EP1350626B1 - Flüssigkeitsausstosskopf - Google Patents

Flüssigkeitsausstosskopf Download PDF

Info

Publication number
EP1350626B1
EP1350626B1 EP03007355A EP03007355A EP1350626B1 EP 1350626 B1 EP1350626 B1 EP 1350626B1 EP 03007355 A EP03007355 A EP 03007355A EP 03007355 A EP03007355 A EP 03007355A EP 1350626 B1 EP1350626 B1 EP 1350626B1
Authority
EP
European Patent Office
Prior art keywords
common electrode
electrode
drive
pressure chamber
piezoelectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP03007355A
Other languages
English (en)
French (fr)
Other versions
EP1350626A1 (de
Inventor
Katsuhiro Okubo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Publication of EP1350626A1 publication Critical patent/EP1350626A1/de
Application granted granted Critical
Publication of EP1350626B1 publication Critical patent/EP1350626B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/14Structure thereof only for on-demand ink jet heads
    • B41J2/14201Structure of print heads with piezoelectric elements
    • B41J2/14274Structure of print heads with piezoelectric elements of stacked structure type, deformed by compression/extension and disposed on a diaphragm

Definitions

  • This invention relates to a liquid jetting head for ejecting a liquid droplet from a nozzle orifice by causing pressure fluctuation to occur in liquid in a pressure chamber as a piezoelectric vibrator becomes deformed.
  • Liquid jetting heads each for ejecting a liquid droplet from a nozzle orifice by causing pressure fluctuation to occur in liquid in a pressure chamber include a recording head, a liquid crystal jetting head, a color material jetting head, and the like, for example.
  • the recording head is installed in an image recording apparatus such as a printer or a plotter for ejecting ink liquid as ink droplets.
  • the liquid crystal jetting head is used with a display manufacturing apparatus for manufacturing liquid crystal displays. In the display manufacturing apparatus, a liquid crystal ejected from the liquid crystal jetting head is poured into a predetermined grid of a display substrate having a large number of grids.
  • the color material jetting head is used with a filter manufacturing apparatus for manufacturing a color filter, and ejects a color material onto the surface of a filter substrate.
  • liquid jetting heads for ejecting liquid droplets by deflecting and deforming piezoelectric vibrators formed on the surface of a vibration plate.
  • This liquid jetting head is made up of an actuator unit including pressure chambers and piezoelectric vibrators and a flow passage unit including nozzle orifices and a common liquid reservoir, for example.
  • a piezoelectric vibrator on the vibration plate is deformed, whereby the volume of the corresponding pressure chamber is changed for causing pressure fluctuation to occur in liquid stored in the pressure chamber.
  • a liquid droplet is ejected from the corresponding nozzle orifice.
  • the pressure chamber is contracted, whereby liquid is pressurized for pushing out the liquid from the nozzle orifice.
  • the actuator units are produced, for example, as ceramics are baked.
  • the number of actuator units produced for each lot for example, from one ceramic sheet
  • the number of actuator units produced for each lot can be increased, leading to cost reduction.
  • a liquid jetting head according to the preamble of claim 1 is known from document US-5 983 471.
  • EP-A-0 783 965 and EP-A-1 034 931 disclose similar devices.
  • a liquid jetting head comprising the features of claim 1.
  • the piezoelectric vibrator further comprises: a second common electrode, formed on the vibration plate and electrically connected to the first common electrode; and a second piezoelectric layer, interposed between the second common electrode and the drive electrode.
  • a recording head 1 installed in an image recording apparatus such as a printer or a plotter is taken as an example, as shown in Fig. 1.
  • the recording head 1 is roughly made up of a flow passage unit 2, actuator units 3, and a film-like wiring board 4.
  • the actuator units 3 are joined side by side on the surface of the flow passage unit 2, and the wiring board 4 is attached to the surfaces of the actuator units 3 on the opposite side to the flow passage unit 2.
  • the wiring board 4 is formed with a conductor pattern 4B on the surface of a base film 4A and with a contact terminal 20 left, the conductor pattern 4B is covered with a resist 4C and thus the contract terminal 20 is soldered to a discrete terminal 19 (described later) for attaching the wiring board 4.
  • the flow passage unit 2 is made up of a supply port formation substrate 7 formed with through holes used as a part of an ink supply port 5 and a part of each nozzle communication port 6, an ink chamber formation substrate 9 formed with through holes used as a common ink reservoir 8 and a part of each nozzle communication port 6, and a nozzle plate 11 having nozzle orifices 10 arranged in a subscanning direction.
  • the supply port formation substrate 7, the ink chamber formation substrate 9, and the nozzle plate 11 are produced by pressing a stainless steel plate material, for example.
  • Fig. 2 shows a part of the flow passage unit 2 corresponding to one actuator unit 3.
