EP1342032B1 - Procede de destruction et/ou d'inertage de dechets - Google Patents

Procede de destruction et/ou d'inertage de dechets Download PDF

Info

Publication number
EP1342032B1
EP1342032B1 EP01270196A EP01270196A EP1342032B1 EP 1342032 B1 EP1342032 B1 EP 1342032B1 EP 01270196 A EP01270196 A EP 01270196A EP 01270196 A EP01270196 A EP 01270196A EP 1342032 B1 EP1342032 B1 EP 1342032B1
Authority
EP
European Patent Office
Prior art keywords
waste
reactor
phase
glass
order
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP01270196A
Other languages
German (de)
English (en)
Other versions
EP1342032A1 (fr
Inventor
Pierre Jeanvoine
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saint Gobain Glass France SAS
Compagnie de Saint Gobain SA
Original Assignee
Saint Gobain Glass France SAS
Compagnie de Saint Gobain SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saint Gobain Glass France SAS, Compagnie de Saint Gobain SA filed Critical Saint Gobain Glass France SAS
Publication of EP1342032A1 publication Critical patent/EP1342032A1/fr
Application granted granted Critical
Publication of EP1342032B1 publication Critical patent/EP1342032B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G7/00Incinerators or other apparatus for consuming industrial waste, e.g. chemicals
    • F23G7/14Incinerators or other apparatus for consuming industrial waste, e.g. chemicals of contaminated soil, e.g. by oil
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/02Incineration of waste; Incinerator constructions; Details, accessories or control therefor with pretreatment
    • F23G5/033Incineration of waste; Incinerator constructions; Details, accessories or control therefor with pretreatment comminuting or crushing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G7/00Incinerators or other apparatus for consuming industrial waste, e.g. chemicals
    • F23G7/10Incinerators or other apparatus for consuming industrial waste, e.g. chemicals of field or garden waste or biomasses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2202/00Combustion
    • F23G2202/20Combustion to temperatures melting waste
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2205/00Waste feed arrangements
    • F23G2205/12Waste feed arrangements using conveyors
    • F23G2205/121Screw conveyor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2205/00Waste feed arrangements
    • F23G2205/12Waste feed arrangements using conveyors
    • F23G2205/122Belt conveyor

