EP1340919A2 - Verfahren zum Regeln von mehreren Strömungsmaschinen im Parallel-oder Reihenbetrieb - Google Patents
Verfahren zum Regeln von mehreren Strömungsmaschinen im Parallel-oder Reihenbetrieb Download PDFInfo
- Publication number
- EP1340919A2 EP1340919A2 EP03000483A EP03000483A EP1340919A2 EP 1340919 A2 EP1340919 A2 EP 1340919A2 EP 03000483 A EP03000483 A EP 03000483A EP 03000483 A EP03000483 A EP 03000483A EP 1340919 A2 EP1340919 A2 EP 1340919A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- machine
- controller
- process variable
- compressors
- control
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D27/00—Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids
- F04D27/02—Surge control
- F04D27/0269—Surge control by changing flow path between different stages or between a plurality of compressors; load distribution between compressors
Definitions
- the invention relates to a method for controlling several in one Flow machines interacting in parallel or Row operation to comply with at least one of the station given process variable common to all turbo machines the features of the preamble of claim 1.
- EP-B-0 132 487 describes a method for operating several parallel turbo compressors described, each for Prevention of pumping are provided with a surge limit control.
- the turbo compressors are shared by load distribution regulators and individually controlled by a pressure regulator.
- the load balancing controller regulate the setting of the compressors among themselves in such a way that All compressors have the same operating point distances from the Blow-off line is present. Only one of the compressors from its pressure regulator controlled while the rest of the Load distribution control to be tracked.
- EP-B-0 431 287 describes a method for optimized operation several compressors in parallel or series operation known. there is for any working point using algorithms always determines the combination of machine parameters in which the Total power consumption of all prime movers becomes minimal. at This process uses a higher-level master controller.
- Master controller also called master controller
- the Master controller has a higher-level task. He determines from the required total capacity (desired pressure or desired Flow of all compressors) the necessary control commands for the individual machine units. Especially with asymmetrical the master controller calculates different systems Control variables for the individual machine controllers.
- Every machine unit needs a clear manipulated variable that is so related to the others It is coordinated that there are no contradictions can.
- flow control the flow may only be one single point can be measured.
- pressure control the Pressure can also only be measured at a single point. It may even a single setpoint for the common pressure or Give flow controller. Compliance with this rule is particularly important when used as a pressure regulator for the final pressure or the suction pressure particularly important.
- the controller would Parallel compressors work against each other in such a way that one Controller shuts down the machine and the other starts up.
- the Machine controllers with their downstream machines work so long against each other until one of the two machines the upper or the lower Has reached its performance limit.
- the master controller is on elaborate component, the failure of which comes to a standstill of the entire Plant leads.
- the invention has for its object the generic regulation to simplify, to increase the availability of the individual controllers and to avoid colliding interactions between the controllers.
- Fig. 1 shows three compressors 1, 2, 3 in parallel operation in each case by a turbine 4, 5, 6 serving as a drive machine are driven.
- One compressor each forms with one Driving machine a machine unit.
- the three machine units are combined into one station, which in turn is part of a Pipeline system can be or is involved in a process.
- Varying the turbine speed can increase the production capacity of the Compressor 1, 2. 3 can be varied.
- the turbines also be replaced by fixed speed motors, being in this Use case adjustable guide vanes with actuators 7, 8, 9 in compressors 1, 2, 3 or throttle valves in front of the compressors (not shown) can be used.
- the compressors 1, 2, 3 are connected by inlet lines 10, 11, 12 a suction-side busbar 13 connected, which in turn Connection to a suction process 14 or to a pipeline or has a gas storage.
- Compressors 1, 2, 3 via outlet lines 15, 16, 17 with a pressure side Busbar 18 connected, which in turn connection to one pressure-side process 19 or to a pipeline or to a Has gas storage.
- a station control level is superimposed over the entire station Setpoint specification 20 specifies the setpoints for the operation of the station.
- the actual capacity of the machine usually the Final pressure or the suction pressure of the compressor system or the flow is measured with a sensor 22 and a via a signal line 23 Master controller 24 transmitted as the actual value.
- the process variable setpoint for the entire station is setpoint 20 via a Given signal line 21 to the master controller 24, which after a given algorithm the required load of each Machine units are calculated and via the signal lines 25, 26 and 27 the respective machine controllers 28, 29, 30 the setpoint for the Speed or the position of the guide vanes or the throttle valve pretends.
- the machine controllers 28, 29, 30 in turn now set the Speed of turbines 4, 5, 6 and the position of the throttle valves or suction throttles to this setpoint.
- the master controller 24 has a higher-level task. He determines from the required total capacity (desired pressure or desired Flow) of all three compressors 1, 2, 3 the required Control commands for the individual machine units. In particular in the case of asymmetrically constructed systems, the master controller calculates 24 different manipulated variables for the individual machine controller 28, 29, 30.
- Fig. 2 shows the application for three compressors 1, 2. 3 in Series operation.
- the structure of this station largely corresponds to that of 1 shown for parallel operation station.
- the only difference is that the first compressor 1 with the inlet line 11 and via the outlet line 15 with the second compressor 2 is connected, and this is over the Outlet line 16 and the inlet line 12 with the third Compressor 3 connected.
- the suction-side busbar 13 is there not, process 14 is directly related to that serving as suction line Inlet line 10 connected.
- the print page is also missing Busbar, rather the outlet of the third compressor 3 directly connected to the process 19 via the outlet line 17.
- FIG. 3 shows a signal flow diagram for a control system for a Station with three compressors 1, 2, 3.
- the station setpoint (Flow setpoint or pressure setpoint) is via the signal line 21 and a converter 31 is given to a target / actual comparison point 32.
- the actual value (measured flow or pressure) reaches the Signal line 23 and a converter 33 to the same reference junction 32.
- the Station controller 34 adjusts its output variable until the Actual value corresponds to the setpoint.
- the output of the station controller 34 is via share 35, 36, 37 and converter 38, 39 and 40 den Signal lines 25, 26, 27 fed. These signal lines 25, 26, 27 connect the station controller 34 to the three unit controllers 41, 42, 43.
- Each unit controller 41, 42, 43 has a converter 44, 45 and 46 for the input variable and a further input converter (not shown) for the actual machine value, typically the speed of the Drive turbine 4, 5. 6 or the position of the inlet guide vanes with vane-regulated compressors.
