EP1340221A1 - Layered material - Google Patents

Layered material

Info

Publication number
EP1340221A1
EP1340221A1 EP00993916A EP00993916A EP1340221A1 EP 1340221 A1 EP1340221 A1 EP 1340221A1 EP 00993916 A EP00993916 A EP 00993916A EP 00993916 A EP00993916 A EP 00993916A EP 1340221 A1 EP1340221 A1 EP 1340221A1
Authority
EP
European Patent Office
Prior art keywords
material according
elements
layer
carrier elements
layered material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP00993916A
Other languages
German (de)
French (fr)
Other versions
EP1340221B1 (en
Inventor
Thomas Wiegel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of EP1340221A1 publication Critical patent/EP1340221A1/en
Application granted granted Critical
Publication of EP1340221B1 publication Critical patent/EP1340221B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general

Definitions

  • the present invention relates to a layered material for influencing the vibration, radiation and / or sound behavior of, in particular, flat sound-radiating elements.
  • Disturbing and damaging noises are the main stress factors in our acoustic environment. They arise when functional parts move in a structure that excite the structure itself and / or coupled light, flat parts to vibrate. The intensity and sound quality of this sound radiation are determined by functional requirements, in particular stability and weight, and are usually such that corrective measures are necessary.
  • a large number of measures for influencing (damping) the vibration, radiation and / or sound behavior of flat sound-emitting elements are known from the prior art. These include anti-drumming materials (increase in mass and friction), sandwich constructions (use of different material properties), spacers, changes in stiffness, resonance damping, reduction in vibration initiation, transfer to less radiant parts of the Construction, active measures with phase shifted movements etc.
  • the invention has for its object to provide a layer material of the type specified, which, with a simple structure, a low weight and a simple installation option, has a particularly effective influence, in particular damping, of the vibration, radiation and / or sound behavior of in particular flat sound-emitting elements.
  • a layer material of the type specified in that it comprises at least two layers arranged and connected to one another, each consisting of rod-shaped carrier elements spaced parallel or at an angle to one another, the starting and end points of which are with other carrier elements or in the most radiant manner Element installed state are connected to this and form the nodes with support elements arranged at an angle to the same layer and / or an adjacent layer.
  • rod-shaped support or structural elements of the layers are the easiest way to achieve the slow wave speeds required for influencing / damping (especially low frequencies), since rods are not only slower (longitudinal) wave have speeds as flat elements, but the slowest at all, on the other hand, such rods enable particularly stiff and light structures.
  • each individual support or structural element can be defined in terms of material, dimensions and position in relation to the flat sound-emitting element, the basic acoustic elements of mass, spring, friction, stiffness can be freely assigned (ie largely independently of one another) to each individual surface element, and its amplitude , Frequency and phase can be designed within particularly wide limits. Due to the improved availability of energy (based on the same weight), the known optimization limits of damping are overcome. Due to the design of frequency and phase behavior as well as the controlled generation of near fields, psychoacoustic phenomena can also be used in the product area.
  • the layer material is completely modular due to the free definability of its structural elements and can therefore be adjusted to a wide variety of acoustic framework conditions (area size, excitation intensity, excitation spectra, excitation locations, area modes, area shape, boundary conditions).
  • a wide variety of tasks can also be performed, for example Optima for all operating conditions, desired sound properties, minimal airborne sound radiation, minimal deflection, etc.
  • Each layer having the rod-shaped support elements must ensure a transfer function from the surface of the flat sound-radiating element on which the layer material is arranged to the layer material and an exchange function of the support layers with one another and be dimensioned so that the grid resolution (distance of corresponding nodes or .
  • Contact points of the acoustic task, which means, for example in the case of damping, that the spacing of the contact / grid points must be small compared to the wavelength of the wave type to be damped, and a material with such low wave speed is selected that several phase states of the lower limit frequency find space in the area.
  • the grid (the structure) must withstand damage, such as temperature, shock or force effects (centrifugal forces, accelerations). This is achieved through appropriate shaping, structuring, dimensioning and material selection and, if necessary, through additional stabilizing or protective elements.
  • the layer material designed according to the invention is connected (attached) to the corresponding surface of the sound-radiating element, for example glued to it.
  • the surface, the oscillation, radiation and / or sound behavior of which is to be changed can be flat, spherical or of any shape.
  • cylindrical and conical bodies, spheres, torus rings and all bodies and structures with thin-walled, light boundary surfaces are possible.
  • Vibrations of the flat element are in principle fully absorbed on the layer material attached to it. areal transfer. Several coherent waves are excited in the material, at least two parallel to the surface. There can also be one wave perpendicular to the surface and two more parallel to the surface and Raleigh-like waves. The energy exchange of the waves takes place via the contact points / nodes.
  • a temporal and / or spatial statistical wave pattern is created in the material, because any number of points on the surface of the sound-emitting element are assigned in a phase-locked manner to any number of points in the material, and from one point on the surface of the sound-emitting element there are several phase-defined paths ' to any point of the material , Since the phase, location and direction of the waves can be controlled, wave extinctions occur, whereby the mechanical energy is converted into heat (the large surface area of the material ensures good heat dissipation to the environment).
  • the carrier elements used in the layers according to the invention in principle enable very light, stable structures and / or have the lowest possible longitudinal wave speeds. They have a large, non-radiant surface and almost unlimited combination options.
  • the layer material designed according to the invention is in principle modular. This means that each individual or grouped support element (or a part thereof) and each group of support element groups can be assigned a special position, dimension, shape and material.
  • the carrier elements and also the associated planar sound-radiating element itself can have the basic acoustic elements of mass, rigidity. speed, friction and spring can be assigned to a determinable degree and within the scope of the available resources or specifications in accordance with the acoustic goals.
  • the flat sound-emitting element the oscillation, radiation and / or sound behavior of which is to be changed, can be flat, spherical or arbitrarily curved.
  • the layer material designed according to the invention is coupled to the flat sound-radiating element.
  • the layer material transforms the excited bending waves into other types of waves, for example into quasi-longitudinal waves, i.e. wave fronts directed transversely to the direction of radiation. This means a transition from a one-dimensional concept of the sound-emitting surface to a surface with space close to the surface and establishes a spatial and wave-based (multi-dimensional) concept / treatment of the surface itself.
  • the movement of the flat sound-emitting element is controlled by a lever / deflection function (transmission of torques or shear forces) and a contact / coupling point matrix in several wave fronts running parallel to the surface (perpendicular to the radiation movement) and / or in non-radiation-capable structural elements that vibrate in the same direction transferred what happens through the layer material arranged in the vicinity of the surface, which has layered, transversely oriented and phase-defined functional elements coupled in the form of layered carrier grids or crossing carrier line sets.
