EP1346067B1 - Cooling system for a metallurgical smelting furnace - Google Patents

Cooling system for a metallurgical smelting furnace Download PDF

Info

Publication number
EP1346067B1
EP1346067B1 EP01270626A EP01270626A EP1346067B1 EP 1346067 B1 EP1346067 B1 EP 1346067B1 EP 01270626 A EP01270626 A EP 01270626A EP 01270626 A EP01270626 A EP 01270626A EP 1346067 B1 EP1346067 B1 EP 1346067B1
Authority
EP
European Patent Office
Prior art keywords
cooling
cooling water
cooling system
furnace
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP01270626A
Other languages
German (de)
French (fr)
Other versions
EP1346067A1 (en
Inventor
Robert Schmeler
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Paul Wurth SA
Original Assignee
Paul Wurth SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Paul Wurth SA filed Critical Paul Wurth SA
Publication of EP1346067A1 publication Critical patent/EP1346067A1/en
Application granted granted Critical
Publication of EP1346067B1 publication Critical patent/EP1346067B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B7/00Blast furnaces
    • C21B7/10Cooling; Devices therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D1/00Casings; Linings; Walls; Roofs
    • F27D1/12Casings; Linings; Walls; Roofs incorporating cooling arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D9/00Cooling of furnaces or of charges therein
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B1/00Shaft or like vertical or substantially vertical furnaces
    • F27B1/10Details, accessories, or equipment peculiar to furnaces of these types
    • F27B1/24Cooling arrangements

Definitions

  • the present invention relates to a cooling system for a metallurgical Melting furnace.
  • cooling systems for metallurgical melting furnaces both crucible-shaped as well as shaft-shaped construction, are today as closed Cooling water systems trained. They include cooling elements in the furnace walls are integrated and provided with cooling channels. A pump pumps the cooling water through the cooling channels of the cooling elements. A static pressure maintenance device such as. a container with a gas cushion ensures that there is a static pressure of a few bars at every point of the cooling channels is present. Such cooling systems are referred to below as "pressure circuits".
  • the overpressure in the cooling channels increases the evaporation temperature of the cooling water, which has a positive effect on the Security of the cooling system affects, since a vapor formation the cooling capacity greatly reduced and consequently local overheating of a cooling element can lead.
  • Splash water cooling systems were used as a "modern” alternative for pressure circuits developed.
  • the latter include cooling boxes in the furnace walls are integrated and have spray nozzles in an inner chamber, which the Spray cooling water on the inside wall of the chamber facing the inside of the oven.
  • the majority of the excess pressure in the spray nozzles is reduced here, so that there is only a slight excess pressure in the coolers.
  • Such Splash water cooling systems are, however, quite complex to manufacture and claim also a lot of space in the furnace wall.
  • This cooling system includes one Feed pump, a reservoir for cooling water, a pressure reducing valve, parallel cooling elements, a suction pump and a gas separator.
  • the feed pump pumps the cooling water from the storage tank over the Pressure reducing valve in the cooling elements, the pressure behind the pressure reducing valve should be less than atmospheric pressure.
  • the suction pump should then suck the cooling water through the cooling elements and then over press the gas separator back into the storage container.
  • a similar Vacuum cooling system is described in JP 09 287733.
  • the object of the present invention is a reliable cooling system to propose for a metallurgical melting furnace, the larger one Security than known pressure circuits has a greater cooling capacity than Classic sprinkler cooling ensures the use of more compact ones and simpler cooling elements than known spray water cooling systems enabled and safer than the vacuum cooling systems proposed so far is.
  • This object is achieved by a cooling system according to claim 1.
  • a cooling system according to the invention for a metallurgical melting furnace comprises at least one cooling element in a furnace wall of the metallurgical Melting furnace is integrated.
  • the term "furnace wall" includes both the side walls of the melting furnace and the floor or the furnace lid.
  • the at least one cooling element has at least one internal cooling channel on a predetermined Cooling water volume flow is flowed through, which the required cooling capacity guaranteed.
  • the cooling system also includes at least one Reservoirs for cooling water; and at least one cooling water pump sucks the cooling water heated in the cooling element and into the reservoir pumps it back.
  • the cooling system is designed hydraulically in such a way that in most of the at least one internal cooling channel at the predetermined Cooling water flow a static pressure is present which is less than the atmospheric Pressure at the location of the metallurgical melting furnace. In in other words, there is no excess pressure in the at least one cooling element of the cooling water compared to the ambient pressure. This means that in the event of a small leak in the cooling element, no cooling water in the Melting furnace can penetrate. Rather, it becomes ambient air or furnace gas sucked into the internal cooling channel of the cooling element due to the leak. Direct leakage monitoring can be caused by the suction of furnace gas by means of gas detectors. This will make general security significantly improved for man and machine.
  • Cooling elements required are also much more compact and cheaper to produce than splash water coolers.
  • the cooling system according to the invention for metallurgical melting furnaces of both crucible-shaped, as well as shaft-shaped design is suitable. It is here possible to design only part of the furnace cooling as a vacuum system. For example, furnace cooling in a particularly vulnerable area metallurgical melting furnace as a vacuum system according to the invention, the remaining part of the furnace, however, be designed as a classic overpressure system.
  • the cooling system according to the invention also has a flow tank for Cooling water arranged above the at least one cooling element is and prevails in the atmospheric pressure.
  • This flow tank supplies the at least one cooling element with cooling water and gives, through its geodetic exaggeration, the idle pressure, or pre-pressure, in the cooling circuit before. He also forms an expansion tank for the cooling water. Through the Static determination of the form will result in dangerous pressure fluctuations largely avoided in the cooling system. This will ensure the security of the cooling system according to the invention, in comparison to known vacuum cooling systems, significantly improved.
  • a cooling system according to the invention it is possible, for example to provide safe floor cooling for a metallurgical arc furnace.
  • a cooling system according to the invention can also advantageously be used as a lid cooling system of such a metallurgical arc furnace.
  • the cooling system according to the invention is suitable for a blast furnace, among others. beneficial to the Underfloor cooling. In all of these cases, the great security against leakage is that of the invention Cooling system of particular importance.
  • the cooling system is normally designed as a closed circuit. This means that it has a recooling device and at least one cooling water pump on. The latter sucks the cooling water heated in the cooling element and pumps it into the flow tank via the at least one recooling device back.
  • the cooling system as an open cooling circuit to operate, that is to supply the flow tank with fresh water and to drain the warm return.
  • a gas detection device makes it possible Detect furnace gases that are in the degassing tank from the cooling water separate and that a leak in the cooling system in the furnace area indicate.
  • this degassing container comprises a gas space above the cooling water and a vacuum pump for Generating an atmospheric negative pressure in this gas space.
  • Solid cooling plates are advantageous in a cooling system according to the invention made of copper or cast iron can be used as cooling elements.
  • tube panels and coils are in some areas of a melting furnace, however not excluded and also particularly inexpensive.
  • FIG. 1 shows a greatly simplified circuit diagram of a cooling system for a metallurgical melting furnace.
  • the reference number 10 denotes a cooling circuit of the melting furnace.
  • These valves 20 i and 22 i make it possible to isolate the corresponding cooling element 16 i from the cooling circuit 10.
  • Reference numeral 24 denotes a supply tank for cooling water which is arranged above the cooling water flow collector 12. This Flow tank 24 is in via a ventilation line 25 with the atmosphere Connection so that 24 atmospheric pressure above the cooling water in the flow tank prevails in the.
  • the cooling water can be supplied via a flow line 26 from the flow tank 24 into the lower lying cooling water flow collector 12 flow in.
  • An emptying line 27 enables the flow tank 24 to drain into a drain channel 28 if necessary. In this drain line 27 also leads to an overflow device 29.
  • Reference numeral 30 in FIG. 1 denotes a closed degassing container into which the cooling water flows from the return collector 14.
  • a vacuum pump 32 is connected to this degassing container 30. The latter creates an atmospheric negative pressure in a gas space 33 above the cooling water.
  • the degassing tank 30 through a partition 34 into a decanting basin 36 and a Suction basin 38 is divided.
  • the cooling water flows into the decanting basin 36 via a return line 40, with a large part of the cooling water transported solid particles settled in the decanting basin 36. Because the cooling water level in the degassing container 30 is slightly higher than the partition 34, the cooling water flows into the suction basin 38 and can flow into one Flow in suction line 42.
  • the vacuum pump 32 can e.g. around a jet pump operated with compressed air.
  • Reference numeral 44 denotes a source of compressed air (i.e. an air compressor or a Compressed air distribution network) to which the jet pump 32 for the purpose of generating a Suction air jet is connected.
  • This suction air jet sucks a vacuum in the degassing tank 30.
  • the Output of the jet pump 42 by means of an exhaust air line 46 to a water separator 48 are connected, in which the degassing tank 30 entrained cooling water is separated from the exhaust air.
  • This water separator 48 can e.g. be arranged above the flow container 24, so that the separated cooling water via a line 50 by gravity in the flow tank 24 can be returned.
  • the suction line 42 is at a lower pressure increasing station 52 connected, for example two pumps 54 and 56 connected in parallel comprises, each of the pumps 54, 56 is in operation and the other in Reserve is.
  • the pumps 54, 56 are centrifugal pumps, the existing one NPSH value of the system is of course greater than the required NPSH value of the Centrifugal pumps. For this reason, the centrifugal pumps may need a certain amount Height below the degassing container 30 may be arranged. To a deep one However, pumps can also be used to avoid the pump shaft will be less prone to cavitation.
  • the pumps 54, 56 are therefore also on the suction side via the suction line 42 the degassing tank 30 connected. They are on the pressure side via a pressure line 58 connected to the flow tank 24. In this pressure line 58 is a recooler 60 installed for the cooling water. Pumps 54, 56 pump consequently, the cooling water from the degassing tank 30 through the recooler 60 back into the pre-reservoir 24.
  • the reference numeral 62 is one Fresh water pipe referred to, by means of which water losses are compensated can be or a water exchange can be made.
  • the cooling system is designed hydraulically in such a way that in the majority of the cooling channels 18 i, with a predetermined cooling water flow, a static pressure is present which is lower than the atmospheric pressure at the installation site of the metallurgical melting furnace.
  • the supply lines to the individual cooling elements 16 i are designed such that a slight negative pressure is present in the inlet of the cooling channels 18 i .
  • the cooling water crosses the cooling channels 18 i from top to bottom.
  • the static pressure can be influenced by local and linear pressure losses (loss energy), the channel cross section (speed energy) and the gradient (position energy). It should be noted that pressure losses and a reduction in the cross-section of the duct increase the negative pressure (ie the static absolute pressure decreases), but a slope causes the negative pressure to decrease (ie the static absolute pressure increases). In order to cause a slow rise in the vacuum from the flow connection to the return connection with a constant duct cross-section, the energy loss must increase slightly faster than the position energy decreases.
  • the static absolute pressure should not be lower than kP D at any point in the cooling circuit 10, where k is a safety factor greater than 1 and P D is the evaporation pressure of the cooling water at the maximum cooling water temperature. For example, one can assume that at a maximum return temperature of the cooling water of 40 ° C, the static absolute pressure should not be lower than 0.4 bar at any point in the cooling circuit.
  • the reference number 70 in FIG. 1 denotes a gas detector which responds to furnace gases which collect in the gas circuit 33 of the degassing container 30 in the event of a leak in the cooling circuit 10. Via this gas detector 70, the furnace operator receives reliable information relatively quickly that a leak has formed in the cooling circuit 10.
  • Fig. 2 shows such a degassing tank 130. It is a certain geodetic height H is arranged under the return collector 14 and with this via a return line 40 with low pressure losses connected so that the static absolute pressure of the cooling water in the return line 40 rises sharply and in the return collector 14 slightly larger than that Atmospheric pressure.
  • the degassing of the degassing container 30 can consequently to the atmosphere via a simple vent valve 132.
  • reference numeral 134 is shown in FIG.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)
  • Vertical, Hearth, Or Arc Furnaces (AREA)
  • Furnace Details (AREA)
  • Feeding, Discharge, Calcimining, Fusing, And Gas-Generation Devices (AREA)
  • Polyurethanes Or Polyureas (AREA)
  • Carbon Steel Or Casting Steel Manufacturing (AREA)
  • Furnace Housings, Linings, Walls, And Ceilings (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