- comparators 47, 48 and 49 the difference between the actual machine value and Machine setpoint and the respective unit controller 41, 42 and 43 fed.
- the manipulated variable of the Station controller 34 divided between the individual machine units.
- the Adjustment law can be linear or non-linear depending on the system requirements his. If necessary, it can depend on various parameters. For simplicity, a linear adjustment law should be assumed after which the turbines 4 and 6 each 30% of the total power and the Turbine 5 have to provide 40% of the total power. In the Shareholders 35 and 37 are accordingly set to a factor of 0.3 Share plate 36 is set to a factor of 0.4. Should the Station controller 34 demand 10% more power and its output therefore increase by 10%, the machine setpoint increases Turbine 4 is fed via the signal line 25 by 3% Machine setpoint of turbine 5 by 4% and the machine setpoint of Turbine 6 by 3%.
- the elements 31 to 40 belong to the common one Master controller 24, components 44, 47, 41 and 50 belong to that Machine controller 28 of the turbine 4 with the compressor 1, the components 45 48, 42 and 51 belong to the machine controller 29 of the turbine 5 the compressor 2 and the components 46, 49, 43 and 52 belong to that Machine controller 30 of the turbine 6 with the compressor 3.
- a pressure control loop be constructed so that the master pressure regulator flow regulator are subordinate to the respective flow through the individual Control machines. These flow regulators are again Speed controllers are subordinate, which then regulate the speed.
- the flow controller assigned to the machines is the application Part of the respective unit controller 41, 42 43.
- Every turbo compressor requires a surge limit control, which is part of a Every machine control is and its job is to control the compressor Protect against operation in an unstable work area.
- the Operation in an unstable work area is called compressor pumps.
- 6 shows a block diagram of a typical surge limit control for a compressor with variable suction pressure.
- a compressor 53 is included a suction line 54 and a pressure line 55.
- On Blow-by valve 56 in a blow-by line 57 can be regulated if necessary opened and thus increase the flow through the compressor, if the process gas take-off is less than the minimum permissible compressor flow.
- a bypass valve 56, too Pump surge control valve is called, via a control line 58 from Pump limit controller 59 driven, the input variables of which with the Sensor 60 measured inlet pressure, the measured with sensor 61 Inlet flow, the final pressure measured with the sensor 62 and the is measured with the sensor 63 inlet temperature. Since the Pump limit controller 59 usually within the same controller hardware is implemented like the machine controller (it is an essential part of the machine controller), there are signals such as compressor flow as well Pressure in front of and behind the compressor within the machine controller And can therefore also be used for the load distribution controller and the Capacity regulator can be used.
- 4 and 5 is the control method according to the invention for three Compressors 1, 2, 3 combined in one station Parallel operation and shown in series operation.
- the compressors 1, 2, 3 coupled with turbines 4, 5, 6 as drive machines and are from this driven.
- the Delivery capacity of the compressor 1, 2, 3 can be varied.
- the drive turbines can also be driven by fixed speed motors can be replaced, in this application adjustable Guide vanes with the actuators 7, 8, 9 in the compressors 1, 2, 3 or throttle valves used in front of the compressors (not shown) become.
- the compressors 1, 2, 3 shown in Fig. 4 are by the Inlet lines 10, 11, 12 with the suction-side busbar 13 connected, which in turn connects to the suction process 14 or to a pipeline or a gas storage facility.
- the compressors 1, 2, 3 via the outlet lines 15, 16, 17 with connected to the pressure-side busbar 18, which in turn Connection to a process 19 on the pressure side or to a pipeline or has a gas storage.
- the first compressor 1 of the compressors 1, 2, 3 connected in series with the Inlet line 11 and via the outlet line 15 with the second Compressor 2 is connected. This is via the outlet line 16 and the inlet line 12 is connected to the third compressor 3.
- the process 14 is directly connected to the suction line 10 and the outlet of the third compressor 3 is via the outlet line 17 directly with the Process 19 linked.
- each of the machine controllers 28, 29, 30 receives the Total setpoint from the setpoint specification 20 of the station directly via the Signal line 21 supplied.
- the actual value is reported via signal line 23 also fed directly to each machine controller 28, 29, 30, so that each machine controller 28, 29, 30 the necessary for itself Carry out calculations and the downstream actuators as well can adjust as if a common superimposed master controller used.
- Fig. 7 shows the signal flow diagram for a parallel or Series connection of three compressors 1, 2, 3 according to the invention.
- the Station setpoint of setpoint specification 20 is divided, three in parallel Transducers 64, 65, 66 connected and to the comparators 70, 71, 72 forwarded.
- the actual value from the signal line 23 becomes three Transducers 67, 68, 69 connected and to the comparators 70, 71, 72 forwarded.
- the target value to the individual machine units, consisting of compressors 1, 2, 3 and the turbines 4, 5, 6.
- the difference between the setpoint and actual value is formed and over each Amplifiers 73, 74, 75 are supplied to the unit controllers 76, 77, 78.
- the Unit controllers 76, 77, 78 in turn adjust via the converters 79, 80 and 81 the turbine speed and the guide vanes of the respective Compressor 1, 2 or 3.
- the converter 67, 64, the share controller 35, the Comparator 70, amplifier 73, unit controller 76 and Converters 79 are common parts of the machine controller 28, which the Machine unit is assigned, which consists of the turbine 4 and compressor 1 is formed.
- the converters 68, 65, the share controller 36, the Comparator 71, amplifier 74, unit controller 77 and Transducers 80 are together parts of the machine controller 29, which the Machine unit is assigned, which consists of the turbine 5 and compressor 2 is formed.
- the converters 69, 66, the share adjuster 37, the Comparator 72, amplifier 75, unit controller 78 and Transducers 81 are common parts of the machine controller 30, which the Machine unit is assigned, which consists of the turbine 5 and compressor 3 is formed.
- Actual value and setpoint of the process variable as input of the converter 67 to 66 can be any size. It is often the flow through the compressors, the pressure in front of or behind the station, but it can also the load distribution of the compressors in series or Parallel operation. The pressure ratio of the is also conceivable entire station or a temperature or a liquid level in a container.
- Three compressors 1, 2, 3 according to FIG. 2 are with a control system according to FIG. 3 in Row operation (state of the art) driven.
- Each of the compressors 1, 2, 3 drive at the beginning of the control process with a pressure ratio of 3.