  • a lever / deflection function transmission of torques or shear forces
  • a contact / coupling point matrix in several wave fronts running parallel to the surface (perpendicular to the radiation movement) and / or in non-radiation-capable structural elements that vibrate in the same direction transferred what happens through the layer material arranged in the vicinity of the surface, which has layered, transversely oriented and phase-defined functional elements coupled in the form of layered carrier grids or crossing carrier line sets.
  • the functional elements In order to transport the wave fronts, the functional elements must be wave-capable, ie in wave propagation direction generally, statistically or periodically homogeneous, and generate definable wavefronts in phase and direction, which can be achieved by their shape, position and material properties.
  • all / selected wave fronts must be able to be coupled in a phase-defined manner, which can be achieved by crossing, i.e. through coupling points (a coupling point grid) designed as contact points and / or nodes of the wavefront-carrying functional elements.
  • coupling points a coupling point grid
  • these form the phase-defined transition points between the surface and more remote structural elements and create multiple phase-defined wave excitation centers, the prerequisite for coherent waves.
  • the carrier elements are preferably longer than their largest cross-sectional dimension.
  • length is defined as the distance from node to node.
  • Two or more layers arranged one above the other can be used, which form the layer material formed according to the invention.
  • One or more intermediate layers neutral to sound radiation can be arranged between these layers of the individual carrier elements.
  • the layer material can have a sound radiation-neutral end layer.
  • the carrier elements of a layer are preferably in straight the or kinking carrier lines and these arranged in parallel or angular groups, so that layers of carrier element groups or carrier element grids result.
  • this can have a square, rectangular, polygonal, circular, elliptical or irregular cross-sectional contour.
  • the cross section can be full or hollow, be hollow layered, have a core and one or more shells and consist of different materials in cross section or a part thereof. Any combination can be used.
  • the support elements can have a cross-sectional contour that is constant over their length.
  • the cross section can also change, in particular for the formation of special large-area nodes.
  • variable cross-sectional changes and also variable cross-sections can be borrowed over the length
  • Typical cross-sectional dimensions of a carrier element are 0.01 to 10 mm (diameter).
  • the material of the carrier elements can be plastic, plasto-elastic or elastic.
  • the surface can be rough, for example, but can also be smooth.
  • the nodes provided according to the invention arise as an intersection of carrier elements of a layer and / or of touching layers and / or a selection / of all existing layers.
  • Nodes arise when a Layer is formed as a grid and / or when two sets of support elements of layers in contact intersect at an angle.
  • the start and / or end points of the support elements in the crossing area can be tapered in height on one or both sides.
  • the material of the nodes can differ from that of the surface of the support elements.
  • the layer material formed according to the invention consists of at least two layers arranged one above the other. Adjacent layers are in contact with each other via nodes (points of contact). Adjacent layers can have the same or different designs. In particular, there are embodiments in which layers have different material properties.
  • the layer material can have a sound radiation-neutral end layer in order to provide a cover.
  • This final layer can consist, for example, of thin foils, nonwovens, fabrics, foamed flat materials.
  • the cover acts against mechanical stress and / or heat / cold, aggressive media. It is also possible to install the material between two surfaces.
  • the individual layers are attached to one another or the layer material is attached to the flat sound-emitting element, preferably by means of adhesive, in particular by means of melt, reaction, UV-curing, contact and pressure-sensitive adhesive systems.
  • adhesive in particular by means of melt, reaction, UV-curing, contact and pressure-sensitive adhesive systems.
  • the layered material can be produced as a molded part or as a flat semi-finished product. Corresponding cuts can be made, for example, by laser or water jet cutting techniques.
  • Elastomers are used as the preferred material for the carrier elements, in particular made of plastic, non-flowing, especially polyisobutyl.
  • FIG. 1 shows a spatial view of a first embodiment of a laminate material part consisting of several layers
  • FIG. 2 shows a second embodiment of a layer material part consisting of several layers
  • Figure 3 is a transverse view of the part of Figure 2;
  • Figure 4 is a longitudinal view of the part of Figure 2;
  • FIG. 5 shows a plan view of a further embodiment of a layer material part
  • FIG. 6 shows a plan view of yet another embodiment of a layered material part
  • FIG. 7 shows an enlarged spatial detailed view of a layered material part, which is essentially correspond to the embodiment of FIG. 1;
  • Figure 8a-g seven different embodiments of a layer material in section
  • FIG. 10 shows a spatial view of a further embodiment of a layered material part
  • Figure 11 is a spatial view of yet another
  • Embodiment of a layered material part Embodiment of a layered material part.
  • the layered material part shown in FIG. 1 in a three-dimensional view has a rectangular shape and consists of five layers arranged one above the other, each consisting of grid elements 1 and 2, which are arranged at right angles to one another and form nodes 3 at their crossing points. Adjacent layers are in contact with one another via their nodes 3.
  • FIG. 2 shows an embodiment in which the layered material part is slightly curved in the longitudinal and transverse directions.
  • several layers of carrier elements 2, 3 crossing at right angles are arranged one above the other, with more layers being arranged one above the other in the central region of the part than in the edge region 4.
  • the side view of FIG. 3 shows that seven layers are arranged one above the other in the central region are, while there are only four in the edge regions 4.
  • the side view of FIG. 4 shows the same embodiment, but here the end region on the right in FIG. 4 has the same number of layers as that has middle area.
  • the layers are composed of support elements 1, 2 arranged in a lattice shape, which intersect at a right angle. Adjacent layers are in contact with one another via the corresponding nodes 3.
  • the support elements 1 a layer extending circular while the carrier elements 2 extend this' layer radially.
  • nodes 3 are formed.
  • Figure 6 shows an embodiment; in which the carrier elements 1 of a layer extend in a spiral or involute form, while the other carrier elements 2 of this layer extend radially.
  • nodes 3 are formed.
  • One layer consists of a family of carrier elements 1, 2, which in this embodiment are arranged in a layer parallel and at a distance from one another.
  • the carrier elements of adjacent layers are arranged at right angles to one another. This results in nodes 3 at the points of contact of the carrier elements of adjacent layers 6.
  • an obliquely arranged strut is shown, which serves to stabilize the layer material.
  • 6 support points are shown in order to reduce the span of the support elements between two contact points. For these support points 6, the rectified support elements 2 are in contact with one another.
  • FIG. 8 shows various exemplary embodiments of the structure of the layer material.
