EP1344001B1 - Method and device for operating a multiple component technical system, particularly a combustion system for producing electrical energy - Google Patents

Method and device for operating a multiple component technical system, particularly a combustion system for producing electrical energy Download PDF

Info

Publication number
EP1344001B1
EP1344001B1 EP01272002A EP01272002A EP1344001B1 EP 1344001 B1 EP1344001 B1 EP 1344001B1 EP 01272002 A EP01272002 A EP 01272002A EP 01272002 A EP01272002 A EP 01272002A EP 1344001 B1 EP1344001 B1 EP 1344001B1
Authority
EP
European Patent Office
Prior art keywords
components
burners
component
value
burner
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP01272002A
Other languages
German (de)
French (fr)
Other versions
EP1344001A1 (en
Inventor
Stefan Schlicker
Roland Schreiber
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to EP01272002A priority Critical patent/EP1344001B1/en
Publication of EP1344001A1 publication Critical patent/EP1344001A1/en
Application granted granted Critical
Publication of EP1344001B1 publication Critical patent/EP1344001B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N1/00Regulating fuel supply
    • F23N1/002Regulating fuel supply using electronic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2223/00Signal processing; Details thereof
    • F23N2223/08Microprocessor; Microcomputer
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2237/00Controlling
    • F23N2237/02Controlling two or more burners
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/24Preventing development of abnormal or undesired conditions, i.e. safety arrangements

Definitions

  • the invention relates to a method for operating a technical system, which comprises a plurality of components. It further relates to a device for operating such a system.
  • the technical system is a combustion system for generating electrical energy.
  • Technical installations usually comprise several components, which are e.g. either each realize a special function of the technical system or which jointly fulfill a specific function.
  • An example of a technical installation in which components with different functions cooperate is e.g. a power plant for generating electrical energy.
  • a power plant for generating electrical energy.
  • the interaction of numerous components, each with a different task, is necessary:
  • a control program would then have to include associated control instructions for each of these possible operating states to start the desired operating state.
  • the recording of all possible operating states of a technical installation in a control program is often not possible in advance, so that in some cases the operating personnel of the technical installation must manually take over the operation of the components of the technical installation.
  • An example of such a technical system is an incinerator for generating electrical energy, which comprises a plurality of burners arranged in a combustion chamber.
  • the use of the burner should be done in such a way that the supplied fuel is used as efficiently as possible in order to generate a required amount of electrical energy and to operate the system economically.
  • a gentle operation of such a system is desirable, which can be achieved for example by a uniform fire distribution in the combustion chamber.
  • linkage and step controls are in use in many power plants, in which corresponding control commands are provided only for a subset of all possible operating states. Due to this deliberate restriction to defined operating cases, however, such control is not very flexible and human intervention is still necessary for all those operating cases for which no control commands are provided in the controls.
  • the problem of uniform fire distribution in one Solutions are also conceivable in the combustion chamber of an incinerator, in which additional measuring devices are provided, for example for measuring the temperature profile in the combustion chamber, in order then to evaluate these measurements and thus control the use of the burners.
  • a disadvantage is that additional facilities, such as. the aforementioned measuring devices for determining the temperature profile, are necessary. Furthermore, these additional measurements must be evaluated in order to derive control commands for the use of the burner. The additional effort is often considerable. In addition, the technical system by the addition of additional measuring devices imposed sources of interference, which can lead to a standstill of the technical system in case of non-function.
  • a multiple burner AD comprehensive system in which a counter detects the number of on and off operations of each burner.
  • a comparator compares the usage frequencies of the individual burners and assigns the logical number 1 to the burners with the lowest number of uses, while assigning the logical number 0 to the other burners.
  • the burners with the lowest number of actuations are selectively controlled by a logic circuit. The preference given to the burners with the lowest number of actuators in this situation altogether prevents concentrated use of special burners.
  • the invention is therefore based on the object, a method and an apparatus for operating a multi-component system, in particular a combustion system for generating electrical energy, indicate that overcome the disadvantages mentioned and allow the most economical operation of the technical system.
  • An important aspect of this method according to the invention is that the operating state of the components of a technical system by a number of value numbers, each a component are assigned is described.
  • the value numbers can be, for example, decimal numbers.
  • a change in the operating state of the technical system by going into or out of service components results in a change in at least one value of at least one component of the technical system.
  • the totality of the value numbers of all components at a particular operating time thus describes the current operating state of the technical system.
  • the accumulated numerical values of each component express a priority with which the respective components are next to be switched on or off in order to arrive at a desired operating state.
  • the method according to the invention is therefore a method in which the operating state of a technical system and operating state changes are expressed by a number of numbers, for example decimals, which are further processed (summation) in order to determine the next operating state of the technical system.
  • a number of numbers for example decimals
  • the components are of the same kind.
  • the evaluation of at least one other component with a value number in the case of operating state changes is particularly simple, since the values of the value numbers with which the relevant components are evaluated do not depend on the function of a component Have to be component per se, but only on the role of the component in question, which plays this in a particular operating condition of the technical system in view of a desired economic operation of the system.
  • This development means that less effort has to be expended in establishing the values of the value numbers with which the evaluation of other components takes place, since no special features by means of which the components could differ from one another must be taken into account.
  • a uniform, in particular symmetrical, spatial distribution of components in operation is achieved by the connection or disconnection of components.
  • the components of the technical equipment are e.g. are actuators, which exercise, for example, on a raw material to be processed, on a positioning or conveyors or the like forces, so is a uniform spatial distribution of those actuators who exercise in a particular operating state just a force, advantageous because the burden of the substance in question or the institution concerned is cheaper compared to a non-uniform burden, in which it eg due to internal stresses caused by force gradients, can lead to undesirable deformations, fractures or even destruction.
  • actuators which exercise, for example, on a raw material to be processed, on a positioning or conveyors or the like forces
  • the technical installation is an incineration plant with a number of burners, which are arranged, for example, along the inner wall of a combustion chamber, a spatial distribution of burners in operation is particularly advantageous since a homogeneous temperature profile is thereby achieved in the combustion chamber and the supplied fuel is thus used very efficiently and The system is operated economically and gently.
  • those components which are each arranged at practically the same spatial distance from the going into or out of service component, evaluated with the same value number.
  • said evaluation is particularly advantageous, for example, when force is exerted on a raw material, a product or a device by the components of a plant, since a uniform force minimizes the endangerment of the raw material, the product or the device.
  • a uniform force minimizes the endangerment of the raw material, the product or the device.
  • such an evaluation in the aforementioned incinerator with a number of burners arranged in a combustion chamber is advantageous since a uniform distribution of burners in operation is also desired in view of a uniform temperature profile in the combustion chamber and can be easily achieved in this way.
  • the components are of the same kind.
  • those components which are each arranged at the same spatial distance from the in-or out-of-service component, evaluated with the same value number.
  • FIG. 1 shows a device 9 for operating a technical system 10, the latter comprising components 1, 2, 3,... 8, which are designed as burners and arranged in a combustion chamber 15.
  • the device 9 comprises a computing unit 20, which is connected via command lines 22 and sensor lines 24 to the burners 1, 2, 3, ... 8.
  • the arithmetic unit 20 receives from the burners 1, 2, 3,... 8 respectively their operating state values S1, S2, S3,... S8 via the sensor lines. These operating status values contain, for example, information as to whether the particular burner is currently switched on or off. In the arithmetic unit 20, the operating state values S1, S2, S3,... S8 are evaluated in order to determine, in particular, whether one or more burners are in or out of operation. If this is the case, at least one other burner is evaluated in the arithmetic unit 20 with a value number.
  • Each operating state change as a result of in or out of operation going of burners 1, 2, 3, ... 8 thus triggers a rating, so that each burner operating time of the technical system is evaluated with a number of value numbers, which in the arithmetic unit 20 get saved.
  • the arithmetic unit 20 contains a summation unit ⁇ , which in each case sums up for each burner its currently assigned value numbers.
  • the summed value numbers of each burner 1, 2, 3,... 8 describe for each burner a respective priority with which a particular burner is to be connected or disconnected next.
  • the arithmetic unit 20 further determines from these priorities commands Z1, Z2, Z3,... Z8, which are output to the burners 1, 2, 3,..., 8. These commands may be, for example, on or off commands to the individual burners to ensure ongoing economic operation of the technical system 10.
  • FIG. 2 shows, by way of example, for the case in which burners 1 and 2 of the incinerator according to FIG. 1 have been connected, the evaluation of other burners triggered thereby.
  • the arithmetic unit 20 receives from the burners 1 and 2 respectively their operating state values S1 and S2, which in the present case carry at least the information that the relevant burner 1 or 2 has been switched on.
  • the operating state values S1 and S2 are switched to signal preprocessing stages VV1 and VV2 of the arithmetic unit 20.
  • the signal preprocessing stages take the previously mentioned information from the operating state values S1 and S2, respectively, and allocate one operating state number, for example the constant value 1, to the operating state burner 1 and 2 which is available by way of example.
  • each burner is switched to multipliers 30 assigned to the respective burner.
  • these multipliers each receive at least one value number WZ1, WZ2 or WZ3.
  • WZ1, WZ2 and WZ3 may e.g. correspond to the constant values 6, 3 and 1, respectively.
  • the switched burner 1 triggers an evaluation of the other burners 2, 8, 3, 7, 4 and 6; the switched burner 2 triggers an evaluation of the other burners 1, 3, 4, 8, 5 and 7.
  • the evaluation by the switched-on burner 1 takes place in the present exemplary embodiment in that the summators ⁇ 2, ⁇ 8, ⁇ 3, ⁇ 7, ⁇ 4 or ⁇ 6 associated with the other burners 2, 8, 3, 7, 4 and 6 receive the output signals of the multipliers 30 as in FIG of FIG 2 is obtained as input signals.
  • Each of the adders ⁇ 1, ⁇ 2, ⁇ 3, ... ⁇ 8 sums its associated input signals and transfers the respective summation value to downstream signal post-processing stages NV1, NV2, NV3, ... NV8.
  • the signal post-processing stages e.g. a post-processing of the output signal of the respective summer ⁇ 1, ⁇ 2, ⁇ 3, ... ⁇ 8 are carried out by e.g. the output of the summer preceding the respective signal post-processing stage is only switched through to a processing unit 35 connected downstream of the signal processing stages if the burner associated with the respective signal post-processing stage or the respective summer is not in operation; if the respective burner is already in operation, the signal post-processing stage in question may e.g.
  • a value other than current evaluation 40 is transferred to the processing unit. Rather, this value can be chosen such that the processing unit 35 recognizes burners already in operation and thus prevents them from receiving a (useless) turn-on command as command Z1, Z2, Z3,... Z8.
  • the main task of the processing unit 35 is to determine from the output signals of the signal post-processing stages NV1, NV2, NV3, ... NV8 those burners which are next to be switched on or off by means of the commands Z1, Z2, Z3,... Z8 , Whether the respective command Z1, Z2, Z3,... Z8 is an ON or OFF command depends on which next operating state, starting from the current operating state of the technical system, is to be achieved in order, for example, to achieve economic operation of the system. If the plant is to be brought from an actual operating state to an operating state which requires a higher firing capacity, the processing unit 35 determines turn-on commands as commands Z1, Z2, Z3,... Z8 for the burners in order to permit economic operation of the plant reach, for example, by those burners are switched, which in conjunction with the already connected burners ensure a homogeneous temperature profile in the combustion chamber 15.
  • the processing unit determines 35 shutdown commands as commands Z1, Z2, Z3,... Z8 for the burners, so that burners in operation are specifically switched off in such a way that that the remaining in-use burners ensure economic operation of the technical system, for example by producing a homogeneous temperature profile in the combustion chamber.
  • the processing unit 35 is therefore capable of selectively generating shutdown commands as commands Z1, Z2, Z3... Z8 depending on the requirement for a next operating state.
  • the burners 1 and 2 should have been switched on. This is reported by means of the operating state values S1 and S2 to the signal preprocessing stages VV1 and VV2.
  • the signal preprocessing stage VV1 generates the value one from the operating state value S1 of the burner 1 and switches this according to FIG. 2 to three of the multipliers 30.
  • the multiplier 30a serves to evaluate the two burners 2 and 8 adjacent to the burner 1, the multipliers 30b and 30c, respectively Evaluation of the burners 3 and 7 or 4 and 6.
  • the burner 5 is not rated by the burner 1 or with the value zero.
  • the values supplied to these three multipliers 30a, 30b, 30c as multipliers WZ1, WZ2, WZ3 are the constant values six, three and one, respectively.
  • multiplier 30b provides the value of three, which is applied to summers ⁇ 3 (which is associated with the third burner) and ⁇ 7 (which is associated with the seventh burner).
  • the output of the third multiplier 30c provides the value one, which is switched to the summer ⁇ 4 (which is associated with the fourth burner) and to the summer ⁇ 6 (which is associated with the sixth burner).
  • the evaluation of the other burners triggered by the burner 2 should take place so that the value Six is applied to the summators ⁇ 1 and ⁇ 3, the value Three to the summers ⁇ 4 and ⁇ 8 and the value one to the summers ⁇ 5 and ⁇ 7.
  • the summators ⁇ 1, ⁇ 2, ⁇ 3, ⁇ 4, ⁇ 5, ⁇ 6, ⁇ 7 and ⁇ 8 determine by summing the values six, six, nine, four, one, one, four and nine, respectively. These values are applied to the corresponding subsequent signal post-processing stages NV1, NV2, NV3, ... NV8.
  • the signal preprocessing stages VV1 and VV2 do not switch the outputs of the summators ⁇ 1 and ⁇ 2 to the processing unit 35, but e.g. the constant value thousand; the outputs of the remaining summers ⁇ 3, ⁇ 4, ⁇ 5,... ⁇ 8 are switched to the processing unit 35 unchanged by the subsequent signal post-processing stages NV3, NV4, NV5,... NV8.
  • the processing unit 35 thus has eight input signals available to determine the burner to be connected in the next step.
  • the processing unit 35 can now determine the burner to be switched on in the next step by determining the one or more minimum values of its input values and, in the next step, connecting the respective burners associated with these minima; In the following example, this would mean that the burners 5 and 6 are switched on in the next step. After switching on burner 5 and 6, the burners 1, 2, 5 and 6 are in operation.
  • FIG. 1 shows that uniform combustion of the combustion chamber 15 is ensured by the described connection of the burners 5 and 6 to the already operating burners 1 and 2, since in the spatial burner arrangement according to FIG. 1 in this way with respect to the center the combustion chamber 15 opposite burner pairs are operated, resulting in a uniform firing of the combustion chamber 15 and thus to an economic operation of the technical system.
  • the principle of the evaluation shown in FIG. 2 can be easily generalized: one chooses a particular burner as a reference burner and defines a first one for this purpose second and a third neighbor burner couple.
  • the first adjacent burner pair thus defined is the burner pair formed by the burners 2 and 4
  • the second burner pair is the burner pair formed by the burners 5 and 1
  • the third neighboring burner pair is the burner pair formed by the burners 6 and 8.
  • the burner 3 goes into operation, it triggers, for example, an evaluation of the burners 2 and 4 with the value six, a rating of the burners 5 and 1 with the value three and an evaluation of the burners 6 and 8 with the value one. If another burner now goes into operation, it is selected as a reference burner and forms in an analogous manner another first, another second and another third neighbor burner pair.
  • FIG. 3 shows an exemplary embodiment of the processing unit 35 from FIG.
  • the current valuations 40 are switched to a selection module AB of the processing unit 35;
  • an auxiliary value may also be applied, which is used, for example, by the selection module AB to determine burners to be switched on or off even if the evaluation of the current evaluations 40 is carried out, for example. as a result of a fault is not possible.
  • the current evaluations 40 are given in parallel to their connection to the selection module AB in each case as a threshold height 44 to a respective threshold value block SB.
  • the selection module AB can now be configured, for example, as a minimum value block, which selects the minimum from the current evaluations 40 and outputs this as its output signal to the adder 42 as an input signal.
  • the summer 42 combines the output of the selection module AB with a constant K to a sum, which is simultaneously switched to the inputs of all threshold blocks SB. Since the too Threshold levels 44 associated with the respective threshold value blocks differ in their values, the input signal is the same for all threshold value blocks SB, only those threshold value blocks deliver an output signal not equal to zero as commands Z1, Z2, Z3,... Z8, where the value raised by the constant K increases Input signal exceeds the value of the respectively associated threshold level.
  • the selection module AB as a minimum value module can be used particularly advantageously in the determination of zuzuchaden components of the technical system.
  • the selection module AB is preferably designed as a maximum value component. This ensures that, if the evaluation is carried out in a manner similar to that described in FIG. 2, those components are determined as components to be switched off in the next step, which have the greatest value as current evaluations 40.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Regulation And Control Of Combustion (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