- the controlled variable is the pressure in the pressure-side manifold 19.
- the setpoint is 99 bar and the actual value is 90 bar.
- the compressors 1 to 3 should each provide one third of the total pressure ratio.
- the comparator 32 detects a deviation of 9 bar and transmits this to the station controller 34.
- This station controller 34 increases its output by a proportion corresponding to an increase in the Pressure ratio by 10% from 90 bar to 99 bar corresponds, it should here, for example, an increase in the output signal from 45 to 50% be accepted.
- Each of the three machine units increases theirs Power to the same extent until the measured actual value Corresponds to the setpoint.
- the actual value on the signal line 23 is 90 bar and the setpoint on signal line 21 is 99 bar.
- the Converters 67 to 69 receive all three unit controllers (Capacity regulators) 76, 77 and 78 the same control difference of 9 bar.
- Each of the three unit controllers 76, 77 and 78 reacts in exactly the same way like the master controller 24 in Fig. 3.
- Each of the three machine units increases its output to the same extent until the measured Actual value corresponds to the setpoint.
- this problem is solved by using a Load distribution controller solved.
- This load distribution controller works in addition to the unit controller 76 to 78 (capacity controller) and uses the same machine controller 28, 29, 30 initially only using the function of the load distribution controller the known function groups are described. Then will the combination of capacity controller and load distribution controller described.
- This load distribution controller is constructed exactly like the unit controller 76 to 78 (capacity controller) according to FIG. 7.
- the target value of a load distribution control is the target load component of the compressor and the actual value the current load. Common is that with compressors in parallel operation the distance of the Working point from the stability limit is the controlled variable and at Compressors in series operation the pressure ratio.
- a Load distribution control for series operation according to FIG.
- the actual value of the Pressure ratio can be calculated by dividing the for the Ultimate surge control measured by the for the Determine the surge limit control of the measured suction pressure.
- the Total pressure ratio is calculated by dividing the Station outlet pressure by the station inlet pressure. It is common that all compressors in series operation with the same Pressure ratio are driven so that the setpoint for each individual load distribution controller a third of the Total station pressure ratio is. Should the ratio for individual machines can be different, a scaling factor be taken into account within the setpoint formation. Should the Load share of the individual machine units from other process variables dependent scaling factors can be introduced.
- the load distribution algorithm computes for each of the compressors a partial load, for compressors in parallel z. B. one predetermined proportion of the total flow.
- the Algorithm e.g. a fixed proportion of the total required pressure ratio.
- the unit controller each The compressor now controls the individual machine unit on this Value.
- the actual value (final pressure behind the Compressors, before the compressors or flow through the Compressors) in the respective outlet lines 15, 16 and 17 Sensors are measured, which are connected to transducers 90, 91 and 92 are.
- the individual actual values are then via the converters 69, 64 and 65 given to the comparators 70, 71 and 72 according to FIG. 7 and the Machine controllers 28, 29, 30 fed.
- the setpoint is also possible to be specified individually. Then all are required Functionalities individually assigned to each machine unit. Conversion errors in the setpoint and actual value acquisition when using the control method according to the invention as a capacity regulator (Flow regulator, pressure regulator) are equalized in the same way.
- each the actual value measurements can be assigned to a machine unit and the supply of the converter with auxiliary energy from the control cabinets the assigned machine unit can take place. Farther are even in the event of a total failure of setpoint or actual value converters one machine unit the corresponding units of the other Machine units active and thereby reduce the negative ones Impact of this failure. It is also possible to setpoint and To form the actual value separately for each machine unit. Advantage is that there are no more common components and only identical machine systems without superimposed system parts come.
- the desired final pressure is 99 bar.
- the compressors 1 to 3 are each intended to be a third of the to provide the total service currently required. To do this, everyone Turbine 4 to 6 each 20% of the total available power. Now fall the actual value measurement in the pressure line 17 of the compressor 3 and output an actual value of 0 bar. The turbine 6 runs because of the missing actual value to its maximum output and thus yields 33% the total output .. This increases the pressure in the pressure side Manifold 18 and thus also the final pressure of all compressors 1, 2, 3.
- Another option is to set the setpoint for the Load distribution for each of the compressors individually and to specify differently. This can e.g. B. may be required if there is an asymmetry in the machine units. It can e.g. B. Machine units of different sizes together in one Drive station. In this case, the factor must match the size of the Be adapted to machine units.
- an optimization algorithm is a optimal combination for the respective operating point Machine load of the individual machine units determined.
- Such Optimization algorithms are, for example, in EP-B-0 431 mentioned at the beginning 287.
- the known method can also be based on a superimposed method Calculator and master controller are dispensed with if the algorithm is in every machine controller is programmed.
- Another need to intervene in the choice of load sharing the individual machine units can e.g. B. also reaching one Limit of the permissible operating range on one of the components.
- gas turbines of different types as Drive machines used for compressors can be one of the Gas turbines e.g. B. have reached the maximum exhaust gas temperature during the other gas turbines still have reserve capacity.
- the Invention offers two approaches to this problem.
- the one Approach is that the factor for sharing the load is based on the machine units not in the border like this is changed that the factors are no longer related to the ratio Available machine units is increased.
- the factor for that Machine in limit operation is set to zero as long as the machine is operated in the border.
- the method according to the invention compensates for this process even without this intervention.
- the capacity controller detects a deviation from the setpoint and increases the performance of the other unit so that the one to be regulated Process size corresponds exactly to the setpoint.
- Actuator or The point of intervention for all of these factors for trimming are Share-holders 35 to 37 or the addition of a fixed value to the Totalizer 70 to 72.
- 9 to 11 are three compressors connected in parallel Low pressure stage (ND-A, ND-B, ND-C) with three connected in parallel Compressors of the medium pressure levels (MD-A, MD-B, MD-C) and three high-pressure stage compressors connected in parallel (HD-A, HD-B, HD-C) connected in series.
- 10 and 11 is the control system for the compressor MD-B shown enlarged.
- the other compressors are equipped with an identical control system. Any compressor is equipped with a surge limit control, which in connection with the 6 has already been described. Furthermore, everyone is from compressor and Turbine existing machine unit a machine controller 85 assigned.
- a sensor for determination is located in the pressure-side busbar 18 the actual value of the final pressure of the station.