  • the carrier elements 1, 2 of a layer are arranged parallel to one another and at a distance from one another.
  • the carrier elements of adjacent layers are arranged at right angles to one another, so that the layer structure shown in FIG. 8a results.
  • FIG. 8a also corresponds to a case in which foils are arranged between the carrier elements of the individual layers.
  • FIG. 8b essentially the same structure has been chosen, with the carrier elements 1, 2 of adjacent layers being arranged at right angles to one another.
  • the carrier elements are tapered at the contact points, so that there is a closer distance from adjacent layers.
  • the layer material is curved, this curvature being pronounced in each individual layer.
  • FIG. 8e shows carrier elements of different layers which are displaced relative to one another.
  • struts 5 are provided as separate transfer supports.
  • FIG. 8g shows a stratification of different heights, which is less in the edge areas than in the middle area.
  • FIG. 9 shows different cross-sectional contours of carrier elements, FIG. 9k showing a longitudinal view of a carrier element which is composed of different materials over its length.
  • Figure 9a shows a rectangular and an elliptical cross-sectional shape.
  • Figure 9b shows a square, circular, hexagonal and teardrop-shaped cross-sectional shape.
  • Figure 9c shows a hollow cross-sectional shape, while Figure 9d shows a cross-sectional shape made of solid material.
  • the cross section is composed of a large number of individual threads or individual fibers, so that the shape of a "strand" (bundle) results.
  • the cross section consists of a jacket and a core.
  • gaseous inclusions in the form of bubbles or tubes are provided.
  • the embodiments of FIGS. 9i and 9j show different materials in a cross section.
  • FIGS. 10 and 11 show two schematic spatial representations of further embodiments of layer materials, the layer material being formed from several layers in FIG. 10, in which the carrier elements partially assume the same and different angular positions.
  • FIG. 11 shows a case in which the carrier elements of the different layers are arranged essentially parallel to one another.
  • Points of contact can be realized via electromechanical elements.
  • the material can be attached using positioning aids.
  • the rod-shaped carrier elements can expediently also consist of several layers, i.e. Show laminates.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Multimedia (AREA)
  • Laminated Bodies (AREA)
  • Diaphragms For Electromechanical Transducers (AREA)
  • Soundproofing, Sound Blocking, And Sound Damping (AREA)
  • Polymers With Sulfur, Phosphorus Or Metals In The Main Chain (AREA)
  • Vehicle Interior And Exterior Ornaments, Soundproofing, And Insulation (AREA)

Abstract

The invention relates to a layered material for influencing the vibrational, radiational and/or tonal behaviour of particularly flat sound-radiating elements. Said layered material comprises at least two layers which are disposed on top of each other and joined together, each layer consisting of parallel or angularly disposed bar-shaped support elements (1, 2) whose initial and the end points are joined to other support elements or installed in a sound-radiating element and connected thereto.

Description

Schichtwerkstoff Layer material
Die vorliegende Erfindung betrifft einen Schichtwerkstoff zur Beeinflussung des Schwing-, Abstrahl- und/oder Klangverhaltens von insbesondere flächigen schallabstrah- lenden Elementen.The present invention relates to a layered material for influencing the vibration, radiation and / or sound behavior of, in particular, flat sound-radiating elements.
Störende und schädigende Geräusche sind Haupt-Streßfaktoren unserer akustischen Umwelt. Sie entstehen, wenn sich in einer Struktur Funktionsteile bewegen, die die Struktur selbst und/oder angekoppelte leichte, flächige Teile zu Schwingungen anregen. Die Intensität und klangliche Beschaffenheit dieser Schallabstrahlung werden von funktionalen Vorgaben, insbesondere Stabilität und Gewicht, bestimmt und sind meist derart, daß verbessernde Maßnahmen notwendig sind.Disturbing and damaging noises are the main stress factors in our acoustic environment. They arise when functional parts move in a structure that excite the structure itself and / or coupled light, flat parts to vibrate. The intensity and sound quality of this sound radiation are determined by functional requirements, in particular stability and weight, and are usually such that corrective measures are necessary.
Nach dem Stand der Technik ist eine Vielzahl von Maßnahmen zur Beeinflussung (Dämpfung) des Schwing-, Abstrahl- und/oder Klangverhaltens von flächigen schallabstrahlenden Elementen (Bauelementen, Formteilen etc.) bekannt. Hierzu zählen Antidröhnmaterialien (Masse- und Reibungserhöhung) , Sandwichkonstruktionen (Ausnutzung unterschiedlicher Materialeigenschaften) , Abstandshalter, Steifigkeitsveränderun- gen, Resonanzbedämpfung, Verringerung der Schwingungsein- leitung, Überleitung in weniger strahlungsfähige Teile der Konstruktion, aktive Maßnahmen mit phasenverschobenen Bewegungen etc .A large number of measures for influencing (damping) the vibration, radiation and / or sound behavior of flat sound-emitting elements (components, molded parts, etc.) are known from the prior art. These include anti-drumming materials (increase in mass and friction), sandwich constructions (use of different material properties), spacers, changes in stiffness, resonance damping, reduction in vibration initiation, transfer to less radiant parts of the Construction, active measures with phase shifted movements etc.
Die vorstehend aufgezählten Maßnahmen sind jedoch teilweise sehr aufwendig und insbesondere dann unzureichend, wenn einerseits Stabilitäts- und Gewichts orgaben zu erfüllen sind, andererseits der technische und wirtschaftliche Wunsch/Zwang besteht, Schallabstrahlung und Vibration um ein vertretbares Maß zu verringern, angenehmer zu gestalten oder zusätzlich aktiv zu beeinflussen.However, the measures listed above are sometimes very complex and in particular inadequate if, on the one hand, stability and weight requirements have to be met, on the other hand there is a technical and economic wish / constraint to reduce sound radiation and vibration by a reasonable amount, to make them more pleasant or in addition to actively influence.
Der Erfindung liegt die Aufgabe zugrunde, einen Schichtwerkstoff der angegebenen Art zu schaffen, der bei einem einfachen Aufbau, einem geringen Gewicht und einer einfa- chen Installationsmöglichkeit eine besonders effektive Beeinflussung, insbesondere Dämpfung, des Schwing-, Abstrahl- und/oder Klangverhaltens von insbesondere flächigen schall- abstrahlenden Elementen ermöglicht.The invention has for its object to provide a layer material of the type specified, which, with a simple structure, a low weight and a simple installation option, has a particularly effective influence, in particular damping, of the vibration, radiation and / or sound behavior of in particular flat sound-emitting elements.