The method of operating a furnace for an electric power station involves free running of each component (1-8) and giving each component a value number (WZ1-3). The values of the individual components are summed. From the summed values, the connection or disconnection of each component is determined. An Independent claim is also included for a control circuit for carrying out the method.

Description

Die Erfindung betrifft ein Verfahren zum Betrieb einer technischen Anlage, welche mehrere Komponenten umfasst. Sie betrifft ferner eine Vorrichtung zum Betrieb einer derartigen Anlage. Bevorzugt ist die technische Anlage eine Verbrennungsanlage zum Erzeugen elektrischer Energie.The invention relates to a method for operating a technical system, which comprises a plurality of components. It further relates to a device for operating such a system. Preferably, the technical system is a combustion system for generating electrical energy.

Technische Anlagen umfassen in der Regel mehrere Komponenten, welche z.B. entweder jeweils eine spezielle Funktion der technischen Anlage realisieren oder welche gemeinschaftlich eine bestimmte Funktion erfüllen.Technical installations usually comprise several components, which are e.g. either each realize a special function of the technical system or which jointly fulfill a specific function.

Ein Beispiel für eine technische Anlage, bei der Komponenten mit unterschiedlichen Funktionen zusammenwirken, ist z.B. ein Kraftwerk zum Erzeugen von elektrischer Energie. Um in einer derartigen technischen Anlage elektrische Energie erzeugen zu können, ist das Zusammenspiel zahlreicher Komponenten mit jeweils unterschiedlicher Aufgabe notwendig:An example of a technical installation in which components with different functions cooperate is e.g. a power plant for generating electrical energy. In order to be able to generate electrical energy in such a technical system, the interaction of numerous components, each with a different task, is necessary:

Als wichtigste Komponenten seien hier z.B. die Turbinen, die Generatoren, die Schutzsysteme und das Leitsystem genannt. Ein effizienter Betrieb einer derartigen technischen Anlage ist nur möglich, wenn der Einsatz der genannten Komponenten aufeinander abgestimmt ist.As most important components here are e.g. called the turbines, the generators, the protection systems and the control system. An efficient operation of such a technical system is only possible if the use of said components is coordinated.

In modernen technischen Anlagen wird das genannte Zusammenspiel der Komponenten der technischen Anlage üblicherweise durch ein computergestütztes Leitsystem koordiniert und überwacht. Der Automatisierungsgrad ist dabei oftmals sehr hoch, so dass menschliche Eingriffe in den Betrieb der technischen Anlage nur noch dann notwendig sind, wenn die automatische Steuerung einen aktuellen Betriebszustand der technischen Anlage beherrschen muss, für den in den Steuerungsprogrammen des Leitsystems keine Lösung oder Verfahrensweise vorgesehen ist. Es kann sich dabei z.B. um Störfälle handeln, welche beim Entwurf des Leitsystems nicht in allen Einzelheiten berücksichtigt werden konnten, aber auch um an sich - aus menschlicher Sicht - einfache Betriebsübergänge während des Betriebs der technischen Anlage, welche aber oftmals nur mit erheblichem Aufwand als steuerungstechnische Programme abgebildet werden können. Dies kann z.B. dann der Fall sein, wenn während des Betriebs der technischen Anlage eine Vielzahl von möglichen Betriebszuständen auftreten kann und es aus jedem dieser Betriebszustände möglich sein soll, einen gewünschten Betriebszustand zu erreichen.In modern technical systems, said interaction of the components of the technical system is usually coordinated and monitored by a computer-aided control system. The degree of automation is often very high, so that human intervention in the operation of the technical system only necessary if the automatic control of a current operating state of the technical system for which no solution or procedure is provided for in the control programs of the control system. It may be, for example, incidents that could not be considered in detail in the design of the control system, but also in itself - from a human point of view - simple operational transitions during operation of the technical system, but often only with considerable effort as a control technology Programs can be mapped. This can be the case, for example, if a large number of possible operating states can occur during the operation of the technical system and it should be possible to achieve a desired operating state from each of these operating states.