Definitions

  • the invention relates to a process for treating waste, in particular industrial, agro-food and biological waste, in order to destroy them or at least to render them inert and harmless to the environment.
  • vitrification technique It is also known to vitrify the waste for example WO96 / 11359, that is to say to introduce them into a composition vitrifiable materials brought to their melting temperature. Although the vitrification technique appears to be very reliable, it is rather greedy in consumption of vitrifiable raw materials and in energy consumption.
  • the object of the invention is then to overcome these various disadvantages, by proposing a waste treatment process that is both high reliability and economically viable.
  • the invention firstly relates to a process for destroying and / or inerting waste, in particular industrial, biological or agro-food waste, such as is used to implement a reactor equipped with heating comprising at least one submerged burner.
  • a reactor equipped with heating comprising at least one submerged burner.
  • the waste to be treated is introduced in this phase, so that any organic components are decomposed by combustion and / or their possible mineral components are melted or coated in this phase.
  • the reactor is withdrawn from said phase loaded molten / coated waste and / or combustion products of said waste ash.
  • submerged burners is understood to mean burners configured so that the "flames” they generate or the combustion gases produced by these flames develop in the reactor where the combustion process takes place. conversion, within the mass of materials being processed. Generally, they are arranged so as to flush or protrude slightly from the side walls or the hearth of the reactor used (we are talking here about flames, even if it is not strictly speaking the same "flames" as those produced by overhead burners for simplicity).
  • the term "materials at least partly vitrifiable” includes all the conventional raw materials used to produce glass, silicates such as sodium silicate and / or calcium silicate, but also phosphates of sodium. alkali and / or alkaline earth metal, alkali and / or alkaline earth aluminates or any combination of at least two of these compounds. It may be, in particular, any material which by heat treatment leads to a material at least partly glassy, which can be partially or totally ceramized.
  • inerting is understood to mean the operation of rendering the waste inert. It may be either to destroy them entirely by combustion, or to keep them in an intact form or more or less degraded, but inert / harmless. It is then, in fact, to neutralize them in the broad sense (not in the restrictive sense of a chemical reaction).
  • a subsidiary advantage of this type of heating means is that it is possible to introduce the raw materials to melt directly within this liquid / foamy phase, which avoids the formation of dust from the fines of the raw materials, and the dispersion of these in the fumes emitted by the oven.
  • the waste to be treated may be inorganic, organic, or combine mineral components and organic components.
  • the composition of the waste can be optimized, in particular by associating waste of different natures, in order to reduce the cost of the raw materials and / or the energy cost of the process.
  • mineral wastes containing materials capable of melting at more than 800 ° C, such as foundry sands, polluted cullet can be introduced into the reactor both to trap / destroy their pollutant components and to provide a portion of the vitrifiable material required for the process.
  • organic waste or partly organic, they can be used as fuel for the burner (s) immersed (s): because of the convective mixing mentioned above, they are renewed continuously near the submerged burners until complete combustion. This reduces or even completely stops the fuel gas supply of the burners, with a substantial energy gain. The degradation of the organic molecules can thus be complete, until decomposition into carbon dioxide and water. The combustion ashes are trapped in the liquid / foamy phase.
  • This at least partly organic waste can therefore provide part, or most or most or all the fuel required for the burner (s) immersed (s). It is therefore possible to use directly in the reactor the combustible power of the waste, whatever the level of it.
  • a great innovation in the invention is to be able to adjust the operation of the heating means used, the submerged burners, depending on the type and quantity of waste to be destroyed / inerter, (the invention however includes variants where the means of heating combine submerged burners and more conventional means, such as overhead burners).
  • the means of heating combine submerged burners and more conventional means, such as overhead burners.
  • the process according to the invention can be carried out discontinuously, but it preferably operates continuously.
  • the waste and vitrifiable materials can be introduced continuously into the reactor, in particular by adjusting their respective contents in order to obtain a complete immersion of the waste and of their possible decomposition products in the liquid / foamy phase of the reactor. This control of the quantities introduced can be done automatically.
  • waste and / or vitrifiable materials are introduced under the level of the liquid / foamy phase of the reactor, in order to avoid or to limit as much as possible the flights of waste / fines.
  • the gaseous effluents optionally containing particles that are emitted into the reactor are evacuated, channeled in order to subject them, if necessary, all the appropriate filtration / depollution treatments.
  • These fumes can then be directed to heat recovery units in order to be thermally exhausted or countercurrent to one of the reactor feed streams, the heat thus returned can for example be used to preheat waste and / or materials. vitrifiable.
  • waste and / or vitrifiable materials that are in solid form can be crushed / crushed before being introduced into the reactor, in particular in order to reduce them to suitably sized aggregates.
  • the completion of the process consists in withdrawing from the reactor the phase charged with waste / waste decomposition products, which, once solidified, can be converted into granules.
  • vitrification in particular to constitute cullet or silicate (sodium or calcium silicate in particular), to make flat glass (glazing), hollow glass (bottle, flasks), mineral wool of insulation (glass wool, rockwool), or textile fiberglass, reinforcement.
  • cullet or silicate sodium or calcium silicate in particular
  • vitrifiat therefore depends closely on its composition. The important thing is that it complies with the standards in force.
  • the lower quality vitrifiats / aggregates can also be used as reinforcement fillers, for example for road surfaces.
  • a melter is made whose walls are made of refractory materials such as traditional glass furnaces or metal walls cooled with water. It defines a volume of substantially several m 3 . Its sole is equipped with several submerged burners, regularly placed on the floor, and which penetrate into the reactor on a reduced height. Each burner is likely to be supplied with air or oxygen on the one hand, and with fuel gas (of the natural gas or oil or other fuel gas type), by two feed circuits.
  • an inert gas of the nitrogen type can be injected into the burner.
  • the operation of the burners is described in more detail in the patent WO 9937591.
  • the reactor is fed with two auger feeders, one for vitrifiable materials, the other for waste.
  • the process is started by first supplying only vitrifiable materials (sands), which are melted to at least 1000 ° C thanks to the heat input supplied by burners fed both with oxidizer and with combustible. A bath of semi-liquid, semi-foamy melt materials was then formed over a given height, agitated by strong convective movements. The process can then be operated continuously: the reactor is fed continuously with waste and vitrifiable materials. Their relative amounts are adjusted according to the nature of the waste to be treated. Organic waste is completely burned. The mineral waste is melted or embedded in the bath.
  • the quantity and the nature of the mineral substances introduced into the reactor must be adjusted in order to ensure that the melt bath has a viscosity that is compatible with the operation of the burners immersed at the temperature in question, but also for ensure the best possible recovery of the silicate that will be produced.
  • the gas feed of the submerged burners is reduced or even halted (it is also possible to introduce solid or liquid organic fuel into the reactor in addition to ).
  • the fuel / gaseous oxidizer flow of the burners is regulated continuously, as a function of the waste introduced into the reactor.
  • the fumes are removed in the upper part of the reactor and can be reprocessed (for example in order to recover a particularly volatile mineral element contained in a waste).
  • the glass / silicate charged with mineral waste and / or ash from the combustion of organic waste is continuously discharged in the lower part of the reactor through a taphole.
  • the residence time of the waste in the reactor is short. Although small in size, this type of reactor can quickly handle large quantities of waste.
  • the process of the invention even with very compact reactors, can destroy or inerter waste efficiently with excellent performance, a reasonable energy cost and the ability to value the products obtained after treatment. It is therefore very competitive, thanks to a new application of submerged burner technology.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Soil Sciences (AREA)
  • Processing Of Solid Wastes (AREA)
  • Gasification And Melting Of Waste (AREA)
  • Disintegrating Or Milling (AREA)