The invention relates to a cooling system for a metallurgical smelting furnace, containing a cooling element (16i; i=1, 2, 3, 4) which is integrated into a wall in the metallurgical smelting furnace and which contains at least one internal cooling refrigerating channel (18i; i=1, 2, 3, 4). A predetermined cool water volume flow (Qi; i=1, 2, 3, 4) passes through said channel, guaranteeing the required cooling performance. The cooling system is embodied in such a way that a static absolute pressure which is less than the atmospheric pressure at the place of installation of the metallurgical smelting furnace is produced in the greater part of the at least one internal cooling channel (18i; i=;1, 2, 3, 4) of said predetermined cooling water flow (Qi; i=1, 2, 3, 4). A preliminarily container (24) for cooling water is arranged at a higher position than the cooling element(s) (16i; i=;1, 2, 3, 4) so that the geodesic superrelevation thereof determines the rest pressure in the cooling circuit.

Description

Die vorliegende Erfindung betrifft ein Kühlsystem für einen metallurgischen Schmelzofen.The present invention relates to a cooling system for a metallurgical Melting furnace.

Stand der TechnikState of the art

Die meistens Kühlsysteme für metallurgische Schmelzöfen, sowohl tiegelförmiger als auch schachtförmiger Bauart, sind heute als geschlossene Kühlwassersysteme ausgebildet. Sie umfassen Kühlelemente die in die Ofenwände integriert sind und mit Kühlkanälen versehen sind. Eine Pumpe pumpt das Kühlwasser durch die Kühlkanäle der Kühlelemente. Eine statische Druckhaltevorrichtung, wie z.B. ein Behälter mit Gaspolster, gewährleistet hierbei, dass an jeder Stelle der Kühlkanäle ein statischer Druck von einigen Bar vorliegt. Nachfolgend werden solche Kühlsysteme als "Druckkreisläufe" bezeichnet. Einerseits, wird durch den Überdruck in den Kühlkanälen die Verdampfungstemperatur des Kühlwassers heraufgesetzt, was sich positiv auf die Sicherheit des Kühlsystems auswirkt, da eine Dampfbildung die Kühlleistung stark herabsetzt und folglich zu einer lokalen Überhitzung eines Kühlelementes führen kann. Andererseits, ist jedoch auch seit langem gewusst, dass der Einsatz solcher Druckkreisläufe in metallurgischen Öfen nicht ohne Risiko ist. Selbst bei einer kleinen Leckage werden relativ große Mengen an Kühlwasser in den Schmelzofen eingeleitet, was zu Schäden an einer Feuerfestauskleidung und unter Umständen sogar zu heftigen Explosionen führen kann, falls sich z.B. Kühlwasser im Schmelzofen ansammelt und anschließend von flüssigem Metall bedeckt wird.Mostly cooling systems for metallurgical melting furnaces, both crucible-shaped as well as shaft-shaped construction, are today as closed Cooling water systems trained. They include cooling elements in the furnace walls are integrated and provided with cooling channels. A pump pumps the cooling water through the cooling channels of the cooling elements. A static pressure maintenance device such as. a container with a gas cushion ensures that there is a static pressure of a few bars at every point of the cooling channels is present. Such cooling systems are referred to below as "pressure circuits". On the one hand, the overpressure in the cooling channels increases the evaporation temperature of the cooling water, which has a positive effect on the Security of the cooling system affects, since a vapor formation the cooling capacity greatly reduced and consequently local overheating of a cooling element can lead. On the other hand, it has long been known that the Use of such pressure circuits in metallurgical furnaces is not without risk. Even with a small leak, relatively large amounts of cooling water introduced into the furnace, causing damage to a refractory lining and may even lead to violent explosions if e.g. Cooling water accumulates in the melting furnace and then liquid metal is covered.

