EP1342691B1 - Device for attenuating vibrations on an elevator car - Google Patents

Device for attenuating vibrations on an elevator car Download PDF

Info

Publication number
EP1342691B1
EP1342691B1 EP03003724A EP03003724A EP1342691B1 EP 1342691 B1 EP1342691 B1 EP 1342691B1 EP 03003724 A EP03003724 A EP 03003724A EP 03003724 A EP03003724 A EP 03003724A EP 1342691 B1 EP1342691 B1 EP 1342691B1
Authority
EP
European Patent Office
Prior art keywords
frame
actuator
vibrations
acceleration sensors
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP03003724A
Other languages
German (de)
French (fr)
Other versions
EP1342691A1 (en
Inventor
Josef Husmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Inventio AG
Original Assignee
Inventio AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Inventio AG filed Critical Inventio AG
Priority to EP03003724A priority Critical patent/EP1342691B1/en
Publication of EP1342691A1 publication Critical patent/EP1342691A1/en
Application granted granted Critical
Publication of EP1342691B1 publication Critical patent/EP1342691B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B5/00Applications of checking, fault-correcting, or safety devices in elevators
    • B66B5/02Applications of checking, fault-correcting, or safety devices in elevators responsive to abnormal operating conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B7/00Other common features of elevators
    • B66B7/02Guideways; Guides
    • B66B7/04Riding means, e.g. Shoes, Rollers, between car and guiding means, e.g. rails, ropes
    • B66B7/046Rollers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B11/00Main component parts of lifts in, or associated with, buildings or other structures
    • B66B11/02Cages, i.e. cars
    • B66B11/026Attenuation system for shocks, vibrations, imbalance, e.g. passengers on the same side
    • B66B11/028Active systems

Definitions

  • the invention relates to a device for damping vibrations of a guided on guide rails by means of guide elements, a cab body frame, which measured transversely to the direction of vibrations of mounted on the frame acceleration sensors and used to control at least one arranged between the frame and guide elements actuator, the same time works with the occurring vibrations and opposite to the direction of the vibrations.
  • a disadvantage of this device is that the elevator car itself must have a rigid structure, so that the ride comfort can be ensured by the vibration control.
  • the invention aims to remedy this situation.
  • the invention as characterized in claim 1 solves the problem of avoiding the disadvantages of the known device and to propose a vibration control, which takes into account the elastic properties of the frame with the cabin body.
  • An elevator car (frame and cabin body) has a very elastic structure, especially in the horizontal direction.
  • the first structural resonance is in the 10 Hz range for elevator cabins with optimized frame rigidity and cabin isolation, and otherwise the structural resonance is even deeper.
  • the distance to the frequencies to be damped is very small and limits the effect of the active vibration damping, since it can not dampen the structural resonance itself. This becomes possible only when there is a sufficiently good measurement of the state of the cabin deformation, in particular of the phase position.
  • the largest elastic deformation is a shearing of a cabin frame 5 carrying a cabin frame in the x direction.
  • the frame consists of a lower yoke 1, an upper yoke 2, a first side plate 3 and a second side plate 4.
  • the upper yoke 2 is connected, for example, with a supporting cable, not shown, which is guided for example via a traction sheave.
  • guide elements are arranged, which guide the frame along arranged in the elevator shaft guide rails.
  • the signals of the acceleration sensors must be integrated twice, which is associated with drift or measurement errors.
  • the signal of the fiber gyro must be integrated once, which is also associated with drift or measurement errors.
  • the optical measuring device (laser) is quite expensive.
  • a spatial arrangement without interference is difficult.
  • DMS very small strains can be measured.
  • the Measurement of the Verschtation takes place directly, without the help of further sensors. DMS technique for measuring the displacement is promising.
  • lower yoke 1 and upper yoke 2 shift in parallel by an amount x.
  • a laser 11a is fixed, which preferably generates infrared light and emits a sharply focused beam 11d vertically downwards.
  • an optical prism 11b is fixed, which reflects the light beam 11d parallel and laterally offset upward. The displacement varies by twice the amount x of the frame's warp.
  • a photosensitive line sensor or a line camera 11c is mounted on the upper yoke 2.
  • the line camera 11c generates a signal which is proportional to the frame displacement x and which can be used in a control system to reduce the frame displacement.
  • the deformations on the lower bearings 6 and / or on the upper bearings 7 of the cab body 5 can be measured.
  • the measurement can be done in one, two or all three axes.
  • As an alternative to measuring the deformation of the bearings 6, 7 of the cab body 5 additional, arranged on the cab body 5 acceleration sensors are possible.
  • the number of necessary acceleration sensors is equal to the number of additional degrees of freedom that need to be controlled.
  • the bearings 6, 7 are suitable locations for arranging the actuators.
  • the actuators can be arranged in parallel or in series with the elastic bearings 6, 7 designed as vibration isolation or completely replace them, these actuators being in one, two or in all three Axes can act.
  • Very well suited for this purpose are the so-called active engine mounts as they are used in motor vehicles for mounting the engine.
  • US Pat. No. 4,699,348 discloses an active motor bearing which consists of a passive rubber spring and an electromagnetic actuator.
  • the main purpose of the actuator is to dampen the low-frequency resonant vibrations, while the soft rubber spring with low damping acts as good vibration isolation in the higher-frequency range.
  • the control system for damping the shearing motion of the frame shown in FIG. 3 consists of the main components controller and controlled system, which is composed of the actuator or the actuators, the frame with cabin body and the sensor or the acceleration sensors.
  • the sensor signal y is proportional to the frame shift. It is subtracted in a summing unit from the setpoint u, which is normally 0. This results in the control error e.
  • This is processed in the controller and generates a control signal m. In the simplest case, it is a proportional controller, but much more complex controller functions are possible.
  • the actuator consists for example of four active actuators mentioned above. These generate actuating forces between guide rollers or guide rails and cab frames.
  • the controller is designed so that the greatest gain is at the first natural frequency, for example 10 Hz, of the frame with the cab body.
  • the controller has a bandpass characteristic, where the gain approaches zero at very low and high frequencies, so that no static forces can build up that could cause the frame and cab body to rotate.
  • the active actuators are actuated by the actuating signal m in such a way that actuating forces F1, F3, F5, F7 arise, which counteract the frame displacement.
  • the control signal m is first forwarded to a respective active actuator A1, A3, A5, A7 provided current amplifier V1, V3, V5, V7, which in turn feeds the active actuator A1, A3, A5, A7.
  • the individual current functions I (m) must be selected in accordance with the signal flow scheme shown in FIG. 4, wherein the current I1, I3, I5, I7 in the active actuator A1, A3, A5, A7 the normally proportional to the current force F1, F3, F5 , F7 generated.

