EP1342691A1 - Device for attenuating vibrations on an elevator car - Google Patents

Device for attenuating vibrations on an elevator car Download PDF

Info

Publication number
EP1342691A1
EP1342691A1 EP03003724A EP03003724A EP1342691A1 EP 1342691 A1 EP1342691 A1 EP 1342691A1 EP 03003724 A EP03003724 A EP 03003724A EP 03003724 A EP03003724 A EP 03003724A EP 1342691 A1 EP1342691 A1 EP 1342691A1
Authority
EP
European Patent Office
Prior art keywords
frame
actuator
vibrations
sensors
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP03003724A
Other languages
German (de)
French (fr)
Other versions
EP1342691B1 (en
Inventor
Josef Husmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Inventio AG
Original Assignee
Inventio AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Inventio AG filed Critical Inventio AG
Priority to EP03003724A priority Critical patent/EP1342691B1/en
Publication of EP1342691A1 publication Critical patent/EP1342691A1/en
Application granted granted Critical
Publication of EP1342691B1 publication Critical patent/EP1342691B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B5/00Applications of checking, fault-correcting, or safety devices in elevators
    • B66B5/02Applications of checking, fault-correcting, or safety devices in elevators responsive to abnormal operating conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B7/00Other common features of elevators
    • B66B7/02Guideways; Guides
    • B66B7/04Riding means, e.g. Shoes, Rollers, between car and guiding means, e.g. rails, ropes
    • B66B7/046Rollers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B11/00Main component parts of lifts in, or associated with, buildings or other structures
    • B66B11/02Cages, i.e. cars
    • B66B11/026Attenuation system for shocks, vibrations, imbalance, e.g. passengers on the same side
    • B66B11/028Active systems

Definitions

  • the invention relates to a device for damping vibrations of a frame guided on guide rails by means of guide elements and carrying a car body, vibrations occurring transversely to the direction of travel being measured by acceleration sensors attached to the frame and used to regulate at least one actuator arranged between the frame and guide elements, which at the same time works with the vibrations occurring and opposite to the direction of the vibrations.
  • the disadvantage of this device is that the elevator car itself must have a rigid structure so that the ride control can be ensured by the vibration control.
  • the invention seeks to remedy this.
  • the invention as characterized in claim 1, solves the problem of avoiding the disadvantages of the known device and proposing a vibration control that takes into account the elastic properties of the frame with the cabin body.
  • An elevator car (frame and car body) has a very elastic structure, especially in the horizontal direction.
  • the first structure resonance is in the range of 10 Hz in elevator cars with optimized rigidity of the frame and the car insulation, and otherwise the structure resonance is even lower.
  • the distance to the frequencies to be damped is very small and limits the effect of the active vibration damping, since it cannot dampen the structure resonance itself. This is only possible if there is a sufficiently good measurement of the state of the cabin deformation, in particular the phase position.
  • the greatest elastic deformation is a shear in the x-direction of a cabin frame carrying a cabin body 5.
  • the frame consists of a lower yoke 1, an upper yoke 2, a first side plate 3 and a second side plate 4.
  • the upper yoke 2 is connected, for example, to a suspension cable, not shown, which is guided, for example, over a traction sheave.
  • Guide elements are arranged on the upper yoke 2 or on the lower yoke 1, which guide the frame along guide rails arranged in the elevator shaft.
  • the signals from the acceleration sensors have to be integrated twice, which is associated with drift or measurement errors.
  • the signal of the fiber gyroscope must be integrated once, which is also associated with drift or measurement errors.
  • the optical measuring device (laser) is quite complex. In addition, a spatial arrangement without interference is difficult. Very small strains can be measured with modern strain gauges DMS. The Shear is measured directly without the help of additional sensors. DMS technology for measuring shear is promisingly applicable.
  • lower yoke 1 and upper yoke 2 shift parallel to one another by an amount x.
  • a laser 11a is attached to the upper yoke, which preferably generates infrared light and emits a sharply focused beam 11d vertically downwards.
  • an optical prism 11b is attached, which reflects the light beam 11d parallel and laterally offset upwards.
  • the dislocation dimension changes by twice the amount x the shear of the frame.
  • a photosensitive line sensor or a line camera 11c is attached to the upper yoke 2 as a detector. The horizontal displacement of the reflected light beam 11d is thus measured.
  • the line camera 11c generates a signal which is proportional to the frame shift x and which can be used in a control system to reduce the frame shift.
  • the deformations on the lower bearings 6 and / or on the upper bearings 7 of the cabin body 5 can be measured.
  • the measurement can take place in one, two or all three axes.
  • additional acceleration sensors arranged on the car body 5 are possible.
  • the number of acceleration sensors required is equal to the number of additional degrees of freedom that must be regulated.
  • the bearings 6, 7 are highly suitable locations for the arrangement of the actuators.
  • the actuators can be arranged in parallel or in series with the elastic bearings 6, 7 designed as vibration isolation or can replace them completely, these actuators in one, two or in all three Axes can act.
  • the so-called active engine mounts such as those used in motor vehicles for mounting the engine are very well suited for this purpose.
  • US Pat. No. 4,699,348 discloses an active motor bearing which consists of a passive rubber spring and an electromagnetic actuator.
  • the actuator is primarily intended to dampen the low-frequency resonance vibrations, while the soft rubber spring with low damping acts as good vibration isolation in the higher-frequency range.
  • the control system shown in FIG. 3 for damping the shear movement of the frame consists of the main components controller and controlled system, which is composed of the actuator or actuators, the frame with the car body and the sensor or the acceleration sensors.
  • Interfering forces z acting on the frame and the cabin body which are caused by the frame guide, the wind and the cables, cause, among other things, a shear x of the cabin frame.
  • the sensor signal y is proportional to the frame shift. It is subtracted from the setpoint u in a summing unit, which is normally 0. This results in the control error e.
  • This is processed in the controller and an actuating signal m is generated. In the simplest case, it is a proportional controller, but much more complex controller functions are possible.
  • the actuator consists, for example, of four active actuators mentioned above. These generate positioning forces between guide rollers or guide rails and the cabin frame.
  • the controller is designed so that the greatest gain is at the first natural frequency, for example 10 Hz, of the frame with the cabin body.
  • the controller has a bandpass characteristic in which the amplification goes to zero at very low and high frequencies, so that no static forces can be built up that could cause the frame and the car body to rotate.
  • the active actuators are controlled by the actuating signal m in such a way that actuating forces F1, F3, F5, F7 arise which counteract the frame shift.
  • the control signal m is first passed on to a current amplifier V1, V3, V5, V7 provided for each active actuator A1, A3, A5, A7, which in turn then feeds the active actuator A1, A3, A5, A7.
  • the individual current functions I (m) must be selected in accordance with the signal flow diagram shown in FIG. 4, the current I1, I3, I5, I7 in the active actuator A1, A3, A5, A7 being the actuating force F1, F3, F5, which is normally proportional to the current , F7 generated.