Um diese Risiken auszuschließen, werden auch heute noch an metallurgischen Öfen Berieselungskühlungen eingesetzt, wie sie schon seit mehr als hundert Jahren bekannt sind. Letztere können jedoch nie die gleiche Kühlleistung wie in die Ofenwand integrierte Kühlelemente erbringen und sind zudem äußerst problematisch was ihren Unterhalt anbelangt.To rule out these risks, metallurgical ones are still used today Ovens used sprinkler cooling systems, as they have been used for more than have been known for a hundred years. However, the latter can never have the same cooling capacity how cooling elements integrated into the furnace wall provide and are extremely problematic in terms of their maintenance.

Als "moderne" Alternative für Druckkreisläufe wurden Spritzwasserkühlsysteme entwickelt. Letztere umfassen Kühlkästen die in die Ofenwände integriert sind und in einer inneren Kammer Sprühdüsen aufweisen, die das Kühlwasser auf die dem Ofeninnern zugehrte Innenwand der Kammer sprühen. Hierbei wird der größte Teil des Überdrucks in den Sprühdüsen abgebaut, so dass in den Kühlkästen nur mehr ein geringer Überdruck vorherrscht. Solche Spritzwasserkühlsysteme sind jedoch recht aufwendig herzustellen und beanspruchen zudem viel Platz in der Ofenwand.Splash water cooling systems were used as a "modern" alternative for pressure circuits developed. The latter include cooling boxes in the furnace walls are integrated and have spray nozzles in an inner chamber, which the Spray cooling water on the inside wall of the chamber facing the inside of the oven. The majority of the excess pressure in the spray nozzles is reduced here, so that there is only a slight excess pressure in the coolers. Such Splash water cooling systems are, however, quite complex to manufacture and claim also a lot of space in the furnace wall.

Es ist weiterhin anzumerken, dass manche Teile von metallurgischen Schmelzöfen aus Sicherheitsgründen auch heute noch überhaupt nicht gekühlt werden. Dies ist zum Beispiel der Fall für den Boden eines Lichtbogenofens wie er in Elektrostahlwerken eingesetzt wird.It should also be noted that some parts of metallurgical For safety reasons, melting furnaces are still not cooled at all become. For example, this is the case for the bottom of an arc furnace such as it is used in electrical steel plants.

Es wurde auch bereits vorgeschlagen, im Kühlsystem eines metallurgischen Schmelzofens einen Unterdruck zu erzeugen. Hierdurch soll verhindert werden, dass im Falle einer kleinen Undichtheit des Kühlelements Kühlwasser in den Schmelzofen eindringen kann. Eine solche Lösung ist zum Beispiel bereits 1984 in der US 4,603,423 im Zusammenhang mit der Wandkühlung eines Lichtbogenofens beschrieben worden. Dieses Kühlsystem umfasst eine Speisepumpe, einen Vorratsbehälter für Kühlwasser, ein Druckreduzierventil, parallel geschaltete Kühlelemente, eine Saugpumpe und einen Gasabscheider. Die Speisepumpe pumpt das Kühlwasser aus dem Vorratsbehälter über das Druckreduzierventil in die Kühlelemente, wobei der Druck hinter dem Druckreduzierventil kleiner als der Atmosphärendruck sein soll. Die Saugpumpe soll das Kühlwasser dann durch die Kühlelemente saugen und anschließend über den Gasabscheider zurück in den Vorratsbehälter drücken. Ein ähnliches Unterdruckkühlsystem ist in der JP 09 287733 beschrieben.It has also already been proposed in a metallurgical cooling system To produce a vacuum. This is to prevent that in the event of a small leak in the cooling element cooling water can penetrate into the furnace. One such solution is for example already in 1984 in US 4,603,423 in connection with wall cooling an arc furnace. This cooling system includes one Feed pump, a reservoir for cooling water, a pressure reducing valve, parallel cooling elements, a suction pump and a gas separator. The feed pump pumps the cooling water from the storage tank over the Pressure reducing valve in the cooling elements, the pressure behind the pressure reducing valve should be less than atmospheric pressure. The suction pump should then suck the cooling water through the cooling elements and then over press the gas separator back into the storage container. A similar Vacuum cooling system is described in JP 09 287733.

Dass solche Unterdruckkühlsysteme sich in metallurgischen Schmelzöfen bis jetzt nicht durchsetzen konnten, ist höchstwahrscheinlich dadurch bedingt, dass man ihre Sicherheit anzweifelt. In der Tat können bereits kleine Druckschwankungen zu Überhitzungen in den Kühlelementen führen.That such vacuum cooling systems are found in metallurgical melting furnaces haven't been able to get through until now, most likely because that you question their safety. In fact, small pressure fluctuations can occur lead to overheating in the cooling elements.

Aufgabe der ErfindungObject of the invention

Aufgabe der vorliegenden Erfindung ist es ein zuverlässiges Kühlsystem für einen metallurgischen Schmelzofen vorzuschlagen, das eine größere Sicherheit als bekannte Druckkreisläufe aufweist, eine größere Kühlleistung als eine klassische Berieselungskühlung gewährleistet, den Einsatz von kompakteren und einfacheren Kühlelementen als bekannte Spritzwasserkühlsysteme ermöglicht und sicherer als die bis jetzt vorgeschlagenen Unterdruckkühlsysteme ist. Diese Aufgabe wird durch ein Kühlsystem nach Anspruch 1 gelöst.The object of the present invention is a reliable cooling system to propose for a metallurgical melting furnace, the larger one Security than known pressure circuits has a greater cooling capacity than Classic sprinkler cooling ensures the use of more compact ones and simpler cooling elements than known spray water cooling systems enabled and safer than the vacuum cooling systems proposed so far is. This object is achieved by a cooling system according to claim 1.