Landscapes

  • Engineering & Computer Science (AREA)
  • Civil Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Structural Engineering (AREA)
  • Cage And Drive Apparatuses For Elevators (AREA)
  • Lift-Guide Devices, And Elevator Ropes And Cables (AREA)
  • Elevator Control (AREA)

Abstract

The device uses accelerations measured by sensors (ac1-ac8) mounted on the frame (1-4) carrying the cabin body (5) to regulate at least one actuator between the frame and guide elements operating simultaneously with and opposite to the direction of the vibrations. A regulator is provided with which the shearing movements of the frame can be measured and regulated depending on the measurement signals.

Description

Die Erfindung betrifft eine Einrichtung zur Dämpfung von Schwingungen eines an Führungsschienen mittels Führungselementen geführten, einen Kabinenkörper tragenden Rahmens, wobei quer zur Fahrtrichtung auftretende Schwingungen von am Rahmen angebrachten Beschleunigungssensoren gemessen und zur Regelung von mindestens einem zwischen Rahmen und Führungselementen angeordneten Aktuator verwendet werden, der gleichzeitig mit den auftretenden Schwingungen und entgegengesetzt zur Richtung der Schwingungen arbeitet.The invention relates to a device for damping vibrations of a guided on guide rails by means of guide elements, a cab body frame, which measured transversely to the direction of vibrations of mounted on the frame acceleration sensors and used to control at least one arranged between the frame and guide elements actuator, the same time works with the occurring vibrations and opposite to the direction of the vibrations.

Aus der Patentschrift EP 0 731 051 B1 ist ein Verfahren und eine Einrichtung bekannt geworden, bei dem bzw. bei der zur Reduktion von Schwingungen einer an Schienen geführten Aufzugskabine quer zur Fahrtrichtung auftretende Schwingungen durch eine im hohen Frequenzbereich arbeitende Regelung reduziert werden, sodass die Schwingungen in der Kabine nicht mehr spürbar sind. Zur Erfassung der Messwerte werden am Kabinenrahmen Trägheitssensoren angebracht. Ein im tiefen Frequenzbereich arbeitender Positionsregler führt die Kabine bei einseitiger Schieflage gegenüber den Schienen selbsttätig in eine Mittelstellung nach, sodass immer ein ausreichender Dämpfungsweg zur Verfügung steht. Positionssensoren liefern die Messwerte an den Positionsregler. Aktuatoren sind mit Linearmotoren zur Verstellung der Rollen versehen. Pro Rollenführung regelt ein erster Linearmotor zwei seitliche Rollen, ein zweiter Linearmotor regelt die mittlere Rolle. Der apparative Aufwand zur Durchführung des Verfahrens ist gering, da beide Regelkreise zu einer gemeinsamen Regelung zusammengefasst werden und auf einen Aktuator wirken.From patent specification EP 0 731 051 B1 a method and a device have become known in which vibrations occurring in order to reduce vibrations of an elevator car guided on rails transversely to the direction of travel are reduced by a control operating in the high frequency range, so that the vibrations in the cabin are no longer noticeable. To record the measured values, inertial sensors are attached to the cabin frame. A positioner operating in the low frequency range automatically guides the cab to a central position in the event of a one-sided imbalance with respect to the rails, so that there is always sufficient damping travel available. Position sensors supply the measured values to the position controller. Actuators are equipped with linear motors for adjusting the rollers. For each roller guide a first linear motor controls two lateral rollers, a second linear motor controls the middle roller. The equipment required to carry out the process is low because both control loops are combined into a common control and act on an actuator.

Nachteilig bei dieser Einrichtung ist, dass die Aufzugskabine selbst eine steife Struktur aufweisen muss, damit der Fahrkomfort durch die Schwingungsregelung gewährleistet werden kann.A disadvantage of this device is that the elevator car itself must have a rigid structure, so that the ride comfort can be ensured by the vibration control.

Hier will die Erfindung Abhilfe schaffen. Die Erfindung, wie sie in Anspruch 1 gekennzeichnet ist, löst die Aufgabe, die Nachteile der bekannten Einrichtung zu vermeiden und eine Schwingungsregelung vorzuschlagen, die die elastischen Eigenschaften des Rahmens mit dem Kabinenkörper berücksichtigt.The invention aims to remedy this situation. The invention, as characterized in claim 1 solves the problem of avoiding the disadvantages of the known device and to propose a vibration control, which takes into account the elastic properties of the frame with the cabin body.