- the measured value is a converter 86, which is connected via a signal line 87 to a Comparator 88 is connected.
- This comparator 88 is also used by the setpoint of the final pressure is supplied to the setpoint.
- the pressure-side busbar 18 there is also a sensor for Determination of the actual value of the flow of the station arranged.
- the measured value is fed to a converter 89, which is connected via a signal line 90 is connected to a comparator 91.
- This comparator 91 will also the setpoint of the flow from the setpoint specification fed.
- the suction-side busbar 13 is a sensor for determining the Actual value of the suction pressure of the station arranged.
- the measured value is a converter 92 which is connected via a signal line 93 to a Comparator 94 is connected.
- This comparator 94 is also used by the setpoint of the suction pressure is supplied to the setpoint.
- the signal line 93 of the suction pressure and the signal line 87 of the Final pressure are led to an arithmetic unit 95, in which the Total pressure ratio is calculated.
- the pressure ratio can additionally with a fixed or one of other sizes dependent variable factor. In the first approach it is Factor 1/3, i.e. all three compressors are loaded equally.
- Behind converter 62 for the final pressure of compressor MD-B is one Signal line 96 branches off, which is led to a computing center 97.
- Signal line 98 branches off, which also leads to a computing point 97 is led.
- the pressure ratio is one determined individual compressor.
- the processing points 95 and 97 are included connected to a comparator 99 in which the single pressure ratio this compressor MD-B with its target share (the one with a factor evaluated) total pressure ratio is compared.
- the signal line 100 introduces the distance signal of the operating point of a single compressor.
- the computer 101 also receives the corresponding signals from the other compressors connected in parallel.
- In the Computing point 101 becomes the average of the distances between the operating points determined.
- In a comparator 102 the average of the distances compared to the single value of a compressor.
- Comparators 88, 91, 94 are via signal lines, in each of which a changeover switch 103 is arranged, connected to a summer 104.
- Comparators 99, 102 are via signal lines, in each of which a changeover switch 105 is connected to a summer 106.
- the totalizer too 104 is connected to summer 106
- the summers 104, 106 are connected via a signal line 107
- Manual intervention 108 is arranged with which to a machine unit belonging machine controller 85 connected to the functions of a Capacity, a final pressure, a suction pressure, a flow and of a load distribution controller.
- the control system shown in FIG. 11 also contains a maximum selection 109 and a minimum selection 110 to speed and Limit the load of the drive machine or other sizes.
- the capacity control and the load distribution control of the station from only one assigned to each machine unit Machine controller made.
- the Load distribution control in parallel and the Load distribution control formed in series operation With this Control system can be between three different ones Capacity control algorithms can be selected (flow control, Final pressure control behind the high pressure compressor and suction pressure control in front of the low pressure compressor).
- Capacity control algorithms can be selected (flow control, Final pressure control behind the high pressure compressor and suction pressure control in front of the low pressure compressor).
- the capacity regulator is only one size can regulate, the two other control differences of the Capacity control switched to zero via the switch 103.
- mutual locking makes sense.
- the Flow control will be active, the control difference for the Suction pressure and the final pressure control switched to zero.
- the setpoint for the inactive controller can also be set to the actual value be switched. This also makes the control difference zero.
- the compressors in series are low pressure (LP), medium pressure (MD) and called high pressure compressor (HD).
- the parallel compressors are called A, B, C. It is assumed that the system is in the operating mode Flow control and all compressors are in operation.
- compressor ND-A delivers exactly 1/3 of the total mass flow
- Compressor ND-B 5% too little
- compressor ND-C 5% too much
- compressor MD-A and MD-B convey 30% of the mass flow and compressor MD-C 40%.
- Each of the HD compressors convey the same mass flow.
- compressor ND-A 2% is under-loaded, Compressor MD-A is loaded correctly and compressor HD-A 2% too high loaded.
- Compressor ND-B is loaded correctly, compressor MD-B 3% high and compressor HD-B 3% too low.
- Compressor ND-C with 29% loaded, MD-C with 36% and HD-C with 35%.
- further algorithms can be used be added.
- the drive machines of one or more Compressors can e.g. B. reach a performance limit. This can are additionally processed in the algorithm such that the Control difference of the machine controller of the prime movers operating on the Limit operated, be made zero (as in manual operation). These prime movers then take on another Performance increase no longer part. To compensate for this The difference from the optimal adjustment difference can influence according to the table above and the effective difference on the Control difference of the other parallel and series compressors added becomes. This also optimally compensates for this intervention. The Of course, the process also works for several Limit controller per machine unit.
- the limit controllers can be as in 11 shows an extreme value selection (maximum selection or Minimum selection).
- Control differences become control differences for the distances of the Operating point formed by the limits, so in Fig. 11 z. B. from the Maximum speed and the minimum speed.
- each a further control difference for a maximum and Minimum limitation shown.
- the control differences for limits a minimum selection is switched to maximum values, the Control differences for a minimum limit affect one Maximum selection.
- the effective control difference for the machine controller is either the control difference according to the above algorithm or but the distance of the operating point from the border, if this Distance is less. Controls when a limit is exceeded the output of the max / min selection 109/110 also includes the machine unit conflicting requirement of capacity or The load distribution controller always has priority so that the limit in the stationary operation is not exceeded.
- the compressor ND-C should have a control difference performance of 6.3%.
- the drive turbine but is 3% below the maximum operating speed.
- the effective control difference is limited to 3%. Once the turbine has reached the maximum operating speed, the control difference the speed limit control to zero and prevents over the Minimal selection any positive control difference on the Machine controller. Only negative control differences in the direction Speed reduction can happen. If the maximum is exceeded Speed, the unit controller reduces the speed.
- controller reset time is to be adjusted individually, this can be done in a simple way. From a comparison of the individual Inputs of the maximum and minimum selection with the output can determine which size is the leading. From one position the switch for the control differences of the capacity controller and the Load distribution controller can be determined which of these controllers in Operation is. A selection matrix can now determine which one Controller combination which controller reset time should be effective. The in Machine controller effective controller time constant can now adaptively do the same be adjusted as required by the selection matrix.
- Figure 11 shows an application with a total of nine control loops.
- Nine individual Controllers would be extensive tracking and mutual interlocks are required to prevent individual inactive controllers run into saturation. Farther there is a great risk that the nine controllers are mutually exclusive influence dynamically. All of these disadvantages are invented bypassed.