Kennzeichnung der ErfindungCharacterization of the invention

Ein erfindungsgemäßes Kühlsystem für einen metallurgischen Schmelzofen umfasst mindestens ein Kühlelement das in eine Ofenwand des metallurgischen Schmelzofens integriert ist. Die Bezeichnung "Ofenwand" umfasst hierbei sowohl die seitlichen Wände des Schmelzofens, als auch den Boden oder Deckel des Schmelzofens. Das mindestens eine Kühlelement weist mindestens einen internen Kühlkanal auf, der von einem vorbestimmten Kühlwasser-Volumenstrom durchströmt wird, welcher die erforderliche Kühlleistung gewährleistet. Das Kühlsystem umfasst zusätzlich mindestens einen Vorratsbehälter für Kühlwasser; und mindestens eine Kühlwasserpumpe die das im Kühlelement erhitzte Kühlwasser absaugt und in den Vorratsbehälter zurückpumpt. Das Kühlsystem ist hierbei hydraulisch derart ausgelegt, dass im größten Teil des mindestens einen internen Kühlkanals bei dem vorbestimmten Kühlwasserstrom ein statischer Druck vorliegt der kleiner als der atmosphärische Druck am Aufstellungsort des metallurgischen Schmelzofens ist. In anderen Worten, in dem mindestens einem Kühlelement besteht kein Überdruck des Kühlwassers gegenüber dem Umgebungsdruck. Dies bedeutet, dass im Falle einer kleinen Undichtheit des Kühlelements kein Kühlwasser in den Schmelzofen eindringen kann. Es wird vielmehr Umgebungsluft, bzw. Ofengas durch die Undichtheit in den internen Kühlkanal des Kühlelements eingesaugt. Bedingt durch das Ansaugen von Ofengas kann eine direkte Leckageüberwachung mittels Gasdetektoren erfolgen. Hierdurch wird die allgemeine Sicherheit für Mensch und Maschine wesentlich verbessert. Durch die Zwangsführung des Kühlwassers durch interne Kühlkanäle der Kühlelemente werden die bekannten Nachteile einer Berieselungskühlung beseitigt. Die für das erfindungsgemäße Kühlsystem benötigten Kühlelemente sind zudem weitaus kompakter und billiger herzustellen als Spritzwasser-Kühlkästen. Es bleibt anzumerken, dass das erfindungsgemäße Kühlsystem für metallurgische Schmelzöfen von sowohl tiegelförmiger, als auch schachtförmiger Bauart geeignet ist. Es ist hierbei möglich nur einen Teil der Ofenkühlung als Unterdrucksystem auszugestalten. So kann z.B. die Ofenkühlung in einem besonders gefährdeten Bereich eines metallurgischen Schmelzofens als erfindungsgemäßes Unterdrucksystem, der übrige Teil des Ofens jedoch als klassisches Überdrucksystem ausgelegt sein. Das erfindungsgemäße Kühlsystem weist zudem einen Vorlaufbehälter für Kühlwasser auf, der oberhalb des mindestens einen Kühlelements angeordnet ist und in dem Atmosphärendruck vorherrscht. Dieser Vorlaufbehälter versorgt das mindestens eine Kühlelement mit Kühlwasser und gibt, durch seine geodätische Überhöhung, den Ruhedruck, bzw. Vordruck, im Kühlkreis vor. Er bildet zudem ein Ausdehnungsgefäß für das Kühlwasser aus. Durch die statische Festlegung des Vordrucks werden gefährliche Druckschwankungen im Kühlsystem weitgehend vermieden. Hierdurch wird die Sicherheit des erfindungsgemäßen Kühlsystems, im Vergleich zu bekannten Unterdruckkühlsystemen, wesentlich verbessert.A cooling system according to the invention for a metallurgical melting furnace comprises at least one cooling element in a furnace wall of the metallurgical Melting furnace is integrated. The term "furnace wall" includes both the side walls of the melting furnace and the floor or the furnace lid. The at least one cooling element has at least one internal cooling channel on a predetermined Cooling water volume flow is flowed through, which the required cooling capacity guaranteed. The cooling system also includes at least one Reservoirs for cooling water; and at least one cooling water pump sucks the cooling water heated in the cooling element and into the reservoir pumps it back. The cooling system is designed hydraulically in such a way that in most of the at least one internal cooling channel at the predetermined Cooling water flow a static pressure is present which is less than the atmospheric Pressure at the location of the metallurgical melting furnace. In in other words, there is no excess pressure in the at least one cooling element of the cooling water compared to the ambient pressure. This means that in the event of a small leak in the cooling element, no cooling water in the Melting furnace can penetrate. Rather, it becomes ambient air or furnace gas sucked into the internal cooling channel of the cooling element due to the leak. Direct leakage monitoring can be caused by the suction of furnace gas by means of gas detectors. This will make general security significantly improved for man and machine. By the forced management of the Cooling water through internal cooling channels of the cooling elements are the known Disadvantages of sprinkler cooling eliminated. The for the invention Cooling elements required are also much more compact and cheaper to produce than splash water coolers. It remains to be noted that the cooling system according to the invention for metallurgical melting furnaces of both crucible-shaped, as well as shaft-shaped design is suitable. It is here possible to design only part of the furnace cooling as a vacuum system. For example, furnace cooling in a particularly vulnerable area metallurgical melting furnace as a vacuum system according to the invention, the remaining part of the furnace, however, be designed as a classic overpressure system. The cooling system according to the invention also has a flow tank for Cooling water arranged above the at least one cooling element is and prevails in the atmospheric pressure. This flow tank supplies the at least one cooling element with cooling water and gives, through its geodetic exaggeration, the idle pressure, or pre-pressure, in the cooling circuit before. He also forms an expansion tank for the cooling water. Through the Static determination of the form will result in dangerous pressure fluctuations largely avoided in the cooling system. This will ensure the security of the cooling system according to the invention, in comparison to known vacuum cooling systems, significantly improved.

Mit einem erfindungsgemäßen Kühlsystem ist es zum Beispiel möglich eine sichere Bodenkühlung für einen metallurgischen Lichtbogenofen zu schaffen. Ein erfindungsgemäßes Kühlsystem kann ebenfalls vorteilhaft als Deckelkühlung eines solchen metallurgischen Lichtbogenofens eingesetzt werden. Am Hochofen eignet sich das erfindungsgemäße Kühlsystem u.a. vorteilhaft für die Bodenkühlung. In all diesen Fällen ist die große Leckagesicherheit des erfindungsgemäßen Kühlsystems von besonderer Bedeutung. With a cooling system according to the invention, it is possible, for example to provide safe floor cooling for a metallurgical arc furnace. A cooling system according to the invention can also advantageously be used as a lid cooling system of such a metallurgical arc furnace. At the The cooling system according to the invention is suitable for a blast furnace, among others. beneficial to the Underfloor cooling. In all of these cases, the great security against leakage is that of the invention Cooling system of particular importance.

Das Kühlsystem ist im Normalfall als geschlossener Kreislauf ausgebildet. Das heißt, es weist eine Rückkühlvorrichtung und mindestens eine Kühlwasserpumpe auf. Letztere saugt das im Kühlelement erhitzte Kühlwasser ab und pumpt es über die mindestens eine Rückkühlvorrichtung in den Vorlaufbehälter zurück. Es ist jedoch ebenfalls möglich, das Kühlsystem als offenen Kühlkreis zu betreiben, das heißt den Vorlaufbehälter mit Frischwasser zu versorgen und den warmen Rücklauf zu abzuführen.The cooling system is normally designed as a closed circuit. This means that it has a recooling device and at least one cooling water pump on. The latter sucks the cooling water heated in the cooling element and pumps it into the flow tank via the at least one recooling device back. However, it is also possible to use the cooling system as an open cooling circuit to operate, that is to supply the flow tank with fresh water and to drain the warm return.

Zwischen Kühlwasserpumpe(n) und Kühlelement(en) ist vorteilhaft ein Entgasungsbehälter angeordnet. Eine Gasspürvorrichtung ermöglicht es Ofengase aufzuspüren, die sich im Entgasungsbehälter aus dem Kühlwasser absondern und die auf eine Undichtheit des Kühlsystems im Ofenbereich hindeuten.Between the cooling water pump (s) and the cooling element (s) is advantageous Degassing container arranged. A gas detection device makes it possible Detect furnace gases that are in the degassing tank from the cooling water separate and that a leak in the cooling system in the furnace area indicate.

In einer bevorzugten Ausgestaltung umfasst dieser Entgasungsbehälter einen Gasraum oberhalb des Kühlwassers und eine Unterdruckpumpe zum Erzeugen eines atmosphärischen Unterdrucks in diesem Gasraum.In a preferred embodiment, this degassing container comprises a gas space above the cooling water and a vacuum pump for Generating an atmospheric negative pressure in this gas space.