Vorteilhafte Weiterbildungen der Erfindung sind in den abhängigen Patentansprüchen angegeben.Advantageous developments of the invention are specified in the dependent claims.

Eine Aufzugskabine (Rahmen und Kabinenkörper) hat insbesondere in Horizontalrichtung eine sehr elastische Struktur. Typischerweise liegt die erste Strukturresonanz im Bereich von 10 Hz bei Aufzugskabinen mit optimierter Steifigkeit des Rahmens und der Kabinenisolation, und sonst liegt die Strukturresonanz noch tiefer. Der Abstand zu den zu dämpfenden Frequenzen ist sehr gering und limitiert die Wirkung der aktiven Schwingungsdämpfung, da sie die Strukturresonanz selbst nicht dämpfen kann. Dies wird erst möglich, wenn eine genügend gute Messung des Zustandes der Kabinendeformation, insbesondere der Phasenlage vorliegt.An elevator car (frame and cabin body) has a very elastic structure, especially in the horizontal direction. Typically, the first structural resonance is in the 10 Hz range for elevator cabins with optimized frame rigidity and cabin isolation, and otherwise the structural resonance is even deeper. The distance to the frequencies to be damped is very small and limits the effect of the active vibration damping, since it can not dampen the structural resonance itself. This becomes possible only when there is a sufficiently good measurement of the state of the cabin deformation, in particular of the phase position.

Prinzipiell ist es besser die Aufzugskabine (Rahmen und Kabinenkörper) sehr steif zu bauen, so dass sie sich im wesentlichen wie ein starrer Körper verhält. Es sind dann keine Messungen der elastischen Verformung notwendig. Dieses Ziel ist jedoch nur bei neuen Aufzugskabinen für hohe Gebäude erreichbar.In principle, it is better to build the elevator car (frame and cabin body) very rigid, so that it behaves essentially like a rigid body. There are then no measurements of the elastic deformation necessary. However, this goal can only be achieved with new elevator cabins for tall buildings.

Bestehende Aufzugskabinen (Rahmen und Kabinenkörper) können nur nachträglich versteift werden. Dies ist mit vernünftigem Aufwand nur in beschränktem Mass möglich. Ansonsten ist es sinnvoller eine neue Aufzugskabine (Rahmen und Kabinenkörper) steifer Bauart einzusetzen. Die Messung der Deformation erweitert den Anwendungsbereich der aktiven Schwingungsdämpfung auf strukturell weniger geeignete Aufzugskabinen, welche heutzutage das Gros aller Aufzugskabinen ausmachen.Existing elevator cars (frame and cabin body) can only be stiffened later. This is possible with reasonable effort only to a limited extent. Otherwise, it makes more sense to use a new elevator cab (frame and cab body) of rigid design. Deformation measurement extends the scope of active vibration damping to structurally less suitable elevator cars, which today make up the bulk of all elevator cars.

Anhand der beiliegenden Figuren wird die vorliegende Erfindung näher erläutert.Reference to the accompanying figures, the present invention will be explained in more detail.

Es zeigen:Show it:

  • Fig. 1
    eine schematische Darstellung der Anordnung der Sensoren einer Einrichtung zur Dämpfung von Scherbewegungen eines Kabinenrahmens mit einem Kabinenkörper,
    Fig. 1
    1 is a schematic representation of the arrangement of the sensors of a device for damping shearing movements of a cabin frame with a cabin body,
  • Fig. 2
    eine Messeinrichtung zur Messung der Scherbewegungen eines Kabinenrahmens mittels Laser,
    Fig. 2
    a measuring device for measuring the shearing movements of a cabin frame by means of laser,
  • Fig. 2a
    Einzelheiten der Messeinrichtung gemäss Fig. 2,
    Fig. 2a
    Details of the measuring device according to FIG. 2,
  • Fig. 3
    ein Regelsystem zur Dämpfung von Scherbewegungen,
    Fig. 3
    a control system for damping shear movements,
  • Fig. 4
    ein elektrischer Aktorteil des Regelsystems.
    Fig. 4
    an electric actuator part of the control system.

Die grösste elastische Deformation ist eine Verscherung eines einen Kabinenkörper 5 tragenden Kabinenrahmens in x-Richtung. Der Rahmen besteht aus einem unteren Joch 1, einem oberen Joch 2, einem ersten Seitenschild 3 und einem zweiten Seitenschild 4. Das obere Joch 2 ist beispielsweise mit einem nicht dargestellten Tragseil verbunden, das beispielsweise über eine Treibscheibe geführt ist. Am oberen Joch 2 bzw. am unteren Joch 1 sind Führungselemente angeordnet, die den Rahmen entlang von im Aufzugsschacht angeordneten Führungsschienen führen.The largest elastic deformation is a shearing of a cabin frame 5 carrying a cabin frame in the x direction. The frame consists of a lower yoke 1, an upper yoke 2, a first side plate 3 and a second side plate 4. The upper yoke 2 is connected, for example, with a supporting cable, not shown, which is guided for example via a traction sheave. At the upper yoke 2 and the lower yoke 1 guide elements are arranged, which guide the frame along arranged in the elevator shaft guide rails.