Ein Steuerungsprogramm müsste dann für jeden dieser möglichen Betriebszustände zugehörige Steueranweisungen enthalten, um den gewünschten Betriebszustand anzufahren. Die Erfassung aller möglichen Betriebszustände einer technischen Anlage in einem Steuerprogramm ist oftmals vorab nicht möglich, so dass in manchen Fällen das Betriebspersonal der technischen Anlage das Bedienen der Komponenten der technischen Anlage manuell übernehmen muss.A control program would then have to include associated control instructions for each of these possible operating states to start the desired operating state. The recording of all possible operating states of a technical installation in a control program is often not possible in advance, so that in some cases the operating personnel of the technical installation must manually take over the operation of the components of the technical installation.

Bei einer technischen Anlage, bei der eine Anzahl von Komponenten zusammenwirken, um eine bestimmte Funktion zu erfüllen, liegen die vorher beschriebenen Probleme ähnlich. Ein Beispiel für eine derartige technische Anlage ist eine Verbrennungsanlage zum Erzeugen von elektrischer Energie, welche eine Mehrzahl von in einem Brennraum angeordnete Brenner umfasst. Der Einsatz der Brenner soll dabei derart geschehen, dass der zugeführte Brennstoff möglichst effizient ausgenutzt wird, um eine geforderte Menge an elektrischer Energie zu erzeugen und die Anlage wirtschaftlich zu betreiben. Des Weiteren ist ein schonender Betrieb einer derartigen Anlage anzustreben, welcher beispielsweise durch eine gleichmäßige Feuerverteilung im Brennraum erreicht werden kann.In a technical plant where a number of components work together to perform a particular function, the problems described above are similar. An example of such a technical system is an incinerator for generating electrical energy, which comprises a plurality of burners arranged in a combustion chamber. The use of the burner should be done in such a way that the supplied fuel is used as efficiently as possible in order to generate a required amount of electrical energy and to operate the system economically. Furthermore, a gentle operation of such a system is desirable, which can be achieved for example by a uniform fire distribution in the combustion chamber.

Um den zugeführten Brennstoff möglichst effizient auszunutzen, ist es erforderlich, besonders beim Zu- und Abfahren der technischen Anlage und im Teillastbereich - wenn also nicht die maximal mögliche Erzeugungsmenge an elektrischer Energie von der Verbrennungsanlage abgefordert wird und alle Brenner gleichzeitig feuern -, die Brenner derart gezielt zu- bzw. abzuschalten, dass eine möglichst gleichmäßige Feuerverteilung im Brennraum zu jedem Zeitpunkt des Betriebs der technischen Anlage gewährleistet ist.In order to utilize the supplied fuel as efficiently as possible, it is necessary, especially when entering and exiting the technical system and in the partial load range - if not the maximum possible amount of electrical energy is demanded by the incinerator and fire all the burners simultaneously - the burners such selectively switch on or off, that the most even fire distribution in the combustion chamber is guaranteed at any time of operation of the technical system.

Die Betriebspraxis vieler Kraftwerke zeigt, dass z.B. bei der Lösung des oben genannten Problems der gleichmäßigen Feuerverteilung in einem Brennraum oftmals auf eine automatische Zu- bzw. Abschaltung der Hauptbrenner verzichtet wird, da die üblicherweise zur Lösung derartiger Aufgaben eingesetzten Verknüpfungs- oder Schrittsteuerungen nur mit sehr großem Aufwand realisierbar sind, wobei die dabei gegebenenfalls eingesetzten Steuerprogramme darüber hinaus sehr unübersichtlich sind. Der hohe Aufwand ist darin begründet, dass beim Betrieb einer Verbrennungsanlage mit einer Mehrzahl von Brennern praktisch jeder Betriebszustand zwischen Leerlauf und Volllast einschließlich der zugehörigen Zu- und Abfahrvorgänge vorliegen kann. Ein Steuerprogramm müsste dann für jeden dieser zahlreichen Betriebszustände entsprechende Steueranweisungen ausführen können, um einen effizienten Betrieb der technischen Anlage zu gewährleisten.The operating practice of many power plants shows that e.g. in solving the above-mentioned problem of uniform distribution of fire in a combustion chamber is often dispensed with an automatic connection or disconnection of the main burner, since the usually used to solve such tasks linkage or step controls are feasible only with great effort, where the case In addition, tax programs that may be used are very confusing. The high cost is due to the fact that when operating a combustion system with a plurality of burners virtually any operating state between idle and full load including the associated startup and shutdown can be present. A control program would then have to be able to execute corresponding control instructions for each of these numerous operating states in order to ensure efficient operation of the technical system.

Um das beschriebene Problem des hohen Aufwands wenigstens teilweise zu umgehen, sind in vielen Kraftwerken Verknüpfungs- und Schrittsteuerungen im Einsatz, bei welchen nur für eine Untermenge aller möglichen Betriebszustände entsprechende Steuerbefehle vorgesehen sind. Durch diese bewusste Beschränkung auf definierte Betriebsfälle sind derartige Steuerung jedoch wenig flexibel und menschliches Eingreifen ist weiterhin für all diejenigen Betriebsfälle notwendig, für die in den Steuerungen keine Steuerbefehle vorgesehen sind. Um z.B. das Problem einer gleichmäßigen Feuerverteilung in einem Brennraum einer Verbrennungsanlage zu lösen, sind auch Lösungen denkbar, bei welchen zusätzliche Messvorrichtungen vorgesehen sind, z.B. zur Messung des Temperaturprofils im Brennraum, um dann diese Messungen auszuwerten und damit den Einsatz der Brenner zu steuern.In order to at least partially circumvent the described problem of high cost, linkage and step controls are in use in many power plants, in which corresponding control commands are provided only for a subset of all possible operating states. Due to this deliberate restriction to defined operating cases, however, such control is not very flexible and human intervention is still necessary for all those operating cases for which no control commands are provided in the controls. For example, the problem of uniform fire distribution in one Solutions are also conceivable in the combustion chamber of an incinerator, in which additional measuring devices are provided, for example for measuring the temperature profile in the combustion chamber, in order then to evaluate these measurements and thus control the use of the burners.

Nachteilig dabei ist, dass zusätzliche Einrichtungen, wie z.B. die genannten Messeinrichtungen zur Ermittlung des Temperaturprofils, notwendig sind. Weiterhin müssen diese zusätzlichen Messungen ausgewertet werden, um daraus Steuerbefehle für den Einsatz der Brenner abzuleiten. Der Zusatzaufwand ist dabei oftmals beträchtlich. Außerdem werden der technischen Anlage durch das Hinzufügen von zusätzlichen Messeinrichtungen Störquellen aufgezwungen, welche bei Nichtfunktion zum Stillstand der technischen Anlage führen können.A disadvantage is that additional facilities, such as. the aforementioned measuring devices for determining the temperature profile, are necessary. Furthermore, these additional measurements must be evaluated in order to derive control commands for the use of the burner. The additional effort is often considerable. In addition, the technical system by the addition of additional measuring devices imposed sources of interference, which can lead to a standstill of the technical system in case of non-function.

Aus der JP 61285314 A ist eine mehrere Brenner A-D umfassende Anlage bekannt, bei der ein Zähler die Anzahl von Ein- und Ausschaltvorgängen jedes der Brenner erfasst. Ein Komparator vergleicht die Verwendungshäufigkeiten der einzelnen Brenner und ordnet den Brennern mit der geringsten Benutzungsanzahl die logische Ziffer 1 zu, während er den anderen Brennern die logische Ziffer 0 zuweist. Auf der Grundlage dieser Zuordnung werden die Brenner mit der geringsten Betätigungsanzahl von einem Logikschaltkreis gezielt angesteuert. Durch die in dieser Situation erfolgende Bevorzugung der Brenner mit der geringsten Betätigungsanzahl wird insgesamt eine konzentrierte Verwendung spezieller Brenner verhindert.From the JP 61285314 A is known a multiple burner AD comprehensive system in which a counter detects the number of on and off operations of each burner. A comparator compares the usage frequencies of the individual burners and assigns the logical number 1 to the burners with the lowest number of uses, while assigning the logical number 0 to the other burners. On the basis of this assignment, the burners with the lowest number of actuations are selectively controlled by a logic circuit. The preference given to the burners with the lowest number of actuators in this situation altogether prevents concentrated use of special burners.

Der Erfindung liegt daher die Aufgabe zugrunde, ein Verfahren und eine Vorrichtung zum Betrieb einer mehrere Komponenten umfassenden Anlage, insbesondere einer Verbrennungsanlage zum Erzeugen von elektrischer Energie, anzugeben, welche die genannten Nachteile überwinden und einen möglichst wirtschaftlichen Betrieb der technischen Anlage ermöglichen.The invention is therefore based on the object, a method and an apparatus for operating a multi-component system, in particular a combustion system for generating electrical energy, indicate that overcome the disadvantages mentioned and allow the most economical operation of the technical system.

Bezüglich des Verfahrens der eingangs genannten Art wird die Aufgabe erfindungsgemäß durch die Schritte des Verfahrensanspruchs 1 gelöst.With regard to the method of the type mentioned above, the object is achieved by the steps of method claim 1.