In einem erfindungsgemäßen Kühlsystem sind vorteilhaft massive Kühlplatten aus Kupfer oder Gusseisen als Kühlelemente einsetzbar. Rohrpaneele und Rohrschlangen sind in manchen Bereichen eines Schmelzofens jedoch nicht ausgeschlossen und zudem besonders kostengünstig.Solid cooling plates are advantageous in a cooling system according to the invention made of copper or cast iron can be used as cooling elements. tube panels and coils are in some areas of a melting furnace, however not excluded and also particularly inexpensive.

Figurenaufstellungpiece placement

Im folgenden wird nun eine Ausgestaltung der Erfindung anhand der beiliegenden Figuren beschrieben. Es zeigen:

FIG. 1:
ein Schaltschema eines erfindungsgemäßen Kühlsystems;
FIG. 2:
ein schematische Darstellung einer Ausgestaltungsvariante eines Entgasungsbehälters für das Kühlsystems nach FIG. 1.
An embodiment of the invention will now be described with reference to the accompanying figures. Show it:
FIG. 1:
a circuit diagram of a cooling system according to the invention;
FIG. 2:
a schematic representation of an embodiment variant of a degassing container for the cooling system according to FIG. 1.

Beschreibung einer bevorzugten Ausgestaltung der Erfindung anhand der FigurenDescription of a preferred embodiment of the invention using the characters

FIG. 1 zeigt ein stark vereinfachtes Schaltschema eines Kühlsystems für einen metallurgischen Schmelzofen. Mit dem Bezugszeichen 10 ist ein Kühlkreis des Schmelzofens bezeichnet. Dieser Kühlkreis 10 umfasst einen Kühlwasser-Vorlaufkollektor 12 und einen Kühlwasser-Rücklaufkollektor 14. Zwischen Kühlwasser-Vorlaufkollektor 12 und Kühlwasser-Rücklaufkollektor 14 sind mehrere Kühlelemente 16i (i=1, 2, 3, 4) geschaltet. Bei den gezeigten Kühlelementen 16i (i=1, 2, 3, 4) handelt es sich z.B. um massive Kühlplatten aus Kupfer oder Gusseisen mit integrierten Kühlkanälen 18i (i=1, 2, 3, 4) für das Kühlwasser. Diese Kühlplatten 16i (i=1, 2, 3, 4) sind innerhalb eines äußeren Ofenpanzers angebracht und meistens von einer Ofenauskleidung aus einem Feuerfestmaterial bedeckt. Es bleibt anzumerken, dass der Fachmann solche Kühlelemente 16i (i=1, 2, 3, 4) auch noch als sogenannte "Staves" kennt.FIG. 1 shows a greatly simplified circuit diagram of a cooling system for a metallurgical melting furnace. The reference number 10 denotes a cooling circuit of the melting furnace. This cooling circuit 10 comprises a cooling water flow collector 12 and a cooling water return collector 14. Between the cooling water flow collector 12 and the cooling water return collector 14, a plurality of cooling elements 16 i (i = 1, 2, 3, 4) are connected. The cooling elements 16 i (i = 1, 2, 3, 4) shown are, for example, solid cooling plates made of copper or cast iron with integrated cooling channels 18 i (i = 1, 2, 3, 4) for the cooling water. These cooling plates 16 i (i = 1, 2, 3, 4) are mounted inside an outer furnace shell and are mostly covered by a furnace lining made of a refractory material. It should be noted that those skilled in the art also know such cooling elements 16 i (i = 1, 2, 3, 4) as so-called "staves".

Jedes Kühlelement 16i (i=1, 2, 3, 4) weist in seinem Vorlaufanschluss ein Ventil 20i (i=1, 2, 3, 4) und in seinem Rücklaufanschluss ein Ventil 22i (i=1, 2, 3, 4) auf. Diese Ventile 20i und 22i ermöglichen es das entsprechende Kühlelement 16i aus dem Kühlkreis 10 zu isolieren. Mindest eines der beiden Ventile 20i und 22i ist ebenfalls dazu ausgelegt um eine Feinabstimmung der Druckverluste in dem entsprechenden Kühlelement 16i (i=1, 2, 3, 4) zu ermöglichen. In FIG. 1 sind die Kühlelemente 16i (i=1, 2, 3, 4) alle parallel geschaltet. Es ist jedoch nicht ausgeschlossen, dass der Kühlkreis 10 auch in Reihe geschaltete Kühlelemente umfassen kann.Each cooling element 16 i (i = 1, 2, 3, 4) has a valve 20 i (i = 1, 2, 3, 4) in its flow connection and a valve 22 i (i = 1, 2, 3) in its return connection , 4) on. These valves 20 i and 22 i make it possible to isolate the corresponding cooling element 16 i from the cooling circuit 10. At least one of the two valves 20 i and 22 i is also designed to enable fine tuning of the pressure losses in the corresponding cooling element 16 i (i = 1, 2, 3, 4). In FIG. 1, the cooling elements 16 i (i = 1, 2, 3, 4) are all connected in parallel. However, it is not excluded that the cooling circuit 10 can also comprise cooling elements connected in series.

Das Bezugszeichen 24 bezeichnet einen Vorlaufbehälter für Kühlwasser der oberhalb des Kühlwasser-Vorlaufkollektors 12 angeordnet ist. Dieser Vorlaufbehälter 24 steht über eine Entlüftungsleitung 25 mit der Atmosphäre in Verbindung, so dass oberhalb des Kühlwassers im Vorlaufbehälter 24 Atmosphärendruck im vorherrscht. Über eine Vorlaufleitung 26 kann das Kühlwasser aus dem Vorlaufbehälter 24 in den tieferliegenden Kühlwasser-Vorlaufkollektor 12 einströmen. Eine Entleerungsleitung 27 ermöglicht es den Vorlaufbehälter 24 bei Bedarf in einen Abflusskanal 28 zu entleeren. In diese Entleerungsleitung 27 mündet ebenfalls eine Überlaufvorrichtung 29 ein.Reference numeral 24 denotes a supply tank for cooling water which is arranged above the cooling water flow collector 12. This Flow tank 24 is in via a ventilation line 25 with the atmosphere Connection so that 24 atmospheric pressure above the cooling water in the flow tank prevails in the. The cooling water can be supplied via a flow line 26 from the flow tank 24 into the lower lying cooling water flow collector 12 flow in. An emptying line 27 enables the flow tank 24 to drain into a drain channel 28 if necessary. In this drain line 27 also leads to an overflow device 29.