Bei der elastischen Deformation verschieben sich das untere Joch 1 und das obere Joch 2 parallel zueinander. Mit den quer zur Fahrtrichtung der aus Kabinenrahmen und Kabinenkörper 5 bestehenden Aufzugskabine messenden Beschleunigungssensoren ac1 bis ac8 des in der Beschreibungseinleitung gewürdigten Standes der Technik ist es nicht möglich diese Deformation zu messen, da keine Unterscheidung zwischen Rotation des Kabinenkörpers 5 um die y-Achse und Scherbewegung des Rahmens in x-Richtung möglich ist. Daher ist eine zusätzliche Messung notwendig. Mögliche Ausführungsvarianten zur Messung der Deformation sind:

  • 1. Zwei vertikal (in z-Richtung) ausgerichtete Beschleunigungssensoren 9a und 9b (oder 9c als Alternative zu 9b) mit grossem Achsabstand. Aus der Differenz der Sensorsignale wird die y-Rotation von unterem Joch 1 und oberem Joch 2 bestimmt. Zusammen mit den Signalen der Beschleunigungssensoren ac1 oder ac3 und ac5 oder ac7 kann die Scherbewegung des Rahmens bestimmt werden. Anstelle der vertikal gerichteten Beschleunigungssensoren 9a, 9b, 9c kann auch ein Sensor verwendet werden der die Drehrate genügend genau misst, beispielsweise ein Faserkreisel oder horizontal gerichtete Beschleunigungssensoren mit genügendem Achsabstand, die auf einem der beiden Joche 1,2 befestigt sind.
  • 2. Ein handelsüblicher Faserkreisel besteht aus einer Lichtquelle, deren Lichtstrahl einer Lichtleitfaser zugeführt wird. Der Lichtstrahl wird geteilt und läuft in je einer Richtung durch die einen Wickel bildende Lichtleitfaser. Dann werden die Teilstrahlen wieder zusammengeführt, wobei die Teilstrahlen interferieren. Falls sich der Faserwickel rotativ verdreht, muss der eine Teilstrahl etwas mehr Weg zurücklegen als der andere, was eine Phasenverschiebung und somit eine Änderung der Interferenzstärke bewirkt.
  • 3. Messung der Rahmendeformation mit Dehnmessstreifen DMS 10. Diese werden am ersten Seitenschild 3 oder am zweiten Seitenschild 4 an der Stelle mit der grössten Biegedeformation befestigt. Diese verhält sich proportional zur Scherbewegung des Rahmens.
  • 4. Messung der Scherbewegung des Rahmens mittels eines Lasers 11a, eines Reflektorprismas 11b und eines photoempfindlichen Zeilensensors 11c Eine Anordnung ohne Reflektorprisma ist möglich. Vorteile der Anordnung mit Reflektorprisma sind: Es ist keine genaue Ausrichtung notwendig, alle aktiven Komponenten sind auf einer Seite und es ergibt sich eine Verdoppelung der Messauflösung.
In the elastic deformation, the lower yoke 1 and the upper yoke 2 shift parallel to each other. With the acceleration sensors ac1 to ac8 of the prior art appreciated in the introduction to the description, it is not possible to measure this deformation, since there is no differentiation between rotation of the cabin body 5 about the y-axis and shearing movement with the acceleration sensors ac1 to ac8 measuring transversely to the direction of travel of the cabin frame and cabin body 5 of the frame in the x direction is possible. Therefore, an additional measurement is necessary. Possible variants for measuring the deformation are:
  • 1. Two vertically (in the z-direction) aligned acceleration sensors 9a and 9b (or 9c as an alternative to 9b) with a large center distance. From the difference of the sensor signals, the y-rotation of lower yoke 1 and upper yoke 2 is determined. Together with the signals of acceleration sensors ac1 or ac3 and ac5 or ac7, the shearing motion of the frame can be determined. Instead of the vertically oriented acceleration sensors 9a, 9b, 9c, it is also possible to use a sensor which measures the rotation rate with sufficient accuracy, for example a fiber gyro or horizontally oriented acceleration sensors with sufficient center distance, which are fastened on one of the two yokes 1, 2.
  • 2. A commercially available fiber gyro consists of a light source whose light beam is fed to an optical fiber. The light beam is split and runs in one direction through the one winding forming optical fiber. Then the partial beams are brought together again, the partial beams interfere. If the filament winding rotates rotationally, one partial beam must travel a little more distance than the other, which causes a phase shift and thus a change in the interference intensity.
  • 3. Measurement of the frame deformation with strain gauges DMS 10. These are attached to the first side shield 3 or to the second side shield 4 at the point with the greatest bending deformation. This is proportional to the shearing motion of the frame.
  • 4. Measurement of the shearing motion of the frame by means of a laser 11a, a reflector prism 11b and a photosensitive line sensor 11c An arrangement without a reflector prism is possible. Advantages of the arrangement with reflector prism are: No exact alignment is necessary, all active components are on one side and the measurement resolution doubles.