Ein wichtiger Aspekt dieses erfindungsgemäßen Verfahrens besteht darin, dass der Betriebszustand der Komponenten einer technischen Anlage durch eine Anzahl von Wertzahlen, die jeweils einer Komponente zugeordnet sind, beschrieben wird. Die Wertzahlen können dabei beispielsweise Dezimalzahlen sein. Eine Änderung des Betriebszustands der technischen Anlage durch in oder außer Betrieb gehende Komponenten resultiert in einer Änderung mindestens einer Wertzahl mindestens einer Komponente der technischen Anlage. Die Gesamtheit der Wertzahlen aller Komponenten zu einem bestimmten Betriebszeitpunkt beschreibt also den aktuellen Betriebszustand der technischen Anlage.An important aspect of this method according to the invention is that the operating state of the components of a technical system by a number of value numbers, each a component are assigned is described. The value numbers can be, for example, decimal numbers. A change in the operating state of the technical system by going into or out of service components results in a change in at least one value of at least one component of the technical system. The totality of the value numbers of all components at a particular operating time thus describes the current operating state of the technical system.

Die aufsummierten Wertzahlen jeder Komponente drücken je nach Wert dieser Summe eine Priorität aus, mit welcher die betreffenden Komponenten als nächstes zu- oder abzuschalten sind, um in einen gewünschten Betriebszustand zu gelangen.The accumulated numerical values of each component, depending on the value of this sum, express a priority with which the respective components are next to be switched on or off in order to arrive at a desired operating state.

Beim erfindungsgemäßen Verfahren handelt es sich also um ein Verfahren, bei welchem der Betriebszustand einer technischen Anlage sowie Betriebszustandsänderungen ausgedrückt sind durch eine Anzahl von Zahlen, beispielsweise Dezimalzahlen, welche weiterverarbeitet werden (Summenbildung), um daraus den nächsten Betriebszustand der technischen Anlage zu ermitteln.
Auf diese Weise ist selbst bei unvorteilhaften Einsatzbedingungen, wie z.B. einer unsymmetrischen geometrischen Anordnung der Brenner, unterschiedlichen Brennerleistungen (z.B. der Zünd- und Hauptbrenner) eine einfache Realisierung eines gleichmäßigen Betriebsprofils - beispielsweise eines symmetrischen Flammenprofils - erreicht.
The method according to the invention is therefore a method in which the operating state of a technical system and operating state changes are expressed by a number of numbers, for example decimals, which are further processed (summation) in order to determine the next operating state of the technical system.
In this way, even in unfavorable conditions of use, such as an asymmetrical geometric arrangement of the burner, different burner performance (eg, the ignition and main burner) a simple realization of a uniform operating profile - for example, a symmetrical flame profile - achieved.

Vorteilhaft sind die Komponenten untereinander von gleicher Art.Advantageously, the components are of the same kind.

Durch die Gleichartigkeit der Komponenten untereinander ist die Bewertung mindestens einer anderen Komponente mit einer Wertzahl bei Betriebszustandsänderungen besonders einfach, da die Werte der Wertzahlen, mit denen die betreffenden Komponenten bewertet werden, nicht abhängig von der Funktion einer Komponente an sich sein müssen, sondern nur von der Rolle der betreffenden Komponente, welche diese in einem bestimmten Betriebszustand der technischen Anlage im Hinblick auf einen anzustrebenden wirtschaftlichen Betrieb der Anlage spielt. Diese Weiterbildung bedeutet, dass bei der Festlegung der Werte der Wertzahlen, mit welchen die Bewertung anderer Komponenten erfolgt, weniger Aufwand getrieben werden muss, da keine Besonderheiten, durch welche sich die Komponenten untereinander unterscheiden könnten, berücksichtigt werden müssen.Due to the similarity of the components among each other, the evaluation of at least one other component with a value number in the case of operating state changes is particularly simple, since the values of the value numbers with which the relevant components are evaluated do not depend on the function of a component Have to be component per se, but only on the role of the component in question, which plays this in a particular operating condition of the technical system in view of a desired economic operation of the system. This development means that less effort has to be expended in establishing the values of the value numbers with which the evaluation of other components takes place, since no special features by means of which the components could differ from one another must be taken into account.

In weiterer vorteilhafter Ausgestaltung der Erfindung wird durch die Zu- oder Abschaltung von Komponenten eine gleichmäßige, insbesondere symmetrische, räumliche Verteilung von sich im Betrieb befindlichen Komponenten erreicht.In a further advantageous embodiment of the invention, a uniform, in particular symmetrical, spatial distribution of components in operation is achieved by the connection or disconnection of components.

Wenn es sich bei den Komponenten der technischen Anlage z.B. um Aktoren handelt, welche beispielsweise auf einen zu verarbeitenden Rohstoff, auf eine Positioniereinrichtung oder Fördereinrichtungen oder dergleichen Kräfte ausüben, so ist eine gleichmäßige räumliche Verteilung derjenigen Aktoren, welche in einem bestimmten Betriebszustand gerade eine Kraft ausüben, vorteilhaft, da die Belastung des betreffenden Stoffes oder der betreffenden Einrichtung dabei günstiger ist im Vergleich zu einer ungleichmäßigen Belastung, bei der es z.B. infolge von inneren Spannungen verursacht durch Kraftgradienten, zu unerwünschten Verformungen, Brüchen oder sogar zur Zerstörung kommen kann.If the components of the technical equipment are e.g. are actuators, which exercise, for example, on a raw material to be processed, on a positioning or conveyors or the like forces, so is a uniform spatial distribution of those actuators who exercise in a particular operating state just a force, advantageous because the burden of the substance in question or the institution concerned is cheaper compared to a non-uniform burden, in which it eg due to internal stresses caused by force gradients, can lead to undesirable deformations, fractures or even destruction.

Wenn es sich bei der technischen Anlage um eine Verbrennungsanlage mit einer Anzahl von Brennern handelt, welche beispielsweise entlang der Innenwand eines Brennraums angeordnet sind, so ist eine räumliche Verteilung sich im Betrieb befindlicher Brenner besonders vorteilhaft, da dadurch ein homogenes Temperaturprofil im Brennraum erreicht wird und der zugeführte Brennstoff dadurch besonders effizient genutzt und die Anlage wirtschaftlich und materialschonend betrieben wird.If the technical installation is an incineration plant with a number of burners, which are arranged, for example, along the inner wall of a combustion chamber, a spatial distribution of burners in operation is particularly advantageous since a homogeneous temperature profile is thereby achieved in the combustion chamber and the supplied fuel is thus used very efficiently and The system is operated economically and gently.

In weiterer vorteilhafter Ausgestaltung der Erfindung werden diejenigen Komponenten, welche jeweils praktisch im gleichen räumlichen Abstand zu der in oder außer Betrieb gehenden Komponente angeordnet sind, mit der gleichen Wertzahl bewertet.In a further advantageous embodiment of the invention, those components which are each arranged at practically the same spatial distance from the going into or out of service component, evaluated with the same value number.

Auf diese Weise ist eine gleichmäßige räumliche Verteilung von sich im Betrieb befindlichen Komponenten besonders leicht erreichbar, da schon bei der Bewertung der Komponenten berücksichtigt wird, dass zu einem Bezugspunkt - nämlich dem Anordnungsort einer zu- oder abgeschalteten Komponente - gleich beabstandete Komponenten gleich bewertet werden, wodurch die angestrebte gleiche räumliche Verteilung bereits in die Bewertung einfließt und nicht erst bei oder nach der Weiterverarbeitung der Wertzahlen (Aufsummieren) berücksichtigt wird.In this way, a uniform spatial distribution of components in operation is particularly easy to achieve, since it is already taken into account in the evaluation of the components that at a reference point - namely the location of an on or off component - evenly spaced components are evaluated the same whereby the desired equal spatial distribution already flows into the evaluation and is not taken into account during or after the further processing of the value numbers (totaling).

Wie bereits ausgeführt, ist die genannte Bewertung beispielsweise dann besonders vorteilhaft, wenn durch die Komponenten einer Anlage Kraft auf einen Rohstoff, ein Erzeugnis oder eine Einrichtung ausgeübt wird, da hierbei eine gleichmäßige Krafteinwirkung die Gefährdung des Rohstoffs, des Erzeugnisses oder der Einrichtung minimiert. Ebenso ist eine derartige Bewertung bei der bereits genannten Verbrennungsanlage mit einer in einem Brennraum angeordneten Anzahl von Brennern vorteilhaft, da auch hier eine gleichmäßige Verteilung im Betrieb befindlicher Brenner im Hinblick auf ein gleichmäßiges Temperaturprofil im Brennraum gewünscht ist und auf diese Weise leicht erreicht werden kann.As already stated, said evaluation is particularly advantageous, for example, when force is exerted on a raw material, a product or a device by the components of a plant, since a uniform force minimizes the endangerment of the raw material, the product or the device. Likewise, such an evaluation in the aforementioned incinerator with a number of burners arranged in a combustion chamber is advantageous since a uniform distribution of burners in operation is also desired in view of a uniform temperature profile in the combustion chamber and can be easily achieved in this way.

Die Aufgabe wird bezüglich der Vorrichtung der eingangs genannten Art erfindungsgemäß durch die Vorrichtung gemäß Anspruch 6 gelöst.The object is achieved according to the invention with respect to the device of the type mentioned by the device according to claim 6.

Vorteilhaft sind die Komponenten untereinander von gleicher Art.Advantageously, the components are of the same kind.

Es ist weiterhin vorteilhaft, dass durch die Zu- oder Abschaltung von Komponenten eine gleichmäßige, insbesondere symmetrische, räumliche Verteilung von sich im Betrieb befindlichen Komponenten erreicht ist.It is also advantageous that a uniform, in particular symmetrical, spatial distribution of components in operation is achieved by the connection or disconnection of components.

In weiterer vorteilhafter Ausgestaltung der Erfindung sind diejenigen Komponenten, welche jeweils im gleichen räumlichen Abstand zu der in- oder außer Betrieb gehenden Komponente angeordnet sind, mit der gleichen Wertzahl bewertet.In a further advantageous embodiment of the invention, those components which are each arranged at the same spatial distance from the in-or out-of-service component, evaluated with the same value number.

Im Folgenden ist ein Ausführungsbeispiel der Erfindung dargestellt.In the following an embodiment of the invention is shown.