Das Bezugszeichen 30 in FIG. 1 bezeichnet einen geschlossenen Entgasungsbehälter in den das Kühlwasser aus dem Rücklaufkollektor 14 einströmt. An diesen Entgasungsbehälter 30 ist eine Unterdruckpumpe 32 angeschlossen. Letztere erzeugt einen atmosphärischen Unterdruck in einem Gasraum 33 oberhalb des Kühlwassers. Es ist weiterhin hervorzuheben, dass der Entgasungsbehälter 30 durch eine Trennwand 34 in ein Dekantierbecken 36 und ein Absaugbecken 38 unterteilt ist. In das Dekantierbecken 36 strömt das Kühlwasser über eine Rücklaufleitung 40 ein, wobei sich ein Großteil der vom Kühlwasser transportierten Festpartikel im Dekantierbecken 36 absetzt. Da der Kühlwasserspiegel im Entgasungsbehälter 30 leicht höher als die Trennwand 34 ist, strömt das Kühlwasser in das Absaugbecken 38 über und kann hier in eine Saugleitung 42 einströmen. Bei der Unterdruckpumpe 32 kann es sich z.B. um eine mit Druckluft betriebene Strahlpumpe handeln. Das Bezugszeichen 44 bezeichnet eine Druckluftquelle (d.h. einen Druckluftkompressor oder ein Druckluftverteilernetz) an den die Strahlpumpe 32 zwecks Erzeugen eines Saugluftstrahls angeschlossen ist. Dieser Saugluftstrahl saugt einen Unterdruck in dem Entgasungsbehälter 30. Wie weiterhin in FIG. 1 gezeigt, kann der Ausgang der Strahlpumpe 42 mittels einer Abluftleitung 46 an einen Wasserabscheider 48 angeschlossen werden, in dem aus dem Entgasungsbehälter 30 mitgerissenes Kühlwasser aus der Abluft abgeschieden wird. Dieser Wasserabscheider 48 kann z.B. oberhalb des Vorlaufbehälters 24 angeordnet sein, so dass das abgeschiedene Kühlwasser über eine Leitung 50 durch Schwerkraft in den Vorlaufbehälter 24 zurückgeführt werden kann.Reference numeral 30 in FIG. 1 denotes a closed degassing container into which the cooling water flows from the return collector 14. A vacuum pump 32 is connected to this degassing container 30. The latter creates an atmospheric negative pressure in a gas space 33 above the cooling water. It should also be emphasized that the degassing tank 30 through a partition 34 into a decanting basin 36 and a Suction basin 38 is divided. The cooling water flows into the decanting basin 36 via a return line 40, with a large part of the cooling water transported solid particles settled in the decanting basin 36. Because the cooling water level in the degassing container 30 is slightly higher than the partition 34, the cooling water flows into the suction basin 38 and can flow into one Flow in suction line 42. The vacuum pump 32 can e.g. around a jet pump operated with compressed air. Reference numeral 44 denotes a source of compressed air (i.e. an air compressor or a Compressed air distribution network) to which the jet pump 32 for the purpose of generating a Suction air jet is connected. This suction air jet sucks a vacuum in the degassing tank 30. As further shown in FIG. 1, the Output of the jet pump 42 by means of an exhaust air line 46 to a water separator 48 are connected, in which the degassing tank 30 entrained cooling water is separated from the exhaust air. This water separator 48 can e.g. be arranged above the flow container 24, so that the separated cooling water via a line 50 by gravity in the flow tank 24 can be returned.

Die Absaugleitung 42 ist an eine tieferliegende Druckerhöhungsstation 52 angeschlossen, die zum Beispiel zwei parallel geschaltete Pumpen 54 und 56 umfasst, wobei jeweils eine der Pumpen 54, 56 in Betrieb ist und die andere in Reserve ist. Falls die Pumpen 54, 56 Kreiselpumpen sind, muss der vorhandene NPSH-Wert der Anlage natürlich größer als der erforderliche NPSH-Wert der Kreiselpumpen sein. Deshalb müssen die Kreiselpumpen ggf. eine gewisse Höhe unter dem Entgasungsbehälter 30 angeordnet sein. Um einen tiefen Pumpenschacht zu vermeiden, können allerdings auch Pumpen eingesetzt werden die wenig kavitationsanfällig sind.The suction line 42 is at a lower pressure increasing station 52 connected, for example two pumps 54 and 56 connected in parallel comprises, each of the pumps 54, 56 is in operation and the other in Reserve is. If the pumps 54, 56 are centrifugal pumps, the existing one NPSH value of the system is of course greater than the required NPSH value of the Centrifugal pumps. For this reason, the centrifugal pumps may need a certain amount Height below the degassing container 30 may be arranged. To a deep one However, pumps can also be used to avoid the pump shaft will be less prone to cavitation.

Die Pumpen 54, 56 sind also saugseitig über die Absaugleitung 42 mit dem Entgasungsbehälter 30 verbunden. Druckseitig sind sie über eine Druckleitung 58 mit dem Vorlaufbehälter 24 verbunden. In diese Druckleitung 58 ist ein Rückkühler 60 für das Kühlwasser eingebaut. Die Pumpen 54, 56 pumpen folglich das Kühlwasser aus dem Entgasungsbehälter 30 durch den Rückkühler 60 in den Vortaufbehälter 24 zurück. Mit dem Bezugszeichen 62 ist eine Frischwasserleitung bezeichnet, mittels der Wasserverluste kompensiert werden können oder ein Wasseraustausch vorgenommen werden kann.The pumps 54, 56 are therefore also on the suction side via the suction line 42 the degassing tank 30 connected. They are on the pressure side via a pressure line 58 connected to the flow tank 24. In this pressure line 58 is a recooler 60 installed for the cooling water. Pumps 54, 56 pump consequently, the cooling water from the degassing tank 30 through the recooler 60 back into the pre-reservoir 24. With the reference numeral 62 is one Fresh water pipe referred to, by means of which water losses are compensated can be or a water exchange can be made.

Entsprechend einem wichtigen Aspekt der vorliegenden Erfindung ist das Kühlsystem hydraulisch derart ausgelegt, dass im größten Teil der Kühlkanäle 18i bei einem vorbestimmten Kühlwasserstrom ein statischer Druck vorliegt der kleiner als der atmosphärische Druck am Aufstellungsort des metallurgischen Schmelzofen ist. In FIG. 1 bezeichnet Qi (i=1, 2, 3, 4) jeweils den vorbestimmten Kühlwasserstrom der in dem jeweiligen Kühlelement 16i (i=1, 2, 3, 4) erforderlich ist um die gewünschte Wärmemenge bei einer vorgegebenen Vorlauf- und Rücklauftemperatur des Kühlwassers abzuführen. Die Zuleitungen zu den einzelnen Kühlelementen 16i werden derart ausgelegt, dass im Eintritt der Kühlkanäle 18i ein leichter Unterdruck vorliegt. Das Kühlwasser durchquert die Kühlkanäle 18i von oben nach unten. In den Kühlkanälen 18i kann der statische Druck durch lokale und lineare Druckverluste (Verlustenergie), den Kanalquerschnitt (Geschwindigkeitsenergie) und das Gefälle (Positionsenergie) beeinflusst werden. Hierzu ist anzumerken, dass Druckverluste und eine Reduzierung des Kanalquerschnitts eine Erhöhung des Unterdrucks bewirken (d.h. der statische Absolutdruck nimmt ab), ein Gefälle jedoch eine Abnahme des Unterdrucks bewirkt (d.h. der statische Absolutdruck nimmt zu). Um ein langsames Ansteigen des Unterdrucks vom Vorlaufanschluss zum Rücklaufanschluss bei einem gleichbleibenden Kanalquerschnitt zu bewirken, muss z.B. die Verlustenergie leicht schneller ansteigen als die Positionsenergie abnimmt.According to an important aspect of the present invention, the cooling system is designed hydraulically in such a way that in the majority of the cooling channels 18 i, with a predetermined cooling water flow, a static pressure is present which is lower than the atmospheric pressure at the installation site of the metallurgical melting furnace. In FIG. 1 denotes Q i (i = 1, 2, 3, 4) in each case the predetermined cooling water flow which is required in the respective cooling element 16 i (i = 1, 2, 3, 4) by the desired amount of heat at a predetermined flow and return temperature of the cooling water. The supply lines to the individual cooling elements 16 i are designed such that a slight negative pressure is present in the inlet of the cooling channels 18 i . The cooling water crosses the cooling channels 18 i from top to bottom. In the cooling channels 18 i , the static pressure can be influenced by local and linear pressure losses (loss energy), the channel cross section (speed energy) and the gradient (position energy). It should be noted that pressure losses and a reduction in the cross-section of the duct increase the negative pressure (ie the static absolute pressure decreases), but a slope causes the negative pressure to decrease (ie the static absolute pressure increases). In order to cause a slow rise in the vacuum from the flow connection to the return connection with a constant duct cross-section, the energy loss must increase slightly faster than the position energy decreases.