- the machine controllers of the other compressors can also not influence each other because all machine controllers are the same Control variables are set to the same parameters. Since all Load distribution controllers are optimized with the same parameters they have the same timing. As a result, it cannot happen that individual machines in different directions and thus diverge.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Control Of Positive-Displacement Air Blowers (AREA)
- Control Of Positive-Displacement Pumps (AREA)
Abstract
Description
- Fig. 1
- ein Regelsystem für Kompressoren im Parallelbetrieb gemäß dem Stand der Technik,
- Fig. 2
- ein Regelsystem für Kompressoren im Reihenbetrieb gemäß dem Stand der Technik,
- Fig. 3
- ein Signalflussdiagramm für das Regelsystem nach Fig. 1 oder 2,
- Fig. 4
- ein Regelsystem für Kompressoren im Parallelbetrieb gemäß der Erfindung,
- Fig. 5
- ein Regelsystem für Kompressoren im Reihenbetrieb gemäß der Erfindung,
- Fig. 6
- ein System zur Pumpgrenzregelung gemäß dem Stand der Technik,
- Fig. 7
- ein Signalflussdiagramm für das Regelsystem nach Fig. 4 oder 5,
- Fig. 8
- ein Regelsystem für Kompressoren im Parallelbetrieb gemäß einer anderen Ausführungsform der Erfindung,
- Fig. 9
- ein Regelsystem für Kompressoren im Parallel- und Reihenbetrieb,
- Fig. 10
- ein Regelsystem für Kompressoren im Parallel- und Reihenbetrieb, wobei die Regelung eines der Kompressoren aufgeblendet ist und
- Fig. 11
- ein Regelsystem für Kompressoren im Parallel- und Reihenbetrieb, wobei die Regelung eines der Kompressoren aufgeblendet ist, gemäß einer anderen Ausführungsform der Erfindung.
Summierer des MD-B Kompressors | HD-A | HD-B | HD-C | |
Kapazität | +2 | +2 | +2 | |
Parallel | +2 | 0 | -2 | |
Serie | -2 | +3 | -1,7 | |
MD-A | MD-B | MD-C | ||
Kapazität | (104) | +2 | +2 | +2 |
Parallel | (102) | +3,3 | +3,3 | -6,6 |
Serie | (99) | 0 | -3 | -3,3 |
ND-A | ND-B | ND-C | ||
Kapazität | +2 | +2 | +2 | |
Parallel | 0 | 0 | 0 | |
Serie | +2 | 0 | +5,1 |
HD-A | HD-B | HD-C | |
Kapazität | +2 | +2 | +2 |
Parallel | +2 | 0 | -2 |
Serie | -2 | +3 | -1,7 |
Summe | +2 | +5 | -1,7 |
HD-A | HD-B | HD-C | |
Kapazität | +2 | +2 | +2 |
Parallel | +3,3 | +3,3 | -6,6 |
Serie | 0 | -3 | -3,3 |
summe | +5,3 | +2,3 | -7,9 |
HD-A | HD-B | HD-C | |
Kapazität | +2 | +2 | +2 |
Parallel | 0 | 0 | 0 |
Serie | +2 | 0 | +5,1 |
Summe | +4 | +2 | +7,1 |
Claims (31)
- Verfahren zum Regeln von mehreren in einer Station zusammenwirkenden Strömungsmaschinen im Parallel- oder Reihenbetrieb zur Einhaltung mindestens einer von der Station vorgegebenen und allen Strömungsmaschinen gemeinsamen Prozessgröße, wobei jede Strömungsmaschine mit der sie antreibenden Antriebsmaschine eine Maschineneinheit bildet, der ein Maschinenregler zugeordnet ist, dadurch gekennzeichnet, dass die vorgegebene, gemeinsame Prozessgröße direkt auf jeden der Maschinenregler aufgegeben wird und dass diese vorgegebene, gemeinsame Prozessgröße ausschließlich über die der jeweiligen Maschineneinheit zugeordneten Maschinenregler ausgeregelt wird.
- Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass als Prozessgröße der Enddruck der Kompressoren verwendet wird.
- Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass als Prozessgröße der Durchfluss durch die Kompressoren verwendet wird.
- Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass als Prozessgröße der Saugdruck der Kompressoren verwendet wird.
- Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass als Prozessgröße das Druckverhältnis der Kompressoren verwendet wird.
- Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass als Prozessgröße die Lastverteilung im Parallelbetrieb verwendet wird.
- Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass als Prozessgröße die Lastverteilung im Serienbetrieb verwendet wird.
- Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass als Prozessgröße die Leistung der als Antriebsmaschinen dienenden Turbinen verwendet wird.
- Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass als Prozessgröße der Eintrittsdruck der als Antriebsmaschinen dienenden Turbinen verwendet wird.
- Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass als Prozessgröße der Austrittsdruck der als Antriebsmaschinen dienenden Turbinen verwendet wird.
- Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass als Prozessgröße der Entnahmedruck der als Antriebsmaschinen dienenden Turbinen verwendet wird.
- Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass als Prozessgröße der Durchfluss durch eine als Antriebsmaschine dienende Turbine verwendet wird.
- Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass als Prozessgröße der Strom einer elektirschen Antriebsmaschine wird.
- Verfahren nach einem der Ansprüche 1 bis 13, dadurch gekennzeichnet, dass mehrere Prozessgrößen innerhalb einer Station kombiniert werden.
- Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Ausgangsgrößen der Kapazitätsregler im gleichen Verhältnis zueinander stehen, um eine gleichmäßige Belastung aller Maschinen zu erreichen.
- Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Sollwerte für die Lastverteilungsregler im festen aber nicht gleichen Verhältnis zueinander stehen, um eine vorbestimmte ungleichmäßige Belastung aller Maschinen zu erreichen.
- Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass der Faktor, mit dem die Sollwerte der Lastverteilungsregler voneinander abweichen, eine Funktion einer Prozessgröße ist, um eine gewünschte Belastung aller Maschinen zu erreichen.
- Verfahren nach Anspruch 17, dadurch gekennzeichnet, dass als beeinflussende Prozessgröße die Leistung der als Antriebsmaschine dienenden Turbine verwendet wird.
- Verfahren nach Anspruch 17, dadurch gekennzeichnet, dass der Abstand einer Prozessgröße von einer Grenze oder einen beliebigen anderen Optimierungsalgorithmus bestimmt wird.
- Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass der Faktor, mit dem die Sollwerte der Lastverteilungsregler voneinander abweichen, willkürlich beeinflussbar wird, um eine gewünschte Belastung aller Maschinen zu erreichen.
- Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass Sollwerte und Istwerte gemeinsam für alle Maschineneinheiten vorgegeben und gemessen werden.
- Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass Sollwerte und Istwerte individuell für jede Maschineneinheit vorgegeben und gemessen werden.
- Verfahren nach einem der Ansprüche 1 bis 14, dadurch gekennzeichnet, dass zwischen den Regeldifferenzen mehrerer Prozessgrößen eine ausgewählt und die übrigen, nicht benötigten Regeldifferenzen zu null geschaltet werden.
- Verfahren nach einem der Ansprüche 1 bis 14, dadurch gekennzeichnet, dass zwischen den Regeldifferenzen mehrerer Prozessgrößen eine ausgewählt und der Sollwert einer der nicht ausgewählten Prozessgrößen auf den Istwert geschaltet wird.
- Verfahren nach einem der Ansprüche 1 bis 14, dadurch gekennzeichnet, dass die Regeldifferenzen aller Prozessgrößen auf null geschaltet sind und dass die Regelung von Hand vorgenommen wird.
- Verfahren nach Anspruch 23, dadurch gekennzeichnet, dass bei Verwendung eines Maschinenregler mit einem Proportionalteil und einem Integralteil die Regelung von Hand so vorgenommen wird, dass der Eingriff von Hand nur auf den Integralteil wirkt.
- Verfahren nach einem der Ansprüche 1 bis 14, dadurch gekennzeichnet, dass die Regeldifferenz der Maschinenregler der Maschineneinheiten, die an der oberen Leistungsgrenze betrieben werden, zu null gemacht wird und dass die tatsächlich wirksame Regeldifferenz auf die Regeldifferenz der anderen Maschineneinheiten aufaddiert wird.
- Verfahren nach einem der Ansprüche 1 bis 25, dadurch gekennzeichnet, dass die Regeldifferenz über eine Extremauswahl geschaltet ist.
- Verfahren nach einem der Ansprüche 1 bis 26, dadurch gekennzeichnet, dass die Regeldifferenzen für Begrenzungen aus Maximalwerte einer Minimalauswahl aufgeschaltet werden und dass die Regeldifferenzen für eine Minimalgrenze auf eine Maximalauswahl wirken.
- Verfahren nach einem der Ansprüche 1 bis 26, dadurch gekennzeichnet, dass die Regeldifferenzen für unterschiedliche Prozessgrößen mit unterschiedlichen Verstärkungsfaktoren multipliziert werden.
- Verfahren nach einem der Ansprüche 1 bis 28, dadurch gekennzeichnet, dass die Nachstellzeit der Regler in der Weise individuell angepasst wird, dass aus einem Vergleich der einzelnen Eingänge der Maximal- und Minimalauswahl mit dem Ausgang ermittelt wird, welche Prozessgröße die führende ist, dass aus der Stellung der Umschalter der Regler für die Prozessgrößen ermittelt wird, welcher Regler in Betrieb ist und dass über eine Auswahlmatrix bestimmt wird, bei welcher Reglerkombination welche Nachstellzeit wirksam sein soll.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE10208676 | 2002-02-28 | ||
DE10208676A DE10208676A1 (de) | 2002-02-28 | 2002-02-28 | Verfahren zum Regeln von mehreren Strömungsmaschinen im Parallel- oder Reihenbetrieb |
Publications (3)
Publication Number | Publication Date |
---|---|
EP1340919A2 true EP1340919A2 (de) | 2003-09-03 |
EP1340919A3 EP1340919A3 (de) | 2004-01-07 |
EP1340919B1 EP1340919B1 (de) | 2006-05-10 |
Family
ID=27675112
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP03000483A Expired - Lifetime EP1340919B1 (de) | 2002-02-28 | 2003-01-11 | Verfahren zum Regeln von mehreren Strömungsmaschinen im Parallel-oder Reihenbetrieb |
Country Status (5)
Country | Link |
---|---|
US (1) | US20030161731A1 (de) |
EP (1) | EP1340919B1 (de) |
AT (1) | ATE325951T1 (de) |
DE (2) | DE10208676A1 (de) |
ES (1) | ES2262901T3 (de) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006084817A1 (de) * | 2005-02-11 | 2006-08-17 | Siemens Aktiengesellschaft | Verfahren zur optimierung des betriebs mehrerer verdichteraggregate und vorrichtung hierzu |
AT502998B1 (de) * | 2006-01-11 | 2008-05-15 | Leobersdorfer Maschf | Hochdruck-kompressor sowie dessen verwendung und verfahren zu dessen betrieb |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8069077B2 (en) * | 2003-06-11 | 2011-11-29 | Kabushiki Kaisha Toshiba | Electric-power-generating-facility operation management support system, electric-power-generating-facility operation management support method, and program for executing support method, and program for executing operation management support method on computer |
IL157887A (en) * | 2003-09-11 | 2006-08-01 | Ormat Ind Ltd | System and method for increasing gas pressure flowing in a pipeline |
DE102004041661B4 (de) * | 2004-08-27 | 2006-06-14 | Siemens Ag | Verfahren zur optimalen Steuerung von Pumpstationen und Pumpen in einer Pipeline und entsprechendes Computerprogramm-Erzeugnis |
EP1984628B1 (de) * | 2006-02-13 | 2014-12-17 | Ingersoll-Rand Company | Mehrstufiges kompressionssystem und verfahren zu dessen betrieb |
DE102008064491A1 (de) * | 2008-12-23 | 2010-06-24 | Kaeser Kompressoren Gmbh | Simulationsgestütztes Verfahren zur Steuerung bzw. Regelung von Druckluftstationen |
DE102008064490A1 (de) * | 2008-12-23 | 2010-06-24 | Kaeser Kompressoren Gmbh | Verfahren zum Steuern einer Kompressoranlage |
DE102009017613A1 (de) | 2009-04-16 | 2010-10-28 | Siemens Aktiengesellschaft | Verfahren zum Betrieb mehrerer Maschinen |
GB0919771D0 (en) * | 2009-11-12 | 2009-12-30 | Rolls Royce Plc | Gas compression |
DE102011079732B4 (de) * | 2011-07-25 | 2018-12-27 | Siemens Aktiengesellschaft | Verfahren und Vorrichtung zum Steuern bzw. Regeln eines Fluidförderers zum Fördern eines Fluides innerhalb einer Fluidleitung |
US9527683B2 (en) | 2011-07-25 | 2016-12-27 | Siemens Aktiengesellschaft | Method and device for controlling and/or regulating a fluid conveyor for conveying a fluid within a fluid line |
ITCO20110065A1 (it) | 2011-12-15 | 2013-06-16 | Nuovo Pignone Spa | Metodo per controllare una pluralita' di macchine, sistema di controllo e impianto |
US20160187893A1 (en) * | 2014-12-31 | 2016-06-30 | Ingersoll-Rand Company | System and method using parallel compressor units |