Es zeigen:

FIG 1
eine Verbrennungsanlage, welche mehrere, entlang der Innenwand eines Brennraums angeordnete Brenner umfasst,
FIG 2
eine schematische Darstellung der Bewertung anderer Komponenten, wenn Brenner 1 und 2 der Verbrennungsanlage nach FIG 1 zugeschaltet worden sind, und
FIG 3
ein Ausführungsbeispiel für die Verarbeitungseinheit 35 nach FIG 2.
Show it:
FIG. 1
an incinerator comprising a plurality of burners arranged along the inner wall of a combustion chamber,
FIG. 2
a schematic representation of the evaluation of other components, when burners 1 and 2 of the incinerator have been connected according to FIG 1, and
FIG. 3
an embodiment of the processing unit 35 of FIG. 2

In FIG 1 ist eine Vorrichtung 9 zum Betrieb einer technischen Anlage 10 dargestellt, wobei letztere Komponenten 1, 2, 3,...8 umfasst, welche als Brenner ausgebildet und in einem Brennraum 15 angeordnet sind.1 shows a device 9 for operating a technical system 10, the latter comprising components 1, 2, 3,... 8, which are designed as burners and arranged in a combustion chamber 15.

Die Vorrichtung 9 umfasst eine Recheneinheit 20, welche über Befehlsleitungen 22 und Sensorleitungen 24 mit den Brennern 1, 2, 3,...8 verbunden ist.The device 9 comprises a computing unit 20, which is connected via command lines 22 and sensor lines 24 to the burners 1, 2, 3, ... 8.

Über die Sensorleitungen 24 erhält die Recheneinheit 20 von den Brennern 1, 2, 3,...8 jeweils deren Betriebszustandswerte S1, S2, S3,...S8. Diese Betriebszustandswerte enthalten z.B. Informationen darüber, ob der jeweilige Brenner gerade zu-oder abgeschaltet ist.
In der Recheneinheit 20 werden die Betriebszustandswerte S1, S2, S3,...S8 ausgewertet, um insbesondere ein in oder außer Betrieb Gehen eines oder mehrerer Brenner festzustellen. Wenn dies der Fall ist, wird in der Recheneinheit 20 mindestens ein anderer Brenner mit einer Wertzahl bewertet.
The arithmetic unit 20 receives from the burners 1, 2, 3,... 8 respectively their operating state values S1, S2, S3,... S8 via the sensor lines. These operating status values contain, for example, information as to whether the particular burner is currently switched on or off.
In the arithmetic unit 20, the operating state values S1, S2, S3,... S8 are evaluated in order to determine, in particular, whether one or more burners are in or out of operation. If this is the case, at least one other burner is evaluated in the arithmetic unit 20 with a value number.

Jede Betriebszustandsänderung infolge des in oder außer Betrieb Gehens von Brennern 1, 2, 3,...8 löst also eine Bewertung aus, so dass zu jedem Betriebszeitpunkt der technischen Anlage jeder Brenner mit einer Anzahl von Wertzahlen bewertet ist, welche in der Recheneinheit 20 gespeichert werden.Each operating state change as a result of in or out of operation going of burners 1, 2, 3, ... 8 thus triggers a rating, so that each burner operating time of the technical system is evaluated with a number of value numbers, which in the arithmetic unit 20 get saved.

Die Recheneinheit 20 enthält eine Summationseinheit Σ, welche jeweils für jeden Brenner dessen aktuell zugeordnete Wertzahlen aufsummiert.The arithmetic unit 20 contains a summation unit Σ, which in each case sums up for each burner its currently assigned value numbers.

Die aufsummierten Wertzahlen jedes Brenners 1, 2, 3,...8 beschreiben für jeden Brenner jeweils eine Priorität, mit welcher ein bestimmter Brenner als nächstes zu- oder abzuschalten ist.The summed value numbers of each burner 1, 2, 3,... 8 describe for each burner a respective priority with which a particular burner is to be connected or disconnected next.

Die Recheneinheit 20 ermittelt weiterhin aus diesen Prioritäten Befehle Z1, Z2, Z3,...Z8, welche an die Brenner 1, 2, 3,...,8 ausgegeben werden. Diese Befehle können z.B. Ein- oder Ausschaltbefehle an die einzelnen Brenner sein, um laufend einen wirtschaftlichen Betrieb der technischen Anlage 10 sicherzustellen.The arithmetic unit 20 further determines from these priorities commands Z1, Z2, Z3,... Z8, which are output to the burners 1, 2, 3,..., 8. These commands may be, for example, on or off commands to the individual burners to ensure ongoing economic operation of the technical system 10.

FIG 2 zeigt beispielhaft für den Fall, dass Brenner 1 und 2 der Verbrennungsanlage nach FIG 1 zugeschaltet worden sind, die dadurch ausgelöste Bewertung anderer Brenner.FIG. 2 shows, by way of example, for the case in which burners 1 and 2 of the incinerator according to FIG. 1 have been connected, the evaluation of other burners triggered thereby.

Die Recheneinheit 20 erhält von den Brennern 1 und 2 jeweils deren Betriebszustandswerte S1 bzw. S2, welche im vorliegenden Fall mindestens die Information tragen, dass der betreffende Brenner 1 bzw. 2 zugeschaltet worden ist.The arithmetic unit 20 receives from the burners 1 and 2 respectively their operating state values S1 and S2, which in the present case carry at least the information that the relevant burner 1 or 2 has been switched on.

Die Betriebszustandswerte S1 und S2 werden auf Signalvorverarbeitungsstufen VV1 bzw. VV2 der Recheneinheit 20 geschaltet. Die Signalvorverarbeitungsstufen entnehmen die vorher genannte Information aus den Betriebszustandswerten S1 bzw. S2 und ordnen dem beispielhaft vorliegenden Betriebszustand Brenner 1 und 2 zugeschaltet je eine Betriebszustandszahl, beispielsweise den konstanten Wert 1, zu.The operating state values S1 and S2 are switched to signal preprocessing stages VV1 and VV2 of the arithmetic unit 20. The signal preprocessing stages take the previously mentioned information from the operating state values S1 and S2, respectively, and allocate one operating state number, for example the constant value 1, to the operating state burner 1 and 2 which is available by way of example.

Die Betriebszustandszahl jedes Brenners wird auf dem jeweiligen Brenner zugeordnete Multiplizierer 30 geschaltet. Als weiteres Eingangssignal erhalten diese Multiplizierer jeweils noch mindestens eine Wertzahl WZ1, WZ2 bzw. WZ3.The operating state number of each burner is switched to multipliers 30 assigned to the respective burner. As a further input signal, these multipliers each receive at least one value number WZ1, WZ2 or WZ3.

Diese Wertzahlen WZ1, WZ2 bzw. WZ3 können z.B. den konstanten Werten 6, 3 bzw. 1 entsprechen.These value numbers WZ1, WZ2 and WZ3 may e.g. correspond to the constant values 6, 3 and 1, respectively.

Im vorliegenden Fall löst der zugeschaltete Brenner 1 eine Bewertung der anderen Brenner 2, 8, 3, 7, 4 und 6 aus; der zugeschaltete Brenner 2 löst eine Bewertung der anderen Brenner 1, 3, 4, 8, 5 und 7 aus.In the present case, the switched burner 1 triggers an evaluation of the other burners 2, 8, 3, 7, 4 and 6; the switched burner 2 triggers an evaluation of the other burners 1, 3, 4, 8, 5 and 7.

Die Bewertung durch den zugeschalteten Brenner 1 erfolgt im vorliegenden Ausführungsbeispiel dadurch, dass die den anderen Brennern 2, 8, 3, 7, 4 und 6 zugeordneten Summierer Σ2, Σ8, Σ3, Σ7, Σ4 bzw. Σ6 die Ausgangssignale der Multiplizierer 30 wie in der FIG 2 dargestellt als Eingangssignale erhalten.The evaluation by the switched-on burner 1 takes place in the present exemplary embodiment in that the summators Σ2, Σ8, Σ3, Σ7, Σ4 or Σ6 associated with the other burners 2, 8, 3, 7, 4 and 6 receive the output signals of the multipliers 30 as in FIG of FIG 2 is obtained as input signals.

Jeder der Summierer Σ1, Σ2, Σ3, ... Σ8 summiert seine zugehörigen Eingangssignale auf und übergibt den jeweiligen Summenwert an nachgeordnete Signalnachverarbeitungsstufen NV1, NV2, NV3, ... NV8. In den Signalnachverarbeitungsstufen kann z.B. eine Nachbearbeitung des Ausgangssignals des jeweiligen Summierers Σ1, Σ2, Σ3,...Σ8 erfolgen, indem z.B. der Ausgang des der jeweiligen Signalnachverarbeitungsstufe vorgeschalteten Summierers nur dann zu einer den Signalverarbeitungsstufen nachgeschalteten Verarbeitungseinheit 35 durchgeschaltet wird, wenn der der jeweiligen Signalnachverarbeitungsstufe bzw. dem jeweiligen Summierer zugeordnete Brenner nicht in Betrieb ist; wenn der jeweilige Brenner bereits in Betrieb ist, so kann die betreffende Signalnachverarbeitungsstufe z.B. anstelle des Ausgangswertes des jeweiligen Summierers einen anderen Wert als aktuelle Bewertung 40 an die Verarbeitungseinheit übergeben. Dieser Wert kann vielmehr so gewählt werden, dass die Verarbeitungseinheit 35 bereits in Betrieb befindliche Brenner erkennt und so verhindert, dass diese eine (nutzlosen) Einschaltbefehl als Befehl Z1, Z2, Z3, ...Z8 erhalten.Each of the adders Σ1, Σ2, Σ3, ... Σ8 sums its associated input signals and transfers the respective summation value to downstream signal post-processing stages NV1, NV2, NV3, ... NV8. In the signal post-processing stages, e.g. a post-processing of the output signal of the respective summer Σ1, Σ2, Σ3, ... Σ8 are carried out by e.g. the output of the summer preceding the respective signal post-processing stage is only switched through to a processing unit 35 connected downstream of the signal processing stages if the burner associated with the respective signal post-processing stage or the respective summer is not in operation; if the respective burner is already in operation, the signal post-processing stage in question may e.g. instead of the output value of the respective summer, a value other than current evaluation 40 is transferred to the processing unit. Rather, this value can be chosen such that the processing unit 35 recognizes burners already in operation and thus prevents them from receiving a (useless) turn-on command as command Z1, Z2, Z3,... Z8.