Description

  • L'invention a trait à un procédé destiné à traiter les déchets, notamment les déchets industriels, agro-alimentaires, biologiques, afin de les détruire ou tout au moins afin de les rendre inertes et sans danger pour l'environnement.
  • C'est en effet un problème qui se pose avec toujours plus d'acuité que de savoir comment éviter le stockage de déchets susceptibles d'être toxiques à des degrés divers, comment les détruire ou les « inerter » de la façon la plus efficace et la plus économique possible.
  • Des solutions ont déjà été proposées pour y répondre. Il est ainsi connu de mélanger des déchets à des liants hydrauliques, technique intéressante sur le plan de la consommation énergétique, mais qui n'est pas optimale à long terme. En effet, les ciments présentent généralement une porosité qui favorise le relargage des déchets ainsi piégés.
  • Il est également connu de vitrifier les déchets par exemple WO96/11359, c'est-à-dire de les introduire dans une composition de matières vitrifiables amenées à leur température de fusion. Si la technique de vitrification apparaît comme très fiable, en revanche elle est assez gourmande en consommation de matières premières vitrifiables et en consommation énergétique.
  • Le but de l'invention est alors de pallier ces différents inconvénients, en proposant un procédé de traitement des déchets qui soit à la fois de haute fiabilité et viable économiquement.
  • L'invention a tout d'abord pour objet un procédé de destruction et/ou d'inertage de déchets, notamment de déchets industriels, biologiques ou agro-alimentaires, tel qu'on utilise pour le mettre en oeuvre un réacteur muni de moyens de chauffage comportant au moins un brûleur immergé. On alimente le réacteur en matériaux au moins pour partie vitrifiables, que l'on chauffe avec lesdits moyens de chauffage afin de constituer et de maintenir dans le réacteur une phase au moins partiellement liquide et/ou mousseuse à au moins 800°C. On introduit les déchets à traiter dans cette phase, afin que leurs éventuels composants organiques soient décomposés par combustion et/ou que leurs éventuels composants minéraux soient fondus ou enrobés dans cette phase. Puis, on soutire du réacteur ladite phase chargée en déchets fondus/enrobés et/ou en produits de combustion desdits déchets du type cendres.
  • Au sens de l'invention, on comprend par « brûleurs immergés », des brûleurs configurés de manière à ce que les « flammes » qu'ils génèrent ou les gaz de combustion issus de ces flammes se développent dans le réacteur où s'opère la conversion, au sein même de la masse des matières en cours de transformation. Généralement, ils se trouvent disposés de façon à affleurer ou à dépasser légèrement des parois latérales ou de la sole du réacteur utilisé (on parle ici de flammes, même s'il ne s'agit pas à proprement parlé des mêmes « flammes » que celles produites par des brûleurs aériens pour plus de simplicité).
  • Au sens de l'invention, on comprend par « matériaux au moins en partie vitrifiables », toutes les matières premières conventionnelles utilisées pour fabriquer du verre, des silicates comme du silicate de sodium et/ou du silicate de calcium, mais aussi des phosphates d'alcalins et/ou d'alcalino-terreux, des aluminates d'alcalins et/ou d'alcalino-terreux ou toute combinaison d'au moins deux de ces composés. Il peut s'agir, notamment, de tout matériau qui par traitement thermique conduit à un matériau au moins en partie vitreux, pouvant être partiellement ou totalement céramisé.
  • Au sens de l'invention, on comprend par « inertage », l'opération consistant à rendre les déchets inertes. Il peut donc s'agir soit de les détruire entièrement par combustion, soit de les conserver sous une forme intacte ou plus ou moins dégradée, mais inerte/inoffensive. Il s'agit alors, en fait, de les neutraliser au sens large (pas dans le sens restrictif d'une réaction chimique).
  • Le principe de fonctionnement d'un four à brûleurs immergés pour la fusion du verre est déjà connu, et a été notamment décrit dans les brevets WO 99/35099 et WO99/37591 : il consiste à pratiquer la combustion directement dans la masse des matières vitrifiables à fondre, en injectant le combustible (en général du gaz du type gaz naturel) et le comburant (en général de l'air ou de l'oxygène) via des brûleurs disposés sous le niveau de ta masse en fusion. Ce type de combustion immergée provoque par convection un brassage intensif de matières en cours de fusion, ce qui permet un processus de fusion rapide et ce qui entraîne aussi la formation d'une phase liquide qui a un peu l'aspect d'une mousse (avec beaucoup de « grosses » bulles par comparaison avec le verre en fusion obtenu avec des moyens de chauffage plus conventionnels du type électrodes immergées ou brûleurs aériens).
  • Un avantage subsidiaire de ce type de moyens de chauffage est qu'il est possible d'introduire les matières premières à fondre directement au sein de cette phase liquide/mousseuse, ce qui évite la formation de poussières en provenance des fines des matières premières, et la dispersion de celles-ci dans les fumées émises par le four.
  • L'invention a alors tiré partie de cette technologique pour inerter/détruire les déchets. Toute une série d'avantages en découle :
    • ➢ d'une part, on peut introduire les déchets directement dans la phase liquide/mousseuse, ce qui évite les envols de poussières éventuellement toxiques provenant des déchets : on peut piéger efficacement des déchets dans cette phase, en limitant la nécessité de filtrer/traiter les fumées,
    • ➢ d'autre part, on peut tirer profit de la nature même des déchets pour réduire le coût du procédé.
  • En effet, les déchets à traiter, dont des exemples seront cités ci-après, peuvent être minéraux, organiques, ou associer des composants minéraux et des composants organiques. On peut optimiser la composition des déchets, notamment associer des déchets de natures différentes, pour diminuer le coût des matières premières et/ou le coût énergétique du procédé.