Diese Aufgabe wird erfindungsgemäß bei einem Schichtwerkstoff der angegebenen Art dadurch gelöst, daß er mindestens zwei übereinander angeordnete und miteinander verbundene Schichten je aus mit Abstand parallel oder winklig zueinander angeordneten stabformigen Trägerelementen umfaßt, de- ren Anfangs- und Endpunkte mit anderen Trägereiementen oder im am schallabstrahlenden Element installierten Zu-stand mit diesem verbunden sind und die mit winklig hierzu angeordneten Trägerelementen der gleichen Schicht und/oder einer benachbarten Schicht Knotenpunkte bilden.This object is achieved according to the invention in the case of a layer material of the type specified in that it comprises at least two layers arranged and connected to one another, each consisting of rod-shaped carrier elements spaced parallel or at an angle to one another, the starting and end points of which are with other carrier elements or in the most radiant manner Element installed state are connected to this and form the nodes with support elements arranged at an angle to the same layer and / or an adjacent layer.
Durch die stabformigen Träger- bzw. Strukturelemente der Schichten lassen sich zum einen die für die Beeinflussung/Bedämpfung (speziell tiefer Frequenzen) geforderten langsamen Wellengeschwindigkeiten am einfachsten erreichen, da Stäbe nicht nur langsamere (Longitudinal-) Wellenge- schwindigkeiten als flächige Elemente aufweisen, sondern die langsamsten überhaupt, zum anderen ermöglichen derartige Stäbe besonders steife und leichte Strukturen.The rod-shaped support or structural elements of the layers are the easiest way to achieve the slow wave speeds required for influencing / damping (especially low frequencies), since rods are not only slower (longitudinal) wave have speeds as flat elements, but the slowest at all, on the other hand, such rods enable particularly stiff and light structures.
Da jedes einzelne Träger- bzw. Strukturelement in Material, Abmessung und Lage zum flächigen schallabstrahlenden Element definierbar ist, können die akustischen Grundelemente Masse, Feder, Reibung, Steifigkeit frei (also weitgehend unabhängig voneinander) jedem einzelnen Flächenelement zu- geordnet werden, und dessen Amplitude, Frequenz und Phase sind in besonders weiten Grenzen gestaltbar. Durch die gleichzeitig erzielte bessere Verfügbarkeit von Energie (bezogen auf gleiches Gewicht) werden die bekannten Optimierungsgrenzen der Bedämpfung überwunden. Durch die Ge- staltbarkeit von Frequenz- und Phasenverhalten sowie die kontrollierte Erzeugung von Nahfeldern können überdies psy- choakustische Phänomene im Produktbereich genutzt werden.Since each individual support or structural element can be defined in terms of material, dimensions and position in relation to the flat sound-emitting element, the basic acoustic elements of mass, spring, friction, stiffness can be freely assigned (ie largely independently of one another) to each individual surface element, and its amplitude , Frequency and phase can be designed within particularly wide limits. Due to the improved availability of energy (based on the same weight), the known optimization limits of damping are overcome. Due to the design of frequency and phase behavior as well as the controlled generation of near fields, psychoacoustic phenomena can also be used in the product area.
Der Schichtwerkstoff ist durch die freie Definierbarkeit seiner Strukturelemente völlig modular und kann damit auf unterschiedlichste akustische Rahmenbedingungen eingestellt werden (Flächengröße, Anregungsintensität, AnregungsSpektren, Anregungsorte, Flächenmoden, Flächenform, Randbedingungen) . Auch sind unterschiedlichste Aufgabenstellungen erfüllbar, beispielsweise Optima für alle Betriebszustände, gewünschte Klangeigenschaften, geringste Luftschallabstrahlung, geringste Auslenkung etc.The layer material is completely modular due to the free definability of its structural elements and can therefore be adjusted to a wide variety of acoustic framework conditions (area size, excitation intensity, excitation spectra, excitation locations, area modes, area shape, boundary conditions). A wide variety of tasks can also be performed, for example Optima for all operating conditions, desired sound properties, minimal airborne sound radiation, minimal deflection, etc.
Durch die einfache Integrierbarkeit von aktiven Elementen kann diese Optimierung noch besser auf zufällige Einwirkungen der Umgebung reagieren bzw. differenziertere Ergebnisse erzeugen.Due to the simple integration of active elements, this optimization can react even better to random influences from the environment or produce more differentiated results.
Jede die stabformigen Trägereiemente aufweisende Schicht (Trägergitter oder Trägerreihe/Trägerschar) muß eine Überleitungsfunktion von der Fläche des flächigen schallabstrahlenden Elementes, auf der der Schichtwerkstoff angeordnet wird, auf den Schichtwerkstoff und eine Austausch- funktion der Trägerschichten untereinander gewährleisten und so dimensioniert werden, daß die Rasterauflösung (Abstand entsprechender Knotenpunkte bzw. Berührungspunkte) der gestellten akustischen Aufgabe gerecht wird, was beispielsweise im Dämpfungsfall bedeutet, daß die Abstände der Berührungs/Rasterpunkte klein gegenüber der Wellenlänge der zu bedämpfenden Wellenart sein müssen, und ein Material mit so geringer Wellengeschwindigkeit gewählt wird, daß mehrere Phasenzustände der unteren Grenzfrequenz in der Fläche Platz finden. Des weiteren muß das Raster (die Struktur) Einflüsse, wie Temperatur, Schock- oder Krafteinwir-kungen (Zentrifugalkräfte, Beschleunigungen) , unbeschadet überstehen. Dies wird durch eine entsprechende Formgebung, Strukturierung, Dimensionierung und Materialauswahl und ggf. durch zusätzliche Stabilisierungs- oder Schutzelemente re- alisiert.Each layer having the rod-shaped support elements (Support grid or support row / support coulter) must ensure a transfer function from the surface of the flat sound-radiating element on which the layer material is arranged to the layer material and an exchange function of the support layers with one another and be dimensioned so that the grid resolution (distance of corresponding nodes or . Contact points) of the acoustic task, which means, for example in the case of damping, that the spacing of the contact / grid points must be small compared to the wavelength of the wave type to be damped, and a material with such low wave speed is selected that several phase states of the lower limit frequency find space in the area. Furthermore, the grid (the structure) must withstand damage, such as temperature, shock or force effects (centrifugal forces, accelerations). This is achieved through appropriate shaping, structuring, dimensioning and material selection and, if necessary, through additional stabilizing or protective elements.