  • three actuator units 3 are joined to one flow passage unit 2 and therefore a total of three sets of the ink supply port 5, the nozzle communication ports 6, the supply port formation substrate 7, the common ink reservoir 8, etc., are formed in a one-to-one correspondence with the three actuator units 3.
  • the nozzle plate 11 is placed on one surface of the ink chamber formation substrate 9 (the lower side in the figure) and the supply port formation substrate 7 is placed on an opposite surface of the ink chamber formation substrate 9 (the upper side in the figure) and the supply port formation substrate 7, the ink chamber formation substrate 9, and the nozzle plate 11 are joined, for example, with a sheet-like adhesive.
  • the nozzle orifices 10 are made like rows at predetermined pitches as shown in Fig. 3.
  • the nozzle orifices 10 made like a row make up each nozzle row 12.
  • 92 nozzle orifices 10 make up one nozzle row 12.
  • the two nozzle rows 12 are formed for one actuator unit 3.
  • a total of six nozzle rows 12 are formed side by side for one flow passage unit 2
  • the actuator unit 3 is also called a head chip and is one type of piezoelectric actuator. As shown in Fig. 2, the actuator unit 3 is made up of a pressure chamber formation substrate 14 formed with through holes used as pressure chambers 13, a vibration plate 15 for defining a part of each pressure chamber 13, a lid member 17 formed with through holes used as a supply communication port 16 and a part of each nozzle communication port 6, and piezoelectric vibrators 18. As for the plate thicknesses of the members, preferably each of the pressure chamber formation substrate 14 and the lid member 17 is 50 ⁇ m or more, more preferably 100 ⁇ m or more. Preferably, the vibration plate 15 is 50 ⁇ m or less, more preferably about 3 to 12 ⁇ m.
  • the lid member 17 is placed on one surface of the pressure chamber formation substrate 14 and the vibration plate 15 is placed on an opposite surface and the members are formed in one piece. That is, the pressure chamber formation substrate 14, the vibration plate 15, and the lid member 17 are made of ceramics of alumina, zirconium oxide, etc., and are baked and put into one piece.
  • a green sheet unbaked sheet member
  • necessary through holes, etc. for forming each sheet-like precursor of the pressure chamber formation substrate 14, the vibration plate 15, and the lid member 17.
  • the sheet-like precursors are deposited on each other and are baked, whereby they are put into one piece to form one ceramic sheet. In this case, the sheet-like precursors are baked in one piece and therefore a special adhesion treatment is not required.
  • a high sealing property can also be provided on the joint faces of the sheet-like precursors.
  • One ceramic sheet is formed with pressure chambers 13, nozzle communication ports 6, etc., of a plurality of units.
  • a plurality of actuator units (head chips) 3 are produced from one ceramic sheet.
  • a plurality of chip areas each to form one actuator unit 3 are set like a matrix within one ceramic sheet.
  • Necessary members of the piezoelectric vibrators 18, etc., are formed in each chip area and then the sheet-like member (ceramic sheet) is cut for each chip area, whereby a plurality of actuator units 3 are provided.
  • the pressure chambers 13 are each a hollow elongated in a direction orthogonal to the nozzle row 12 and are formed in a one-to-one correspondence with the nozzle orifices 10. That is, the pressure chambers 13 are placed like a row in the nozzle row direction, as shown in Fig. 3. Each pressure chamber 13 communicates at one end with the common ink reservoir 8 through the supply communication port 16 and the ink supply port 5. The pressure chamber 13 communicates at an opposite end to the supply communication port 16 with the corresponding nozzle orifice 10 through the nozzle communication port 6. Further, a part of the pressure chamber 13 (lower surface) is defined by the vibration plate 15.
  • the piezoelectric vibrators 18 are each a piezoelectric vibrator 18 in deflection vibration mode and are formed in a one-to-one correspondence with the pressure chambers 13 on the vibration plate surface opposite to the pressure chambers 13.
  • the piezoelectric vibrator 18 is shaped like a block elongated in the longitudinal direction of the pressure chamber. It has a width roughly equal to that of the pressure chamber 13 and a length a little longer than that of the pressure chamber 13. Further, the piezoelectric vibrator 18 is disposed so that both end portions are beyond the end portions of the pressure chamber 13 in the longitudinal direction thereof.
  • the piezoelectric vibrators 18 are provided in a one-to-one correspondence with the pressure chambers 13 on the vibration plate surface opposite to the pressure chambers 13. That is, the piezoelectric vibrators 18 are arranged in the nozzle row direction.
  • the piezoelectric vibrators 18 at the ends of each vibrator row are dummy vibrators 18a not involved in ejecting ink droplets (namely, not deformed because no drive signal is supplied).
  • the piezoelectric vibrators 18 other than the dummy vibrators 18a serves as drive vibrators 18b involved in ejecting ink droplets (namely, deformed as a drive signal is supplied).