    Ainsi, des déchets minéraux contenant des matériaux susceptibles de fondre à plus de 800°C, comme des sables de fonderie, du calcin pollué, peuvent être introduits dans le réacteur à la fois pour piéger/détruire leurs composants polluants et pour apporter une partie de la matière vitrifiable nécessaire au procédé.
  • Quant aux déchets organiques, ou pour partie organiques, ils peuvent servir de combustible au(x) brûleur(s) immergé(s) : du fait du brassage convectif mentionné plus haut, ils sont renouvelés continuellement à proximité des brûleurs immergés jusqu'à combustion complète. Cela permet de diminuer, voire de stopper complètement, l'alimentation en gaz combustible des brûleurs, avec un gain énergétique substantiel. La dégradation des molécules organiques peut être ainsi complète, jusqu'à la décomposition en gaz carbonique et en eau. Les cendres de combustion se trouvent piégées dans la phase liquide/mousseuse. Ces déchets au moins pour partie organiques peuvent donc fournir une partie, ou la majorité ou l'essentiel voire tout le combustible nécessaire au(x) brûleur(s) immergé(s). On peut donc utiliser directement dans le réacteur le pouvoir combustible des déchets, quelque soit le niveau de celui-ci.
  • Il se peut que des résidus de carbone restent emprisonnés dans la matrice vitreuse, ce qui peut offrir l'opportunité de fabriquer à moindre coût et sans difficulté de mise en oeuvre, des verres réduits.
  • Dans le cas où l'on retraite que des déchets organiques, on obtient un procédé particulièrement économique :
    • ➢ sur le plan énergétique, une grande partie, voire la totalité, du combustible est fournie par les déchets,
    • ➢ sur le plan des matières premières, il suffit de peu de matières vitrifiables, puisqu'elles n'ont à piéger que des cendres, de faible volume. Le taux de renouvellement desdites matières vitrifiables dans le réacteur peut donc être bas, limité à l'incorporation correcte de ces cendres.
  • Tous les compromis sont ensuite possibles : on peut ainsi associer différents types de déchets, par exemple des déchets de degrés de toxicité différents (pour que le produit final respecte les normes en vigueur), des déchets de natures différentes (par exemple pour assurer une teneur en composés organiques donnée sur la totalité des déchets introduits, donc pour contrôler la qunatité de combustible provenant des déchets et adapter en conséquence l'alimentation en gaz des brûleurs).
  • Comme évoqué ci-dessus, beaucoup de déchets peuvent être traités selon l'invention. La liste suivante n'est donc pas exhaustive :
    • ➢ les déchets considérés comme peu ou pas toxiques sont notamment constitués d'au moins un des résidus industriels suivants : sables de fonderies, laitiers de hauts-fourneaux, scories, mâchefers, tubes de télévision et calcins divers tels que des calcins de cristallerie. Cette catégorie de déchets peut fournir une partie des oxydes formateurs et modificateurs nécessaires pour générer une matrice vitreuse,
    • ➢ les déchets considérés comme plus toxiques peuvent comporter par exemple au moins un des résidus suivants : tout type de résidus d'ordures ménagères notamment ceux communément désignés sous te terme de REFIOM (Résidus de l'Epuration des Fumées d'Incinération des Ordures ménagères), tout type de résidus d'incinération de déchets industriels, notamment ceux désignés sous le terme de REFIDI (Résidus d'Epuration des Fumées d'Incinération de Déchets Industriels) des silicates, des émaux, des poussières d'électrofiltres ou de désulfuration, du calcin pollué, des boues sidérurgiques, des gâteaux de filtre-presse, et tous les oxydes et hydroxydes issus de l'industrie chimique.
    • > Les déchets que vise l'invention peuvent aussi être de nature biologique ou être issus de l'industrie agro-alimentaire. Il s'agit plus particulièrement des farines animales qui ne sont plus consommables ou ne vont plus l'être dans un futur proche dans au moins une partie des pays européens, et qu'il faut donc détruire.
    • ➢ Les déchets peuvent aussi être des déchets de bois, de papier de l'industrie de la papeterie.
    • ➢ Ils peuvent aussi être constitués de polymères organiques, halogénés ou non, par exemple du polyéthylène, du PVC, des résidus de pneumatiques.
    • ➢ Il peut aussi s'agir de composites verre/plastique. On peut citer les vitrages feuilletés par exemple, associant au moins un verre avec au moins une feuille en polymère thermoplastique ou non, type polyvinylbutyral PVB, éthylène- vinyl acétate EVA , polyuréthane PU ou polyéthylène-téréphtatate PET .... On peut aussi citer les matériaux composites à base de polymère renforcé par du fil de verre (ou du fil de carbone ou autre type de fil de renfort), utilisés dans l'industrie automobile, ou dans les bateaux par exemple. On peut mentionner aussi les composites verre/métal (vitrages munis d'éléments de connectique, de revêtements métalliques).
  • Une grande innovation dans l'invention est de pouvoir ajuster le fonctionnement des moyens de chauffage utilisés, les brûleurs immergés, en fonction du type et de la quantité des déchets à détruire/inerter, (l'invention inclut cependant les variantes où les moyens de chauffage associent des brûleurs immergés et les moyens plus conventionnels, comme des brûleurs aériens). On peut ainsi, de préférence, réguler le débit de combustible et/ou de comburant gazeux alimentant le(s) brûleur(s) immergé(s) en fonction de la teneur en composés organiques des déchets, et de leurs pouvoirs calorifiques.
  • Le procédé selon l'invention peut être mis en oeuvre de façon discontinue, mais il fonctionne de préférence en continu. On peut introduire en continu dans le réacteur les déchets et les matières vitrifiables, notamment en ajustant leurs teneurs respectives pour obtenir une immersion complète des déchets et de leurs éventuels produits de décomposition dans la phase liquide/mousseuse du réacteur. Ce contrôle des quantités introduites peut se faire de façon automatisée.
  • Avantageusement comme évoqué plus haut, on introduit les déchets et/ou les matières vitrifiables sous le niveau de la phase liquide/mousseuse du réacteur, pour éviter ou limiter au mieux les envols de déchets/fines.