Zur Erzeugung einer Weginformation müssen die Signale der Beschleunigungssensoren zweimal integriert werden, was mit Drift bzw. Messfehlern verbunden ist. Zur Erzeugung einer Weginformation muss das Signal des Faserkreisels einmal integriert werden, was auch mit Drift bzw. Messfehlern verbunden ist. Die optische Messeinrichtung (Laser) ist ziemlich aufwendig. Zudem ist eine räumliche Anordnung ohne Störeinwirkungen schwierig. Mit modernen Dehnmesstreifen DMS können sehr kleine Dehnungen gemessen werden. Die Messung der Verscherung erfolgt direkt, ohne Hilfe von weiteren Sensoren. DMS Technik zur Messung der Verscherung ist erfolgversprechend anwendbar.To generate a path information, the signals of the acceleration sensors must be integrated twice, which is associated with drift or measurement errors. To generate a path information, the signal of the fiber gyro must be integrated once, which is also associated with drift or measurement errors. The optical measuring device (laser) is quite expensive. In addition, a spatial arrangement without interference is difficult. With modern strain gauges DMS very small strains can be measured. The Measurement of the Verscherung takes place directly, without the help of further sensors. DMS technique for measuring the displacement is promising.

Bei der Verscherung des Rahmens verschieben sich unteres Joch 1 und oberes Joch 2 parallel zueinander um einen Betrag x. Auf dem oberen Joch ist ein Laser 11a befestigt, der vorzugsweise Infrarotlicht erzeugt und einen scharf gebündelten Strahl 11d senkrecht nach unten abgibt. Auf dem unteren Joch 1 ist ein optisches Prisma 11b befestigt, welches den Lichtstrahl 11d parallel und seitlich versetzt nach oben reflektiert. Das Versetzungsmass ändert sich um den zweifachen Betrag x der Verscherung des Rahmens. Als Detektor ist auf dem oberen Joch 2 ein photoempfindlicher Zeilensensor oder eine Zeilenkamera 11c befestigt. Damit wird die horizontale Verschiebung des reflektierten Lichtstrahls 11d gemessen. Die Zeilenkamera 11c erzeugt ein Signal welches proportional zur Rahmenverscherung x ist und das in einem Regelsystem verwendet werden kann um die Rahmenverscherung zu reduzieren.When the frame is warped, lower yoke 1 and upper yoke 2 shift in parallel by an amount x. On the upper yoke, a laser 11a is fixed, which preferably generates infrared light and emits a sharply focused beam 11d vertically downwards. On the lower yoke 1, an optical prism 11b is fixed, which reflects the light beam 11d parallel and laterally offset upward. The displacement varies by twice the amount x of the frame's warp. As the detector, a photosensitive line sensor or a line camera 11c is mounted on the upper yoke 2. Thus, the horizontal displacement of the reflected light beam 11d is measured. The line camera 11c generates a signal which is proportional to the frame displacement x and which can be used in a control system to reduce the frame displacement.

Zur Verbesserung der Schwingungsdämpfung sind weitere Messungen der Rahmendeformation in y-Richtung möglich. Im allgemeinen ist das nicht notwendig, weil der Rahmen in y-Richtung sehr steif ist, doch muss das nicht immer der Fall sein. Ausserdem erlauben die bestehenden Beschleunigungssensoren ac2, ac4, ac6 und ac8 bereits eine Messung der Verwindung des Rahmen um die Hochachse (z-Achse).To improve the vibration damping further measurements of the frame deformation in the y-direction are possible. In general, this is not necessary because the frame is very stiff in the y-direction, but this need not always be the case. In addition, the existing acceleration sensors ac2, ac4, ac6 and ac8 already allow a measurement of the distortion of the frame about the vertical axis (z-axis).

Zusätzlich können die Deformationen an den unteren Lagern 6 und/oder an den oberen Lagern 7 des Kabinenkörpers 5 gemessen werden. Die Messung kann in einer, zwei oder allen drei Achsen erfolgen. Dazu sind Abstands- oder Positionssensoren mit Magnetfeldmessung oder induktiven oder kapazitiven Messprinzipien geeignet.
Als Alternative zur Messung der Deformation an den Lagern 6, 7 des Kabinenkörpers 5 sind zusätzliche, am Kabinenkörper 5 angeordnete Beschleunigungssensoren möglich. Die Zahl der notwendigen Beschleunigungssensoren ist dabei gleich der Anzahl der zusätzlichen Freiheitsgrade die geregelt werden müssen.
In addition, the deformations on the lower bearings 6 and / or on the upper bearings 7 of the cab body 5 can be measured. The measurement can be done in one, two or all three axes. These are distance or position sensors with magnetic field measurement or inductive or capacitive measuring principles suitable.
As an alternative to measuring the deformation of the bearings 6, 7 of the cab body 5 additional, arranged on the cab body 5 acceleration sensors are possible. The number of necessary acceleration sensors is equal to the number of additional degrees of freedom that need to be controlled.

Mit den Aktoren die auf die Führungselemente wirken, können nicht alle Strukturresonanzen, die am Kabinenkörper auftreten gedämpft werden, selbst wenn genügend gute Messungen vorhanden sind. Falls notwendig, können dazu weitere Aktoren eingesetzt werden. Gut geeignete Orte zur Anordnung der Aktoren sind die Lager 6, 7. Die Aktoren können parallel oder in Serie zu den elastischen, als Schwingungsisolation ausgebildeten Lagern 6, 7 angeordnet werden oder diese vollständig ersetzen, wobei diese Aktoren in einer, zwei oder in allen drei Achsen wirken können. Sehr gut für diesen Zweck geeignet sind die sogenannten aktiven Motorenlager wie sie bei Kraftfahrzeugen zur Lagerung des Motors eingesetzt werden.With the actuators acting on the guide elements, not all structural resonances that occur on the cabin body can be attenuated, even if sufficiently good measurements are available. If necessary, additional actuators can be used for this purpose. The bearings 6, 7 are suitable locations for arranging the actuators. The actuators can be arranged in parallel or in series with the elastic bearings 6, 7 designed as vibration isolation or completely replace them, these actuators being in one, two or in all three Axes can act. Very well suited for this purpose are the so-called active engine mounts as they are used in motor vehicles for mounting the engine.