Die Hauptaufgabe der Verarbeitungseinheit 35 besteht darin, aus den Ausgangssignalen der Signalnachverarbeitungsstufen NV1, NV2, NV3,...NV8 diejenigen Brenner zu ermitteln, welche als nächstes mittels der Befehle Z1, Z2, Z3,...Z8 zu- oder abgeschaltet werden sollen. Ob der jeweilige Befehl Z1, Z2, Z3,...Z8 ein Ein- oder Ausschaltbefehl ist, hängt davon ab, in welchen nächsten Betriebszustand ausgehend vom aktuellen Betriebszustand der technischen Anlage übergegangen werden soll, um z.B. einen wirtschaftlichen Betrieb der Anlage zu erreichen. Wenn die Anlage ausgehend von einem aktuellen Betriebszustand auf einen Betriebszustand gebracht werden soll, welcher eine höhere Feuerungsleistung erfordert, so ermittelt die Verarbeitungseinheit 35 Zuschaltbefehle als Befehle Z1, Z2, Z3, ... Z8 für die Brenner, um einen wirtschaftlichen Betrieb der Anlage zu erreichen, beispielsweise indem diejenigen Brenner zugeschaltet werden, welche in Verbindung mit den bereits zugeschalteten Brennern ein homogenes Temperaturprofil im Brennraum 15 gewährleisten.The main task of the processing unit 35 is to determine from the output signals of the signal post-processing stages NV1, NV2, NV3, ... NV8 those burners which are next to be switched on or off by means of the commands Z1, Z2, Z3,... Z8 , Whether the respective command Z1, Z2, Z3,... Z8 is an ON or OFF command depends on which next operating state, starting from the current operating state of the technical system, is to be achieved in order, for example, to achieve economic operation of the system. If the plant is to be brought from an actual operating state to an operating state which requires a higher firing capacity, the processing unit 35 determines turn-on commands as commands Z1, Z2, Z3,... Z8 for the burners in order to permit economic operation of the plant reach, for example, by those burners are switched, which in conjunction with the already connected burners ensure a homogeneous temperature profile in the combustion chamber 15.

Wird hingegen ausgehend vom aktuellen Betriebszustand ein Betriebszustand gefordert, welcher mit einer niedrigeren Feuerungsleistung erfordert, so ermittelt die Verarbeitungseinheit 35 Abschaltbefehle als Befehle Z1, Z2, Z3,...Z8 für die Brenner, so dass im Betrieb befindliche Brenner gezielt so abgeschaltet werden, dass die verbleibenden in Betrieb befindlichen Brenner einen wirtschaftlichen Betrieb der technischen Anlage gewährleisten, in dem sie beispielsweise ein homogenes Temperaturprofil in der Brennkammer erzeugen.If, on the other hand, starting from the current operating state, an operating state is required which requires a lower firing output, the processing unit determines 35 shutdown commands as commands Z1, Z2, Z3,... Z8 for the burners, so that burners in operation are specifically switched off in such a way that that the remaining in-use burners ensure economic operation of the technical system, for example by producing a homogeneous temperature profile in the combustion chamber.

Die Verarbeitungseinheit 35 ist also ertüchtigt, gezielt je nach Anforderung an einen nächsten Betriebszustand sowohl Zuals auch Abschaltbefehle als Befehle Z1, Z2, Z3...Z8 zu erzeugen.The processing unit 35 is therefore capable of selectively generating shutdown commands as commands Z1, Z2, Z3... Z8 depending on the requirement for a next operating state.

Die in FIG 2 beispielhaft erläuterte Bewertung soll nun noch zur weiteren Verdeutlichung mit konkreten Zahlenwerten für die Wertzahlen WZ1, WZ2 und WZ3 sowie für die Ausgänge der Signalvorverarbeitungsstufen VV1 und VV2 gezeigt werden.The evaluation explained by way of example in FIG. 2 will now be shown for further clarification with concrete numerical values for the value numbers WZ1, WZ2 and WZ3 as well as for the outputs of the signal preprocessing stages VV1 and VV2.

Die Brenner 1 und 2 sollen zugeschaltet worden sein. Dies wird mittels der Betriebszustandswerte S1 und S2 an die Signalvorverarbeitungsstufen VV1 bzw. VV2 gemeldet. Die Signalvorverarbeitungsstufe VV1 erzeugt aus dem Betriebszustandswert S1 des Brenners 1 den Wert Eins und schaltet diesen gemäß FIG 2 auf drei der Multiplizierer 30. Der Multiplizierer 30a dient der Bewertung der beiden dem Brenner 1 benachbarten Brenner 2 und 8, der Multiplizierer 30b bzw. 30c der Bewertung der Brenner 3 und 7 bzw. 4 und 6. Der Brenner 5 wird durch den Brenner 1 nicht bzw. mit der Wertzahl Null bewertet. Die diesen drei Multiplizierern 30a, 30b, 30c als Multiplikatoren WZ1, WZ2, WZ3 zugeführten Werte seien die konstanten Werte Sechs, Drei bzw. Eins. Diese Werte entsprechen etwa dem Einfluss der zu bewertenden Brenner auf die Unsymmetrie des Flammenbildes, d.h. den Abständen des bewertenden Brenners 1 von den zu bewertenden Brennern. Der Ausgang des Multiplizierers 30a liefert folglich den Wert Sechs und führt diesen dem Summierer Σ2 (welcher dem Brenner 2 zugeordnet ist) und dem Summierer Σ8 (welcher dem Brenner 8 zugeordnet ist) zu.The burners 1 and 2 should have been switched on. This is reported by means of the operating state values S1 and S2 to the signal preprocessing stages VV1 and VV2. The signal preprocessing stage VV1 generates the value one from the operating state value S1 of the burner 1 and switches this according to FIG. 2 to three of the multipliers 30. The multiplier 30a serves to evaluate the two burners 2 and 8 adjacent to the burner 1, the multipliers 30b and 30c, respectively Evaluation of the burners 3 and 7 or 4 and 6. The burner 5 is not rated by the burner 1 or with the value zero. The values supplied to these three multipliers 30a, 30b, 30c as multipliers WZ1, WZ2, WZ3 are the constant values six, three and one, respectively. These values roughly correspond to the influence of the burners to be evaluated on the imbalance of the flame image, ie the distances of the evaluating burner 1 from the burners to be evaluated. The output of the multiplier 30a thus supplies the value six and supplies it to the summer Σ2 (which is associated with the burner 2) and the summer Σ8 (which is associated with the burner 8).

Der Ausgang des Multiplizierers 30b liefert den Wert Drei, welcher auf die Summierer Σ3 (welcher dem dritten Brenner zugeordnet ist) und Σ7 (welcher dem siebten Brenner zugeordnet ist) aufgeschaltet wird.The output of multiplier 30b provides the value of three, which is applied to summers Σ3 (which is associated with the third burner) and Σ7 (which is associated with the seventh burner).

Der Ausgang des dritten Multiplizierers 30c liefert den Wert Eins, welcher auf den Summierer Σ4 (welcher dem vierten Brenner zugeordnet ist) und auf den Summierer Σ6 (welcher dem Sechsten Brenner zugeordnet ist) geschaltet wird.The output of the third multiplier 30c provides the value one, which is switched to the summer Σ4 (which is associated with the fourth burner) and to the summer Σ6 (which is associated with the sixth burner).

In analoger Weise soll die durch den Brenner 2 ausgelöste Bewertung der anderen Brenner erfolgen, so dass auf die Summierer Σ1 und Σ3 der Wert Sechs aufgeschaltet wird, auf die Summierer Σ4 und Σ8 der Wert Drei und auf die Summierer Σ5 und Σ7 der Wert Eins.In an analogous manner, the evaluation of the other burners triggered by the burner 2 should take place so that the value Six is applied to the summators Σ1 and Σ3, the value Three to the summers Σ4 and Σ8 and the value one to the summers Σ5 and Σ7.

Als Ausgangswerte ermitteln die Summierer Σ1, Σ2, Σ3, Σ4, Σ5, Σ6, Σ7 und Σ8 durch Aufsummation die Werte Sechs, Sechs, Neun, Vier, Eins, Eins, Vier bzw. Neun. Diese Werte werden auf die entsprechend nachfolgenden Signalnachverarbeitungsstufen NV1, NV2, NV3, ... NV8 aufgeschaltet.As summing values, the summators Σ1, Σ2, Σ3, Σ4, Σ5, Σ6, Σ7 and Σ8 determine by summing the values six, six, nine, four, one, one, four and nine, respectively. These values are applied to the corresponding subsequent signal post-processing stages NV1, NV2, NV3, ... NV8.

Bei einem nächsten zu erreichenden Betriebszustand soll eine Erhöhung der Feuerungsleistung gefordert sein, so dass durch die Verarbeitungseinheit 35 Zuschaltbefehle als Befehle Z1, Z2, Z3 ... Z8 für die Brenner derart ermittelt werden, dass die sich im nächsten Betriebszustand in Betrieb befindlichen Brenner eine gleichmäßige räumliche Verteilung im Brennraum 15 aufweisen, um dadurch ein homogenes Temperaturprofil zu erreichen.In a next operating state to be reached, an increase in the firing capacity should be required, so that the processing unit 35 determines switching commands as commands Z1, Z2, Z3... Z8 for the burners in such a way that the burners operating in the next operating state become a have uniform spatial distribution in the combustion chamber 15, thereby achieving a homogeneous temperature profile.

Da die Brenner 1 und 2 sich bereits in Betrieb befinden, schalten die Signalvorverarbeitungsstufen VV1 bzw. VV2 nicht die Ausgänge der Summierer Σ1 und Σ2 auf die Verarbeitungseinheit 35, sondern z.B. den Konstanten Wert Tausend; die Ausgänge der übrigen Summierer Σ3, Σ4, Σ5,...Σ8 werden durch die nachfolgenden Signalnachverarbeitungsstufen NV3, NV4, NV5, ...NV8 unverändert auf die Verarbeitungseinheit 35 aufgeschaltet.Since the burners 1 and 2 are already in operation, the signal preprocessing stages VV1 and VV2 do not switch the outputs of the summators Σ1 and Σ2 to the processing unit 35, but e.g. the constant value thousand; the outputs of the remaining summers Σ3, Σ4, Σ5,... Σ8 are switched to the processing unit 35 unchanged by the subsequent signal post-processing stages NV3, NV4, NV5,... NV8.