Eine sehr genaue Berechnung des vorhandenen statistischen Druckes an jeder Stelle des Kühlkreises 10 ist unbedingt notwendig um das Kavitationsproblem in den Griff zu bekommen. Mit modernen Computerprogrammen für die Berechnung von Strömungen in Rohrleitungen ist dies für den Fachmann jedoch kein Problem. Um eine ausreichende Sicherheit gegen Kavitation in den Kühlkanälen zu erreichen, soll der statische Absolutdruck an keiner Stelle des Kühlkreises 10 kleiner als kPD sein, wobei k ein Sicherheitsfaktor größer als 1 ist, und PD der Verdampfungsdruck des Kühlwassers bei maximaler Kühlwassertemperatur ist. So kann man z.B. davon ausgehen, dass bei einer maximalen Rücklauftemperatur des Kühlwassers von 40°C, der statische Absolutdruck an keiner Stelle des Kühlkreises tiefer als 0.4 bar sein soll.A very precise calculation of the existing statistical pressure at every point of the cooling circuit 10 is absolutely necessary in order to get the cavitation problem under control. With modern computer programs for the calculation of flows in pipelines, however, this is no problem for the person skilled in the art. In order to achieve sufficient security against cavitation in the cooling channels, the static absolute pressure should not be lower than kP D at any point in the cooling circuit 10, where k is a safety factor greater than 1 and P D is the evaporation pressure of the cooling water at the maximum cooling water temperature. For example, one can assume that at a maximum return temperature of the cooling water of 40 ° C, the static absolute pressure should not be lower than 0.4 bar at any point in the cooling circuit.

Der Unterdruck in den Kühlelementen 16i (i=1, 2, 3, 4) gewährleistet, dass bei einer kleinen Undichtheit im Kühlkreis 10 kein Kühlwasser in den Schmelzofen austritt. Es werden vielmehr Luft oder Ofengase durch die Undichtheit in den Kühlkreis 10 eingesaugt. Mit dem Bezugszeichen 70 ist in FIG. 1 ein Gasdetektor bezeichnet, der auf Ofengase anspricht, die sich im Falle einer Undichtheit im Kühlkreis 10 in dem Gasraum 33 des Entgasungsbehälters 30 sammeln. Über diesen Gasdetektor 70 erhält der Ofenbetreiber relativ rasch eine zuverlässige Angabe, dass sich eine Undichtheit im Kühlkreis 10 gebildet hat.The negative pressure in the cooling elements 16 i (i = 1, 2, 3, 4) ensures that if there is a small leak in the cooling circuit 10, no cooling water will escape into the melting furnace. Rather, air or furnace gases are sucked into the cooling circuit 10 through the leak. The reference number 70 in FIG. 1 denotes a gas detector which responds to furnace gases which collect in the gas circuit 33 of the degassing container 30 in the event of a leak in the cooling circuit 10. Via this gas detector 70, the furnace operator receives reliable information relatively quickly that a leak has formed in the cooling circuit 10.

Falls der Entgasungsbehälter 30 wesentlich tiefer als der Rücklaufkollektor 14 angeordnet werden kann, kann gegebenenfalls auf die Unterdruckpumpe 32 verzichtet werden. Fig. 2 zeigt einen solchen Entgasungsbehälter 130. Er ist eine gewisse geodätische Höhe H unter dem Rücklaufkollektor 14 angeordnet und mit diesem über eine Rücklaufleitung 40 mit geringen Druckverlusten verbunden, so dass der statische Absolutdruck des Kühlwassers in der Rücklaufleitung 40 stark ansteigt und im Rücklaufkollektor 14 leicht größer als der Atmosphärendruck ist. Die Entgasung des Entgasungsbehälters 30 kann folglich über ein einfaches Entlüftungsventil 132 zur Atmosphäre erfolgen. Mit dem Bezugszeichen 134 ist in FIG. 2 ein Gasdetektor bezeichnet, der auf Ofengase anspricht, die sich im Falle einer Undichtheit im Kühlkreis 10 vor dem Entlüftungsventil 132 des Entgasungsbehälters 130 sammeln, bis das Entlüftungsventil öffnet. Auch über diesen Gasdetektor 132 erhält der Ofenbetreiber relativ rasch eine zuverlässige Angabe, dass sich eine Undichtheit im Kühlkreis 10 gebildet hat.If the degassing tank 30 is significantly lower than the return collector 14 can be arranged, optionally on the vacuum pump 32 to be dispensed with. Fig. 2 shows such a degassing tank 130. It is a certain geodetic height H is arranged under the return collector 14 and with this via a return line 40 with low pressure losses connected so that the static absolute pressure of the cooling water in the return line 40 rises sharply and in the return collector 14 slightly larger than that Atmospheric pressure. The degassing of the degassing container 30 can consequently to the atmosphere via a simple vent valve 132. With reference numeral 134 is shown in FIG. 2 denotes a gas detector based on Furnace gases that respond in the event of a leak in the cooling circuit 10 before Collect vent valve 132 of degassing container 130 until the vent valve opens. The furnace operator also receives this gas detector 132 Relatively quickly a reliable indication that there is a leak in the cooling circuit 10 has formed.

Claims (7)

  1. Cooling system for a metallurgical melting furnace comprising:
    at least one cooling element (16i; i = 1, 2, 3, 4), which is integrated in a furnace wall of the metallurgical melting furnace and has at least one internal cooling duct (18i; i = 1, 2, 3, 4), through which passes a predetermined volumetric cooling water flow (Qi; i = 1, 2, 3, 4), which ensures the required cooling capacity;
    at least one storage tank for cooling water; and
    at least one cooling water pump (54, 56) which sucks up the cooling water which has been heated in the cooling element (16i; i = 1, 2, 3, 4) and pumps it back into the storage tank;
    the cooling system being hydraulically designed in such a way that a static absolute pressure, which is smaller than the atmospheric pressure at the place of installation of the metallurgical melting furnace, prevails in the largest part of the at least one internal cooling duct (18i; i = 1, 2, 3, 4) with the predetermined cooling water flow (Qi; i = 1, 2, 3, 4);
    characterized in that
    the storage tank for the cooling water is formed by a feed tank (24) for cooling water, which is arranged above the at least one cooling element (16i; i = 1, 2, 3, 4).
  2. Cooling system as claimed in claim 1, characterized by
    a recooling system (60) which is arranged hydraulically between the at least one cooling water pump (54, 56) and the feed tank (24).
  3. Cooling system as claimed in claim 1 or 2, characterized by
    a degassing tank (30, 130) arranged hydraulically between the cooling water pump (54, 56) and the at least one cooling element (16i; i = 1, 2, 3, 4); and
    a gas detection device (70, 134) for detection of furnace gases which are separated from the cooling water in the degassing tank (30, 130).
  4. Cooling system as claimed in claim 3, characterized by
    a gas space (33) above the cooling water in the degassing tank (30); and
    a vacuum pump (32) for generation of an atmospheric vacuum in the gas space (33) above the cooling water.
  5. Cooling system as claimed in one of claims 1 to 4, characterized in that the at least one cooling element (16i, i = 1, 2, 3, 4) is a solid cooling plate made from copper or cast iron.
  6. Metallurgical melting furnace comprising at least one cooling system as claimed in one of the preceding claims.
  7. Metallurgical melting furnace as claimed in claim 6, wherein at least one cooling system is formed according to any of the preceding claims as bottom cooling of the melting furnace.
EP01270626A 2000-12-11 2001-12-11 Cooling system for a metallurgical smelting furnace Expired - Lifetime EP1346067B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
LU90693 2000-12-11
LU90693A LU90693B1 (en) 2000-12-11 2000-12-11 Kuehlsystem fuer einen metallurgischen Schmelzofen
PCT/EP2001/014540 WO2002048406A1 (en) 2000-12-11 2001-12-11 Cooling system for a metallurgical smelting furnace