Um das Schwing-, Abstrahl- und/oder Klangverhalten eines flächigen schallabstrahlenden Elementes zu beeinflussen, wird der erfindungsgemäß ausgebildete Schichtwerkstoff mit der entsprechenden Fläche des schallabstrahlenden Elementes verbunden (daran befestigt), beispielsweise damit verklebt. Die Fläche, deren Schwing-, Abstrahl- und/oder Klangverhalten verändert werden soll, kann eben, sphärisch oder beliebig gekrümmt geformt sein. Darüber hinaus möglich sind zy- lindrische und kegelförmige Körper, Kugeln, Torusringe und alle Körper und Strukturen mit dünnwandigen, leichten Begrenzungsflächen.In order to influence the vibration, radiation and / or sound behavior of a planar sound-radiating element, the layer material designed according to the invention is connected (attached) to the corresponding surface of the sound-radiating element, for example glued to it. The surface, the oscillation, radiation and / or sound behavior of which is to be changed, can be flat, spherical or of any shape. In addition, cylindrical and conical bodies, spheres, torus rings and all bodies and structures with thin-walled, light boundary surfaces are possible.
Schwingungen des flächigen Elementes (Biegewellen) werden auf den daran befestigten Schichtwerkstoff im Prinzip voll- flächig übertragen. Im Werkstoff werden mehrere kohärente Wellen angeregt, mindestens zwei parallel zur Fläche. Hinzu treten können eine Welle senkrecht zur Fläche und zwei weitere parallel zur Fläche und Raleigh-ähnliche Wellen. Der Engergieaustausch der Wellen erfolgt über die Be- rührungs/Knotenpunkte .Vibrations of the flat element (bending shafts) are in principle fully absorbed on the layer material attached to it. areal transfer. Several coherent waves are excited in the material, at least two parallel to the surface. There can also be one wave perpendicular to the surface and two more parallel to the surface and Raleigh-like waves. The energy exchange of the waves takes place via the contact points / nodes.
Die bekannten Bedingungen für kohärente Wellen sind gegeben. Im Werkstoff entsteht ein zeitlich und/oder räumlich statistisches Wellenbild, denn beliebig viele Punkte der Fläche des schallabstrahlenden Elementes sind phasenstarr zu beliebig vielen Punkten im Werkstoff zugeordnet und von einem Punkt der Fläche des schallabstrahlenden Elementes bestehen mehrere phasendefinierte Wege ' zu einem beliebigen Punkt des Werkstoffes. Da Phase, Ort und Richtung der Wellen beherrschbar sind, kommt es zu Wellenauslöschungen, wobei die mechanische Energie in Wärme umgewandelt wird (durch die große Oberfläche des Werkstoffes wird eine gute Wärmeabgabe an die Umgebung erzielt) .The known conditions for coherent waves are given. A temporal and / or spatial statistical wave pattern is created in the material, because any number of points on the surface of the sound-emitting element are assigned in a phase-locked manner to any number of points in the material, and from one point on the surface of the sound-emitting element there are several phase-defined paths ' to any point of the material , Since the phase, location and direction of the waves can be controlled, wave extinctions occur, whereby the mechanical energy is converted into heat (the large surface area of the material ensures good heat dissipation to the environment).
Die erfindungsgemäß in den Schichten verwendeten Trägerelemente ermöglichen prinzipiell sehr leichte, stabile Strukturen und/oder weisen die geringstmöglichen Longitudinal- wellengeschwindigkeiten auf. Sie besitzen eine große, nicht strahlungsfähige Oberfläche und nahezu unbegrenzte Kombinationsmöglichkeiten.The carrier elements used in the layers according to the invention in principle enable very light, stable structures and / or have the lowest possible longitudinal wave speeds. They have a large, non-radiant surface and almost unlimited combination options.
Der erfindungsgemäß ausgebildete Schichtwerkstoff ist prinzipiell modular. Das bedeutet, daß jedem einzelnen oder gruppierten Trägerelement (oder einem Teil davon) und jeder Gruppe von Trägerelementgruppen eine spezielle Lage, Abmessung, Form und ein Material zugeordnet werden können. Über diese odulare Zuordnung hinaus können den Trägerelementen und auch dem zugehörigen flächigen schallabstrahlenden Ele- ment selbst die akustischen Grundelemente Masse, Steifig- keit, Reibung und Feder in bestimmbarem Maß und im Rahmen der verfügbaren Ressourcen bzw. Vorgaben nach Maßgabe der akustischen Ziele zugeordnet werden.The layer material designed according to the invention is in principle modular. This means that each individual or grouped support element (or a part thereof) and each group of support element groups can be assigned a special position, dimension, shape and material. In addition to this modular assignment, the carrier elements and also the associated planar sound-radiating element itself can have the basic acoustic elements of mass, rigidity. speed, friction and spring can be assigned to a determinable degree and within the scope of the available resources or specifications in accordance with the acoustic goals.
Das flächige schallabstrahlende Element, dessen Schwing-, Abstrahl- und/oder Klangverhalten verändert werden soll, kann eben, sphärisch oder beliebig gekrümmt sein.The flat sound-emitting element, the oscillation, radiation and / or sound behavior of which is to be changed, can be flat, spherical or arbitrarily curved.
Im Gebrauch wird der erfindungsgemäß ausgebildete Schicht- Werkstoff an das flächige schallabstrahlende Element gekoppelt . Der Schichtwerkstoff transformiert die angeregten Biegewellen in andere Wellenarten, -beispielsweise in Quasi- Longitudinalwellen, d.h. in transversal zur Abstrahlungs- richtung gerichtete Wellenfronten. Dies bedeutet einen Übergang von einer eindimensionalen Vorstellung der schall- abstrahlenden Fläche zur einer Fläche mit flächennahem Raum und begründet eine räumliche und wellenbasierte (mehrdimensionale) Vorstellung/Behandlung der Fläche selbst.In use, the layer material designed according to the invention is coupled to the flat sound-radiating element. The layer material transforms the excited bending waves into other types of waves, for example into quasi-longitudinal waves, i.e. wave fronts directed transversely to the direction of radiation. This means a transition from a one-dimensional concept of the sound-emitting surface to a surface with space close to the surface and establishes a spatial and wave-based (multi-dimensional) concept / treatment of the surface itself.