Landscapes

  • Engineering & Computer Science (AREA)
  • Civil Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Structural Engineering (AREA)
  • Cage And Drive Apparatuses For Elevators (AREA)
  • Lift-Guide Devices, And Elevator Ropes And Cables (AREA)
  • Elevator Control (AREA)

Abstract

The device uses accelerations measured by sensors (ac1-ac8) mounted on the frame (1-4) carrying the cabin body (5) to regulate at least one actuator between the frame and guide elements operating simultaneously with and opposite to the direction of the vibrations. A regulator is provided with which the shearing movements of the frame can be measured and regulated depending on the measurement signals.

Description

Die Erfindung betrifft eine Einrichtung zur Dämpfung von Schwingungen eines an Führungsschienen mittels Führungselementen geführten, einen Kabinenkörper tragenden Rahmens, wobei quer zur Fahrtrichtung auftretende Schwingungen von am Rahmen angebrachten Beschleunigungssensoren gemessen und zur Regelung von mindestens einem zwischen Rahmen und Führungselementen angeordneten Aktuator verwendet werden, der gleichzeitig mit den auftretenden Schwingungen und entgegengesetzt zur Richtung der Schwingungen arbeitet.The invention relates to a device for damping vibrations of a frame guided on guide rails by means of guide elements and carrying a car body, vibrations occurring transversely to the direction of travel being measured by acceleration sensors attached to the frame and used to regulate at least one actuator arranged between the frame and guide elements, which at the same time works with the vibrations occurring and opposite to the direction of the vibrations.

Aus der Patentschrift EP 0 731 051 B1 ist ein Verfahren und eine Einrichtung bekannt geworden, bei dem bzw. bei der zur Reduktion von Schwingungen einer an Schienen geführten Aufzugskabine quer zur Fahrtrichtung auftretende Schwingungen durch eine im hohen Frequenzbereich arbeitende Regelung reduziert werden, sodass die Schwingungen in der Kabine nicht mehr spürbar sind. Zur Erfassung der Messwerte werden am Kabinenrahmen Trägheitssensoren angebracht. Ein im tiefen Frequenzbereich arbeitender Positionsregler führt die Kabine bei einseitiger Schieflage gegenüber den Schienen selbsttätig in eine Mittelstellung nach, sodass immer ein ausreichender Dämpfungsweg zur Verfügung steht. Positionssensoren liefern die Messwerte an den Positionsregler. Aktuatoren sind mit Linearmotoren zur Verstellung der Rollen versehen. Pro Rollenführung regelt ein erster Linearmotor zwei seitliche Rollen, ein zweiter Linearmotor regelt die mittlere Rolle. Der apparative Aufwand zur Durchführung des Verfahrens ist gering, da beide Regelkreise zu einer gemeinsamen Regelung zusammengefasst werden und auf einen Aktuator wirken.From the patent EP 0 731 051 B1 a method and a device have become known in which or in which vibrations occurring transversely to the direction of travel to reduce vibrations of an elevator car guided on rails are reduced by a control operating in the high frequency range, so that the vibrations are no longer noticeable in the cabin. Inertia sensors are attached to the cabin frame to record the measured values. A position controller working in the low frequency range automatically guides the cabin to a central position when the skew is on one side, so that there is always a sufficient damping path available. Position sensors deliver the measured values to the position controller. Actuators are equipped with linear motors for adjusting the rollers. For each roller guide, a first linear motor controls two lateral rollers, a second linear motor controls the middle roller. The outlay on equipment for carrying out the method is low because both control loops are combined to form a common control and act on one actuator.

Nachteilig bei dieser Einrichtung ist, dass die Aufzugskabine selbst eine steife Struktur aufweisen muss, damit der Fahrkomfort durch die Schwingungsregelung gewährleistet werden kann.The disadvantage of this device is that the elevator car itself must have a rigid structure so that the ride control can be ensured by the vibration control.

Hier will die Erfindung Abhilfe schaffen. Die Erfindung, wie sie in Anspruch 1 gekennzeichnet ist, löst die Aufgabe, die Nachteile der bekannten Einrichtung zu vermeiden und eine Schwingungsregelung vorzuschlagen, die die elastischen Eigenschaften des Rahmens mit dem Kabinenkörper berücksichtigt.The invention seeks to remedy this. The invention, as characterized in claim 1, solves the problem of avoiding the disadvantages of the known device and proposing a vibration control that takes into account the elastic properties of the frame with the cabin body.

Vorteilhafte Weiterbildungen der Erfindung sind in den abhängigen Patentansprüchen angegeben.Advantageous developments of the invention are specified in the dependent claims.

