimated parameter values.
  • a vector p [a, v 0 , ⁇ 0 ] may have. It is provided that a is the relative acceleration of the target object, v 0 is the relative initial velocity of the target object in the first measurement and ⁇ 0 is the angle between the relative velocity vectors v of the target object and the relative radial velocity v r of the target object or the angle between the vectors of the relative acceleration a of the target object and the relative radial acceleration a r of the target object in the first measurement.
  • the parameter values for the in the vector p contained parameters are estimated over a standard, as will be explained later.
  • the parameters r 0 , v 0 , a, t and ⁇ 0 correspond to the parameters of the first embodiment.
  • the parameters r 0 , v 0 , a, t and ⁇ 0 correspond to the parameters of the first embodiment.
  • a standard Q ( p ) is defined as follows.
  • the parameter values for those in the vector p are preferably estimated based on the measured values.
  • the parameter values for the vector p estimated parameters are estimated from the times t i and the measured values r i for the target distances and / or the measured values v r, i for the relative radial speed of the target object via an optimization method by setting the minimum of the norm Q ( p ) is determined.
  • the relative acceleration a of the target object is constant and / or that the acceleration vector a is parallel to the velocity vector v is. Accordingly, a linear course of the relative velocity v of the target object is then assumed.
  • the offset .DELTA.y between the object and the target object via the relationship ⁇ y r 0 sin ( ⁇ 0 ) be determined.
  • the instantaneous angle ⁇ (t) between the relative velocity vectors v of the target object and the relative radial velocity v r of the target object or between the vectors of the relative acceleration a of the target object and the relative Radial acceleration a r of the target object via the relationship be determined.
  • the amount of relative instantaneous radial velocity of the target object may be calculated from the estimated parameter values of the vector in the vector p contained parameters about the relationship
  • t 1 is the time point with the smallest target distance in point P.
  • the error measure e ( p ) is provided to make an error estimate for the estimated parameter values and / or for the parameter values derived from the estimated parameter values.
  • the error measure e ( p ) allows, for example, the definition of thresholds, which can be adapted to the respective application. If these threshold values are exceeded or fallen short of, then, for example, the parameter values for individual parameters can be classified as invalid.
  • FIG. 1 shows an object in the form of a first vehicle total provided with the reference numeral 10.
  • a sensor 11 is arranged at the first Vehicle 10.
  • the Normal to the front of the first motor vehicle 10th is denoted by 13.
  • a target object in the form of a second Vehicle is generally denoted by the reference numeral 12 Mistake.
  • FIG. 1 shows the case of a passage, that is, there is no collision.
  • the front of the first vehicle 10 normal Component is marked with x. Between the vectors r and x an angle ⁇ is included. If the second vehicle 12 is at the point P is the Offset between the first vehicle 10 and the second Vehicle 12 ⁇ y, the initial distance between the point P and the second vehicle 12 through the vector z is marked.
  • Offset ⁇ y Based on the offset ⁇ y can either pass by or an impending collision can be detected.
  • the Offset ⁇ y in this case is in the horizontal plane (Azimuth) assumed. It is useful with a small opening angle in the vertical direction (elevation) to eat. For example, if you want the height of the Target object, that is the offset in the vertical direction, determine, so is a small opening angle in Azimuth suitable.
  • the measurement of the offset also in a horizontal or vertical plane arbitrarily inclined plane with correspondingly flat antenna diagram possible. Measure the offset in two orthogonal planes (e.g., elevation and Azimuth), the target coordinates r are the target coordinates clearly determined in the monitored room.
  • the vectors v r and a r indicate the relative radial velocity and the relative radial acceleration of the second vehicle 12, respectively.
  • the vectors v and a indicate the relative velocity and relative acceleration of the second vehicle 12, wherein an angle ⁇ is included between the vectors v r and v and a r and a, respectively.
  • the direction perpendicular to the radial components of tangential components of the relative radial velocity v r respectively of the relative radial acceleration a r of the second vehicle are V t or a t specified, wherein by the vectors v t and a t or v and a of the point P defined.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar Systems Or Details Thereof (AREA)