  • De préférence, les effluents gazeux contenant éventuellement des particules qui sont émis dans le réacteur sont évacués, canalisés afin de leur faire subir, si besoin est, tous les traitements de filtration/dépollution appropriés. Ces fumées peuvent ensuite être dirigées vers des récupérateurs de chaleur afin de s'y épuiser thermiquement, ou à contre-courant d'un des flux d'alimentation du réacteur, la chaleur ainsi restituée peut par exemple servir à préchauffer déchets et/ou matières vitrifiables.
  • Si cela s'avère approprié, on peut broyer/concasser les déchets et/ou les matières vitrifiables qui sont sous forme solide avant de les introduire dans le réacteur, notamment afin de les réduire en granulats de taille adéquate.
  • L'achèvement du procédé consiste à soutirer du réacteur la phase chargée en déchets/produits de décompositions de déchets, qui, une fois solidifiée, peut être transforméeen granulats.
  • On peut ainsi obtenir un vitrifiat valorisable, notamment pour constituer du calcin ou du silicate (silicate de sodium ou de calcium notamment), pour faire du verre plat (vitrages), du verre creux (bouteille, flacons), de la laine minérale d'isolation (laine de verre, laine de roche), ou du fil de verre textile, de renforcement.
  • On peut ainsi valoriser un vitrifiat à base de silicate de calcium pour la fabrication de verre plat silico-sodo-calcique ou pour la fabrication de verre textile (dans ce dernier cas, l'utilisation d'un silicate de calcium préfondu peut se substituer en tout ou en partie à la silice et à la chaux, ce qui permet de réduire les casses de fil sous filière).
  • L'utilisation du vitrifiat dépend donc étroitement de sa composition. L'important est qu'il se conforme aux normes en vigueur.
  • Les vitrifiats/granulats de moindre qualité peuvent aussi être utilisés en tant que charges de renfort, par exemple pour des revêtements routiers.
  • L'invention sera ci-après décrite plus en détails à l'aide d'un exemple de réalisation non limitatif.
  • On réalise un fondoir dont les parois sont en matériaux réfractaires comme les fours verriers traditionnels ou en parois métalliques refroidies à l'eau. Il définit un volume de sensiblement plusieurs m3. Sa sole est équipée de plusieurs brûleurs immergés, disposés régulièrement sur la sole, et qui pénètrent dans le réacteur sur une hauteur réduite. Chaque brûleur est susceptible d'être alimenté en air ou en oxygène d'une part, et en gaz combustible (du type gaz naturel ou fioul ou autre gaz combustible), par deux circuits d'alimentation.
  • En fonctionnement de sécurité, quand on veut stopper la combustion, on peut injecter dans le brûleur un gaz inerte du type azote. Le fonctionnement des brûleurs est décrit plus en détail dans le brevet WO 9937591.
  • On alimente le réacteur avec deux enfourneuses à vis sans fin, l'une pour les matières vitrifiables, l'autre pour les déchets. On peut aussi prévoir une étape prélable de mélange de déchets d'origines différentes. On peut aussi mélanger préalablement matières vitrifiables et déchets , et les introduire ensemble dans le réacteur).
  • On amorce le procédé en l'alimentant d'abord uniquement en matières vitrifiables (sables), que l'on porte à fusion à au moins 1000°C grâce à l'apport thermique fourni par des brûleurs alimentés à la fois en comburant et en combustible.
    On a alors constitué un bain de matières en fusion semi-liquide, semi-mousseux sur une hauteur donnée, agité de forts mouvements convectifs.
    On peut ensuite faire fonctionner le procédé en continu : on alimente le réacteur en continu en déchets et en matières vitrifiables. On ajuste leurs quantités relatives selon la nature des déchets à traiter. Les déchets organiques sont entièrement brûlés. Les déchets minéraux sont fondus ou enrobés dans le bain.
  • La quantité et la nature des matières minéraux introduites dans le réacteur (matériaux vitrifiables et matériaux faisant partie des déchets) sont à ajuster afin d'assurer au bain en fusion une viscosité compatible avec le fonctionnement des brûleurs immergés à la température considérée, mais aussi pour assurer la meilleure valorisation possible du silicate qui va être produit.
  • En fonction de la quantité de matières organiques des déchets, au cours de procédé, on diminue ou même on stoppe l'alimentation en combustible gazeux des brûleurs immergés (on peut aussi choisir d'introduire du combustible organique solide ou liquide dans le réacteur en plus). On régule le débit de combustible/comburant gazeux des brûleurs en continu, en fonction des déchets introduits dans le réacteur.
  • Quand on stoppe l'alimentation en combustible gazeux des brûleurs immergés, on peut alimenter ceux-ci en air ou en oxygène par leurs deux circuits d'alimentation.
  • Les fumées sont éliminées en partie haute du réacteur et peuvent être retraitées (par exemple en vue de récupérer un élément minéral particulièrement volatil contenu dans un déchet).
  • Le verre/silicate chargé des déchets minéraux et/ou des cendres de combustion de déchets organiques est évacué en continu en partie basse du réacteur par un trou de coulée. Le temps de séjour des déchets dans le réacteur est court. Bien que de dimensions réduites, ce type de réacteur peut traiter rapidement de grandes quantités de déchets.
  • On peut combiner différents déchets : il peut être avantageux de combiner un ou plusieurs déchets minéraux et un ou plusieurs déchets organiques au moins en partie, par exemple on peut associer :
    • ➢ des farines animales et des REFIOM,
    • ➢ des farines animales, des déchets de polyéthylène et des REFIOM, etc.,
    • en vue d'obtenir ta meilleure optimisation économique et énergétique.
  • En conclusion, le procédé de l'invention, même avec des réacteurs très compacts, permet de détruire ou d'inerter des déchets efficacement avec un excellent rendement, un coût énergétique raisonnable et la capacité de valoriser les produits obtenus après traitement. Il est donc très compétitif, grâce à une nouvelle application de la technologie des brûleurs immergés.