  • the discrete terminals 19 are provided in a one-to-one correspondence with the piezoelectric vibrators 18 on one side of the piezoelectric vibrators 18 (drive vibrators 18b and dummy vibrators 18a) in the longitudinal direction thereof.
  • the above-mentioned contact terminals 20 of the wiring board 4 are electrically connected to the discrete terminals 19.
  • a linear proximal common electrode 21 forming a part of a common electrode is extended in the nozzle row direction on an opposite side of the piezoelectric vibrators 18 in the longitudinal direction thereof.
  • the piezoelectric vibrator 18 in the embodiment has a multilayer structure including a piezoelectric layer 22, a branch common electrode 23, a drive electrode (discrete electrode) 24, etc., and the piezoelectric layer 22 is sandwiched between the drive electrode 24 and the branch common electrode 23, as shown in Fig. 5.
  • a supply source (not shown) of a drive signal is electrically connected to the drive electrode 24 through the discrete electrode 19 while the branch common electrode 23 is adjusted to ground potential, for example, through the proximal common electrode 21, etc.
  • a drive signal is supplied to the drive electrode 24, an electric field of the strength responsive to the potential difference is generated between the drive electrode 24 and the branch common electrode 23.
  • the electric field is given to the piezoelectric layer 22, which then becomes deformed in response to the strength of the given electric field.
  • the actuator unit 3 and the flow passage unit 2 are joined to each other.
  • a sheet-like adhesive is placed between the supply port formation substrate 7 and the lid member 17 and in this state, the actuator unit 3 is pressed against the flow passage unit 2, whereby the actuator unit 3 and the flow passage unit 2 are joined.
  • ink flow passages each from the common ink reservoir 8 through the ink supply port 5, the supply communication port 16, the pressure chamber 13, and the nozzle communication port 6 to the nozzle orifice 10 are formed in a one-to-one correspondence with the nozzle orifices 10.
  • the ink flow passage fills with ink.
  • the piezoelectric vibrator 18 As the piezoelectric vibrator 18 is deformed, the corresponding pressure chamber 13 is contracted or expanded and pressure fluctuation occurs in ink in the pressure chamber 13.
  • an ink droplet can be ejected from the nozzle orifice 10.
  • the pressure chamber 13 of a stationary volume is once expanded and then rapidly contracted, the pressure chamber 13 is filled with ink as the pressure chamber 13 is expanded, and then the ink in the pressure chamber 13 is pressurized because of the later rapid contraction of the pressure chamber 13, ejecting an ink droplet. Further, as an ink droplet is ejected from the nozzle orifice 10, new ink is supplied from the common ink reservoir 8 into the ink flow passage, so that successively ink droplets can be ejected.
  • the piezoelectric vibrators 18 each of a multilayer structure are used to lessen the compliance of the vibration plate 15 and it is made possible to eject an ink droplet of the necessary amount at a higher frequency than ever.
  • the end portions of the discrete terminals 19 are deposited on the piezoelectric vibrators 18 for miniaturizing the actuator unit 3 in the width direction thereof.
  • a connection electrode for electrically connecting the proximal common electrode 21 and the discrete electrode 19 is placed in each dummy electrode 18a.
  • the piezoelectric layer 22 is formed like a block elongated in the longitudinal direction of the pressure chamber and is made up of an upper piezoelectric body (outer piezoelectric body) 31 and a lower piezoelectric body (inner piezoelectric body) 32 deposited on each other.
  • the branch common electrode 23 is made up of an upper common electrode (outer common electrode) 33 and a lower common electrode (inner common electrode) 34.
  • the branch common electrode 23 and the drive electrode 24 make up an electrode layer.
  • upper (outer) or “lower (inner)” mentioned here is used to indicate the position relationship with the vibration plate 15 as the reference. That is, the term “upper (outer)” is used to indicate the side distant from the vibration plate 15 and the term “lower (inner)” is used to indicate the side near to the vibration plate 15.
  • the drive electrode 24 is formed on the boundary between the upper piezoelectric body 31 and the lower piezoelectric body 32.
  • the lower common electrode 34 and the upper common electrode 33 together with the proximal common electrode 21 make up the common electrode. That is, the common electrode is pectinated so as to form a plurality of branch common electrodes 23 (lower common electrode 34 and upper common electrode 33) extended from the proximal common electrode 21.
  • the lower common electrode 34 is formed between the lower piezoelectric body 32 and the vibration plate 15, and the upper common electrode 33 is formed on the surface of the upper piezoelectric body 31 on the opposite side to the lower piezoelectric body 32. That is, the drive vibrator 18b is of a multilayer structure wherein the lower common electrode 34, the lower piezoelectric body 32, the drive electrode 24, the upper piezoelectric body 31, and the upper common electrode 33 are deposited in order from the vibration plate 15 side.
  • the piezoelectric layer 22 has a thickness of about 17 ⁇ m (the thickness of the upper piezoelectric body 31 plus the thickness of the lower piezoelectric body 32).