Die Bewegung des flächigen schallabstrahlenden Elementes (Biegewelle) wird durch eine Hebel/Umlenkungsfunktion (Übertragung von Drehmomenten bzw. Scherkräften) und ein Berührungs/Koppelungspunkteraster in mehrere parallel zur Fläche (senkrecht zur Abstrahlbewegung) verlaufende Wellenfronten und/oder in nichtstrahlungsfähige in gleicher Richtung schwingende Strukturelemente übergeleitet, was durch den im Nahbereich der Fläche angeordneten Schichtwerkstoff geschieht, der geschichtete, transversal orientierte und mit dem flächigen Element phasendefiniert gekoppelte Funktionselemente in Form von geschichteten Trägergittern oder sich kreuzenden Trägerlinienscharen aufweist.The movement of the flat sound-emitting element (flexible shaft) is controlled by a lever / deflection function (transmission of torques or shear forces) and a contact / coupling point matrix in several wave fronts running parallel to the surface (perpendicular to the radiation movement) and / or in non-radiation-capable structural elements that vibrate in the same direction transferred what happens through the layer material arranged in the vicinity of the surface, which has layered, transversely oriented and phase-defined functional elements coupled in the form of layered carrier grids or crossing carrier line sets.
Um die Wellenfronten zu transportieren, müssen die Funkti- onselemente wellenfähig sein, d.h. in Wellenausbreitungs- richtung allgemein, statistisch oder periodisch homogen sein, und in Phase und Richtung definierbare Wellenfronten erzeugen, was durch ihre Form, Lage und Materialeigenschaften erzielbar ist.In order to transport the wave fronts, the functional elements must be wave-capable, ie in wave propagation direction generally, statistically or periodically homogeneous, and generate definable wavefronts in phase and direction, which can be achieved by their shape, position and material properties.
Zur gegenseitigen Bedämpfung/Beeinflussung der im Schicht- erkstoff erzeugten Wellenfronten müssen alle/ausgewählte Wellenfronten phasendefiniert koppelbar sein, was durch Kreuzung, d.h. durch Kopplungspunkte (ein Kopplungs- punkteraster) ausgebildet als Berührungs- und/oder Knotenpunkte der wellenfronttragenden Funktionselemente, erzielbar ist. Diese bilden gleichzeitig- die phasendefinierten Überleitungspunkte zwischen Fläche und entlegeneren Strukturelementen und schaffen multiple phasendefinierte Wel- lenerregungszentren, die Voraussetzung für kohärente Wellen.To mutually dampen / influence the wave fronts generated in the layer material, all / selected wave fronts must be able to be coupled in a phase-defined manner, which can be achieved by crossing, i.e. through coupling points (a coupling point grid) designed as contact points and / or nodes of the wavefront-carrying functional elements. At the same time, these form the phase-defined transition points between the surface and more remote structural elements and create multiple phase-defined wave excitation centers, the prerequisite for coherent waves.
Die Weiterbildungen des Erfindungsgegenstandes gehen aus den Unteransprüchen hervor. Hierzu ist im einzelnen folgen- des auszuführen:The further developments of the subject matter of the invention emerge from the subclaims. The following must be carried out in detail:
Die Trägerelemente sind vorzugsweise länger ausgebildet als ihre größte Querschnittsabmessung. Hierbei ist der Begriff "Länge" als die Strecke von Knotenpunkt zu Knotenpunkt de- finiert.The carrier elements are preferably longer than their largest cross-sectional dimension. Here, the term "length" is defined as the distance from node to node.
Es können zwei oder mehrere übereinander angeordnete Schichten Anwendung finden, die den erfindungsgemäß ausgebildeten Schichtwerkstoff bilden. Zwischen diesen Schichten aus den einzelnen Trägerelementen können ein oder mehrere schallabstrahlungsneutrale Zwischenschichten angeordnet sein. Ferner kann der Schichtwerkstoff eine schallabstrahlungsneutrale Endschicht aufweisen.Two or more layers arranged one above the other can be used, which form the layer material formed according to the invention. One or more intermediate layers neutral to sound radiation can be arranged between these layers of the individual carrier elements. Furthermore, the layer material can have a sound radiation-neutral end layer.
Die Trägerelemente einer Schicht sind vorzugsweise in gera- den oder knickenden Trägerlinien und diese zu parallelen oder winklingen Scharen angeordnet, so daß sich Schichten aus Trägerelementscharen oder Trägerelementgittern ergeben.The carrier elements of a layer are preferably in straight the or kinking carrier lines and these arranged in parallel or angular groups, so that layers of carrier element groups or carrier element grids result.
Was die Form bzw. den Querschnitt eines einzelnen Trägerelementes anbetrifft, so kann dieses eine quadratische, rechteckige, vieleckige, kreisförmige, elliptische oder unregelmäßige Querschnittskontur besitzen. Der Querschnitt kann voll oder hohl ausgebildet sein, hohl geschichtet sein, eine Seele und ein oder merere Mäntel besitzen und aus unterschiedlichen Materialien im Querschnitt oder einem Teil davon bestehen. Es können auch beliebige Kombinationen Anwendung finden.As for the shape or the cross section of an individual carrier element, this can have a square, rectangular, polygonal, circular, elliptical or irregular cross-sectional contour. The cross section can be full or hollow, be hollow layered, have a core and one or more shells and consist of different materials in cross section or a part thereof. Any combination can be used.
Was die Form der Trägereiemente anbetrifft, so können diese eine über ihre Länge gleichbleibende Querschnittskontur besitzen. Der Querschnitt kann sich jedoch auch verändern, insbesondere zur Ausformung besonderer großflächiger Knotenpunkte. Insbesondere können über die Länge kontinuier- lieh variable Querschnittsveränderungen und auch variableAs far as the shape of the support elements is concerned, they can have a cross-sectional contour that is constant over their length. However, the cross section can also change, in particular for the formation of special large-area nodes. In particular, variable cross-sectional changes and also variable cross-sections can be borrowed over the length
Materialzusammensetzungen realisiert werden. Typische Querschnittsabmessungen eines Trägerelementes liegen bei 0,01 bis 10 mm (Durchmesser) .Material compositions can be realized. Typical cross-sectional dimensions of a carrier element are 0.01 to 10 mm (diameter).
Was das Material der Trägerelemente anbetrifft, so kann dieses plastisch, plasto-elastisch oder elastisch ausgebildet sein. Es können gasförmige, flüssige, feste, blasenför- mige, tropfenförmige, faserförmige, fadenförmige, amorphe etc. Einschlüsse vorhanden sein. Die Oberfläche kann bei- spielsweise rauh, aber auch glatt ausgebildet sein.As far as the material of the carrier elements is concerned, it can be plastic, plasto-elastic or elastic. There may be gaseous, liquid, solid, bubble-shaped, drop-shaped, fibrous, thread-like, amorphous, etc. inclusions. The surface can be rough, for example, but can also be smooth.