Publications (2)

Publication Number Publication Date
EP1346067A1 EP1346067A1 (en) 2003-09-24
EP1346067B1 true EP1346067B1 (en) 2004-11-24

Family

ID=19731955

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01270626A Expired - Lifetime EP1346067B1 (en) 2000-12-11 2001-12-11 Cooling system for a metallurgical smelting furnace

Country Status (7)

Country Link
EP (1) EP1346067B1 (en)
CN (1) CN1201020C (en)
AT (1) ATE283375T1 (en)
AU (1) AU2002216099A1 (en)
DE (1) DE50104637D1 (en)
LU (1) LU90693B1 (en)
WO (1) WO2002048406A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104928446A (en) * 2014-03-19 2015-09-23 宝山钢铁股份有限公司 Furnace door multipath water supply device

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008010837A2 (en) * 2005-12-15 2008-01-24 The Regents Of The University Of California Noncompetitive immunoassays to detect small molecules
FI120850B (en) * 2008-02-11 2010-03-31 Outotec Oyj Method and arrangement for measuring at least one physical quantity, such as temperature, flow, or pressure, of a cooling fluid flowing in a single cycle of a cooling element of a metallurgical furnace
UA102519C2 (en) * 2009-12-29 2013-07-25 Государственное Предприятие "Украинский Научно-Технический Центр Металлурческой Промышленности "Энергосталь" COOLING system OF METALLURGICAL UNIT
UA102226C2 (en) * 2009-12-29 2013-06-25 Государственное Предприятие "Украинский Научно-Технический Центр Металлургической Промышленности "Энергосталь" COOLING UNIT for steel assembly
UA102520C2 (en) * 2009-12-29 2013-07-25 Украинский Государственный Научно-Технический Центр Технологии И Оборудования, Обработки Металлов, Защиты Окружающей Среды И Использования Вторичных Ресурсов Для Металлургии И Машиностроения "Энергосталь" COOLING system OF METALLURGICAL UNIT
RU2487947C1 (en) * 2011-11-25 2013-07-20 Общество С Ограниченной Ответственностью "Медногорский Медно-Серный Комбинат" Method of cooling metallurgical furnace assemblies and device to this end
CN105716429B (en) * 2016-03-21 2017-12-22 中国恩菲工程技术有限公司 Cooling system
CN107764046B (en) * 2016-08-19 2019-07-16 郑州东方安彩耐火材料有限公司 The cooling production method of refractory material of electric-arc furnace safety
CN107869916A (en) * 2017-12-27 2018-04-03 洛阳明创矿山冶金设备有限公司 A kind of device for being easy to metallurgical equipment to cool
LU500112B1 (en) * 2021-04-30 2022-10-31 Wurth Paul Sa Cooling system of a metallurgical furnace
WO2023278390A1 (en) * 2021-06-28 2023-01-05 Safe Flow, Llc. Emergency cooling-water vacuum system and method
CN115627310A (en) * 2022-11-09 2023-01-20 重庆钢铁股份有限公司 Cooling device and method for responding to local temperature rise of side wall of blast furnace hearth

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3966179A (en) * 1974-07-18 1976-06-29 Sergei Mikhailovich Andoniev Apparatus for evaporative cooling of metallurgical plants
JPS579808A (en) * 1980-06-17 1982-01-19 Nisshin Steel Co Ltd Method and device for cooling furnace body with stave cooler
EP0123168B1 (en) * 1983-04-12 1987-03-18 BBC Aktiengesellschaft Brown, Boveri & Cie. Process and device for furnace cooling
SU1749233A1 (en) * 1990-09-12 1992-07-23 Липецкий Филиал Государственного Союзного Института По Проектированию Металлургических Заводов Emergency water supply system of blast furnace
JP3702033B2 (en) * 1996-04-19 2005-10-05 新日本製鐵株式会社 Cooling structure of furnace body in melting furnace

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104928446A (en) * 2014-03-19 2015-09-23 宝山钢铁股份有限公司 Furnace door multipath water supply device

Also Published As

Publication number Publication date
ATE283375T1 (en) 2004-12-15
LU90693B1 (en) 2002-06-12
CN1479791A (en) 2004-03-03
DE50104637D1 (en) 2004-12-30
WO2002048406A1 (en) 2002-06-20
EP1346067A1 (en) 2003-09-24
AU2002216099A1 (en) 2002-06-24
CN1201020C (en) 2005-05-11

Similar Documents

Publication Publication Date Title
EP1346067B1 (en) Cooling system for a metallurgical smelting furnace
DE60308234T2 (en) Lubrication system and method of modification
DE69819688T2 (en) METHOD AND DEVICE FOR COOLING AN ELECTRONIC DATA PROCESSING SYSTEM AND USE
DE102011050956B4 (en) cooling device
EP3956619B1 (en) Heat exchanger arrangement having at least one multipass heat exchanger
DE602004006719T2 (en) COOLING SYSTEM
DE29509930U1 (en) Cooler for cooling electrical and electronic components and batteries in a control cabinet
EP3988881B1 (en) Method for operating a heat transfer assembly
DE102005036861A1 (en) Device for providing a cooled or heated liquid
EP2497142B1 (en) Fuel cell arrangement within enclosure
DE2105623A1 (en) Method for cooling a shut-off valve through which a hot and corrosive gas flows
DE69810901T2 (en) DEVICE IN A LUBRICANT CIRCUIT SYSTEM
EP4174426A1 (en) Device for cooling liquids
DE2622290A1 (en) EXHAUST GAS COOLING DEVICE FOR A COMBUSTION MACHINE
DE3405800A1 (en) METHOD FOR OPERATING A GENERATOR ABSORPTION HEAT PUMP HEATING PLANT FOR SPACE HEATING, HOT WATER HEATING AND THE LIKE AND GENERATOR ABSORPTION HEAT PUMP HEATING SYSTEM
EP0123168A1 (en) Process and device for furnace cooling
EP0338343A2 (en) Cooling rack for electrical cabinets
DE1278085B (en) Heinz and / or cooling devices
EP0381800B1 (en) Dry-cooling tower using natural draft
EP1063401A1 (en) Apparatus and method for separating gas from liquid
DE3225182C2 (en)
DE2417163B2 (en) Condenser for steam-to-water condensation
DE102016201723A1 (en) Sidecooler with a heat exchanger for placement next to a cabinet for electronic components
DE2347175A1 (en) AIR HEATER
DE2638983A1 (en) Direct-contact water cooling tower - using sump water level to control water purge rate and maintain concn.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20030507

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RBV Designated contracting states (corrected)

Designated state(s): AT DE GB IT NL

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT DE GB IT NL

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 50104637

Country of ref document: DE

Date of ref document: 20041230

Kind code of ref document: P

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20050111

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20050825

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051211

PGRI Patent reinstated in contracting state [announced from national office to epo]

Ref country code: IT

Effective date: 20091201

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20131015

Year of fee payment: 13

Ref country code: AT

Payment date: 20131018

Year of fee payment: 13

Ref country code: DE

Payment date: 20131015

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20131218

Year of fee payment: 13

Ref country code: NL

Payment date: 20131017

Year of fee payment: 13

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50104637

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: V1

Effective date: 20150701

REG Reference to a national code

Ref country code: NL

Ref legal event code: V1

Effective date: 20150701

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 283375

Country of ref document: AT

Kind code of ref document: T

Effective date: 20141211

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20141211

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150701

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141211

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141211

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141211