  • the total thickness of the piezoelectric vibrator 18 including the branch common electrode 23 is about 20 ⁇ m.
  • the related-art piezoelectric vibrator of the single-layer structure has a total thickness of about 15 ⁇ m. Therefore, as the thickness of the piezoelectric vibrator 18 increases, the compliance of the vibration plate 15 lessens accordingly.
  • the upper common electrode 33 and the lower common electrode 34 are adjusted to a constant potential, for example, ground potential regardless of a drive signal.
  • the drive electrode 24 is changed in potential in response to the supplied drive signal. Therefore, as the drive signal is supplied, electric fields opposite in direction occur between the drive electrode 24 and the upper common electrode 33 and between the drive electrode 24 and the lower common electrode 34.
  • various conductors of discrete metal, an alloy, a mixture of electric insulating ceramics and metal, and the like can be selected, but it is required that a defective condition of deterioration, etc., should not occur at the baking temperature.
  • gold is used for the upper common electrode 33 and platinum is used for the lower common electrode 34 and the drive electrode 24.
  • Both the upper piezoelectric body 31 and the lower piezoelectric body 32 are made of piezoelectric material consisting essentially of lead zirconate titanate (PZT), for example.
  • PZT lead zirconate titanate
  • the upper piezoelectric body 31 and the lower piezoelectric body 32 are opposite in polarization direction.
  • the upper piezoelectric body 31 and the lower piezoelectric body 32 are identical in the extending or contracting direction when the drive signal is applied, and can deform the vibration plate 15 without a hitch.
  • the upper piezoelectric body 31 and the lower piezoelectric body 32 deform the vibration plate 15 so as to lessen the volume of the pressure chamber 13; as the potential of the drive electrode 24 is made lower, the upper piezoelectric body 31 and the lower piezoelectric body 32 deform the vibration plate 15 so as to increase the volume of the pressure chamber 13.
  • the discrete terminal 19 is formed as described above.
  • the discrete terminal 19 of the drive vibrator 18b is a drive potential supply terminal for supplying a drive signal (drive potential), and is electrically connected to the contact terminal 20 of the wiring board 4.
  • the discrete terminal 19 is electrically connected to the drive electrode 24 extended in the longitudinal direction of the pressure chamber 13. That is, a part of the discrete terminal 19 is deposited on an end portion of the drive electrode 24.
  • the embodiment is characterized by the fact that the end portion of the discrete terminal 19 is overlaid on the surface of the vibrator end portion (upper piezoelectric body) which is not superposed on the pressure chamber 13, and further the discrete terminal 19 is formed away from the upper common electrode 33 (branch common electrode 23).
  • the one end portion of the piezoelectric vibrator 18 is extended beyond the end portion of the pressure chamber 13, in other words, to a non-superposition area outside the superposition area on the pressure chamber 13.
  • the vibrator-side end portion of the discrete terminal 19 is deposited on the upper surface of the piezoelectric vibrator 18 in the non-superposition area.
  • the end portion of the discrete terminal 19 formed on the piezoelectric vibrator 18 becomes an electric connection (conduction) part with the wiring board 4 (contact terminal 20), which will be hereinafter also called conduction part 19a.
  • the end portion of the upper common electrode 33 is formed to a point before the discrete terminal 19, but an isolation area X from the discrete terminal 19 is provided and therefore they are not electrically connected.
  • Such a structure makes it possible to miniaturize the actuator unit 3. That is, the end portion of the discrete terminal 19 is positively overlaid on the surface of the piezoelectric vibrator 18, so that the discrete terminal 19 can be formed leaning to the piezoelectric vibrator side as a whole.
  • the width of the actuator unit 3, particularly, the width in the longitudinal direction of the pressure chamber can be shortened.
  • the actuator unit 3 As the actuator unit 3 is miniaturized, at the manufacturing time, a larger number of actuator units 3 can be laid out on a ceramic sheet of the same area as the ceramic sheet in the related art. Therefore, in a case where the same process as that in the related art is applied, a larger number of actuator units 3 can be manufactured so that the manufacturing efficiency can be improved. The raw material can also be saved. Since the manufacturing efficiency can be improved and the raw material can be saved, cost reduction in the actuator unit 3 is also made possible.
  • a heating terminal (not shown) is pressed from the wiring board surface on the opposite side to the discrete terminal 19 for soldering the discrete terminal 19 and the contact terminal 20, as shown in Fig. 7.
  • the conduction part 19a of the discrete terminal 19 is positioned above the piezoelectric vibrator 18 and is at the highest position in the actuator unit 3 and therefore is most strongly pressurized by the heating terminal. Thus, reliable soldering can be accomplished.