Beispielsweise offenbart die Patentschrift US 4 699 348 ein aktives Motorenlager, welches aus einer passiven Gummifeder und einem elektromagnetischem Aktor besteht. Der Aktor soll hauptsächlich die tiefrequenten Resonanzschwingungen dämpfen, während die weiche Gummifeder mit geringer Dämpfung als gute Schwingungsisolation im höherfrequenten Bereich wirkt.For example, US Pat. No. 4,699,348 discloses an active motor bearing which consists of a passive rubber spring and an electromagnetic actuator. The main purpose of the actuator is to dampen the low-frequency resonant vibrations, while the soft rubber spring with low damping acts as good vibration isolation in the higher-frequency range.

Das in Fig. 3 gezeigte Regelsystem zur Dämpfung der Scherbewegung des Rahmens besteht aus den Hauptkomponenten Regler und Regelstrecke, welche aus dem Aktor bzw. der Aktoren, dem Rahmen mit Kabinenkörper und dem Sensor bzw. der Beschleunigungssensoren zusammengesetzt ist.The control system for damping the shearing motion of the frame shown in FIG. 3 consists of the main components controller and controlled system, which is composed of the actuator or the actuators, the frame with cabin body and the sensor or the acceleration sensors.

Auf den Rahmen und den Kabinenkörper wirkende Störkräfte z, welche durch die Rahmenführung, den Fahrtwind und durch die Seile verursacht werden, bewirken unter anderem eine Verscherung x des Kabinenrahmens. Das Sensorsignal y verhält sich proportional zur Rahmenverscherung. Es wird in einer Summiereinheit vom Sollwert u, der im Normalfall 0 beträgt, subtrahiert. Daraus resultiert der Regelfehler e. Dieser wird im Regler verarbeitet und ein Stellsignal m erzeugt. Im einfachsten Fall handelt es sich um einen proportionalen Regler, es sind jedoch wesentlich komplexere Reglerfunktionen möglich. Der Aktor besteht beispielsweise aus vier, oben genannten aktiven Aktoren. Diese erzeugen Stellkräfte zwischen Führungsrollen bzw. Führungsschienen und Kabinenrahmen.On the frame and the cabin body acting disturbing forces z, which are caused by the frame guide, the airstream and by the ropes, among other things cause a Verscherung x of the cabin frame. The sensor signal y is proportional to the frame shift. It is subtracted in a summing unit from the setpoint u, which is normally 0. This results in the control error e. This is processed in the controller and generates a control signal m. In the simplest case, it is a proportional controller, but much more complex controller functions are possible. The actuator consists for example of four active actuators mentioned above. These generate actuating forces between guide rollers or guide rails and cab frames.

Der Regler ist so ausgelegt, dass die grösste Verstärkung bei der ersten Eigenfrequenz, beispielsweise 10 Hz, des Rahmens mit dem Kabinenkörper liegt. Der Regler hat eine Bandpasscharakteristik, bei der die Verstärkung bei sehr tiefen und hohen Frequenzen gegen Null geht, damit keine statischen Kräfte aufgebaut werden können, die den Rahmen und den Kabinenkörper zum Rotieren bringen könnten.The controller is designed so that the greatest gain is at the first natural frequency, for example 10 Hz, of the frame with the cab body. The controller has a bandpass characteristic, where the gain approaches zero at very low and high frequencies, so that no static forces can build up that could cause the frame and cab body to rotate.

Gemäss Fig. 4 werden die aktiven Aktoren vom Stellsignal m so angesteuert, dass Stellkräfte F1,F3,F5,F7 entstehen, welche der Rahmenverscherung entgegenwirken. Das Stellsignal m wird zuerst an einen je aktiver Aktor A1,A3,A5,A7 vorgesehenen Stromverstärker V1,V3,V5,V7 weitergeleitet, welcher dann wiederum den aktiven Aktor A1,A3,A5,A7 speist. Die einzelnen Stromfunktionen I(m) müssen gemäss dem in Fig. 4 gezeigten Signalflussschema gewählt werden, wobei der Strom I1, I3, I5, I7 im aktiven Aktor A1,A3,A5,A7 die normalerweise zum Strom proportionale Stellkraft F1,F3,F5,F7 erzeugt.According to FIG. 4, the active actuators are actuated by the actuating signal m in such a way that actuating forces F1, F3, F5, F7 arise, which counteract the frame displacement. The control signal m is first forwarded to a respective active actuator A1, A3, A5, A7 provided current amplifier V1, V3, V5, V7, which in turn feeds the active actuator A1, A3, A5, A7. The individual current functions I (m) must be selected in accordance with the signal flow scheme shown in FIG. 4, wherein the current I1, I3, I5, I7 in the active actuator A1, A3, A5, A7 the normally proportional to the current force F1, F3, F5 , F7 generated.