Eine Aufzugskabine (Rahmen und Kabinenkörper) hat insbesondere in Horizontalrichtung eine sehr elastische Struktur. Typischerweise liegt die erste Strukturresonanz im Bereich von 10 Hz bei Aufzugskabinen mit optimierter Steifigkeit des Rahmens und der Kabinenisolation, und sonst liegt die Strukturresonanz noch tiefer. Der Abstand zu den zu dämpfenden Frequenzen ist sehr gering und limitiert die Wirkung der aktiven Schwingungsdämpfung, da sie die Strukturresonanz selbst nicht dämpfen kann. Dies wird erst möglich, wenn eine genügend gute Messung des Zustandes der Kabinendeformation, insbesondere der Phasenlage vorliegt.An elevator car (frame and car body) has a very elastic structure, especially in the horizontal direction. Typically, the first structure resonance is in the range of 10 Hz in elevator cars with optimized rigidity of the frame and the car insulation, and otherwise the structure resonance is even lower. The distance to the frequencies to be damped is very small and limits the effect of the active vibration damping, since it cannot dampen the structure resonance itself. This is only possible if there is a sufficiently good measurement of the state of the cabin deformation, in particular the phase position.

Prinzipiell ist es besser die Aufzugskabine (Rahmen und Kabinenkörper) sehr steif zu bauen, so dass sie sich im wesentlichen wie ein starrer Körper verhält. Es sind dann keine Messungen der elastischen Verformung notwendig. Dieses Ziel ist jedoch nur bei neuen Aufzugskabinen für hohe Gebäude erreichbar.In principle, it is better to build the elevator car (frame and car body) very stiff, so that it essentially behaves like a rigid body. No measurements of the elastic deformation are then necessary. However, this goal can only be achieved with new elevator cars for tall buildings.

Bestehende Aufzugskabinen (Rahmen und Kabinenkörper) können nur nachträglich versteift werden. Dies ist mit vernünftigem Aufwand nur in beschränktem Mass möglich. Ansonsten ist es sinnvoller eine neue Aufzugskabine (Rahmen und Kabinenkörper) steifer Bauart einzusetzen. Die Messung der Deformation erweitert den Anwendungsbereich der aktiven Schwingungsdämpfung auf strukturell weniger geeignete Aufzugskabinen, welche heutzutage das Gros aller Aufzugskabinen ausmachen.Existing elevator cars (frame and car body) can only be stiffened afterwards. This is only possible to a limited extent with reasonable effort. Otherwise, it makes more sense to use a new elevator car (frame and car body) of rigid construction. The measurement of the deformation extends the area of application of active vibration damping to structurally less suitable elevator cars, which today make up the majority of all elevator cars.

Anhand der beiliegenden Figuren wird die vorliegende Erfindung näher erläutert.The present invention is explained in more detail with reference to the accompanying figures.

Es zeigen:Show it:

  • Fig. 1
    eine schematische Darstellung der Anordnung der Sensoren einer Einrichtung zur Dämpfung von Scherbewegungen eines Kabinenrahmens mit einem Kabinenkörper,
    Fig. 1
    1 shows a schematic representation of the arrangement of the sensors of a device for damping shear movements of a cabin frame with a cabin body,
  • Fig. 2
    eine Messeinrichtung zur Messung der Scherbewegungen eines Kabinenrahmens mittels Laser,
    Fig. 2
    a measuring device for measuring the shear movements of a cabin frame using a laser,
  • Fig. 2a
    Einzelheiten der Messeinrichtung gemäss Fig. 2,
    Fig. 2a
    Details of the measuring device according to FIG. 2,
  • Fig. 3
    ein Regelsystem zur Dämpfung von Scherbewegungen,
    Fig. 3
    a control system for damping shear movements,
  • Fig. 4
    ein elektrischer Aktorteil des Regelsystems.
    Fig. 4
    an electrical actuator part of the control system.

Die grösste elastische Deformation ist eine Verscherung eines einen Kabinenkörper 5 tragenden Kabinenrahmens in x-Richtung. Der Rahmen besteht aus einem unteren Joch 1, einem oberen Joch 2, einem ersten Seitenschild 3 und einem zweiten Seitenschild 4. Das obere Joch 2 ist beispielsweise mit einem nicht dargestellten Tragseil verbunden, das beispielsweise über eine Treibscheibe geführt ist. Am oberen Joch 2 bzw. am unteren Joch 1 sind Führungselemente angeordnet, die den Rahmen entlang von im Aufzugsschacht angeordneten Führungsschienen führen.The greatest elastic deformation is a shear in the x-direction of a cabin frame carrying a cabin body 5. The frame consists of a lower yoke 1, an upper yoke 2, a first side plate 3 and a second side plate 4. The upper yoke 2 is connected, for example, to a suspension cable, not shown, which is guided, for example, over a traction sheave. Guide elements are arranged on the upper yoke 2 or on the lower yoke 1, which guide the frame along guide rails arranged in the elevator shaft.

Bei der elastischen Deformation verschieben sich das untere Joch 1 und das obere Joch 2 parallel zueinander. Mit den quer zur Fahrtrichtung der aus Kabinenrahmen und Kabinenkörper 5 bestehenden Aufzugskabine messenden Beschleunigungssensoren ac1 bis ac8 des in der Beschreibungseinleitung gewürdigten Standes der Technik ist es nicht möglich diese Deformation zu messen, da keine Unterscheidung zwischen Rotation des Kabinenkörpers 5 um die y-Achse und Scherbewegung des Rahmens in x-Richtung möglich ist. Daher ist eine zusätzliche Messung notwendig. Mögliche Ausführungsvarianten zur Messung der Deformation sind:

  • 1. Zwei vertikal (in z-Richtung) ausgerichtete Beschleunigungssensoren 9a und 9b (oder 9c als Alternative zu 9b) mit grossem Achsabstand. Aus der Differenz der Sensorsignale wird die y-Rotation von unterem Joch 1 und oberem Joch 2 bestimmt. Zusammen mit den Signalen der Beschleunigungssensoren ac1 oder ac3 und ac5 oder ac7 kann die Scherbewegung des Rahmens bestimmt werden. Anstelle der vertikal gerichteten Beschleunigungssensoren 9a, 9b, 9c kann auch ein Sensor verwendet werden der die Drehrate genügend genau misst, beispielsweise ein Faserkreisel oder horizontal gerichtete Beschleunigungssensoren mit genügendem Achsabstand, die auf einem der beiden Joche 1,2 befestigt sind.
  • 2. Ein handelsüblicher Faserkreisel besteht aus einer Lichtquelle, deren Lichtstrahl einer Lichtleitfaser zugeführt wird. Der Lichtstrahl wird geteilt und läuft in je einer Richtung durch die einen Wickel bildende Lichtleitfaser. Dann werden die Teilstrahlen wieder zusammengeführt, wobei die Teilstrahlen interferieren. Falls sich der Faserwickel rotativ verdreht, muss der eine Teilstrahl etwas mehr Weg zurücklegen als der andere, was eine Phasenverschiebung und somit eine Änderung der Interferenzstärke bewirkt.
  • 3. Messung der Rahmendeformation mit Dehnmessstreifen DMS 10. Diese werden am ersten Seitenschild 3 oder am zweiten Seitenschild 4 an der Stelle mit der grössten Biegedeformation befestigt. Diese verhält sich proportional zur Scherbewegung des Rahmens.
  • 4. Messung der Scherbewegung des Rahmens mittels eines Lasers 11a, eines Reflektorprismas 11b und eines photoempfindlichen Zeilensensors 11c Eine Anordnung ohne Reflektorprisma ist möglich. Vorteile der Anordnung mit Reflektorprisma sind: Es ist keine genaue Ausrichtung notwendig, alle aktiven Komponenten sind auf einer Seite und es ergibt sich eine Verdoppelung der Messauflösung.
In the case of elastic deformation, the lower yoke 1 and the upper yoke 2 move parallel to one another. With the acceleration sensors ac1 to ac8 of the prior art recognized in the introduction to the description, which measure transverse to the direction of travel of the elevator car consisting of the car frame and car body 5, it is not possible to measure this deformation, since there is no distinction between rotation of the car body 5 about the y-axis and shear movement of the frame in the x direction is possible. An additional measurement is therefore necessary. Possible design variants for measuring the deformation are:
  • 1. Two acceleration sensors 9a and 9b (or 9c as an alternative to 9b) aligned vertically (in the z direction) with a large center distance. The y-rotation of lower yoke 1 and upper yoke 2 is determined from the difference between the sensor signals. The shear movement of the frame can be determined together with the signals from the acceleration sensors ac1 or ac3 and ac5 or ac7. Instead of the vertically directed acceleration sensors 9a, 9b, 9c, it is also possible to use a sensor which measures the rotation rate with sufficient accuracy, for example a fiber gyroscope or horizontally directed acceleration sensors with sufficient center distance, which are attached to one of the two yokes 1, 2.
  • 2. A commercially available fiber gyro consists of a light source, the light beam of which is fed to an optical fiber. The light beam is split and runs in one direction through the optical fiber forming a coil. Then the partial beams are brought together again, the partial beams interfering. If the fiber roll rotates rotatively, the one partial beam has to travel a little more distance than the other, which causes a phase shift and thus a change in the interference strength.
  • 3. Measurement of the frame deformation with strain gauges 10. These are attached to the first side plate 3 or the second side plate 4 at the point with the greatest bending deformation. This is proportional to the shear movement of the frame.
  • 4. Measurement of the shear movement of the frame by means of a laser 11a, a reflector prism 11b and a photosensitive line sensor 11c. An arrangement without a reflector prism is possible. Advantages of the arrangement with reflector prism are: No precise alignment is necessary, all active components are on one side and the measurement resolution is doubled.

Zur Erzeugung einer Weginformation müssen die Signale der Beschleunigungssensoren zweimal integriert werden, was mit Drift bzw. Messfehlern verbunden ist. Zur Erzeugung einer Weginformation muss das Signal des Faserkreisels einmal integriert werden, was auch mit Drift bzw. Messfehlern verbunden ist. Die optische Messeinrichtung (Laser) ist ziemlich aufwendig. Zudem ist eine räumliche Anordnung ohne Störeinwirkungen schwierig. Mit modernen Dehnmesstreifen DMS können sehr kleine Dehnungen gemessen werden. Die Messung der Verscherung erfolgt direkt, ohne Hilfe von weiteren Sensoren. DMS Technik zur Messung der Verscherung ist erfolgversprechend anwendbar.To generate path information, the signals from the acceleration sensors have to be integrated twice, which is associated with drift or measurement errors. To generate path information, the signal of the fiber gyroscope must be integrated once, which is also associated with drift or measurement errors. The optical measuring device (laser) is quite complex. In addition, a spatial arrangement without interference is difficult. Very small strains can be measured with modern strain gauges DMS. The Shear is measured directly without the help of additional sensors. DMS technology for measuring shear is promisingly applicable.