  • the conduction part 19a is formed on the piezoelectric vibrator 18 and thus the member below the conduction part 19a is thickened as much as the piezoelectric vibrator 18, so that the member is enhanced in rigidity and can also receive reliably the press force from the heating terminal.
  • the upper common electrode 33 and the lower common electrode 34 are extended in the longitudinal direction of the pressure chamber 13. That is, the lower common electrode 34 is formed through the top of the vibrator plate 15 to the lower face of the proximal common electrode 21.
  • the upper common electrode 33 is formed through a side end face of the piezoelectric layer 22 to the surface of the lower common electrode 34. Further, the upper common electrode 33 is also formed to the lower face of the proximal common electrode 21. Therefore, both the upper common electrode 33 and the lower common electrode 34 are electrically connected to the proximal common electrode 21.
  • the dummy electrode 18a also has a piezoelectric layer 22 including an upper piezoelectric body 31 and a lower piezoelectric body 32 and formed like a block elongated in the pressure chamber longitudinal direction and is formed with an electrode layer between the vibration plate 15 and the lower piezoelectric body 32, an electrode layer on the boundary between the upper piezoelectric body 31 and the lower piezoelectric body 32, and an electrode layer on the surface of the upper piezoelectric body 31 opposite to the lower piezoelectric body 32.
  • the electrode layer between the vibration plate 15 and the lower piezoelectric body 32 which will be hereinafter referred to as a first connection electrode 35
  • the electrode layer on the boundary between the upper piezoelectric body 31 and the lower piezoelectric body 32 which will be hereinafter referred to as a second connection electrode 36, are extended to both sides in the longitudinal direction of the pressure chamber 13 for electrically connecting the proximal common electrode 21 and the discrete terminal 19.
  • connection electrode 35 is formed from the proximal common electrode 21 through the lower side of the lower piezoelectric body 32 to the discrete terminal 19
  • second connection electrode 36 is formed from the proximal common electrode 21 through the lower side of the upper piezoelectric body 31 to the discrete terminal 19.
  • the connection electrodes are formed with the same electrode material as the lower common electrode 34 and the drive electrode 24.
  • the discrete terminal 19 provided on the dummy electrode 18a and the proximal common electrode 21 are electrically connected through the connection electrodes 35, 36, so that the discrete terminal 19 can be used as a supply terminal to supply common potential (for example, ground potential). Since the discrete terminal 19 is formed in the same row as the discrete terminal 19 for the drive vibrator 18b, the actuator unit 3 can be miniaturized. To electrically connect the wiring board 4 and each discrete terminal 19, the discrete terminal 19 for the dummy vibrator 18a and the discrete terminal 19 for the drive vibrator 18b can be electrically connected collectively, so that the work efficiency can be improved.
  • connection electrodes are placed on the lower side of the piezoelectric layer 22, no burr-like parts occur.
  • defective conditions of breaking or short-circuiting the wiring due to a burr-like part after the wiring board 4 is mounted can be prevented reliably. Therefore, full use of the stable performance of the recording head 1 with less trouble can be made.
  • connection electrodes 35 and 36 are separated into two layers and thus a sufficient thickness can be ensured, so that the resistance value of the electrode can be suppressed to a low value.
  • connection electrodes 35 and 36 are formed with the same electrode material as the lower common electrode 34 and the drive electrode 24 and thus can be manufactured at the same time as the lower common electrode 34 and the drive electrode 24. That is, the first connection electrode 35 can be manufactured at the same time as the lower common electrode 34, and the second connection electrode 36 can be manufactured at the same time as the drive electrode 24. This eliminates the need for executing the specific process for forming the connection electrodes, and the manufacturing efficiency can be enhanced.
  • the piezoelectric vibrator 18 is of the multilayer structure wherein the upper and lower piezoelectric bodies 31 and 32 and the like are deposited, but the invention can also be applied to the piezoelectric vibrator of a single-layer structure including a single layer of piezoelectric layer.
  • the drive electrode 24 is formed between the piezoelectric layer 22 and the vibration plate 15, and the upper common electrode 33 and the discrete electrode 19 are formed on the piezoelectric layer surface opposite to the vibration plate 15.
  • the connection electrode is formed between the piezoelectric layer 22 and the vibration plate 15.
  • liquid jetting head has been described by taking the recording head 1, one type of liquid jetting head, as an example, the invention can also be applied to other liquid jetting heads such as a liquid crystal jetting head and a color material jetting head.