US10684032B2 (en) * | 2015-03-09 | 2020-06-16 | Lennox Industries Inc. | Sensor coupling verification in tandem compressor units |
CN107532605B (zh) * | 2015-05-07 | 2019-12-24 | 诺沃皮尼奥内技术股份有限公司 | 用于压缩机系统增压的方法和设备 |
CN111927814B (zh) * | 2020-08-19 | 2022-02-22 | 蘑菇物联技术(深圳)有限公司 | 一种基于边缘计算的离心空压机组节能的方法 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1385983A (en) * | 1971-06-29 | 1975-03-05 | Trans Canada Pipelines Ltd | Control apparatus for compressors operating in parallel |
FR2324911A1 (fr) * | 1975-09-18 | 1977-04-15 | Rateau Sa | Dispositif de regulation du fonctionnement d'un ensemble de n turbo-compresseurs |
JPS623198A (ja) * | 1985-06-28 | 1987-01-09 | Hitachi Ltd | タ−ボ圧縮機の容量制御装置 |
US4640665A (en) * | 1982-09-15 | 1987-02-03 | Compressor Controls Corp. | Method for controlling a multicompressor station |
EP0576238A1 (de) * | 1992-06-22 | 1993-12-29 | Compressor Controls Corporation | Lastverteilungsverfahren und Gerät für Steuerung eines Hauptgasparameters einer Verdichterstation mit mehrfachen Kreiselverdichter |
EP0769624A1 (de) * | 1995-10-20 | 1997-04-23 | Compressor Controls Corporation | Verfahren und Vorrichtung zur Lastausgleichung zwischen mehreren Verdichtern |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60147585A (ja) * | 1984-01-11 | 1985-08-03 | Hitachi Ltd | 圧縮機の制御方法 |
US5343384A (en) * | 1992-10-13 | 1994-08-30 | Ingersoll-Rand Company | Method and apparatus for controlling a system of compressors to achieve load sharing |
JPH09121590A (ja) * | 1995-09-14 | 1997-05-06 | Copeland Corp | 逆転制動機構を備えた回転式圧縮機 |
US5971711A (en) * | 1996-05-21 | 1999-10-26 | Ebara Corporation | Vacuum pump control system |
BE1011122A3 (nl) * | 1997-04-22 | 1999-05-04 | Atlas Copco Airpower Nv | Besturingsinrichting van een compressorinstallatie. |
WO1999022138A1 (en) * | 1997-10-28 | 1999-05-06 | Coltec Industries, Inc. | Compressor system and method and control for same |
DE19828368C2 (de) * | 1998-06-26 | 2001-10-18 | Man Turbomasch Ag Ghh Borsig | Verfahren und Vorrichtung zum Betreiben von zwei- oder mehrstufigen Verdichtern |
US6126401A (en) * | 1998-08-12 | 2000-10-03 | Computer Graphics Systems Development Corporation | Hybrid electric/hydraulic drive system |
US6318965B1 (en) * | 1999-04-13 | 2001-11-20 | Degree Controls, Inc. | Intelligent internal fan controller |
US6233954B1 (en) * | 1999-04-28 | 2001-05-22 | Ingersoll-Rand Company | Method for controlling the operation of a compression system having a plurality of compressors |
JP2000346512A (ja) * | 1999-06-03 | 2000-12-15 | Fujitsu Ltd | 冷却装置 |
US6685438B2 (en) * | 2001-08-01 | 2004-02-03 | Lg Electronics Inc. | Apparatus and method for controlling operation of reciprocating compressor |
-
2002
- 2002-02-28 DE DE10208676A patent/DE10208676A1/de not_active Withdrawn
-
2003
- 2003-01-11 EP EP03000483A patent/EP1340919B1/de not_active Expired - Lifetime
- 2003-01-11 AT AT03000483T patent/ATE325951T1/de not_active IP Right Cessation
- 2003-01-11 DE DE50303267T patent/DE50303267D1/de not_active Expired - Lifetime
- 2003-01-11 ES ES03000483T patent/ES2262901T3/es not_active Expired - Lifetime
- 2003-02-20 US US10/371,136 patent/US20030161731A1/en not_active Abandoned
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1385983A (en) * | 1971-06-29 | 1975-03-05 | Trans Canada Pipelines Ltd | Control apparatus for compressors operating in parallel |
FR2324911A1 (fr) * | 1975-09-18 | 1977-04-15 | Rateau Sa | Dispositif de regulation du fonctionnement d'un ensemble de n turbo-compresseurs |
US4640665A (en) * | 1982-09-15 | 1987-02-03 | Compressor Controls Corp. | Method for controlling a multicompressor station |
JPS623198A (ja) * | 1985-06-28 | 1987-01-09 | Hitachi Ltd | タ−ボ圧縮機の容量制御装置 |
EP0576238A1 (de) * | 1992-06-22 | 1993-12-29 | Compressor Controls Corporation | Lastverteilungsverfahren und Gerät für Steuerung eines Hauptgasparameters einer Verdichterstation mit mehrfachen Kreiselverdichter |
EP0769624A1 (de) * | 1995-10-20 | 1997-04-23 | Compressor Controls Corporation | Verfahren und Vorrichtung zur Lastausgleichung zwischen mehreren Verdichtern |
Non-Patent Citations (2)
Title |
---|
DATABASE WPI Section PQ, Week 199924 Derwent Publications Ltd., London, GB; Class Q56, AN 1999-277980 XP002259122 -& BE 1 011 122 A (ATLAS COPCO AIRPOWER NV), 4. Mai 1999 (1999-05-04) * |
PATENT ABSTRACTS OF JAPAN vol. 011, no. 172 (M-595), 3. Juni 1987 (1987-06-03) & JP 62 003198 A (HITACHI LTD), 9. Januar 1987 (1987-01-09) * |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006084817A1 (de) * | 2005-02-11 | 2006-08-17 | Siemens Aktiengesellschaft | Verfahren zur optimierung des betriebs mehrerer verdichteraggregate und vorrichtung hierzu |
US7676283B2 (en) | 2005-02-11 | 2010-03-09 | Siemens Aktiengesellschaft | Method for optimizing the functioning of a plurality of compressor units and corresponding device |
AT502998B1 (de) * | 2006-01-11 | 2008-05-15 | Leobersdorfer Maschf | Hochdruck-kompressor sowie dessen verwendung und verfahren zu dessen betrieb |
DE112007000125B4 (de) * | 2006-01-11 | 2017-11-09 | Leobersdorfer Maschinenfabrik Ag | Hochdruck-Kompressor sowie dessen Verwendung und Verfahren zu dessen Betrieb |
Also Published As
Publication number | Publication date |
---|---|
EP1340919B1 (de) | 2006-05-10 |
DE50303267D1 (de) | 2006-06-14 |
US20030161731A1 (en) | 2003-08-28 |
EP1340919A3 (de) | 2004-01-07 |
ATE325951T1 (de) | 2006-06-15 |
DE10208676A1 (de) | 2003-09-04 |
ES2262901T3 (es) | 2006-12-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1340919B1 (de) | Verfahren zum Regeln von mehreren Strömungsmaschinen im Parallel-oder Reihenbetrieb | |
EP1134422B1 (de) | Verfahren zur Regulierung des Pumpens eines Turbokompressors | |
DE3116340C2 (de) | Verfahren und Regeleinrichtung zum Begrenzen der bei Belastungsänderungen auftretenden thermischen Beanspruchung von Bauteilen einer Dampfturbine | |
EP0132487B1 (de) | Verfahren zum Regeln von mindestens zwei parallel geschalteten Turbokompressoren | |