Description

Die vorliegende Erfindung betrifft ein Verfahren zum Angeben von Parameterwerten, die das relative kinematische Verhalten eines Objekts, insbesondere eines ersten Fahrzeugs, und eines Zielobjekts, insbesondere eines zweiten Fahrzeugs, betreffen, wobei anhand der Parameterwerte eine Aussage darüber getroffen werden kann, ob das Objekt und das Zielobjekt voraussichtlich kollidieren. Das Verfahren umfasst dabei unter anderem die Schritte:
  • a) Vorsehen einer Sensorik an dem Objekt, wobei die Sensorik dazu vorgesehen ist, Signale auszusenden und zu empfangen, um Messwerte ri, vr,i für den Zielobjektabstand r und/oder für die relative Radialgeschwindigkeit vr des Zielobjekts zu erfassen,
  • b) Erfassen von Messwerten ri,vr,i, und
  • c) Auswerten der erfassten Messwerte ri, vr,i und Angeben der Parameterwerte.
  • Die Erfindung betrifft weiterhin eine Vorrichtung zum Ausgeben von Parameterwerten, die das relative kinematische Verhalten eines Objekts, insbesondere eines ersten Fahrzeugs, und eines Zielobjekts, insbesondere eines zweiten Fahrzeugs, betreffen, wobei anhand der Parameterwerte eine Aussage darüber getroffen werden kann, ob das Objekt und das Zielobjekt voraussichtlich kollidieren. Dabei weist die Vorrichtung auf: eine Sensorik, die an dem Objekt angeordnet ist, wobei die Sensorik unter anderem, dazu vorgesehen ist, Signale auszusenden und zu empfangen, um Messwerte ri,vr,i für den Zielobjektabstand r und/oder für die relative Radialgeschwindigkeit vr des Zielobjekts zu erfassen, und Mittel zum Auswerten der von der Sensorik erfassten Messwerte ri,vr,i und zum Ausgeben der Parameterwerte.
    Stand der Technik
    Beispielsweise im Bereich der Kraftfahrzeugtechnik sind Verfahren zum Angeben beziehungsweise Vorrichtungen zum Ausgeben von Parameterwerten erforderlich, die das relative kinematische Verhalten eines ersten Fahrzeugs und eines zweiten Fahrzeugs beziehungsweise irgendeines Hindernisses betreffen beziehungsweise beschreiben, um mit Hilfe dieser Parameterwerte beispielsweise eine Aussage über eine eventuelle Kollision zu treffen oder eine Tote-Winkel-Detektion durchzuführen. Zu diesem Zweck werden Sensoren eingesetzt, beispielsweise optische Sensoren, kapazitive Sensoren, Ultraschallsensoren oder Radarsensoren, mit denen der Abstand r zwischen den Fahrzeugen und/oder die relative Radialgeschwindigkeit vr des zweiten Fahrzeugs innerhalb eines zu überwachenden Bereichs gemessen werden. Es ist bekannt, aus diesen Messwerten durch Differentiation der Radialgeschwindigkeit die Radialkomponente der relativen Radialbeschleunigung ar des zweiten Fahrzeugs zu ermitteln. Weiterhin ist es beispielsweise bekannt, durch Auswertung der Dopplerfrequenz oder durch Differentiation des Abstands die Radialgeschwindigkeit zu ermitteln. Gemäß dem Stand der Technik werden aus den Messwerten von mehreren räumlich verteilten Sensoren durch Triangulation die zum Frontbereich des Kraftfahrzeuges senkrechten Normalkomponenten des Abstands, der Geschwindigkeit und der Beschleunigung berechnet. Für die Triangulation werden also mehrere räumlich verteilte Sende- beziehungsweise Empfangseinheiten beziehungsweise Sensoren benötigt, was einen hohen Hardwareaufwand verursacht. Ein weiteres beim Stand der Technik auftretendes Problem besteht darin, dass auch beim Einsatz von mehreren Sensoren unter Umständen nur ein Sensor ein für eine Auswertung brauchbares Signal empfängt. Da in diesem Fall die Triangulation nicht durchführbar ist, kann beispielsweise eine bevorstehende Kollision nicht detektiert werden.
    Aus der US 6,014,601 ist ein Alarmierungssystem für einen Fahrzeugführer vorgesehen, das mittels einer Radar- oder Lasermesseinrichtung die Relativgeschwindigkeit des Fahrzeugs zu Objekten misst sowie den Abstand zu den Objekten und hieraus die Relativbeschleunigung des erkannten Objekts zum eigenen Fahrzeug ermittelt. Weiterhin ist ein Geschwindigkeitssensor zur Ermittlung der eigenen Geschwindigkeit vorgesehen sowie eine Erfassung des Straßenzustands. Aus den ermittelten Werten wird ein sicherer Folgeabstand berechnet und mit einem aktuellen Abstand verglichen. Hieraus wird eine voraussichtliche Kollisionszeit berechnet, die dem Fahrer mittels einer linearen Leuchtenanzeige die Gefahr einer Kollision mit dem erfassten Objekt darstellt.
    Aus der EP 1035 533 A2 ist ein Verfahren und eine Vorrichtung zur Abstandsregelung für ein Fahrzeug bekannt, bei dem eine Relativgeschwindigkeit und ein Relativabstand zwischen dem Fahrzeug und einem vorausfahrenden Fahrzeug ermittelt wird und aus diesen Größen ein Regelsignal für eine Abstandsregelungseinrichtung des Fahrzeugs erzeugt wird. Weiterhin ist vorgesehen, dass aus der Relativgeschwindigkeit und dem Relativabstand ein Gefahrenmaß bestimmt wird, das mit einem das individuelle Fahrverhalten des Fahrzeugführers des Fahrzeuges repräsentierenden, adaptiven Faktor gewichtet wird, und dass ein eine Verzögerung des Fahrzeugs einleitendes Regelsignal erzeugt wird, wenn das mit einem adaptiven Faktor gewichtete, fahrzeugführeradaptierte Gefahrenmaß einen definierten Schwellwert überschreitet.
    Aus der US 5,600,561 ist ein Fahrzeugabstandsrechengerät bekannt, das mittels einer Laserentfernungsmesseinrichtung Lichtsignale aussendet und wieder empfängt und aus der gemessenen Laufzeit dieser Lichtsignale den Abstand sowie den momentanen Azimutwinkel der optischen Abtasteinrichtung bestimmt, woraus die Position des Objekts bezüglich des Sensors berechnet werden kann. Die erhaltenen Objektpositionen werden mit früheren Objektpositionen verglichen und hiermit ein Objekt-Tracking durchgeführt, woraus eine Relativgeschwindigkeit des Objekts berechenbar ist, indem die Anzahl der Reflexionen und die Stärke der Laserreflexionen mit berücksichtigt werden.
    Vorteile der Erfindung
    Das erfindungsgemäße Verfahren enthält die in dem Anspruch 1 angegebenen Schritte.
    Dadurch, dass Schritt c) des erfindungsgemäßen Verfahrens auf der Grundlage der von nur einem Empfänger empfangenen Signale durchführbar ist, das heißt, dass keine Triangulation durchgeführt wird, kann der Hardwareaufwand verringert werden, und auch wenn nur ein Sensor ein für eine entsprechende Auswertung brauchbares Signal empfängt, können sichere Voraussagen getroffen werden.
    Gleiches gilt für die erfindungsgemäße Vorrichtung nach Anspruch 9, bei der die Mittel die Auswertung auf der Grundlage der von nur einem der der Sensorik zugeordneten Empfänger empfangenen Signale durchführen.
    Die folgenden Ausführungen beziehen sich sowohl auf das erfindungsgemäße Verfahren als auch auf die erfindungsgemäße Vorrichtung.