Landscapes

  • Particle Formation And Scattering Control In Inkjet Printers (AREA)

Claims (3)

  1. Flüssigkeitsstrahlkopf mit:
    einer Schwingungsplatte (15), die Teil einer Druckkammer (13) ist, welche mit einer Düsenöffnung (10) in Verbindung steht, aus welcher ein Flüssigkeitströpfchen ausgespritzt wird, wobei diese Druckkammer durch erste Kanten, die sich mit einem ersten Abmaß in einer ersten Richtung erstrecken, und durch zweite Kanten definiert ist, die sich mit einem zweiten Abmaß, das kürzer ist als das erste Abmaß, in einer zweiten Richtung im wesentlichen rechtwinklig zu der ersten Richtung erstrecken, und
    einem piezoelektrischen Schwinger (1), der auf der Schwingungsplatte vorgesehen ist, so dass er der Druckkammer gegenüberliegt,
    wobei der piezoelektrische Schwinger folgendes aufweist:
    eine Antriebselektrode (24), die sich nach jenseits einer der zweiten Kanten erstreckt,
    eine erste piezoelektrische Schicht (31), die auf die Antriebselektrode laminiert ist, so dass sie sich nach jenseits der zweiten Kanten erstreckt,
    eine erste gemeinsame Elektrode (33), die auf eine obere Fläche der ersten piezoelektrischen Schicht laminiert ist, und
    einen Antriebsanschluss (19), der elektrisch mit der Antriebselektrode verbunden ist, um ihr ein Antriebssignal zuzuleiten,
    dadurch gekennzeichnet, dass
    ein Endbereich (19a) des Antriebsanschlusses (19) sich in einem Bereich der oberen Fläche der ersten piezoelektrischen Schicht (31) befindet, welcher nicht der Druckkammer (13) überlagert ist, während er von der ersten gemeinsamen Elektrode (33) getrennt ist.
  2. Flüssigkeitsstrahlkopf nach Anspruch 1, bei welchem der piezoelektrische Schwinger weiter folgendes aufweist:
    eine zweite gemeinsame Elektrode (34), die auf der Schwingungsplatte ausgebildet ist und mit der ersten gemeinsamen Elektrode elektrisch verbunden ist, und
    eine zweite piezoelektrische Schicht (32), die zwischen der zweiten gemeinsamen Elektrode und der Antriebselektrode vorgesehen ist.
  3. Flüssigkeitsstrahlkopf nach Anspruch 1, weiter mit einer Verdrahtungsplatte (4), die auf einer oberen Fläche der ersten gemeinsamen Elektrode (33) und einer oberen Fläche des Antriebsanschlusses (19) montiert ist und einen Kontaktanschluss (20) aufweist, der mit dem Antriebsanschluss in einem Bereich (19a) verbunden ist, welcher sich auf der ersten piezoelektrischen Schicht befindet.
EP03007355A 2002-04-01 2003-04-01 Flüssigkeitsausstosskopf Expired - Lifetime EP1350626B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002099337 2002-04-01
JP2002099337A JP4277477B2 (ja) 2002-04-01 2002-04-01 液体噴射ヘッド