Im vorliegenden Beispiel stehen der Verarbeitungseinheit 35 also acht Eingangssignale zur Verfügung, um die im nächsten Schritt zuzuschaltenden Brenner zu ermitteln.In the present example, the processing unit 35 thus has eight input signals available to determine the burner to be connected in the next step.

Bei der beispielhaft dargestellten Wahl der Wertzahlen WZ1, WZ2 und WZ3 kann die Verarbeitungseinheit 35 nun die im nächsten Schritt zuzuschaltenden Brenner dadurch ermitteln, indem sie das oder die Minima ihrer Eingangswerte ermittelt und im nächsten Schritt die jeweils zu diesen Minima zugehörigen Brenner zuschaltet; im folgenden Beispiel würde dies bedeuten, dass im nächsten Schritt die Brenner 5 und 6 zugeschaltet werden. Nach Zuschaltung von Brenner 5 und 6 befinden sich die Brenner 1, 2, 5 und 6 in Betrieb.In the selection of the value numbers WZ1, WZ2 and WZ3 exemplified, the processing unit 35 can now determine the burner to be switched on in the next step by determining the one or more minimum values of its input values and, in the next step, connecting the respective burners associated with these minima; In the following example, this would mean that the burners 5 and 6 are switched on in the next step. After switching on burner 5 and 6, the burners 1, 2, 5 and 6 are in operation.

Ein Blick auf FIG 1 zeigt, dass durch die beschriebene Zuschaltung der Brenner 5 und 6 zu den bereits in Betrieb befindlichen Brennern 1 und 2 eine gleichmäßige Befeuerung des Brennraums 15 gewährleistet ist, da bei der räumlichen Brenneranordnung nach FIG 1 auf diese Weise bezüglich des Mittelpunkts des Brennraums 15 gegenüberliegende Brennerpaare betrieben werden, was zu einer gleichmäßigen Befeuerung des Brennraums 15 und damit zu einem wirtschaftlichen Betrieb der technischen Anlage führt.A look at FIG. 1 shows that uniform combustion of the combustion chamber 15 is ensured by the described connection of the burners 5 and 6 to the already operating burners 1 and 2, since in the spatial burner arrangement according to FIG. 1 in this way with respect to the center the combustion chamber 15 opposite burner pairs are operated, resulting in a uniform firing of the combustion chamber 15 and thus to an economic operation of the technical system.

Das in FIG 2 dargestellte Prinzip der Bewertung kann leicht verallgemeinert werden: Man wählt einen bestimmten Brenner als Bezugsbrenner und definiert zu diesem ein erstes, ein zweites und ein drittes Nachbarbrennerpaar. Zum Brenner 3 ist das so definierte erste Nachbarbrennerpaar das durch die Brenner 2 und 4 gebildete Brennerpaar, das zweite Brennerpaar das durch die Brenner 5 und 1 gebildete Brennerpaar und das dritte Nachbarbrennerpaar das durch die Brenner 6 und 8 gebildete Brennerpaar.The principle of the evaluation shown in FIG. 2 can be easily generalized: one chooses a particular burner as a reference burner and defines a first one for this purpose second and a third neighbor burner couple. To the burner 3, the first adjacent burner pair thus defined is the burner pair formed by the burners 2 and 4, the second burner pair is the burner pair formed by the burners 5 and 1 and the third neighboring burner pair is the burner pair formed by the burners 6 and 8.

Geht nun der Brenner 3 in Betrieb, so löst beispielsweise er eine Bewertung der Brenner 2 und 4 mit dem Wert Sechs, eine Bewertung der Brenner 5 und 1 mit dem Wert Drei und eine Bewertung der Brenner 6 und 8 mit dem Wert Eins aus. Geht nun ein anderer Brenner in Betrieb, so wählt man diesen als Bezugsbrenner und bildet in analoger Weise ein weiteres erstes, ein weiteres zweites und ein weiteres drittes Nachbarbrennerpaar.Now, if the burner 3 goes into operation, it triggers, for example, an evaluation of the burners 2 and 4 with the value six, a rating of the burners 5 and 1 with the value three and an evaluation of the burners 6 and 8 with the value one. If another burner now goes into operation, it is selected as a reference burner and forms in an analogous manner another first, another second and another third neighbor burner pair.

In FIG 3 ist ein Ausführungsbeispiel für die Verarbeitungseinheit 35 aus FIG 2 dargestellt.FIG. 3 shows an exemplary embodiment of the processing unit 35 from FIG.

Die aktuellen Bewertungen 40 sind dabei auf einen Auswahlbaustein AB der Verarbeitungseinheit 35 aufgeschaltet; zusätzlich kann auch noch ein Hilfswert aufgeschaltet sein, welcher beispielsweise vom Auswahlbaustein AB dazu benutzt wird, auch dann zu- oder abzuschaltende Brenner zu ermitteln, wenn die Auswertung der aktuellen Bewertungen 40 z.B. infolge einer Störung nicht möglich ist. Die aktuellen Bewertungen 40 werden parallel zu ihrer Aufschaltung auf den Auswahlbaustein AB jeweils als Schwellenhöhe 44 auf je einen Schwellwertbaustein SB gegeben.The current valuations 40 are switched to a selection module AB of the processing unit 35; In addition, an auxiliary value may also be applied, which is used, for example, by the selection module AB to determine burners to be switched on or off even if the evaluation of the current evaluations 40 is carried out, for example. as a result of a fault is not possible. The current evaluations 40 are given in parallel to their connection to the selection module AB in each case as a threshold height 44 to a respective threshold value block SB.

Der Auswahlbaustein AB kann nun z.B. ausgestaltet sein als Minimalwertbaustein, welcher aus den aktuellen Bewertungen 40 das Minimum auswählt und dieses als sein Ausgangssignal auf den Summierer 42 als Eingangssignal gibt. Der Summierer 42 verknüpft den Ausgang des Auswahlbausteins AB mit einer Konstanten K zu einer Summe, welche gleichzeitig auf die Eingänge aller Schwellwertbausteine SB geschaltet wird. Da die zu den jeweiligen Schwellwertbausteinen zugehörigen Schwellhöhen 44 in ihren Werten unterschiedlich sind, das Eingangssignal für alle Schwellwertbausteine SB gleich ist, liefern nur diejenigen Schwellwertbausteine ein Ausgangssignal ungleich Null als Befehle Z1, Z2, Z3,...Z8, bei denen das um die Konstante K angehobene Eingangssignal den Wert der jeweils zugehörigen Schwellwerthöhe überschreitet.The selection module AB can now be configured, for example, as a minimum value block, which selects the minimum from the current evaluations 40 and outputs this as its output signal to the adder 42 as an input signal. The summer 42 combines the output of the selection module AB with a constant K to a sum, which is simultaneously switched to the inputs of all threshold blocks SB. Since the too Threshold levels 44 associated with the respective threshold value blocks differ in their values, the input signal is the same for all threshold value blocks SB, only those threshold value blocks deliver an output signal not equal to zero as commands Z1, Z2, Z3,... Z8, where the value raised by the constant K increases Input signal exceeds the value of the respectively associated threshold level.

Die vorher beschriebene Ausprägung des Auswahlbausteins AB als Minimalwertbaustein ist besonders vorteilhaft bei der Ermittlung von zuzuschaltenden Komponenten der technischen Anlage einsetzbar. Zur Ermittlung von abzuschaltenden Komponenten der technischen Anlage ist der Auswahlbaustein AB bevorzugt als Maximalwertbaustein ausgeprägt. So ist gewährleistet, dass - wenn die Bewertung ähnlich wie in FIG 2 beschrieben durchgeführt wird -, diejenigen Komponenten als im nächsten Schritt abzuschaltende Komponenten ermittelt werden, welche als aktuelle Bewertungen 40 den größten Wert aufweisen.The previously described embodiment of the selection module AB as a minimum value module can be used particularly advantageously in the determination of zuzuschaltenden components of the technical system. In order to determine components of the technical system to be switched off, the selection module AB is preferably designed as a maximum value component. This ensures that, if the evaluation is carried out in a manner similar to that described in FIG. 2, those components are determined as components to be switched off in the next step, which have the greatest value as current evaluations 40.

Claims (9)

  1. Method for operating a technical installation (10) comprising a number of components (1, 2, 3, ... 8), in particular a combustion installation for generating electrical energy, with the following steps:
    a) for each component (1, 2, ... 8) an operating state value (S1, ... S8) is determined,
    b) the operating state value (S1, ... S8) of each component (1, 2, ... 8) is switched to multipliers (30) assigned to the respective component;
    c) these multipliers (30) in each case receive as a further input signal at least one numerical value (WZ1, WZ2, WZ3);
    d) the output signals of the multipliers of one component are fed to at least one summator (Σ1, ... Σ8) assigned to another component;
    e) the components that are next to be switched on or off are determined from the output signals of the summators.
  2. Method according to claim 1 or 2, a uniform, in particular symmetrical, spatial distribution of components that are in operation being achieved by the switching on or off of components (1, 2, 3, ... 8).
  3. Method according to claim 2, those components which are respectively arranged at the same spatial distance from the component commencing or ceasing to operate being assessed with the same numerical value.
  4. Method according to one of the preceding claims, the components (1, 2, 3, ... 8) being of the same type as one another.
  5. Method according to one of the preceding claims, characterized in that the technical components (1, 2, ... 8) are formed as burners which are arranged in a combustion chamber.
  6. Device for operating a technical installation comprising a number of components (1, ... 8)
    with an arithmetic unit (20)
    which is connected via a sensor line (34) to the components (1, ... 8) for recording operating state variables (S1, ... S8) of these components,
    characterized
    in that the arithmetic unit (20) comprises multipliers which are assigned to the respective components and the first inputs of which are intended for the operating state variable of the respective component and the further inputs of which are intended for at least one numerical value (WZ1, WZ2, WZ3),
    in that the output of the multipliers of one component are connected to at least one summator (Σ1, ... Σ8) assigned to another component,
    commands (Z1... Z8) as to which of the components are next to be switched on or off being determined by means of the output signals of the summators.
  7. Device according to Claim 6,
    characterized
    in that arranged downstream of the summators (Σ1, ... Σ8) is a processing unit (35) for determining the components that are next to be switched on or off, which includes a selection module (AB), which is designed as a minimum-value module or a maximum-value module.
  8. Device according to Claim 6,
    characterized
    in that the components (1, ... 8) of the same type.
  9. Device according to one of the preceding claims,
    characterized
    in that the components are designed as burners which are arranged in a combustion chamber.
EP01272002A 2000-12-22 2001-12-12 Method and device for operating a multiple component technical system, particularly a combustion system for producing electrical energy Expired - Lifetime EP1344001B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP01272002A EP1344001B1 (en) 2000-12-22 2001-12-12 Method and device for operating a multiple component technical system, particularly a combustion system for producing electrical energy