Claims (6)

  1. Device for attenuating vibrations of a frame (1,2,3,4) that carries a car body (5) and is guided by means of guide elements on guiderails, with:
    acceleration sensors (ac1 to ac8) that can be fastened to the frame (1,2,3,4) and measure, and emit as signals, vibrations that occur perpendicular to the direction of travel;
    at least one actuator to be arranged between the frame (1,2,3,4) and the guide elements;
    the signals of the acceleration sensors (ac1 to ac8) being used for regulation of the actuator which acts simultaneous with the occurrence of the vibrations and
    in the opposite direction to the vibrations,
    characterized in that
    at least one additional sensor (9a, 9b, 9c, 10, 11a, 11b, 11c) can be mounted on the frame for the purpose of measuring the elastic deformation of the frame (1,2,3,4) and emits this as sensor signal, and that depending on the sensor signal or depending on the sensor signal and the signals of the acceleration sensors a control device regulates a shear movement of the frame by means of an actuating signal (m) to the actuator.
  2. Device according to Claim 1,
    characterized in that
    the additional sensor consists of acceleration sensors (9a, 9b, 9c).
  3. Device according to Claim 1,
    characterized in that
    the additional sensor consists of wire resistance strain gages.
  4. Device according to Claim 1,
    characterized in that
    the additional sensor is a fiber optic gyro.
  5. Device according to Claim 1,
    characterized in that
    the additional sensor is a laser arrangement with a laser (11a), a prism (11b) that reflects a laser beam, and a line sensor (11c).
  6. Device according to one of the foregoing claims,
    characterized in that
    by means of the control unit the actuating signal (m) can be generated and that for each actuator (A1, A3, A5, A7), a current amplifier (V1, V3, V5, V7) is provided which feeds the actuator (A1, A3, A5, A7) depending on a current function I(m), the current (I1, 13, 15, 17) generating an actuating force (F1, F3, F5, F7) in the actuator (A1, A3, A5, A7).
EP03003724A 2002-03-07 2003-02-19 Device for attenuating vibrations on an elevator car Expired - Lifetime EP1342691B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP03003724A EP1342691B1 (en) 2002-03-07 2003-02-19 Device for attenuating vibrations on an elevator car

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP02405174 2002-03-07
EP02405174 2002-03-07
EP03003724A EP1342691B1 (en) 2002-03-07 2003-02-19 Device for attenuating vibrations on an elevator car

Publications (2)

Publication Number Publication Date
EP1342691A1 EP1342691A1 (en) 2003-09-10
EP1342691B1 true EP1342691B1 (en) 2007-01-03

Family

ID=27838192

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03003724A Expired - Lifetime EP1342691B1 (en) 2002-03-07 2003-02-19 Device for attenuating vibrations on an elevator car

Country Status (13)

Country Link
US (1) US6959787B2 (en)
EP (1) EP1342691B1 (en)
JP (1) JP4413505B2 (en)
KR (1) KR100935566B1 (en)
CN (1) CN1201997C (en)
AT (1) ATE350328T1 (en)
AU (1) AU2003200817B2 (en)
BR (1) BR0300432B1 (en)
CA (1) CA2421162C (en)
DE (1) DE50306148D1 (en)
HK (1) HK1058511A1 (en)
MY (1) MY131485A (en)
SG (1) SG105570A1 (en)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6786304B2 (en) * 2001-04-10 2004-09-07 Mitsubishi Denki Kabushiki Kaisha Guide for elevator
JP4107480B2 (en) * 2002-07-29 2008-06-25 三菱電機株式会社 Elevator vibration reduction device
US7503433B2 (en) * 2003-04-07 2009-03-17 Chiu Nan Wang Elevator
MY138827A (en) * 2004-02-02 2009-07-31 Inventio Ag Method for vibration damping at an elevator car
WO2007029331A1 (en) * 2005-09-09 2007-03-15 Mitsubishi Denki Kabushiki Kaisha Vibration reducing device for elevator
CN101528577B (en) * 2006-12-13 2011-09-07 三菱电机株式会社 Elevator device
EP2114811B1 (en) * 2006-12-20 2013-08-14 Otis Elevator Company Elevator damper assembly
DE102007025545A1 (en) * 2007-05-31 2008-12-04 TÜV Rheinland Industrie Service GmbH compensator
EP2280895B1 (en) * 2008-05-23 2018-12-05 ThyssenKrupp Elevator Corporation Active guiding and balance system for an elevator
CA2729021A1 (en) * 2008-07-03 2010-01-07 Rotary Lift, A Division Of Dover Industrial Products, Inc. Vehicle guidance system for automotive lifts
US8378254B2 (en) * 2009-09-11 2013-02-19 Honda Motor Co., Ltd. Adaptive vehicle manufacturing system and method
CN102933484B (en) * 2010-06-07 2015-06-10 三菱电机株式会社 Elevator cage
CN102167250A (en) * 2011-05-12 2011-08-31 南京信息工程大学 Large-sized lift car levelness keeping device and control method thereof
EP2864232A4 (en) 2012-06-20 2016-03-02 Otis Elevator Co Actively damping vertical oscillations of an elevator car
EP3000758B1 (en) * 2014-09-25 2019-04-17 KONE Corporation Method for balancing an elevator car
US10532908B2 (en) * 2015-12-04 2020-01-14 Otis Elevator Company Thrust and moment control system for controlling linear motor alignment in an elevator system
JP6591923B2 (en) * 2016-03-30 2019-10-16 株式会社日立製作所 Elevator equipment
US10144616B2 (en) 2016-06-10 2018-12-04 Otis Elevator Company Cab for vertical travel with controllable orientation for non-vertical travel
CN111217223B (en) * 2020-01-18 2021-09-03 北京联合通力电梯有限公司 Novel elevator roller guide shoe