    Ohne dass dies eine Einschränkung darstellen soll, betreffen die Parameterwerte vorzugsweise einen oder mehrere der folgenden Parameter: die relative Beschleunigung a des Zielobjekts, die relative Radialbeschleunigung ar des Zielobjekts, die relative Geschwindigkeit v des Zielobjekts, die relative Radialgeschwindigkeit vr des Zielobjekts, den Versatz Δy zwischen dem Objekt und dem Zielobjekt, den Winkel α zwischen den Vektoren der relativen Geschwindigkeit v des Zielobjekts und der relativen Radialgeschwindigkeit vr des Zielobjekts beziehungsweise zwischen den Vektoren der relativen Beschleunigung a des Zielobjekts und der relativen Radialbeschleunigung ar des Zielobjekts. Vorzugsweise werden die Parameterwerte für einige dieser Parameter anhand der vorliegenden Messwerte geschätzt und die Parameterwerte für weitere Parameter werden anhand der geschätzten Parameterwerte bestimmt.
    Zu diesem Zweck wird vorzugsweise ein Vektor p vorgesehen, der zumindest einige der gesuchten Parameter enthält, wobei dieser Vektor p die Form p = [a, v0, α0] haben kann. Dabei ist vorgesehen, dass a die relative Beschleunigung des Zielobjekts ist, v0 die relative Anfangsgeschwindigkeit des Zielobjekts bei der ersten Messung ist und α0 der Winkel zwischen den Vektoren der relativen Geschwindigkeit v des Zielobjekts und der relativen Radialgeschwindigkeit vr des Zielobjekts beziehungsweise der Winkel zwischen den Vektoren der relativen Beschleunigung a des Zielobjekts und der relativen Radialbeschleunigung ar des Zielobjekts bei der ersten Messung ist. Die erste Messung bezieht sich dabei auf die erste Messung einer Vielzahl von zu unterschiedlichen Zeitpunkten ti durchgeführten Messungen mit i = 1, 2, ... . Die Zeitpunkte ti können, müssen jedoch nicht äquidistant sein. Beispielsweise könnten auch Messwerte bei äquidistanten Zielabständen erfasst werden.
    Gemäß einer Ausführungsform der vorliegenden Erfindung ist vorgesehen, dass Zielobjektabstände ri zu unterschiedlichen Zeitpunkten ti gemessen werden, und dass der Zielobjektabstand r über den Zusammenhang: r = f(p,t) = (r0 cos (α0) + v0t + at2 /2)2 + (r0 sin (α0))2 beschrieben wird, wobei r0 der Zielobjektabstand bei der ersten Messung ist, v0 die relative Anfangsgeschwindigkeit des Zielobjekts bei der ersten Messung ist, a die relative Beschleunigung des Zielobjekts ist, t die Zeit ist, und α0 der Winkel zwischen den Vektoren der relativen Geschwindigkeit v des Zielobjekts und der relativen Radialgeschwindigkeit vr des Zielobjekts beziehungsweise der Winkel zwischen den Vektoren der relativen Beschleunigung a des Zielobjekts und der relativen Radialbeschleunigung ar des Zielobjekts bei der ersten Messung ist. Insbesondere bei dieser Ausführungsform können die Parameterwerte für die in dem Vektor p enthaltenen Parameter über eine Norm geschätzt werden, wie dies später noch näher erläutert wird. Die Schätzung kann zur Vereinfachung auch mit Hilfe der Werte ti, ri 2 nach dem Quadrieren der angegebenen Gleichung ausgeführt werden.
    Erfindungsgemäß ist vorgesehen, dass relative Radialgeschwindigkeiten vr,i zu unterschiedlichen Zeitpunkten ti gemessen werden, und dass die relative Radialgeschwindigkeit vr des Zielobjekts über den Zusammenhang: vr = f(p, t) = (v0 + at) (r0 cos (α0) + v0t + at2 / 2) (r0 cos (α0) + v0t + at2 / 2)2 + (r0 sin(α0))2 beschrieben wird. Die Parameter r0, v0, a, t und α0 entsprechen dabei den Parametern der ersten Ausführungsform.
    Eine weitere Ausführungsform der Erfindung sieht vor, dass Zielobjektabstände ri und relative Radialgeschwindigkeiten vr,i zu unterschiedlichen Zeitpunkten ti gemessen werden, und dass die relative Radialgeschwindigkeit vr des Zielobjekts über den Zusammenhang: vr = f( p, t, r) = (v0 + at) (r0 cos (α0) + v0t + at2 / 2r beschrieben wird. Auch hier entsprechen die Parameter r0, v0, a, t und α0 den Parametern der ersten Ausführungsform.
    Die soeben beschriebenen Ausführungsformen können gegebenenfalls geeignet kombiniert beziehungsweise mathematisch neu formuliert werden.
    Die den folgenden Ausführungen zugrundeliegende Normentheorie ist dem Fachmann bekannt. Für eine nähere Beschreibung wird verwiesen auf: G. Grosche, V. Ziegler, D. Ziegler: Ergänzende Kapitel zu I. N. Bronstein. K. A. Semendjajew Taschenbuch der Mathematik, 6. Auflage, B. G. Teubner Verlagsgesellschaft Leipzig, 1979.
    Zur Schätzung der Parameterwerte wird im Zusammenhang mit der ersten Ausführungsform vorzugsweise eine Norm Q(p) wie folgt definiert: Q(p) = Q1(p) = ∥rik - fk(p, ti)∥, mit k = 1 oder k = 2
    Ein Beispiel für die Definition der Norm Q(p) kann im Zusammenhang mit der ersten Ausführungsform die folgende Form vorsehen:
    Figure 00080001
    mit k = 1 oder k = 2
    Ein weiteres Beispiel für die Definition der Norm Q( p) kann im Zusammenhang mit der ersten Ausführungsform die folgende Form vorsehen: Q(p) = Q12(p) = max(|rik - fk(p, ti)|), mit k = 1 oder k = 2
    Zur Schätzung der Parameterwerte wird im Zusammenhang mit der zweiten Ausführungsform vorzugsweise eine Norm Q(p) wie folgt definiert: Q(p) = Q2(p) = ∥vik - fk(p, ti)∥, mit k = 1 oder k = 2
    Ein Beispiel für die Definition der Norm Q( p) kann im Zusammenhang mit der zweiten Ausführungsform die folgende Form vorsehen:
    Figure 00090001
    mit k = 1 oder k = 2
    Ein weiteres Beispiel für die Definition der Norm Q( p) kann im Zusammenhang mit der zweiten Ausführungsform die folgende Form vorsehen: Q(p) = Q22(p) = max(|vik - fk(p, ti)|), mit k = 1 oder k = 2
    Zur Schätzung der Parameterwerte wird im Zusammenhang mit der dritten Ausführungsform vorzugsweise eine Norm Q(p) wie folgt definiert. Q(p) = Q3( p) = ∥vik - fk(p, ti, ri)∥, mit k = 1, oder k = 2.
    Ein Beispiel für die Definition der Norm Q( p) kann im Zusammenhang mit der dritten Ausführungsform die folgende Form vorsehen:
    Figure 00100001
    mit k = 1 oder k = 2
    Ein weiteres Beispiel für die Definition der Norm Q(p) kann im Zusammenhang mit der dritten Ausführungsform die folgende Form vorsehen: Q(p) = Q332(p) = max(|vik - fk(p, ti, ri)|), mit k = 1 oder k = 2
    Wie erwähnt, werden die Parameterwerte für die im Vektor p enthaltenen Parameter vorzugsweise anhand der Messwerte geschätzt.
    In diesem Zusammenhang wird bevorzugt, dass die Parameterwerte für die im Vektor p enthaltenen Parameter anhand der Zeitpunkte ti und der Messwerte ri für die Zielobjektabstände und/oder der Messwerte vr,i für die relative Radialgeschwindigkeit des Zielobjekts über ein Optimierungsverfahren geschätzt werden, indem das Minimum der Norm Q( p) ermittelt wird.
    Ein geeignetes Optimierungsverfahren, das beispielsweise angewendet werden kann, wenn die Norm Q(p) die Form
    Figure 00100002
    mit k = 1 oder k = 2, oder
    Figure 00100003
    mit k = 1 oder k = 2, oder
    Figure 00110001
    mit k = 1 oder k = 2
    hat, ist die dem Fachmann bekannte Methode der kleinsten Fehlerquadrate.
    In einigen Fällen kann zur Vereinfachung angenommen werden, dass die relative Beschleunigung a des Zielobjekts konstant ist und/oder dass der Beschleunigungsvektor ä parallel zum Geschwindigkeitsvektor v ist. Entsprechend wird dann ein linearer Verlauf der relativen Geschwindigkeit v des Zielobjekts angenommen. In diesem Zusammenhang ist es beispielsweise möglich anzunehmen, dass die relative Beschleunigung a = 0 m/s2 beträgt. Weiterhin kann angenommen werden, dass die relative Beschleunigung a = 0 m/s2 beträgt, wenn die relative Geschwindigkeit v größer als ein vorherbestimmter Grenzwert ist, und dass die relative Beschleunigung a ≠ 0 m/s2 beträgt, wenn die relative Geschwindigkeit v kleiner als der vorherbestimmte Grenzwert ist.