Bei der Verscherung des Rahmens verschieben sich unteres Joch 1 und oberes Joch 2 parallel zueinander um einen Betrag x. Auf dem oberen Joch ist ein Laser 11a befestigt, der vorzugsweise Infrarotlicht erzeugt und einen scharf gebündelten Strahl 11d senkrecht nach unten abgibt. Auf dem unteren Joch 1 ist ein optisches Prisma 11b befestigt, welches den Lichtstrahl 11d parallel und seitlich versetzt nach oben reflektiert. Das Versetzungsmass ändert sich um den zweifachen Betrag x der Verscherung des Rahmens. Als Detektor ist auf dem oberen Joch 2 ein photoempfindlicher Zeilensensor oder eine Zeilenkamera 11c befestigt. Damit wird die horizontale Verschiebung des reflektierten Lichtstrahls 11d gemessen. Die Zeilenkamera 11c erzeugt ein Signal welches proportional zur Rahmenverscherung x ist und das in einem Regelsystem verwendet werden kann um die Rahmenverscherung zu reduzieren.When the frame is sheared, lower yoke 1 and upper yoke 2 shift parallel to one another by an amount x. A laser 11a is attached to the upper yoke, which preferably generates infrared light and emits a sharply focused beam 11d vertically downwards. On the lower yoke 1, an optical prism 11b is attached, which reflects the light beam 11d parallel and laterally offset upwards. The dislocation dimension changes by twice the amount x the shear of the frame. A photosensitive line sensor or a line camera 11c is attached to the upper yoke 2 as a detector. The horizontal displacement of the reflected light beam 11d is thus measured. The line camera 11c generates a signal which is proportional to the frame shift x and which can be used in a control system to reduce the frame shift.

Zur Verbesserung der Schwingungsdämpfung sind weitere Messungen der Rahmendeformation in y-Richtung möglich. Im allgemeinen ist das nicht notwendig, weil der Rahmen in y-Richtung sehr steif ist, doch muss das nicht immer der Fall sein. Ausserdem erlauben die bestehenden Beschleunigungssensoren ac2, ac4, ac6 und ac8 bereits eine Messung der Verwindung des Rahmen um die Hochachse (z-Achse).To improve the vibration damping, further measurements of the frame deformation in the y direction are possible. In general, this is not necessary because the frame is very rigid in the y direction, but it does not always have to be the case. In addition, the existing acceleration sensors ac2, ac4, ac6 and ac8 already allow a measurement of the twisting of the frame around the vertical axis (z-axis).

Zusätzlich können die Deformationen an den unteren Lagern 6 und/oder an den oberen Lagern 7 des Kabinenkörpers 5 gemessen werden. Die Messung kann in einer, zwei oder allen drei Achsen erfolgen. Dazu sind Abstands- oder Positionssensoren mit Magnetfeldmessung oder induktiven oder kapazitiven Messprinzipien geeignet.
Als Alternative zur Messung der Deformation an den Lagern 6, 7 des Kabinenkörpers 5 sind zusätzliche, am Kabinenkörper 5 angeordnete Beschleunigungssensoren möglich. Die Zahl der notwendigen Beschleunigungssensoren ist dabei gleich der Anzahl der zusätzlichen Freiheitsgrade die geregelt werden müssen.
In addition, the deformations on the lower bearings 6 and / or on the upper bearings 7 of the cabin body 5 can be measured. The measurement can take place in one, two or all three axes. There are distance or position sensors with magnetic field measurement or inductive or capacitive measuring principles.
As an alternative to measuring the deformation on the bearings 6, 7 of the car body 5, additional acceleration sensors arranged on the car body 5 are possible. The number of acceleration sensors required is equal to the number of additional degrees of freedom that must be regulated.

Mit den Aktoren die auf die Führungselemente wirken, können nicht alle Strukturresonanzen, die am Kabinenkörper auftreten gedämpft werden, selbst wenn genügend gute Messungen vorhanden sind. Falls notwendig, können dazu weitere Aktoren eingesetzt werden. Gut geeignete Orte zur Anordnung der Aktoren sind die Lager 6, 7. Die Aktoren können parallel oder in Serie zu den elastischen, als Schwingungsisolation ausgebildeten Lagern 6, 7 angeordnet werden oder diese vollständig ersetzen, wobei diese Aktoren in einer, zwei oder in allen drei Achsen wirken können. Sehr gut für diesen Zweck geeignet sind die sogenannten aktiven Motorenlager wie sie bei Kraftfahrzeugen zur Lagerung des Motors eingesetzt werden.With the actuators that act on the guide elements, not all structural resonances that occur on the cabin body can be damped, even if sufficient good measurements are available. If necessary, further actuators can be used. The bearings 6, 7 are highly suitable locations for the arrangement of the actuators. The actuators can be arranged in parallel or in series with the elastic bearings 6, 7 designed as vibration isolation or can replace them completely, these actuators in one, two or in all three Axes can act. The so-called active engine mounts such as those used in motor vehicles for mounting the engine are very well suited for this purpose.

Beispielsweise offenbart die Patentschrift US 4 699 348 ein aktives Motorenlager, welches aus einer passiven Gummifeder und einem elektromagnetischem Aktor besteht. Der Aktor soll hauptsächlich die tiefrequenten Resonanzschwingungen dämpfen, während die weiche Gummifeder mit geringer Dämpfung als gute Schwingungsisolation im höherfrequenten Bereich wirkt.For example, US Pat. No. 4,699,348 discloses an active motor bearing which consists of a passive rubber spring and an electromagnetic actuator. The actuator is primarily intended to dampen the low-frequency resonance vibrations, while the soft rubber spring with low damping acts as good vibration isolation in the higher-frequency range.

Das in Fig. 3 gezeigte Regelsystem zur Dämpfung der Scherbewegung des Rahmens besteht aus den Hauptkomponenten Regler und Regelstrecke, welche aus dem Aktor bzw. der Aktoren, dem Rahmen mit Kabinenkörper und dem Sensor bzw. der Beschleunigungssensoren zusammengesetzt ist.The control system shown in FIG. 3 for damping the shear movement of the frame consists of the main components controller and controlled system, which is composed of the actuator or actuators, the frame with the car body and the sensor or the acceleration sensors.