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
EP00128305A EP1217300A1 (en) 2000-12-22 2000-12-22 Process and apparatus for operating a technical system comprising plural components, in particular a combustion system of a power plant
EP00128305 2000-12-22
EP01272002A EP1344001B1 (en) 2000-12-22 2001-12-12 Method and device for operating a multiple component technical system, particularly a combustion system for producing electrical energy
PCT/EP2001/014601 WO2002052199A1 (en) 2000-12-22 2001-12-12 Method and device for operating a multiple component technical system, particularly a combustion system for producing electrical energy

Publications (2)

Publication Number Publication Date
EP1344001A1 EP1344001A1 (en) 2003-09-17
EP1344001B1 true EP1344001B1 (en) 2007-10-31

Family

ID=8170780

Family Applications (2)

Application Number Title Priority Date Filing Date
EP00128305A Withdrawn EP1217300A1 (en) 2000-12-22 2000-12-22 Process and apparatus for operating a technical system comprising plural components, in particular a combustion system of a power plant
EP01272002A Expired - Lifetime EP1344001B1 (en) 2000-12-22 2001-12-12 Method and device for operating a multiple component technical system, particularly a combustion system for producing electrical energy

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP00128305A Withdrawn EP1217300A1 (en) 2000-12-22 2000-12-22 Process and apparatus for operating a technical system comprising plural components, in particular a combustion system of a power plant

Country Status (6)

Country Link
US (1) US7181321B2 (en)
EP (2) EP1217300A1 (en)
AT (1) ATE377174T1 (en)
DE (1) DE50113205D1 (en)
ES (1) ES2292531T3 (en)
WO (1) WO2002052199A1 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10333671A1 (en) * 2003-07-24 2005-08-04 Alstom Technology Ltd Method for reducing the NOx emissions of a burner assembly comprising several burners and burner arrangement for carrying out the method
EP1510892A1 (en) * 2003-08-13 2005-03-02 Siemens Aktiengesellschaft Process and control system for operating a technical plant comprising plural components, in particular a combustion plant for production of electrical energy
US7423412B2 (en) * 2006-01-31 2008-09-09 General Electric Company Method, apparatus and computer program product for injecting current
US8990848B2 (en) 2008-07-22 2015-03-24 At&T Intellectual Property I, L.P. System and method for temporally adaptive media playback
US7996422B2 (en) * 2008-07-22 2011-08-09 At&T Intellectual Property L.L.P. System and method for adaptive media playback based on destination
US9671797B2 (en) 2009-05-08 2017-06-06 Gas Turbine Efficiency Sweden Ab Optimization of gas turbine combustion systems low load performance on simple cycle and heat recovery steam generator applications
US8437941B2 (en) * 2009-05-08 2013-05-07 Gas Turbine Efficiency Sweden Ab Automated tuning of gas turbine combustion systems
US9354618B2 (en) 2009-05-08 2016-05-31 Gas Turbine Efficiency Sweden Ab Automated tuning of multiple fuel gas turbine combustion systems
US9267443B2 (en) 2009-05-08 2016-02-23 Gas Turbine Efficiency Sweden Ab Automated tuning of gas turbine combustion systems

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3932735A (en) * 1970-08-24 1976-01-13 Westinghouse Electric Corporation Method of controlling supply of power
US4536126A (en) * 1970-12-18 1985-08-20 Westinghouse Electric Corp. System and method employing a digital computer for automatically synchronizing a gas turbine or other electric power plant generator with a power system
US3797988A (en) * 1973-01-26 1974-03-19 C Davidson Boiler burner balancing counter control system
US3939328A (en) * 1973-11-06 1976-02-17 Westinghouse Electric Corporation Control system with adaptive process controllers especially adapted for electric power plant operation
US4013877A (en) * 1974-08-13 1977-03-22 Westinghouse Electric Corporation Combined cycle electric power plant with a steam turbine having an improved valve control system
JPS61285314A (en) * 1985-06-11 1986-12-16 Mitsubishi Heavy Ind Ltd Controlling device for used number of burners
JPH01102213A (en) * 1987-10-16 1989-04-19 Hitachi Ltd Automatic control device for burner
SE502292C2 (en) * 1994-08-19 1995-10-02 Kvaerner Enviropower Ab Method for two-stage combustion of solid fuels in a circulating fluidized bed
JP3189084B2 (en) * 1995-02-07 2001-07-16 株式会社日立製作所 Burner number control circuit and steam generator
JP2725240B2 (en) * 1996-03-01 1998-03-11 ヒーロ株式会社 Digital fluid fuel supply control system and device for heating device such as boiler
US6381504B1 (en) * 1996-05-06 2002-04-30 Pavilion Technologies, Inc. Method for optimizing a plant with multiple inputs
AU2001278923A1 (en) * 2000-07-13 2002-01-30 Nxegen System and method for monitoring and controlling energy usage
US6775645B2 (en) * 2001-11-14 2004-08-10 Electric Power Research Institute, Inc. Application of symbol sequence analysis and temporal irreversibility to monitoring and controlling boiler flames

Also Published As

Publication number Publication date
DE50113205D1 (en) 2007-12-13
WO2002052199A1 (en) 2002-07-04
ATE377174T1 (en) 2007-11-15
US7181321B2 (en) 2007-02-20
EP1217300A1 (en) 2002-06-26
ES2292531T3 (en) 2008-03-16
US20040161715A1 (en) 2004-08-19
EP1344001A1 (en) 2003-09-17

Similar Documents

Publication Publication Date Title
DE102015004932B4 (en) Simulation device for several robots
DE3316667C2 (en)
WO1998047052A1 (en) Automatization system
DE10213261A1 (en) Aircraft power control device
EP1344001B1 (en) Method and device for operating a multiple component technical system, particularly a combustion system for producing electrical energy
EP1091823B1 (en) Stud welding device
EP3536950A1 (en) Method and system for performing maintenance on a wind turbine in a group of wind turbines
WO2013029938A2 (en) Network monitoring device
EP2577829A1 (en) Method and system for adapting a production flow schedule for a production process
DE102013108910B4 (en) Solenoid valve control device
DE2828645A1 (en) DEVICE FOR CONTROLLING AT LEAST TWO HYDRAULIC TURBINES
EP2071245A2 (en) Heating system
WO2005024530A1 (en) Method and control system for operating a technical installation comprising several components, in particular a combustion installation for generating electric energy
EP1431927A1 (en) Method for estimating the remaining lifetime of an apparatus
WO1994022211A1 (en) Process and regulating arrangements for d.c. transmission
EP1307793B1 (en) Method for operating a safety switching device and a safety switching device
EP0012219A1 (en) Method and apparatus for adding and removing in accordance with the load a plurality of parallelly working current generator units in a current distribution system
DE102019112721A1 (en) Method for performing a switchover of at least two switching means of an operating means and drive system for at least two switching means in an operating means
DE102019112712A1 (en) SWITCH ARRANGEMENT WITH DRIVE SYSTEM AND PROCEDURE FOR THE SAFE OPERATION OF A SWITCH ARRANGEMENT
EP4120498A1 (en) Method for determining a power range for connecting a system to a power supply network
EP3056951A1 (en) Operating method for load management of a system and corresponding fuel agent
DE19518030C1 (en) Arrangement and method for determining the operating states of an electrical power supply network
DE102015218895A1 (en) Method and device for distributing balancing power
DE4016016C2 (en)
DE102004021782A1 (en) Current supply unit with two parallel current feeding modules for telecomms has control and regulation units with cyclical output of current data

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20030514

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

17Q First examination report despatched

Effective date: 20050606

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: CH

Ref legal event code: NV

Representative=s name: SIEMENS SCHWEIZ AG

REF Corresponds to:

Ref document number: 50113205

Country of ref document: DE

Date of ref document: 20071213

Kind code of ref document: P

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20080109

ET Fr: translation filed
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2292531

Country of ref document: ES

Kind code of ref document: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080331

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

BERE Be: lapsed

Owner name: IEMENS A.G.

Effective date: 20071231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071231

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071031

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071231

26N No opposition filed

Effective date: 20080801

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071031

REG Reference to a national code

Ref country code: CH

Ref legal event code: PCAR

Free format text: SIEMENS SCHWEIZ AG;INTELLECTUAL PROPERTY FREILAGERSTRASSE 40;8047 ZUERICH (CH)

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071212

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20121221

Year of fee payment: 12

Ref country code: SE

Payment date: 20121210

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20121114

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20130131

Year of fee payment: 12

Ref country code: CH

Payment date: 20130312

Year of fee payment: 12

Ref country code: ES

Payment date: 20130114

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20121204

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20131127

Year of fee payment: 13

REG Reference to a national code

Ref country code: NL

Ref legal event code: V1

Effective date: 20140701

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 377174

Country of ref document: AT

Kind code of ref document: T

Effective date: 20131212

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131213

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20140829

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140701

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131231

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131231

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131212

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20141208

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20150220

Year of fee payment: 14

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20150505

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131213

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131212

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50113205

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20151212

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160701

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151212

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151212