    Wenn die geschätzten Parameterwerte für die im Vektor p enthaltenen Parameter vorliegen, kann der Versatz Δy zwischen dem Objekt und dem Zielobjekt über die Beziehung Δy = r0 sin(α0) bestimmt werden.
    Aus den geschätzten Parameterwerten der im Vektor p enthaltenen Parameter und dem Versatz Δy zwischen dem Objekt und dem Zielobjekt kann weiterhin der Momentanwinkel α(t) zwischen den Vektoren der relativen Geschwindigkeit v des Zielobjekts und der relativen Radialgeschwindigkeit vr des Zielobjekts beziehungsweise zwischen den Vektoren der relativen Beschleunigung a des Zielobjekts und der relativen Radialbeschleunigung ar des Zielobjekts über die Beziehung
    Figure 00120001
    bestimmt werden.
    Es ist ebenfalls möglich, aus den geschätzten Parameterwerten der im Vektor p enthaltenen Parameter die relative Momentangeschwindigkeit v(t) des Zielobjekts über die Beziehung v(t) = v0 + at zu bestimmen.
    Auch der Betrag der relativen Momentanradialgeschwindigkeit des Zielobjekts kann aus den geschätzten Parameterwerten der im Vektor p enthaltenen Parameter über die Beziehung |vr(t)| =|(v0 + at)cos (α)| bestimmt werden.
    Wenn ein Winkel β zwischen einer Normalen des Objekts und dem Vektor des Zielobjektabstands r gleich dem Winkel α zwischen den Vektoren der relativen Geschwindigkeit v des Zielobjekts und der relativen Radialgeschwindigkeit vr des Zielobjekts beziehungsweise zwischen den Vektoren der relativen Beschleunigung a des Zielobjekts und der relativen Radialbeschleunigung ar des Zielobjekts ist, gilt für die auf das Objekt bezogenen Normalkomponenten vn=v, an=a und x=rcos(α). In diesem Fall kann der Zeitpunkt t1 einer gegebenenfalls stattfindenden Kollision aus den geschätzten Parameterwerten der im Vektor p enthaltenen Parameter über die Beziehung t1 = - v0 2-2r0acos(α0) |a| - v0 a bestimmt werden. Bei einer Vorbeifahrt ist t1 der Zeitpunkt mit dem geringsten Zielabstand im Punkt P.
    Weiterhin kann vorgesehen sein, dass unter Verwendung der geschätzten Parameterwerte der im Vektor p enthaltenen Parameter ein Fehlermaß e( p) über die Beziehung e1( p) = ∥rki - fk(p, ti)∥, mit k = 1 oder k = 2, oder e2(p) = ∥vki - fk(p, ti)∥, mit k = 1 oder k = 2, oder e3(p) = ∥vki - fk(p, ti, ri)∥, mit k = 1 oder k = 2
    definiert wird. Das Fehlermaß e(p) ist dazu vorgesehen, eine Fehlerabschätzung für die geschätzten Parameterwerte und/oder für die von den geschätzten Parameterwerten abgeleiteten Parameterwerte vorzunehmen. Das Fehlermaß e(p) ermöglicht dabei beispielsweise weiterhin die Definition von Schwellwerten, die an die jeweilige Anwendung angepasst werden können. Beim Über- oder Unterschreiten dieser Schwellwerte können dann beispielsweise die Parameterwerte für einzelne Parameter als ungültig klassifiziert werden.
    Bezüglich der bei der erfindungsgemäßen Vorrichtung vorgesehenen Mittel wird darauf hingewiesen, dass diese Mittel vom Fachmann problemlos durch geeignete Hardware und Software oder andere Schaltungen verwirklicht werden können.
    Zeichnungen
    Die Erfindung wird nachfolgend anhand der zugehörigen Zeichnungen noch näher erläutert.
    Es zeigen:
    Figur 1
    eine geometrische Darstellung des Objekts und des Zielobjekts; und
    Figur 2
    eine Darstellung der verschiedenen Parameter.
    Beschreibung der Ausführungsbeispiele
    In Figur 1 ist ein Objekt in Form eines ersten Fahrzeugs insgesamt mit dem Bezugszeichen 10 versehen. An dem ersten Fahrzeug 10 ist eine Sensorik 11 angeordnet. Die Normale zum Frontbereich des ersten Kraftfahrzeuges 10 ist mit 13 bezeichnet. Ein Zielobjekt in Form eines zweiten Fahrzeugs ist insgesamt mit dem Bezugszeichen 12 versehen. Insgesamt zeigt Figur 1 den Fall einer Vorbeifahrt, das heißt, es findet keine Kollision statt. Der Abstand zwischen dem ersten Fahrzeug 10 und dem zweiten Fahrzeug 12 ist durch einen Vektor r gekennzeichnet, dessen zum Frontbereich des ersten Fahrzeugs 10 normale Komponente mit x gekennzeichnet ist. Zwischen den Vektoren r und x wird ein Winkel β eingeschlossen. Wenn sich das zweite Fahrzeug 12 am Punkt P befindet, beträgt der Versatz zwischen dem ersten Fahrzeug 10 und dem zweiten Fahrzeug 12 Δy, wobei der anfängliche Abstand zwischen dem Punkt P und dem zweiten Fahrzeug 12 durch den Vektor z gekennzeichnet ist.
    Anhand des Versatzes Δy kann entweder eine Vorbeifahrt oder eine bevorstehende Kollision detektiert werden. Der Versatz Δy wird in diesem Fall in der horizontalen Ebene (Azimut) angenommen. Hierbei ist es zweckmäßig, mit einem geringen Öffnungswinkel in der vertikalen Richtung (Elevation) zu messen. Will man beispielsweise die Höhe des Zielobjektes, das heißt den Versatz in vertikaler Richtung, bestimmen, so ist ein geringer Öffnungswinkel im Azimut geeignet. Prinzipiell ist die Messung des Versatzes auch in einer zur horizontalen oder vertikalen Ebene beliebig geneigten Ebene mit entsprechend flachem Antennendiagramm möglich. Misst man den Versatz in zwei orthogonal zueinander stehenden Ebenen (z.B. Elevation und Azimut), so sind mit dem Zielobjektabstand r die Zielkoordinaten im überwachten Raum eindeutig bestimmt.
    In Figur 2 sind einige wichtige Parameter angegeben. Die Anfangsposition des ersten Fahrzeugs 10 und des zweiten Fahrzeugs 12 entspricht dabei der von Figur 1. In Figur 2 zeigen die Vektorpfeile das kinematische Verhalten des zweiten Fahrzeugs 12. In der Praxis bewegen sich jedoch in der Regel sowohl das erste Fahrzeug 10 als auch das zweite Fahrzeug 12, oder das Zielobjekt ist nicht durch ein zweites Fahrzeug, sondern durch ein feststehendes Zielobjekt gebildet. Daher wird hier wie im Vorhergehenden von relativen Größen gesprochen.
    Die Vektoren vr und ar geben die relative Radialgeschwindigkeit beziehungsweise die relative Radialbeschleunigung des zweiten Fahrzeugs 12 an. Die Vektoren v und a geben die relative Geschwindigkeit und die relative Beschleunigung des zweiten Fahrzeugs 12 an, wobei zwischen den Vektoren vr und v beziehungsweise ar und a ein Winkel α eingeschlossen wird. Die zu den radialen Komponenten senkrechten tangentialen Komponenten der relativen Radialgeschwindigkeit vr beziehungsweise der relativen Radialbeschleunigung ar des zweiten Fahrzeugs sind mit vt beziehungsweise at angegeben, wobei durch die Vektoren vt und at beziehungsweise v und a der Punkt P definiert wird.
    Die vorhergehende Beschreibung der Ausführungsbeispiele gemäß der vorliegenden Erfindung dient nur zu illustrativen Zwecken und nicht zum Zwecke der Beschränkung der Erfindung. Im Rahmen der Erfindung sind verschiedene Änderungen und Modifikationen möglich, ohne den Umfang der Erfindung sowie ihre Äquivalente zu verlassen, die durch die nachfolgenden Ansprüche definiert sind.