Auf den Rahmen und den Kabinenkörper wirkende Störkräfte z, welche durch die Rahmenführung, den Fahrtwind und durch die Seile verursacht werden, bewirken unter anderem eine Verscherung x des Kabinenrahmens. Das Sensorsignal y verhält sich proportional zur Rahmenverscherung. Es wird in einer Summiereinheit vom Sollwert u, der im Normalfall 0 beträgt, subtrahiert. Daraus resultiert der Regelfehler e. Dieser wird im Regler verarbeitet und ein Stellsignal m erzeugt. Im einfachsten Fall handelt es sich um einen proportionalen Regler, es sind jedoch wesentlich komplexere Reglerfunktionen möglich. Der Aktor besteht beispielsweise aus vier, oben genannten aktiven Aktoren. Diese erzeugen Stellkräfte zwischen Führungsrollen bzw. Führungsschienen und Kabinenrahmen.Interfering forces z acting on the frame and the cabin body, which are caused by the frame guide, the wind and the cables, cause, among other things, a shear x of the cabin frame. The sensor signal y is proportional to the frame shift. It is subtracted from the setpoint u in a summing unit, which is normally 0. This results in the control error e. This is processed in the controller and an actuating signal m is generated. In the simplest case, it is a proportional controller, but much more complex controller functions are possible. The actuator consists, for example, of four active actuators mentioned above. These generate positioning forces between guide rollers or guide rails and the cabin frame.

Der Regler ist so ausgelegt, dass die grösste Verstärkung bei der ersten Eigenfrequenz, beispielsweise 10 Hz, des Rahmens mit dem Kabinenkörper liegt. Der Regler hat eine Bandpasscharakteristik, bei der die Verstärkung bei sehr tiefen und hohen Frequenzen gegen Null geht, damit keine statischen Kräfte aufgebaut werden können, die den Rahmen und den Kabinenkörper zum Rotieren bringen könnten.The controller is designed so that the greatest gain is at the first natural frequency, for example 10 Hz, of the frame with the cabin body. The controller has a bandpass characteristic in which the amplification goes to zero at very low and high frequencies, so that no static forces can be built up that could cause the frame and the car body to rotate.

Gemäss Fig. 4 werden die aktiven Aktoren vom Stellsignal m so angesteuert, dass Stellkräfte F1,F3,F5,F7 entstehen, welche der Rahmenverscherung entgegenwirken. Das Stellsignal m wird zuerst an einen je aktiver Aktor A1,A3,A5,A7 vorgesehenen Stromverstärker V1,V3,V5,V7 weitergeleitet, welcher dann wiederum den aktiven Aktor A1,A3,A5,A7 speist. Die einzelnen Stromfunktionen I(m) müssen gemäss dem in Fig. 4 gezeigten Signalflussschema gewählt werden, wobei der Strom I1, I3, I5, I7 im aktiven Aktor A1,A3,A5,A7 die normalerweise zum Strom proportionale Stellkraft F1,F3,F5,F7 erzeugt.4, the active actuators are controlled by the actuating signal m in such a way that actuating forces F1, F3, F5, F7 arise which counteract the frame shift. The control signal m is first passed on to a current amplifier V1, V3, V5, V7 provided for each active actuator A1, A3, A5, A7, which in turn then feeds the active actuator A1, A3, A5, A7. The individual current functions I (m) must be selected in accordance with the signal flow diagram shown in FIG. 4, the current I1, I3, I5, I7 in the active actuator A1, A3, A5, A7 being the actuating force F1, F3, F5, which is normally proportional to the current , F7 generated.

Claims (7)

Einrichtung zur Dämpfung von Schwingungen eines an Führungsschienen mittels Führungselementen geführten, einen Kabinenkörper (5) tragenden Rahmens (1,2,3,4), wobei quer zur Fahrtrichtung auftretende Schwingungen von am Rahmen (1,2,3,4) angebrachten Beschleunigungssensoren (ac1 bis ac8) gemessen und zur Regelung von mindestens einem zwischen Rahmen (1,2,3,4) und Führungselementen angeordneten Aktor verwendet werden, der gleichzeitig mit den auftretenden Schwingungen und entgegengesetzt zur Richtung der Schwingungen arbeitet,
dadurch gekennzeichnet,
dass eine Regeleinrichtung vorgesehen ist, mittels der Scherbewegungen des Rahmens (1,2,3,4) messbar sind und mittels der in Abhängigkeit der Messsignale die Scherbewegungen des Rahmens (1,2,3,4) regelbar sind.
Device for damping vibrations of a frame (1, 2, 3, 4) guided on guide rails by means of guide elements and carrying a car body (5), whereby vibrations of acceleration sensors (1, 2, 3, 4) attached to the frame (1, 2, 3, 4) occur transversely to the direction of travel. ac1 to ac8) are measured and used to regulate at least one actuator arranged between the frame (1, 2, 3, 4) and guide elements, which works simultaneously with the vibrations occurring and counter to the direction of the vibrations,
characterized,
that a control device is provided by means of which the shear movements of the frame (1, 2, 3, 4) can be measured and by means of which the shear movements of the frame (1, 2, 3, 4) can be regulated as a function of the measurement signals.
Einrichtung nach Anspruch 1,
dadurch gekennzeichnet,
dass Sensoren (9a,9b,9c,10,11a,11b,11c) vorgesehen sind, mittels deren Signale die Scherbewegungen des Rahmens (1,2,3,4) bestimmbar sind.
Device according to claim 1,
characterized,
that sensors (9a, 9b, 9c, 10, 11a, 11b, 11c) are provided, by means of whose signals the shear movements of the frame (1, 2, 3, 4) can be determined.
Einrichtung nach Anspruch 2,
dadurch gekennzeichnet,
dass die Sensoren Beschleunigungssensoren (9a,9b,9c) sind.
Device according to claim 2,
characterized,
that the sensors are acceleration sensors (9a, 9b, 9c).
Einrichtung nach Anspruch 2,
dadurch gekennzeichnet,
dass die Sensoren Dehnmessstreifen (DMS) sind.
Device according to claim 2,
characterized,
that the sensors are strain gauges.
Einrichtung nach Anspruch 2,
dadurch gekennzeichnet,
dass die Scherbewegung des Rahmens (1,2,3,4) mittels eines Faserkreisels messbar sind.
Device according to claim 2,
characterized,
that the shear movement of the frame (1,2,3,4) can be measured by means of a fiber gyroscope.
Einrichtung nach Anspruch 2,
dadurch gekennzeichnet,
dass die Scherbewegung des Rahmens (1,2,3,4) mittels eines Lasers (11a), eines einen Laserstrahl reflektierendes Prismas (11b) und mittels eines Zeilensensors (11c) messbar sind.
Device according to claim 2,
characterized,
that the shear movement of the frame (1, 2, 3, 4) can be measured by means of a laser (11a), a prism (11b) reflecting a laser beam and by means of a line sensor (11c).
Einrichtung nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet,
dass mittels der Regeleinrichtung ein Stellsignal (m) erzeugbar ist und ein je Aktor (A1,A3,A5,A7) vorgesehener Stromverstärker (V1,V3,V5,V7) in Abhängigkeit einer Stromfunktion I(m) den Aktor (A1,A3,A5,A7) speist, wobei der Strom (I1, I3, I5, I7) im Aktor (A1,A3,A5,A7) eine Stellkraft (F1,F3,F5,F7) erzeugt.
Device according to one of the preceding claims,
characterized,
that a control signal (m) can be generated by means of the control device and a current amplifier (V1, V3, V5, V7) provided for each actuator (A1, A3, A5, A7) depending on a current function I (m) the actuator (A1, A3, A5, A7) feeds, the current (I1, I3, I5, I7) in the actuator (A1, A3, A5, A7) generating an actuating force (F1, F3, F5, F7).
EP03003724A 2002-03-07 2003-02-19 Device for attenuating vibrations on an elevator car Expired - Lifetime EP1342691B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP03003724A EP1342691B1 (en) 2002-03-07 2003-02-19 Device for attenuating vibrations on an elevator car