Die erfindungsgemäß vorgesehenen Knotenpunkte entstehen als Kreuzungsbereich von Trägerelementen einer Schicht und/oder von sich berührenden Schichten und/oder einer Auswahl/aller vorhandenen Schichten. Knotenpunkte entstehen, wenn eine Schicht als Gitter ausgebildet ist und/oder wenn sich zwei Scharen von Trägerelementen sich berührender Schichten winklig schneiden. Je nach Abstimmung von Trägerabstand, Trägerlage und Trägerlänge ergeben sich ein oder mehrere Kopplungsraster. Zur Erzielung einer WerkstoffVerdichtung können die Anfangs- und/oder Endpunkte der Trägerelemente im Kreuzungsbereich ein- oder beidseitig in der Höhe verjüngt sein.The nodes provided according to the invention arise as an intersection of carrier elements of a layer and / or of touching layers and / or a selection / of all existing layers. Nodes arise when a Layer is formed as a grid and / or when two sets of support elements of layers in contact intersect at an angle. Depending on the coordination of beam spacing, beam position and beam length, there are one or more coupling grids. To achieve material compaction, the start and / or end points of the support elements in the crossing area can be tapered in height on one or both sides.
Das Material der Knotenpunkte (Berührungspunkte/flächen) kann von dem der Oberfläche der Trägerelemente abweichen.The material of the nodes (points of contact / surfaces) can differ from that of the surface of the support elements.
Der erfindungsgemäß ausgebildete Schichtwerkstoff besteht aus mindestens zwei übereinander angeordneten Schichten. Benachbarte Schichten stehen hierbei über Knotenpunkte (Berührungspunkte) in Kontakt miteinander. Benachbarte Schichten könnnen gleich oder verschieden ausgebildet sein. Insbesondere gibt es Ausführungsformen, bei denen Schichten unterschiedliche Materialeigenschaften besitzen.The layer material formed according to the invention consists of at least two layers arranged one above the other. Adjacent layers are in contact with each other via nodes (points of contact). Adjacent layers can have the same or different designs. In particular, there are embodiments in which layers have different material properties.
Wie erwähnt, kann der Schichtwerkstoff eine schallabstrah- lungsneutrale Endschicht aufweisen, um eine Abdeckung zur Verfügung zu stellen. Diese Endschicht kann beispielsweise aus dünnen Folien, Vliesen, Geweben, geschäumten flächigen Materialien bestehen. Die Abdeckung wirkt gegen mechanische Beanspruchungen und/oder Hitze/Kälte, aggressive Medien. Möglich ist auch, den Werkstoff zwischen zwei Flächen einzubauen.As mentioned, the layer material can have a sound radiation-neutral end layer in order to provide a cover. This final layer can consist, for example, of thin foils, nonwovens, fabrics, foamed flat materials. The cover acts against mechanical stress and / or heat / cold, aggressive media. It is also possible to install the material between two surfaces.
Die Befestigung der einzelnen Schichten aneinander bzw. die Befestigung des Schichtwerkstoffes am flächigen schallabstrahlenden Element erfolgt vorzugsweise durch Kleben, hierbei insbesondere durch Schmelz-, Reaktions-, UV- härtende, Kontakt-, Haft-Klebesysteme. Eine Alternative hierzu stellt Ultraschallschweißen dar.The individual layers are attached to one another or the layer material is attached to the flat sound-emitting element, preferably by means of adhesive, in particular by means of melt, reaction, UV-curing, contact and pressure-sensitive adhesive systems. An alternative ultrasonic welding represents this.
Der Schichtwerkstoff kann als Formteil oder als flächiges Halbzeug hergestellt werden. Entsprechende Zuschnitte kön- nen beispielsweise durch Laser- oder Wasserstrahlschneidetechniken hergestellt werden.The layered material can be produced as a molded part or as a flat semi-finished product. Corresponding cuts can be made, for example, by laser or water jet cutting techniques.
Als bevorzugtes Material für die Trägerelemente finden Elastomere Verwendung, insbesondere aus plastischen, nicht fließenden, speziell Polyisobutyl .Elastomers are used as the preferred material for the carrier elements, in particular made of plastic, non-flowing, especially polyisobutyl.
Die Erfindung wird nachfolgend anhand von Ausführungsbeispielen in Verbindung mit der Zeichnung im einzelnen beschrieben. Es zeigen:The invention is described below using exemplary embodiments in conjunction with the drawing. Show it:
Figur 1 eine räumliche Ansicht einer ersten Ausfüh- rugnsform eines aus mehreren Schichten bestehenden Schichtwerkstoffteiles ;FIG. 1 shows a spatial view of a first embodiment of a laminate material part consisting of several layers;
Figur 2 eine zweite Ausführungsform eines aus mehreren Schichten bestehenden Schichtwerkstoff- teiles,-FIG. 2 shows a second embodiment of a layer material part consisting of several layers,
Figur 3 eine Queransicht des Teiles der Figur 2;Figure 3 is a transverse view of the part of Figure 2;
Figur 4 eine Längsansicht des Teiles der Figur 2 ;Figure 4 is a longitudinal view of the part of Figure 2;
Figur 5 eine Draufsicht auf eine weitere Ausführungs- form eines Schichtwerkstoffteiles;FIG. 5 shows a plan view of a further embodiment of a layer material part;
Figur 6 eine Draufsicht auf noch eine weitere Ausführungsform eines Schichtwerkstoffteiles,-FIG. 6 shows a plan view of yet another embodiment of a layered material part,
Figur 7 eine vergrößerte räumliche Detailansicht ei- nes Schichtwerkstoffteiles, das im wesent- liehen der Ausführungsform von Figur 1 entspricht;FIG. 7 shows an enlarged spatial detailed view of a layered material part, which is essentially correspond to the embodiment of FIG. 1;
Figur 8a-g sieben verschiedene Ausführungsformen eines Schichtwerkstoffes im Schnitt;Figure 8a-g seven different embodiments of a layer material in section;
Figur 9a-k elf verschiedene Ausführungsformen von Trägerelementen für Schichtwerkstoffe;Figure 9a-k eleven different embodiments of carrier elements for layer materials;
Figur 10 eine räumliche Ansicht einer weiteren Ausführungsform eines Schichtwerkstoffteiles; undFIG. 10 shows a spatial view of a further embodiment of a layered material part; and
Figur 11 eine räumliche Ansicht noch einer weiterenFigure 11 is a spatial view of yet another
Ausführungsform eines Schichtwerkstoffteiles .Embodiment of a layered material part.