    Claims (16)

    1. Verfahren zum Angeben von Parameterwerten, die das relative kinematische Verhalten eines Objekts (10), insbesondere eines ersten Fahrzeugs (10), und eines Zielobjekts (12), insbesondere eines zweiten Fahrzeugs (12), betreffen, wobei anhand der Parameterwerte eine Aussage darüber getroffen werden kann, ob das Objekt (10) und das Zielobjekt (12) voraussichtlich kollidieren, mit den Schritten:
      a) Vorsehen einer Sensorik (11) an dem Objekt (10), wobei die Sensorik (11) dazu vorgesehen ist, Signale auszusenden und zu empfangen, um Messwerte ri,vr,i für den Zielobjektabstand r und/oder für die relative Radialgeschwindigkeit vr des Zielobjekts (12) zu erfassen,
      b) Erfassen von Messwerten ri, vr,i, und
      c) Auswerten der erfassten Messwerte ri, vr,i auf der Grundlage der von einem Empfänger empfangenen Signale, dadurch gekennzeichnet, dass zur Erfassung von Messwerten ri, vr,i relative Radialgeschwindigkeiten vr,i des Zielobjekts (12) zu unterschiedlichen Zeitpunkten ti gemessen werden, und dass die relative Radialgeschwindigkeit vr des Zielobjekts (12) über den Zusammenhang: v r = f( p ,t) = (v 0 + at)(r 0 cos(α0) + v 0 t + at 2 / 2) r 0 cos(α0) + v 0 t + at 2/2)2 + (r 0 sin(α0))2 beschrieben wird, wobei r0 der Zielobjektabstand bei der ersten Messung ist, v0 die relative Anfangsgeschwindigkeit des Zielobjekts (12) bei der ersten Messung ist, a die relative Beschleunigung des Zielobjekts (12) ist, t die Zeit ist, und α0 der Winkel zwischen den Vektoren der relativen Geschwindigkeit v des Zielobjekts (12) und der relativen Radialgeschwindigkeit vr des Zielobjekts (12) beziehungsweise der Winkel zwischen den Vektoren der relativen Beschleunigung a des Zielobjekts (12) und der relativen Radialbeschleunigung a, des Zielobjekts (12) bei der ersten Messung ist.
    2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Parameterwerte zumindest einen oder mehrere der folgenden Parameter betreffen: die relative Beschleunigung a des Zielobjekts (12), die relative Radialbeschleunigung ar des Zielobjekts (12), die relative Geschwindigkeit v des Zielobjekts (12), die relative Radialgeschwindigkeit vr des Zielobjekts (12), den Versatz Δy zwischen dem Objekt (10) und dem Zielobjekt (12), den Winkel α zwischen den Vektoren der relativen Geschwindigkeit v des Zielobjekts (12) und der relativen Radialgeschwindigkeit vr des Zielobjekts (12) beziehungsweise zwischen den Vektoren der relativen Beschleunigung a des Zielobjekts (12) und der relativen Radialbeschleunigung ar des Zielobjekts (12).
    3. Verfahren nach Anspruch 1 oder Anspruch 2, dadurch gekennzeichnet, dass ein Vektor p vorgesehen ist, der zumindest einige der gesuchten Parameter enthält, wobei der Vektor p die Form p = [a,v 00] hat, wobei a die relative Beschleunigung des Zielobjekts (12) ist, v0 die relative Anfangsgeschwindigkeit des Zielobjekts (12) bei der ersten Messung ist und α0 der Winkel zwischen den Vektoren der relativen Geschwindigkeit v des Zielobjekts (12) und der relativen Radialgeschwindigkeit vr des Zielobjekts (12) beziehungsweise der Winkel zwischen den Vektoren der relativen Beschleunigung a des Zielobjekts (12) und der relativen Radialbeschleunigung ar des Zielobjekts (12) bei der ersten Messung ist.
    4. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass bei Schritt b) Zielobjektabstände ri zu unterschiedlichen Zeitpunkten ti gemessen werden, und dass der Zielobjektabstand r über den Zusammenhang: r = f( p ,t) = (r 0 cos(α0) + v 0 t + at 2 /2)2 + (r 0 sin(α0))2 beschrieben wird, wobei r0 der Zielobjektabstand bei der ersten Messung ist, v0 die relative Anfangsgeschwindigkeit des Zielobjekts (12) bei der ersten Messung ist, a die relative Beschleunigung des Zielobjekts (12) ist, t die Zeit ist, und α0 der Winkel zwischen den Vektoren der relativen Geschwindigkeit v des Zielobjekts (12) und der relativen Radialgeschwindigkeit vr des Zielobjekts (12) beziehungsweise der Winkel zwischen den Vektoren der relativen Beschleunigung a des Zielobjekts (12) und der relativen Radialbeschleunigung ar des Zielobjekts (12) bei der ersten Messung ist.
    5. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass bei Schritt b) Zielobjektabstände ri und relative Radialgeschwindigkeiten vr,i zu unterschiedlichen Zeitpunkten ti gemessen werden, und dass die relative Radialgeschwindigkeit vr des Zielobjekts (12) über den Zusammenhang: v r = f( p ,t,r) = (v 0 + at)(r 0 cos(α0) + v 0 t + at 2 / 2) r beschrieben wird, wobei r0 der Zielobjektabstand bei der ersten Messung ist, v0 die relative Anfangsgeschwindigkeit des Zielobjekts (12) bei der ersten Messung ist, a die relative Beschleunigung des Zielobjekts (12) ist, t die Zeit ist, und α0 der Winkel zwischen den Vektoren der relativen Geschwindigkeit v des Zielobjekts (12) und der relativen Radialgeschwindigkeit vr des Zielobjekts (12) beziehungsweise der Winkel zwischen den Vektoren der relativen Beschleunigung a des Zielobjekts (12) und der relativen Radialbeschleunigung ar des Zielobjekts (12) bei der ersten Messung ist.
    6. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass zur Schätzung der Parameterwerte eine Norm Q(p) wie folgt definiert wird: Q( p ) = Q 1( p ) = ∥r k i - f k ( p , t i )∥, mit k =1 oder k = 2, oder Q( p ) = Q 2( p ) = ∥v k i - f k ( p ,t i )∥, mit k =1 oder k = 2, oder Q( p ) = Q 3( p ) = ∥v k i - f k ( p ,t i ,r i )∥, mit k = oder k = 2.
    7. Verfahren nach Anspruch 3 oder einem der Ansprüche 4 bis 6, sofern dieser von Anspruch 3 abhängig ist, dadurch gekennzeichnet, dass die Parameterwerte für die im Vektor p enthaltenen Parameter anhand der Messwerte geschätzt werden.
    8. Verfahren nach Anspruch 6, dadurch gekennzeichnet, dass die Parameterwerte für die im Vektor p enthaltenen Parameter anhand der Zeitpunkte ti und der Messwerte ri für die Zielobjektabstände und/oder der Messwerte vi für die relativen Radialgeschwindigkeiten über ein Optimierungsverfahren geschätzt werden, indem das Minimum der Norm Q( p ) ermittelt wird.