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP02405174 2002-03-07
EP02405174 2002-03-07
EP03003724A EP1342691B1 (en) 2002-03-07 2003-02-19 Device for attenuating vibrations on an elevator car

Publications (2)

Publication Number Publication Date
EP1342691A1 true EP1342691A1 (en) 2003-09-10
EP1342691B1 EP1342691B1 (en) 2007-01-03

Family

ID=27838192

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03003724A Expired - Lifetime EP1342691B1 (en) 2002-03-07 2003-02-19 Device for attenuating vibrations on an elevator car

Country Status (13)

Country Link
US (1) US6959787B2 (en)
EP (1) EP1342691B1 (en)
JP (1) JP4413505B2 (en)
KR (1) KR100935566B1 (en)
CN (1) CN1201997C (en)
AT (1) ATE350328T1 (en)
AU (1) AU2003200817B2 (en)
BR (1) BR0300432B1 (en)
CA (1) CA2421162C (en)
DE (1) DE50306148D1 (en)
HK (1) HK1058511A1 (en)
MY (1) MY131485A (en)
SG (1) SG105570A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3000758A1 (en) * 2014-09-25 2016-03-30 Kone Corporation Method and elevator arrangement

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6786304B2 (en) * 2001-04-10 2004-09-07 Mitsubishi Denki Kabushiki Kaisha Guide for elevator
JP4107480B2 (en) * 2002-07-29 2008-06-25 三菱電機株式会社 Elevator vibration reduction device
US7503433B2 (en) * 2003-04-07 2009-03-17 Chiu Nan Wang Elevator
MY138827A (en) * 2004-02-02 2009-07-31 Inventio Ag Method for vibration damping at an elevator car
WO2007029331A1 (en) * 2005-09-09 2007-03-15 Mitsubishi Denki Kabushiki Kaisha Vibration reducing device for elevator
CN101528577B (en) * 2006-12-13 2011-09-07 三菱电机株式会社 Elevator device
EP2114811B1 (en) * 2006-12-20 2013-08-14 Otis Elevator Company Elevator damper assembly
DE102007025545A1 (en) * 2007-05-31 2008-12-04 TÜV Rheinland Industrie Service GmbH compensator
EP2280895B1 (en) * 2008-05-23 2018-12-05 ThyssenKrupp Elevator Corporation Active guiding and balance system for an elevator
CA2729021A1 (en) * 2008-07-03 2010-01-07 Rotary Lift, A Division Of Dover Industrial Products, Inc. Vehicle guidance system for automotive lifts
US8378254B2 (en) * 2009-09-11 2013-02-19 Honda Motor Co., Ltd. Adaptive vehicle manufacturing system and method
CN102933484B (en) * 2010-06-07 2015-06-10 三菱电机株式会社 Elevator cage
CN102167250A (en) * 2011-05-12 2011-08-31 南京信息工程大学 Large-sized lift car levelness keeping device and control method thereof
EP2864232A4 (en) 2012-06-20 2016-03-02 Otis Elevator Co Actively damping vertical oscillations of an elevator car
US10532908B2 (en) * 2015-12-04 2020-01-14 Otis Elevator Company Thrust and moment control system for controlling linear motor alignment in an elevator system
JP6591923B2 (en) * 2016-03-30 2019-10-16 株式会社日立製作所 Elevator equipment
US10144616B2 (en) 2016-06-10 2018-12-04 Otis Elevator Company Cab for vertical travel with controllable orientation for non-vertical travel
CN111217223B (en) * 2020-01-18 2021-09-03 北京联合通力电梯有限公司 Novel elevator roller guide shoe

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0525812A2 (en) * 1991-08-02 1993-02-03 Otis Elevator Company Elevator cab guidance assembly
EP0731051A1 (en) * 1995-03-10 1996-09-11 Inventio Ag Device and method for damping vibrations on an elevator cage