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4030570A (en) * 1975-12-10 1977-06-21 Westinghouse Electric Corporation Elevator system
DE3314335A1 (en) * 1983-04-20 1984-10-31 Tillmann 6108 Weiterstadt Freudenberg ENGINE MOUNT
FI884380A (en) * 1988-09-23 1990-03-24 Kone Oy FOERFARANDE OCH ANORDNING FOER DAEMPANDET AV VIBRATIONER I EN HISSKORG.
US5322144A (en) * 1990-07-18 1994-06-21 Otis Elevator Company Active control of elevator platform
US5308938A (en) * 1990-07-18 1994-05-03 Otis Elevator Company Elevator active suspension system
US5294757A (en) * 1990-07-18 1994-03-15 Otis Elevator Company Active vibration control system for an elevator, which reduces horizontal and rotational forces acting on the car
CA2072240C (en) * 1991-07-16 1998-05-05 Clement A. Skalski Elevator horizontal suspensions and controls
US5117946A (en) * 1991-08-02 1992-06-02 Otis Elevator Company Elevator cab guidance assembly
EP0673873B1 (en) * 1993-10-07 2000-03-08 Kabushiki Kaisha Toshiba Damping device for elevators
US5368132A (en) * 1993-11-03 1994-11-29 Otis Elevator Company Suspended elevator cab magnetic guidance to rails
ATE201380T1 (en) * 1995-03-10 2001-06-15 Inventio Ag DEVICE AND METHOD FOR VIBRATION DAMPING ON AN ELEVATOR CABIN
US6364064B1 (en) * 2000-03-08 2002-04-02 Inventio Ag Piezoceramic elevator vibration attenuator

Also Published As

Publication number Publication date
MY131485A (en) 2007-08-30
KR20030074217A (en) 2003-09-19
AU2003200817A1 (en) 2003-09-25
JP2003285980A (en) 2003-10-07
AU2003200817B2 (en) 2007-08-23
SG105570A1 (en) 2004-08-27
ATE350328T1 (en) 2007-01-15
HK1058511A1 (en) 2004-05-21
CN1443702A (en) 2003-09-24
DE50306148D1 (en) 2007-02-15
US6959787B2 (en) 2005-11-01
CA2421162A1 (en) 2003-09-07
BR0300432B1 (en) 2011-05-31
CN1201997C (en) 2005-05-18
EP1342691A1 (en) 2003-09-10
KR100935566B1 (en) 2010-01-07
BR0300432A (en) 2004-08-17
CA2421162C (en) 2010-11-09
JP4413505B2 (en) 2010-02-10
US20030226717A1 (en) 2003-12-11

Similar Documents

Publication Publication Date Title
EP1342691B1 (en) Device for attenuating vibrations on an elevator car
DE69205744T2 (en) Horizontal elevator suspension with control.
EP0360976B1 (en) Coordinate-measuring device
EP0755894A1 (en) Method and apparatus for measuring the load in an elevator car
DE4311521C1 (en) Support against unsteadiness in rail vehicle - has cross inclination control with length-alterable, adjustable connecting piece controlled by drive component
DE112007003699B4 (en) Door control device for a lift
DE3818179C2 (en)
DE3941685C2 (en)
EP0736439B1 (en) Running gear for railway vehicles
DE102019129721B3 (en) Brake device system, test pendulum assembly for performing neck certifications, and method for operating a test pendulum assembly
DE2633647C2 (en) Magnetic levitation vehicle
EP0720556B1 (en) Process for transversely stabilising railway vehicles with track -curvature-dependent vehicle body control
EP2014600B1 (en) Compensation device
DE102017118507A1 (en) Elevator installation and method for operating an elevator installation
DE69635281T2 (en) METHOD AND ARRANGEMENT FOR COMPENSATING VOLTAGE CHANGES IN OPTICAL FIBERS
DE102006003068B3 (en) Motor vehicle structure level controlling method, involves adjusting actual motor angle depending on actual spring strut lengths by changing motor current such that difference to desired value of engine angle lies in given tolerance range
AT526092B1 (en) Cable car with limiting device
DE102011002262A1 (en) Measuring head for coordinate measuring apparatus measuring coordinates in large building room, has supplementary mechanical counterweight comprises spring element that is provided as spring bar, spring wire or rotary spring bar
EP2643657B1 (en) Counterbalance for a coordinate measuring machine
EP1547956B1 (en) Device and method for reducing vibration in an elevator cabin
DE102023100019A1 (en) Elevator device with drive-based implemented traction mechanism vibration damping as well as corresponding method and use
DE102022211982A1 (en) Apparatus and method for testing elongated test specimens
EP0469478A1 (en) Device for the load dependent brake pressure control on the axles of a tandem axle bogie of a vehicle

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO

17P Request for examination filed

Effective date: 20040221

REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 1058511

Country of ref document: HK

AKX Designation fees paid

Designated state(s): AT CH DE FR GB LI

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT CH DE FR GB LI

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 50306148

Country of ref document: DE

Date of ref document: 20070215

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20070219

REG Reference to a national code

Ref country code: HK

Ref legal event code: GR

Ref document number: 1058511

Country of ref document: HK

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20071005

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20150219

Year of fee payment: 13

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 350328

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160219

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160219

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20180216

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20180223

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20190219

Year of fee payment: 17

Ref country code: GB

Payment date: 20190218

Year of fee payment: 17

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190228

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190228

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50306148

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20200219

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200219

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200901