    9. Vorrichtung zum Ausgeben von Parameterwerten, die das relative kinematische Verhalten eines Objekts (10), insbesondere eines ersten Fahrzeugs (10), und eines Zielobjekts (12), insbesondere eines zweiten Fahrzeugs (12), betreffen, wobei anhand der Parameterwerte eine Aussage darüber getroffen werden kann, ob das Objekt (10) und das Zielobjekt (12) voraussichtlich kollidieren, mit:
      einer Sensorik (11), die an dem Objekt (10) angeordnet ist, wobei die Sensorik (11) dazu vorgesehen ist, Signale auszusenden und zu empfangen, um Messwerte ri,vr,i für den Zielobjektabstand r und/oder für die relative Radialgeschwindigkeit vr des Zielobjekts (12) zu erfassen, und
      Mitteln zum Auswerten der von der Sensorik erfassten Messwerte ri,vr,i und zum Ausgeben der Parameterwerte, wobei die Auswertung auf der Grundlage der von nur einem der der Sensorik (11) zugeordneten Empfänger empfangenen Signale durchführbar ist, dadurch gekennzeichnet, dass die Sensorik (11) Messwerte für relative Radialgeschwindigkeiten vr,i des Zielobjekts (12) zu unterschiedlichen Zeitpunkten ti erfasst, und dass die Mittel die relative Radialgeschwindigkeit vr des Zielobjekts (12) über den Zusammenhang: v r = f( p ,t) = (v 0 + at)(r 0 cos0) + v 0 t + at 2/2) r 0 cos0) + v0 t + at 2/2)2 + (r 0 sin(α0))2 beschreiben, wobei r0 der Zielobjektabstand bei der ersten Messung ist, v0 die relative Anfangsgeschwindigkeit des Zielobjekts (12) bei der ersten Messung ist, a die relative Beschleunigung des Zielobjekts (12) ist, t die Zeit ist, und α0 der Winkel zwischen den Vektoren der relativen Geschwindigkeit v des Zielobjekts (12) und der relativen Radialgeschwindigkeit vr des Zielobjekts (12) beziehungsweise der Winkel zwischen den Vektoren der relativen Beschleunigung a des Zielobjekts (12) und der relativen Radialbeschleunigung ar des Zielobjekts (12) bei der ersten Messung ist.
    10. Vorrichtung nach Anspruch 9, dadurch gekennzeichnet, dass die Parameterwerte zumindest einen oder mehrere der folgenden Parameter betreffen: die relative Beschleunigung a des Zielobjekts (12), die relative Radialbeschleunigung ar des Zielobjekts, die relative Geschwindigkeit v des Zielobjekts (12), die relative Radialgeschwindigkeit vr des Zielobjekts (12), den Versatz Δy zwischen dem Objekt (10) und dem Zielobjekt (12), den Winkel α zwischen den Vektoren der relativen Geschwindigkeit v des Zielobjekts (12) und der relativen Radialgeschwindigkeit vr des Zielobjekts (12) beziehungsweise zwischen den Vektoren der relativen Beschleunigung a des Zielobjekts (12) und der relativen Radialbeschleunigung ar des Zielobjekts (12).
    11. Vorrichtung nach Anspruch 9 oder Anspruch 10, dadurch gekennzeichnet, dass zum Auswerten der von der Sensorik (11) erfassten Messwerte ri,vr,i ein Vektor p vorgesehen ist, der zumindest einige der gesuchten Parameter enthält, wobei der Vektor p die Form p = [a,v 00] hat, wobei a die relative Beschleunigung des Zielobjekts (12) ist, v0 die relative Anfangsgeschwindigkeit des Zielobjekts (12) bei der ersten Messung ist und α0 der Winkel zwischen den Vektoren der relativen Geschwindigkeit v des Zielobjekts (12) und der relativen Radialgeschwindigkeit vr des Zielobjekts (12) beziehungsweise der Winkel zwischen den Vektoren der relativen Beschleunigung a des Zielobjekts (12) und der relativen Radialbeschleunigung a, des Zielobjekts (12) bei der ersten Messung ist.
    12. Vorrichtung nach einem der Ansprüche 9 bis 11, dadurch gekennzeichnet, dass die Sensorik (11) Messwerte für Zielobjektabstände ri zu unterschiedlichen Zeitpunkten ti erfasst, und dass die Mittel den Zielobjektabstand r über den Zusammenhang: r = f( p ,t) = (r 0 cos(α0) + v 0 t + at 2 / 2)2 + (r 0 sin(α0))2 beschreiben, wobei r0 der Zielobjektabstand bei der ersten Messung ist, v0 die relative Anfangsgeschwindigkeit des Zielobjekts (12) bei der ersten Messung ist, a die relative Beschleunigung des Zielobjekts (12) ist, t die Zeit ist, und α0 der Winkel zwischen den Vektoren der relativen Geschwindigkeit v des Zielobjekts (12) und der relativen Radialgeschwindigkeit vr des Zielobjekts (12) beziehungsweise der Winkel zwischen den Vektoren der relativen Beschleunigung a des Zielobjekts (12) und der relativen Radialbeschleunigung ar des Zielobjekts (12) bei der ersten Messung ist.
    13. Vorrichtung nach einem der Ansprüche 9 bis 12, dadurch gekennzeichnet, dass die Sensorik (11) Messwerte für Zielobjektabstände ri und Messwerte für relative Radialgeschwindigkeiten vr,i zu unterschiedlichen Zeitpunkten ti erfasst, und dass die Mittel die relative Radialgeschwindigkeit vr des Zielobjekts (12) über den Zusammenhang: v r = f( p ,t,r) = (v 0 + at)(r 0 cos(α0) + v 0 t + at 2/2) r beschreiben, wobei r0 der Zielobjektabstand bei der ersten Messung ist, v0 die relative Anfangsgeschwindigkeit des Zielobjekts (12) bei der ersten Messung ist, a die relative Beschleunigung des Zielobjekts (12) ist, t die Zeit ist, und α0 der Winkel zwischen den Vektoren der relativen Geschwindigkeit v des Zielobjekts (12) und der relativen Radialgeschwindigkeit vr des Zielobjekts (12) beziehungsweise der Winkel zwischen den Vektoren der relativen Beschleunigung a des Zielobjekts (12) und der relativen Radialbeschleunigung ar des Zielobjekts (12) bei der ersten Messung ist.
    14. Vorrichtung nach einem der Ansprüche 9 bis 13, dadurch gekennzeichnet, dass die Mittel zur Schätzung der Parameterwerte eine Norm Q(p) wie folgt definieren: Q( p ) = Q 1( p ) = ∥r k i - f k ( p ,t i )∥, mit k =1 oder k = 2, oder Q( p ) = Q 2( p ) = ∥v k i - f k ( p ,t i )∥, mit k = 1 oder k = 2, oder Q( p ) = Q 3( p ) = ∥v k i - f k ( p ,t i ,r i )∥, mit k =1 oder k = 2.
    15. Vorrichtung nach Anspruch 11, dadurch gekennzeichnet, dass die Mittel die Parameterwerte für die im Vektor p enthaltenen Parameter anhand der Messwerte schätzen.
    16. Vorrichtung nach Anspruch 14, dadurch gekennzeichnet, dass die Mittel die Parameterwerte für die im Vektor p enthaltenen Parameter anhand der Zeitpunkte ti und der Messwerte ri für die Zielobjektabstände und/oder der Messwerte vi für die relativen Radialgeschwindigkeiten über ein Optimierungsverfahren schätzen, indem sie das Minimum der Norm Q( p ) ermitteln.
    EP01991684A 2001-01-08 2001-12-22 Verfahren und vorrichtung zur schätzung von bewegungsparametern von zielen Expired - Lifetime EP1352375B1 (de)