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4030570A (en) * 1975-12-10 1977-06-21 Westinghouse Electric Corporation Elevator system
DE3314335A1 (en) * 1983-04-20 1984-10-31 Tillmann 6108 Weiterstadt Freudenberg ENGINE MOUNT
FI884380A (en) * 1988-09-23 1990-03-24 Kone Oy FOERFARANDE OCH ANORDNING FOER DAEMPANDET AV VIBRATIONER I EN HISSKORG.
US5322144A (en) * 1990-07-18 1994-06-21 Otis Elevator Company Active control of elevator platform
US5308938A (en) * 1990-07-18 1994-05-03 Otis Elevator Company Elevator active suspension system
US5294757A (en) * 1990-07-18 1994-03-15 Otis Elevator Company Active vibration control system for an elevator, which reduces horizontal and rotational forces acting on the car
CA2072240C (en) * 1991-07-16 1998-05-05 Clement A. Skalski Elevator horizontal suspensions and controls
EP0673873B1 (en) * 1993-10-07 2000-03-08 Kabushiki Kaisha Toshiba Damping device for elevators
US5368132A (en) * 1993-11-03 1994-11-29 Otis Elevator Company Suspended elevator cab magnetic guidance to rails
US6364064B1 (en) * 2000-03-08 2002-04-02 Inventio Ag Piezoceramic elevator vibration attenuator

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0525812A2 (en) * 1991-08-02 1993-02-03 Otis Elevator Company Elevator cab guidance assembly
EP0731051A1 (en) * 1995-03-10 1996-09-11 Inventio Ag Device and method for damping vibrations on an elevator cage

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3000758A1 (en) * 2014-09-25 2016-03-30 Kone Corporation Method and elevator arrangement
CN105460751A (en) * 2014-09-25 2016-04-06 通力股份公司 Method and elevator arrangement
US9624073B2 (en) 2014-09-25 2017-04-18 Kone Corporation Method and elevator arrangement

Also Published As

Publication number Publication date
MY131485A (en) 2007-08-30
KR20030074217A (en) 2003-09-19
AU2003200817A1 (en) 2003-09-25
JP2003285980A (en) 2003-10-07
AU2003200817B2 (en) 2007-08-23
SG105570A1 (en) 2004-08-27
ATE350328T1 (en) 2007-01-15
HK1058511A1 (en) 2004-05-21
CN1443702A (en) 2003-09-24
DE50306148D1 (en) 2007-02-15
US6959787B2 (en) 2005-11-01
CA2421162A1 (en) 2003-09-07
BR0300432B1 (en) 2011-05-31
CN1201997C (en) 2005-05-18
EP1342691B1 (en) 2007-01-03
KR100935566B1 (en) 2010-01-07
BR0300432A (en) 2004-08-17
CA2421162C (en) 2010-11-09
JP4413505B2 (en) 2010-02-10
US20030226717A1 (en) 2003-12-11

Similar Documents

Publication Publication Date Title
EP1342691B1 (en) Device for attenuating vibrations on an elevator car
EP2183548A1 (en) Micromechanical rate-of-rotation sensor
DE3911341C1 (en)
DE69203688T2 (en) Improved elevator ride quality.
EP2022698B1 (en) Method and surveillance system for managing rail tracks
WO2003073038A1 (en) Probing head for co-ordinate measuring devices
EP0755894A1 (en) Method and apparatus for measuring the load in an elevator car
DE112007003699B4 (en) Door control device for a lift
DE112018007614T5 (en) Fluctuation amount estimation system and elevator device
EP0985989B1 (en) Method and device for improving the dynamic behaviour of a robot
DE3818179C2 (en)
DE3941685C2 (en)
WO1993004924A1 (en) Process and device for controlling the attitude of a three-axis stabilized, spinning spacecraft
EP0736439B1 (en) Running gear for railway vehicles
EP1412240B1 (en) Method and device for active radial control of wheel pairs or wheel sets on vehicles
EP1253346A1 (en) Device and method for a vibration isolating support for loads
DE2633647C2 (en) Magnetic levitation vehicle
DE102019129721B3 (en) Brake device system, test pendulum assembly for performing neck certifications, and method for operating a test pendulum assembly
DE69010277T2 (en) Control device for the vibration-free displacement of an optical element in a star interferometer and star interferometer, including one.
EP1288155A1 (en) Method and apparatus to determine the state of guide rails
DE69635281T2 (en) METHOD AND ARRANGEMENT FOR COMPENSATING VOLTAGE CHANGES IN OPTICAL FIBERS
DE19620439C2 (en) Process for damping mechanical vibrations
DE102006003068B3 (en) Motor vehicle structure level controlling method, involves adjusting actual motor angle depending on actual spring strut lengths by changing motor current such that difference to desired value of engine angle lies in given tolerance range
DE2300337A1 (en) DEVICE FOR WEIGHING RAIL VEHICLES
DE102011002262A1 (en) Measuring head for coordinate measuring apparatus measuring coordinates in large building room, has supplementary mechanical counterweight comprises spring element that is provided as spring bar, spring wire or rotary spring bar

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO

17P Request for examination filed

Effective date: 20040221

REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 1058511

Country of ref document: HK

AKX Designation fees paid

Designated state(s): AT CH DE FR GB LI

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT CH DE FR GB LI

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 50306148

Country of ref document: DE

Date of ref document: 20070215

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20070219

REG Reference to a national code

Ref country code: HK

Ref legal event code: GR

Ref document number: 1058511

Country of ref document: HK

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20071005

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20150219

Year of fee payment: 13

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 350328

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160219

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160219

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20180216

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20180223

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20190219

Year of fee payment: 17

Ref country code: GB

Payment date: 20190218

Year of fee payment: 17

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190228

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190228

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50306148

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20200219

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200219

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200901