Claims (14)

  1. Procédé de destruction et/ou d'inertage de déchets, notamment de déchets industriels, biologiques, agro-alimentaires, caractérisé en ce qu'on utilise un réacteur muni de moyens de chauffage comportant au moins un brûleur immergé, en ce qu'on alimente ledit réacteur en matériaux au moins en partie vitrifiables, que l'on chauffe avec lesdits moyens de chauffage afin de constituer et de maintenir dans le réacteur une phase formant un bain partiellement liquide et partiellement mousseux sur une hauteur donnée à au moins 800°C, en ce qu'on introduit lesdits déchets dans ladite phase afin que leurs composants organiques y soient décomposés par combustion et/ou leurs composants minéraux fondus ou enrobés dans ladite phase, et en ce qu'on soutire du réacteur ladite phase chargée en déchets fondus/enrobés et/ou en produits de combustion desdits déchets.
  2. Procédé selon la revendication 1, caractérisé en ce que les déchets comportent au moins un des composés suivants : résidus d'incinération d'ordures ménagères REFIOM, résidus d'incinération de déchets industriels du type REFIDI, émaux, poussières d'électrofiltres et de désulfuration, calcin pollué, boues sidérurgiques, gâteaux de filtre-presse, oxydes et hydroxydes issus de l'industrie chimique, sables de fonderie, scories, mâchefers, sable pollué par des hydrocarbures, laitiers de hauts-fourneaux, déchets de bois ou de papeterie, farines animales, déchets à base de de polymère organiques halogénés ou non, composites verre/plastique ou verre/métal.
  3. Procédé selon l'une des revendications précédentes, caractérisé en ce que les déchets contiennent des composants organiques qui fournissent au moins en partie le combustible nécessaire au (aux) brûleur(s) immergé(s), notamment la majorité ou l'essentiel dudit combustible.
  4. Procédé selon l'une des revendications précédentes, caractérisé en ce que les déchets contiennent des composants minéraux vitrifiables qui fournissent au moins en partie les matériaux vitrifiables nécessaires pour constituer la phase liquide à au moins 800°C dans le réacteur.
  5. Procédé selon l'une des revendications précédentes, caractérisé en ce qu'on associe différents types de déchets, présentant des degrés de toxicité différents et/ou des teneurs en composants organiques différentes et/ou un pouvoir calorifique différent.
  6. Procédé selon l'une des revendications précédentes, caractérisé en ce qu'on ajuste le fonctionnement du (des) brûleur(s) immergé(s) en fonction du type et de la quantité de déchets introduits.
  7. Procédé selon la revendication 6, caractérisé en ce qu'on régule le débit de combustible et/ou de comburant gazeux alimentation le(s) brûleur(s) immergé(s) en fonction au moins de la teneur en composés organiques des déchets.
  8. Procédé selon l'une des revendications précédentes, caractérisé en ce qu'il est mis en oeuvre de façon continue, avec introductions en continu dans le réacteur des déchets et des matières vitrifiables, notamment en ajustant leurs teneurs respectives pour obtenir une immersion complète des déchets et de leurs éventuels produits de décomposition dans la phase liquide/mousseuse.
  9. Procédé selon l'une des revendications précédentes, caractérisé en ce qu'on introduit les déchets et/ou les matériaux vitrifiables sous le niveau de la phase liquide/mousseuse, notamment à l'aide d'enfourneuses à tapis roulant ou à vis sans fin.
  10. Procédé selon l'une des revendications précédentes, caractérisé en ce que les effluents sous forme gazeuse et/ou particulaire émis dans le réacteur sont évacués, canalisés puis traités/filtrés si nécessaire.
  11. Procédé selon l'une des revendications précédentes, caractérisé en ce qu'on soutire du réacteur la phase chargée en déchets/produits de décomposition de déchets pour en faire des granulats.
  12. Procédé selon l'une des revendications précédentes, caractérisé en ce qu'il comporte une étape préalable de broyage ou concassage des déchets sous forme solide.
  13. Application du procédé selon l'une des revendications précédentes à la fabrication de vitrifiat valorisable, notamment pour constituer du calcin ou du silicate pour faire du verre plat, du verre creux, de la laine minérale, du fil de verre textile, ou pour constituer les charges de renfort.
  14. Application du procédé selon l'une des revendications 1 à 12 pour vitrifier des déchets présentant différents degrés de toxicité afin qu'ils se conforment, une fois vitrifiés, aux normes en vigueur.
EP01270196A 2000-12-15 2001-12-12 Procede de destruction et/ou d'inertage de dechets Expired - Lifetime EP1342032B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR0016403 2000-12-15
FR0016403A FR2818358B1 (fr) 2000-12-15 2000-12-15 Procede de destruction et/ou d'inertage de dechets
PCT/FR2001/003958 WO2002048612A1 (fr) 2000-12-15 2001-12-12 Procede de destruction et/ou d'inertage de dechets

Publications (2)

Publication Number Publication Date
EP1342032A1 EP1342032A1 (fr) 2003-09-10
EP1342032B1 true EP1342032B1 (fr) 2006-06-14

Family

ID=8857721

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01270196A Expired - Lifetime EP1342032B1 (fr) 2000-12-15 2001-12-12 Procede de destruction et/ou d'inertage de dechets

Country Status (9)

Country Link
US (1) US6857999B2 (fr)
EP (1) EP1342032B1 (fr)
AT (1) ATE330178T1 (fr)
AU (1) AU2002219291A1 (fr)
DE (1) DE60120750T2 (fr)
ES (1) ES2265390T3 (fr)
FR (1) FR2818358B1 (fr)
PT (1) PT1342032E (fr)
WO (1) WO2002048612A1 (fr)