    Applications Claiming Priority (3)

    Application Number Priority Date Filing Date Title
    DE10100413 2001-01-08
    DE10100413A DE10100413A1 (de) 2001-01-08 2001-01-08 Verfahren und Vorrichtung zur Schätzung von Bewegungsparametern von Zielen
    PCT/DE2001/004912 WO2002054369A1 (de) 2001-01-08 2001-12-22 Verfahren und vorrichtung zur schätzung von bewegungsparametern von zielen

    Publications (2)

    Publication Number Publication Date
    EP1352375A1 EP1352375A1 (de) 2003-10-15
    EP1352375B1 true EP1352375B1 (de) 2005-08-24

    Family

    ID=7669893

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP01991684A Expired - Lifetime EP1352375B1 (de) 2001-01-08 2001-12-22 Verfahren und vorrichtung zur schätzung von bewegungsparametern von zielen

    Country Status (6)

    Country Link
    US (1) US6785631B2 (de)
    EP (1) EP1352375B1 (de)
    JP (1) JP4044844B2 (de)
    DE (2) DE10100413A1 (de)
    ES (1) ES2248411T3 (de)
    WO (1) WO2002054369A1 (de)

    Families Citing this family (7)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    DE102007047716A1 (de) * 2007-10-05 2009-04-09 Robert Bosch Gmbh Sensoreinrichtung zur kapazitiven Abstandsermittlung
    DE102007058242A1 (de) * 2007-12-04 2009-06-10 Robert Bosch Gmbh Verfahren zur Messung von Querbewegungen in einem Fahrerassistenzsystem
    CA2910296A1 (en) * 2014-12-12 2016-06-12 Atlantic Inertial Systems Limited (HSC) Collision detection system
    DE102017204496A1 (de) * 2017-03-17 2018-09-20 Robert Bosch Gmbh Verfahren und Radarvorrichtung zum Ermitteln von radialer relativer Beschleunigung mindestens eines Zieles
    DE102017204495A1 (de) * 2017-03-17 2018-09-20 Robert Bosch Gmbh Verfahren und Vorrichtung zum Ermitteln von transversalen Relativgeschwindigkeitskomponenten von Radarzielen
    US20190187267A1 (en) * 2017-12-20 2019-06-20 Nxp B.V. True velocity vector estimation
    DE102018211240A1 (de) * 2018-07-07 2020-01-09 Robert Bosch Gmbh Verfahren zum Klassifizieren einer Relevanz eines Objekts