Publications (2)

Publication Number Publication Date
EP1350626A1 EP1350626A1 (de) 2003-10-08
EP1350626B1 true EP1350626B1 (de) 2005-07-20

Family

ID=28035906

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03007355A Expired - Lifetime EP1350626B1 (de) 2002-04-01 2003-04-01 Flüssigkeitsausstosskopf

Country Status (6)

Country Link
US (1) US7237878B2 (de)
EP (1) EP1350626B1 (de)
JP (1) JP4277477B2 (de)
CN (2) CN2709015Y (de)
AT (1) ATE299800T1 (de)
DE (1) DE60301028T2 (de)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4534137B2 (ja) * 2004-12-20 2010-09-01 富士フイルム株式会社 液体吐出ヘッド及びその製造方法
KR100694132B1 (ko) * 2005-06-28 2007-03-12 삼성전자주식회사 잉크 카트리지의 잉크 채널 유닛과 그 제조 방법
WO2007116699A1 (ja) * 2006-03-29 2007-10-18 Kyocera Corporation 液体吐出装置
JP4428391B2 (ja) * 2007-03-14 2010-03-10 セイコーエプソン株式会社 流体噴射ヘッド及び流体噴射装置
JP6432729B2 (ja) 2014-10-02 2018-12-05 セイコーエプソン株式会社 液体噴射ヘッド及び液体噴射装置並びに圧電デバイス
JP6980027B2 (ja) * 2017-07-15 2021-12-15 新科實業有限公司SAE Magnetics(H.K.)Ltd. 薄膜圧電アクチュエータ

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5402159A (en) * 1990-03-26 1995-03-28 Brother Kogyo Kabushiki Kaisha Piezoelectric ink jet printer using laminated piezoelectric actuator
JP2913806B2 (ja) * 1990-09-14 1999-06-28 ブラザー工業株式会社 圧電式インクジェットプリンタヘッド
US5604522A (en) * 1992-06-11 1997-02-18 Seiko Epson Corporation Ink jet head and a method of manufacturing the ink jet head
US5495270A (en) * 1993-07-30 1996-02-27 Tektronix, Inc. Method and apparatus for producing dot size modulated ink jet printing
US5983471A (en) * 1993-10-14 1999-11-16 Citizen Watch Co., Ltd. Method of manufacturing an ink-jet head
US5748214A (en) * 1994-08-04 1998-05-05 Seiko Epson Corporation Ink jet recording head
JP3366146B2 (ja) 1995-03-06 2003-01-14 セイコーエプソン株式会社 インク噴射ヘッド
JP2842320B2 (ja) 1995-08-22 1999-01-06 日本電気株式会社 液滴噴射装置および液滴噴射方法
JP3452111B2 (ja) * 1995-11-10 2003-09-29 セイコーエプソン株式会社 インクジェット式記録ヘッド
JPH09277531A (ja) 1996-04-18 1997-10-28 Ricoh Co Ltd インクジェットヘッド
JPH11268269A (ja) 1998-03-26 1999-10-05 Seiko Epson Corp インクジェット式記録ヘッド
JP3166741B2 (ja) * 1998-12-07 2001-05-14 日本電気株式会社 インクジェット記録ヘッドおよびその製造方法
JP3339569B2 (ja) * 1999-03-26 2002-10-28 富士ゼロックス株式会社 インクジェット記録ヘッド
JP2002103618A (ja) * 2000-01-17 2002-04-09 Seiko Epson Corp インクジェット式記録ヘッド及びその製造方法並びにインクジェット式記録装置
JP3692895B2 (ja) 2000-03-07 2005-09-07 ブラザー工業株式会社 圧電式インクジェットプリンタヘッド
JP2002067311A (ja) * 2000-08-24 2002-03-05 Seiko Epson Corp 液体噴射装置