Families Citing this family (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2851767B1 (fr) * 2003-02-27 2007-02-09 Saint Gobain Procede de preparation d'un verre par melange de verres fondus
US20080276652A1 (en) * 2007-05-11 2008-11-13 Jon Frederick Bauer Submerged combustion for melting high-temperature glass
US8973400B2 (en) 2010-06-17 2015-03-10 Johns Manville Methods of using a submerged combustion melter to produce glass products
US9096452B2 (en) 2010-06-17 2015-08-04 Johns Manville Methods and systems for destabilizing foam in equipment downstream of a submerged combustion melter
US8973405B2 (en) 2010-06-17 2015-03-10 Johns Manville Apparatus, systems and methods for reducing foaming downstream of a submerged combustion melter producing molten glass
US8875544B2 (en) 2011-10-07 2014-11-04 Johns Manville Burner apparatus, submerged combustion melters including the burner, and methods of use
US10322960B2 (en) 2010-06-17 2019-06-18 Johns Manville Controlling foam in apparatus downstream of a melter by adjustment of alkali oxide content in the melter
US8650914B2 (en) 2010-09-23 2014-02-18 Johns Manville Methods and apparatus for recycling glass products using submerged combustion
US9032760B2 (en) 2012-07-03 2015-05-19 Johns Manville Process of using a submerged combustion melter to produce hollow glass fiber or solid glass fiber having entrained bubbles, and burners and systems to make such fibers
US9776903B2 (en) 2010-06-17 2017-10-03 Johns Manville Apparatus, systems and methods for processing molten glass
US9145319B2 (en) 2012-04-27 2015-09-29 Johns Manville Submerged combustion melter comprising a melt exit structure designed to minimize impact of mechanical energy, and methods of making molten glass
US9021838B2 (en) 2010-06-17 2015-05-05 Johns Manville Systems and methods for glass manufacturing
US9115017B2 (en) 2013-01-29 2015-08-25 Johns Manville Methods and systems for monitoring glass and/or foam density as a function of vertical position within a vessel
US8707739B2 (en) 2012-06-11 2014-04-29 Johns Manville Apparatus, systems and methods for conditioning molten glass
US8991215B2 (en) 2010-06-17 2015-03-31 Johns Manville Methods and systems for controlling bubble size and bubble decay rate in foamed glass produced by a submerged combustion melter
US8997525B2 (en) 2010-06-17 2015-04-07 Johns Manville Systems and methods for making foamed glass using submerged combustion
US8707740B2 (en) 2011-10-07 2014-04-29 Johns Manville Submerged combustion glass manufacturing systems and methods
US8769992B2 (en) 2010-06-17 2014-07-08 Johns Manville Panel-cooled submerged combustion melter geometry and methods of making molten glass
US9096453B2 (en) 2012-06-11 2015-08-04 Johns Manville Submerged combustion melting processes for producing glass and similar materials, and systems for carrying out such processes
FR2973022B1 (fr) * 2011-03-25 2022-04-01 Saint Gobain Weber Verre pour materiau cimentaire
US20130260980A1 (en) * 2012-03-30 2013-10-03 Robert D. Touslee Systems and methods for forming glass materials
US9533905B2 (en) 2012-10-03 2017-01-03 Johns Manville Submerged combustion melters having an extended treatment zone and methods of producing molten glass
US9643869B2 (en) 2012-07-03 2017-05-09 Johns Manville System for producing molten glasses from glass batches using turbulent submerged combustion melting
EP2903941A4 (fr) 2012-10-03 2016-06-08 Johns Manville Procédés et systèmes de déstabilisation de la mousse dans des équipements en aval d'un pot de fusion à combustion immergée
US9227865B2 (en) 2012-11-29 2016-01-05 Johns Manville Methods and systems for making well-fined glass using submerged combustion
US9777922B2 (en) 2013-05-22 2017-10-03 Johns Mansville Submerged combustion burners and melters, and methods of use
WO2014189504A1 (fr) 2013-05-22 2014-11-27 Johns Manville Brûleurs à combustion immergés
WO2014189501A1 (fr) 2013-05-22 2014-11-27 Johns Manville Brûleurs et fours de combustion immergés, et procédés d'utilisation
WO2014189506A1 (fr) 2013-05-22 2014-11-27 Johns Manville Brûleurs et fours de combustion immergés, et procédés d'utilisation
SI2999923T1 (sl) 2013-05-22 2018-11-30 Johns Manville Potopni zgorevalni talilnik z izboljšanim gorilnikom in ustrezen postopek
US9731990B2 (en) 2013-05-30 2017-08-15 Johns Manville Submerged combustion glass melting systems and methods of use
US10183884B2 (en) 2013-05-30 2019-01-22 Johns Manville Submerged combustion burners, submerged combustion glass melters including the burners, and methods of use
US10858278B2 (en) 2013-07-18 2020-12-08 Johns Manville Combustion burner
US9751792B2 (en) 2015-08-12 2017-09-05 Johns Manville Post-manufacturing processes for submerged combustion burner
US10041666B2 (en) 2015-08-27 2018-08-07 Johns Manville Burner panels including dry-tip burners, submerged combustion melters, and methods
US10670261B2 (en) 2015-08-27 2020-06-02 Johns Manville Burner panels, submerged combustion melters, and methods
US9815726B2 (en) 2015-09-03 2017-11-14 Johns Manville Apparatus, systems, and methods for pre-heating feedstock to a melter using melter exhaust
US9982884B2 (en) 2015-09-15 2018-05-29 Johns Manville Methods of melting feedstock using a submerged combustion melter
US10837705B2 (en) 2015-09-16 2020-11-17 Johns Manville Change-out system for submerged combustion melting burner
US10081563B2 (en) 2015-09-23 2018-09-25 Johns Manville Systems and methods for mechanically binding loose scrap
US10144666B2 (en) * 2015-10-20 2018-12-04 Johns Manville Processing organics and inorganics in a submerged combustion melter
US10246362B2 (en) 2016-06-22 2019-04-02 Johns Manville Effective discharge of exhaust from submerged combustion melters and methods
US10337732B2 (en) 2016-08-25 2019-07-02 Johns Manville Consumable tip burners, submerged combustion melters including same, and methods
US10301208B2 (en) 2016-08-25 2019-05-28 Johns Manville Continuous flow submerged combustion melter cooling wall panels, submerged combustion melters, and methods of using same
US10196294B2 (en) 2016-09-07 2019-02-05 Johns Manville Submerged combustion melters, wall structures or panels of same, and methods of using same
US10233105B2 (en) 2016-10-14 2019-03-19 Johns Manville Submerged combustion melters and methods of feeding particulate material into such melters
GB201801977D0 (en) * 2018-02-07 2018-03-28 Knauf Insulation Doo Skofja Loka Recycling
FR3106132B1 (fr) * 2020-01-15 2023-05-19 Saint Gobain Isover Fusion de matière vitrifiable