DE3133504C2 (de) | Regelanordnung für eine Dampfturbine mit Umleitstationen | |
DE69306301T2 (de) | Regeleinrichtung und -verfahren für einen Kompressor treibenden Motor | |
DE10313503B4 (de) | Verfahren und Vorrichtung zur Abgasrückführungssteuerung in Brennkraftmaschinen | |
DE69007866T2 (de) | Anlage, um eine Pumpvorrichtung zu steuern. | |
WO2005024245A1 (de) | Steueranordnung und verfahren zur druckmittelversorgung von zumindest zwei hydraulischen verbrauchern | |
DE2947618C2 (de) | Regelverfahren für einen mehrstufigen Zentrifugalverdichter | |
DE3023550A1 (de) | Steuersystem zur steuerung der kraftstoffzufuhr bei einer gasturbine | |
CH653744A5 (de) | Regelanordnung fuer eine aus einem mit konstant- oder gleitdruck betriebenen dampfkessel gespeiste dampfturbine. | |
CH698244B1 (de) | Zweitakt-Grossdieselmotor mit mehreren variablen Turboladern. | |
WO2013167248A1 (de) | Verfahren zum betreiben einer fluidpumpe | |
DE3040139A1 (de) | Regelsystem fuer eine gasturbine | |
DE3037780C2 (de) | Verfahren und Anordnung zum Regeln des Betriebes einer Entnahmeturbine | |
EP2825919B1 (de) | Verfahren und vorrichtung zum pneumatischen antreiben eines turboladerrotors in einer auswuchtmaschine | |
EP3280894A1 (de) | Betrieb einer gasturbine mit einer interpolierten fahrlinienabweichung | |
DE69903623T2 (de) | Brennstoffzuführung zu einem brennerelement | |
DE3830805C2 (de) | ||
DE69219140T2 (de) | Luftregelung bei einer wirbelschicht-druckfeuerung | |
DE19644961A1 (de) | Verfahren zum Steuern des Motor-Pumpe-Systems einer hydraulischen Baumaschine | |
DE2516379A1 (de) | Anordnung zur steuerung der ausgangsleistung eines oder mehrerer turbogeneratoren in einem kraftwerk | |
DE2356390C2 (de) | Verfahren zur Steuerung des Betriebs einer Dampfturbine | |
DE10018137B4 (de) | Verfahren zur Zumessung von Kraftstoffen |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL LT LV MK RO |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL LT LV MK RO |
|
17P | Request for examination filed |
Effective date: 20040227 |
|
17Q | First examination report despatched |
Effective date: 20040512 |
|
AKX | Designation fees paid |
Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT SE SI SK TR |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: MAN TURBO AG |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT SE SI SK TR |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED. Effective date: 20060510 Ref country code: IE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20060510 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20060510 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20060510 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20060510 Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20060510 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REF | Corresponds to: |
Ref document number: 50303267 Country of ref document: DE Date of ref document: 20060614 Kind code of ref document: P |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: TRGR |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 20060621 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20060810 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20061010 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2262901 Country of ref document: ES Kind code of ref document: T3 |
|
ET | Fr: translation filed | ||
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FD4D |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 20070111 Year of fee payment: 5 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20070130 Year of fee payment: 5 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20070131 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20070131 Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20070131 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20070213 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
BERE | Be: lapsed |
Owner name: MAN TURBO A.G. Effective date: 20070131 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20070131 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20060811 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20060810 Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20070111 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20060510 |
|
EUG | Se: european patent has lapsed | ||
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20080112 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20080112 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20080112 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20060510 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20070111 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20060510 Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20061111 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20100121 Year of fee payment: 8 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20110111 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110111 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 14 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20160120 Year of fee payment: 14 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20160127 Year of fee payment: 14 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20160121 Year of fee payment: 14 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MM Effective date: 20170201 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20170929 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170131 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170201 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170111 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R081 Ref document number: 50303267 Country of ref document: DE Owner name: MAN ENERGY SOLUTIONS SE, DE Free format text: FORMER OWNER: MAN TURBO AG, 46145 OBERHAUSEN, DE |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20200121 Year of fee payment: 18 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R231 Ref document number: 50303267 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF THE APPLICANT RENOUNCES Effective date: 20200522 |