Also Published As

Publication number Publication date
DE60301028D1 (de) 2005-08-25
ATE299800T1 (de) 2005-08-15
EP1350626A1 (de) 2003-10-08
DE60301028T2 (de) 2006-04-20
JP4277477B2 (ja) 2009-06-10
CN1301799C (zh) 2007-02-28
CN1486792A (zh) 2004-04-07
US20030210308A1 (en) 2003-11-13
US7237878B2 (en) 2007-07-03
JP2003291336A (ja) 2003-10-14
CN2709015Y (zh) 2005-07-13

Similar Documents

Publication Publication Date Title
JP3991894B2 (ja) 圧電アクチュエータの製造方法、液体噴射ヘッドの製造方法、及び、アクチュエータ母部材
JP3414227B2 (ja) インクジェット式記録ヘッド
US7294952B2 (en) Laminated-type piezoelectric element and inkjet recording head having the same
JP4305016B2 (ja) 圧電アクチュエータユニット、及び、それを用いた液体噴射ヘッド
US20070159511A1 (en) Method of manufacturing an ink jet head
EP1350625B1 (de) Flüssigkeitsausstosskopf
US6803703B2 (en) Piezoelectric actuator, liquid jetting head incorporating the same, and method of manufacturing the actuator and head
EP1459898B1 (de) Tintenstrahldruckkopf und Verfahren zu dessen Herstellung
US5945773A (en) Piezoelectric actuator for ink-jet printer and method of manufacturing the same
JP4702316B2 (ja) 圧電アクチュエータユニット、圧電素子、及び、その製造方法
US6695439B2 (en) Piezoelectric transducer and liquid droplet ejection device
US6536880B2 (en) Piezoelectric ink jet printer head and method for manufacturing same
EP1350626B1 (de) Flüssigkeitsausstosskopf
US6918659B2 (en) Piezoelectric element, piezoelectric actuator and liquid ejection head incorporating the same
US6655790B2 (en) Piezoelectric actuator and fluid jet apparatus and method for manufacturing the piezoelectric actuator and the fluid jet apparatus
JP3171213B2 (ja) インクジェット式印字ヘッド
US20040051761A1 (en) Pressure generating mechanism, manufacturing method thereof, and liquid droplet ejection device including pressure generating mechanism
JP4259053B2 (ja) 圧電素子の製造方法、及び、液体噴射ヘッドの製造方法
JP3365510B2 (ja) インクジェット式記録ヘッドの製造方法
EP1022140B1 (de) Tintenstrahldruckkopf
EP1040923B1 (de) Tintenstrahlaufzeichnungskopf, piezoelektrische Vibratorelementeinheit und Verfahren zur Herstellung der piezoelektrischen Vibratorelementeinheit

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

17P Request for examination filed

Effective date: 20030930

17Q First examination report despatched

Effective date: 20031229

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050720

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050720

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050720

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050720

Ref country code: LI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050720

Ref country code: BE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050720

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050720

Ref country code: CH

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050720

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050720

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050720

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050720

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050720

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 60301028

Country of ref document: DE

Date of ref document: 20050825

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20051020

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20051020

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20051020

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20051020

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20051221

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060121

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060403

ET Fr: translation filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060430

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20060421

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060401

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050720

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060430

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20110330

Year of fee payment: 9

Ref country code: FR

Payment date: 20110426

Year of fee payment: 9

Ref country code: GB

Payment date: 20110330

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20110414

Year of fee payment: 9

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20120401

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20121228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120401

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 60301028

Country of ref document: DE

Effective date: 20121101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120430

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120401

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121101