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5282881A (en) * 1989-08-24 1994-02-01 Ausmelt Pty. Ltd. Smelting of metallurgical waste materials containing iron compounds and toxic elements
DE4424707A1 (de) * 1994-07-13 1996-01-18 Metallgesellschaft Ag Verfahren zum Verbrennen von Abfallstoffen im Schlackebadreaktor
US5615626A (en) * 1994-10-05 1997-04-01 Ausmelt Limited Processing of municipal and other wastes
DE4439939A1 (de) * 1994-11-09 1996-05-15 Kloeckner Humboldt Deutz Ag Verfahren zur thermischen Entsorgung von Reststoffen
JP2001515453A (ja) 1998-01-09 2001-09-18 サン−ゴバン ビトラージュ ガラス化可能物質の溶融及び清澄方法
FR2774085B3 (fr) 1998-01-26 2000-02-25 Saint Gobain Vitrage Procede de fusion et d'affinage de matieres vitrifiables
TW468021B (en) * 1998-03-27 2001-12-11 Mitsubishi Heavy Ind Ltd Ash melting furnace and ash melting method thereof
JP3038185B2 (ja) * 1998-04-16 2000-05-08 イノエンバイロテクノ株式会社 廃棄物の焼却装置

Also Published As

Publication number Publication date
DE60120750T2 (de) 2007-06-14
PT1342032E (pt) 2006-11-30
EP1342032A1 (fr) 2003-09-10
AU2002219291A1 (en) 2002-06-24
ATE330178T1 (de) 2006-07-15
ES2265390T3 (es) 2007-02-16
WO2002048612A1 (fr) 2002-06-20
FR2818358B1 (fr) 2006-03-10
DE60120750D1 (de) 2006-07-27
US6857999B2 (en) 2005-02-22
FR2818358A1 (fr) 2002-06-21
US20040049094A1 (en) 2004-03-11

Similar Documents

Publication Publication Date Title
EP1342032B1 (fr) Procede de destruction et/ou d'inertage de dechets
EP1771391B1 (fr) Procede et dispositif de traitement de dechets fibreux en vue de leur recyclage
EP0707558B1 (fr) Procede de traitement de residus de combustion et installation de mise en oeuvre dudit procede
EP0915811B1 (fr) Procede et dispositif de recyclage de dechets dans une fabrication de fibres minerales
FR2473914A1 (fr) Procede et appareil pour rendre relativement inoffensifs des dechets combustibles pouvant etre dangereux
EP0692677B1 (fr) Procédé et installation de thermolyse de déchets
EP0966406A1 (fr) Procede et dispositif de fusion et d'affinage de matieres vitrifiables
WO2008132373A2 (fr) Dispositif de fusion du verre comprenant deux fours et procede utilisant ledit dispositif
CA2920069A1 (fr) Procede et installation d'incineration, fusion et vitrification de dechets organiques et metalliques
US5156545A (en) Method and apparatus for the treatment and recovery of mineral fiber or glass waste
WO1997033840A1 (fr) Procede de traitement par vitrification de dechets de fibres nocives, notamment de dechets amiantiferes issus du batiment, et installation de mise en oeuvre dudit procede
BE1020903A3 (fr) Procede de recyclage de dechets de verre.
EP3389883B1 (fr) Procédé et installation de traitement de déchets
EP3856688A1 (fr) Four a bruleur immerge
KR101862380B1 (ko) 직화 용융 방식을 이용한 고순도 소금 제조방법
EP1041049A1 (fr) Conditionnement de poussières de filtres et vitrification de ces poussières ainsi conditionnées
JP3899563B2 (ja) Frp廃棄物の処理方法
EP3631332B1 (fr) Four combiné
AT411818B (de) Verfahren zur entsorgung von metallischen druckbehältern und anlage zur durchführung des verfahrens
KR900702299A (ko) 유해성 폐기물을 무해성 혼합재로 만들기 위한 방법 및 그의 장치
FR2711078A1 (fr) Procédé et dispositif de traitement de déchets par vitrification.
DE10339179B4 (de) Verfahren zur Entsorgung von metallischen Druckbehältern und Anlage zur Durchführung des Verfahrens
JP2001193919A (ja) ストーカ式焼却炉に連結した焼却灰の溶融処理装置

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20030602

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

17Q First examination report despatched

Effective date: 20040525

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060614

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060614

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060614

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060614

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REF Corresponds to:

Ref document number: 60120750

Country of ref document: DE

Date of ref document: 20060727

Kind code of ref document: P

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060914

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20060913

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 20060913

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20061231

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20061231

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20061231

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2265390

Country of ref document: ES

Kind code of ref document: T3

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20070315

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060915

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060614

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 16

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 20191125

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PT

Payment date: 20191211

Year of fee payment: 19

Ref country code: SE

Payment date: 20191210

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20191209

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20191209

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20191213

Year of fee payment: 19

Ref country code: ES

Payment date: 20200102

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20201201

Year of fee payment: 20

Ref country code: FR

Payment date: 20201216

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20201116

Year of fee payment: 20

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210614

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20201212

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201212

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201212

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201213

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201212

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 60120750

Country of ref document: DE

REG Reference to a national code

Ref country code: BE

Ref legal event code: MK

Effective date: 20211212

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20211222

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20220209

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201213

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201212