    Family Cites Families (7)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US5983161A (en) * 1993-08-11 1999-11-09 Lemelson; Jerome H. GPS vehicle collision avoidance warning and control system and method
    JP3186401B2 (ja) * 1994-02-10 2001-07-11 三菱電機株式会社 車両用距離データ処理装置
    JPH08124100A (ja) 1994-10-28 1996-05-17 Nikon Corp 車間距離監視装置
    US6014601A (en) 1997-01-07 2000-01-11 J. Martin Gustafson Driver alert system
    DE19749086C1 (de) * 1997-11-06 1999-08-12 Daimler Chrysler Ag Vorrichtung zur Ermittlung fahrspurverlaufsindikativer Daten
    JP3381778B2 (ja) * 1998-08-05 2003-03-04 三菱自動車工業株式会社 車両の走行制御方法
    DE19910590A1 (de) 1999-03-10 2000-09-14 Volkswagen Ag Verfahren und Vorrichtung zur Abstandsregelung für ein Fahrzeug

    Also Published As

    Publication number Publication date
    JP4044844B2 (ja) 2008-02-06
    JP2004517420A (ja) 2004-06-10
    DE10100413A1 (de) 2002-07-11
    US6785631B2 (en) 2004-08-31
    DE50107229D1 (de) 2005-09-29
    ES2248411T3 (es) 2006-03-16
    EP1352375A1 (de) 2003-10-15
    WO2002054369A1 (de) 2002-07-11
    US20030163280A1 (en) 2003-08-28

    Similar Documents

    Publication Publication Date Title
    DE102009053283B4 (de) Verfahren und Vorrichtung zum Erkennen eines Parkplatzes
    EP2140287B1 (de) Fahrerassistenzsystem und verfahren zur objektplausibilisierung
    DE102013215117A1 (de) Objektbestimmung mittels Radarsensor
    EP3740784B1 (de) Verfahren und vorrichtung zum detektieren kritischer querbewegungen
    EP2793045A1 (de) Verfahren zur Überprüfung eines Umfelderfassungssystems eines Fahrzeugs
    EP3714286B1 (de) Verfahren und vorrichtung zur ermittlung eines installationswinkels zwischen einer fahrbahn, auf der ein fahrzeug fährt, und einer erfassungsrichtung eines mess- bzw. radarsensors
    DE102012200139A1 (de) Verfahren und Vorrichtung zur radunabhängigen Geschwindigkeitsmessung bei einem Fahrzeug
    DE102006045115A1 (de) System und Verfahren zur Zielverfolgung unter Verwendung von Sensorfusion
    DE102018104243B3 (de) Verfahren und System zur Erkennung von für ein Fahrzeug geeigneten Parklücken
    EP2339374A2 (de) Verfahren zur Objekterfassung und Wandleranordnung hierfür
    EP1352375B1 (de) Verfahren und vorrichtung zur schätzung von bewegungsparametern von zielen
    WO2019162317A1 (de) Verfahren zur erzeugung von sensordaten für sicherheitskritische automobil-steuergeräte
    DE102018221448A1 (de) Verfahren zur Bestimmung eines Sichtverhältnisses
    DE10344299B4 (de) Klassifizierung der in einer Umgebung eines Kraftfahrzeugs befindlichen Objekte
    DE102018200755A1 (de) Verfahren und Vorrichtung zum Plausibilisieren einer Querbewegung
    EP1488254B1 (de) Verfahren zur messung der relativgeschwindigkeit eines objekts
    DE102014008732A1 (de) Verfahren und Vorrichtung zum Überwachen eines Radarmesswerts eines Radarsystems und Verkehrsüberwachungssystem
    DE10342128A1 (de) Verfahren und Abstandserfassungsvorrichtung zum Bestimmen des Abstandes zwischen mindestens einer Sensoreinrichtung und einem Objekt
    DE10160299A1 (de) Verfahren und System zum Detektieren mindestens eines Objekts
    EP4277827A1 (de) Orientierungsbasierte positionsermittlung von schienenfahrzeugen
    DE102019128023B4 (de) Verfahren zum Klassifizieren der Höhe eines Objekts durch ein Fahrunterstützungssystem
    WO2022033980A1 (de) Verfahren zum erkennen von verkehrsteilnehmern in einer umgebung eines fahrzeugs anhand von messungen eines radarsensors durch identifizieren von stördetektionen sowie recheneinrichtung
    EP3658953B1 (de) Vorrichtung und verfahren zum erkennen der hoehe eines objekts
    DE102019216152A1 (de) Adaptiver Hochpunkt-Nachbarschaftsbereich
    DE102007008853A1 (de) System und Verfahren zur Feststellung der Existenz eines Täuschfelds

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    17P Request for examination filed

    Effective date: 20030808

    AK Designated contracting states

    Kind code of ref document: A1

    Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

    AX Request for extension of the european patent

    Extension state: AL LT LV MK RO SI

    17Q First examination report despatched

    Effective date: 20040305

    RBV Designated contracting states (corrected)

    Designated state(s): DE ES FR GB IT SE

    GRAP Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOSNIGR1

    GRAS Grant fee paid

    Free format text: ORIGINAL CODE: EPIDOSNIGR3

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    AK Designated contracting states

    Kind code of ref document: B1

    Designated state(s): DE ES FR GB IT SE

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: FG4D

    Free format text: NOT ENGLISH

    REF Corresponds to:

    Ref document number: 50107229

    Country of ref document: DE

    Date of ref document: 20050929

    Kind code of ref document: P

    REG Reference to a national code

    Ref country code: SE

    Ref legal event code: TRGR

    GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

    Effective date: 20051212

    REG Reference to a national code

    Ref country code: ES

    Ref legal event code: FG2A

    Ref document number: 2248411

    Country of ref document: ES

    Kind code of ref document: T3

    ET Fr: translation filed
    PLBE No opposition filed within time limit

    Free format text: ORIGINAL CODE: 0009261

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

    26N No opposition filed

    Effective date: 20060526

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: ES

    Payment date: 20071220

    Year of fee payment: 7

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: IT

    Payment date: 20071220

    Year of fee payment: 7

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: SE

    Payment date: 20071220

    Year of fee payment: 7

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: GB

    Payment date: 20071220

    Year of fee payment: 7

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: DE

    Payment date: 20080226

    Year of fee payment: 7

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: FR

    Payment date: 20071214

    Year of fee payment: 7

    EUG Se: european patent has lapsed
    GBPC Gb: european patent ceased through non-payment of renewal fee

    Effective date: 20081222

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: ST

    Effective date: 20090831

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: DE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20090701

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: GB

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20081222

    REG Reference to a national code

    Ref country code: ES

    Ref legal event code: FD2A

    Effective date: 20081223

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: FR

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20081231

    Ref country code: ES

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20081223

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: SE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20081223

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: IT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20081222