Das in Figur 1 in räumlicher Ansicht dargestellte Schichtwerkstoffteil besitzt Rechteckform und besteht aus fünf übereinander angeordneten Schichten, die jeweils aus gittertörmig angeordneten Trägerelementen 1 und 2 bestehen, welche rechtwinklig zueinander angeordnet sind und an ihren Kreuzungsstellen Knotenpunkte 3 bilden. Benachbarte Schichten stehen miteinander über ihre Knotenpunkte 3 in Kontakt.The layered material part shown in FIG. 1 in a three-dimensional view has a rectangular shape and consists of five layers arranged one above the other, each consisting of grid elements 1 and 2, which are arranged at right angles to one another and form nodes 3 at their crossing points. Adjacent layers are in contact with one another via their nodes 3.
Figur 2 zeigt eine Ausführungsform, bei der das Schicht- werkstoffteil in Längs- und Querrichtung leicht gekrümmt ausgebildet ist . Auch bei dieser Ausführungsform sind mehrere Schichten aus sich rechtwinklig kreuzenden Trägerelementen 2, 3 übereinander angeordnet, wobei im mittleren Bereich des Teiles mehr Schichten übereinander angeordnet sind als in dem Randbereich 4. Die Seitenansicht der Figur 3 zeigt, daß im mittleren Bereich sieben Schichten übereinander angeordnet sind, während dies in den Randbereichen 4 nur noch vier sind. Die Seitenansicht der Figur 4 zeigt die gleiche Ausführungsform, wobei hier jedoch der in Figur 4 rechte Endbereich die gleiche Anzahl von Schichten wie der mittlere Bereich aufweist. Auch bei dieser Ausfüh-rungsform setzen sich die Schichten aus gitterförmig ange-ordneten Trägerelementen 1, 2 zusammen, die sich unter einem rechten Winkel schneiden. Über die entsprechenden Knotenpunkte 3 stehen benachbarte Schichten miteinander in Kontakt .FIG. 2 shows an embodiment in which the layered material part is slightly curved in the longitudinal and transverse directions. In this embodiment, too, several layers of carrier elements 2, 3 crossing at right angles are arranged one above the other, with more layers being arranged one above the other in the central region of the part than in the edge region 4. The side view of FIG. 3 shows that seven layers are arranged one above the other in the central region are, while there are only four in the edge regions 4. The side view of FIG. 4 shows the same embodiment, but here the end region on the right in FIG. 4 has the same number of layers as that has middle area. In this embodiment too, the layers are composed of support elements 1, 2 arranged in a lattice shape, which intersect at a right angle. Adjacent layers are in contact with one another via the corresponding nodes 3.
Bei der Ausführungsform der Figur 5 erstrecken sich die Trägerelemente 1 einer Schicht kreisförmig, während die Trägerelemente 2 dieser' Schicht radial verlaufen. Auch hierbei werden wiederum Knotenpunkte 3 gebildet .In the embodiment of Figure 5, the support elements 1 a layer extending circular while the carrier elements 2 extend this' layer radially. Here again, nodes 3 are formed.
Figur 6 zeigt eine Ausführungsform; bei der sich die Trägerelemente 1 einer Schicht spiralförmig bzw. evolventen- förmig erstrecken, während die anderen Trägerelemente 2 dieser Schicht radial verlaufen. Auch hier werden wiederum Knotenpunkte 3 gebildet .Figure 6 shows an embodiment; in which the carrier elements 1 of a layer extend in a spiral or involute form, while the other carrier elements 2 of this layer extend radially. Here again, nodes 3 are formed.
Bei der in Figur 7 gezeigten Ausführungsform sind insgesamt sieben Schichten übereinander angeordnet. Eine Schicht be- steht aus einer Schar von Trägerelementen 1, 2, die bei dieser Ausführungsform in einer Schicht parallel und mit Abstand voneinander angeordnet sind. Die Trägerelemente benachbarter Schichten sind rechtwinklig zueinander angeordnet. Hierbei ergeben sich somit Knotenpunkte 3 an den Be- rührungspunkten der Trägerelemente benachbarter Schichten 6. Bei 5 ist eine schräg angeordnete Verstrebung dargestellt, die zur Stabilisierung des Schichtwerkstoffes dient. Des weiteren sind bei 6 Unterstützungspunkte gezeigt, um die Spannweite der Trägerelemente zwischen zwei Kontaktpunkten zu verringern. Für diese Unterstützungs- punkte 6 stehen die gleichgerichteten Trägerelemente 2 miteinander in Kontakt .In the embodiment shown in FIG. 7, a total of seven layers are arranged one above the other. One layer consists of a family of carrier elements 1, 2, which in this embodiment are arranged in a layer parallel and at a distance from one another. The carrier elements of adjacent layers are arranged at right angles to one another. This results in nodes 3 at the points of contact of the carrier elements of adjacent layers 6. At 5, an obliquely arranged strut is shown, which serves to stabilize the layer material. Furthermore, 6 support points are shown in order to reduce the span of the support elements between two contact points. For these support points 6, the rectified support elements 2 are in contact with one another.
Figur 8 zeigt verschiedene Ausführungsbeispiele des Aufbaus des Schichtwerkstoffs. Bei der Ausführungsform der Figur 8a sind die Trägerelemente 1, 2 einer Schicht parallel zueinander und im Abstand voneinander angeordnet . Die Trägerelemente benachbarter Schichten sind rechtwinklig zuein-an- der angeordnet, so daß sich der in Figur 8a dargestellte Schichtaufbau ergibt. Figur 8a entspricht auch einem Fall, bei dem Folien zwischen den Trägerelementen der einzelnen Schichten angeordnet sind.FIG. 8 shows various exemplary embodiments of the structure of the layer material. In the embodiment of Figure 8a the carrier elements 1, 2 of a layer are arranged parallel to one another and at a distance from one another. The carrier elements of adjacent layers are arranged at right angles to one another, so that the layer structure shown in FIG. 8a results. FIG. 8a also corresponds to a case in which foils are arranged between the carrier elements of the individual layers.
Bei Figur 8b ist im wesentlichen der gleiche Aufbau ge- wählt, wobei auch hier die Trägereiemente 1, 2 benachbarter Schichten rechtwinklig zueinander angeordnet sind.In FIG. 8b, essentially the same structure has been chosen, with the carrier elements 1, 2 of adjacent layers being arranged at right angles to one another.
Bei der Ausführungsform der Figur 8c sind die Trägerelemente an den Kontaktpunkten verjüngt, so daß sich ein enge- rer Abstand von benachbarten Schichten ergibt.In the embodiment of FIG. 8c, the carrier elements are tapered at the contact points, so that there is a closer distance from adjacent layers.
Bei der Ausführungsform der Figur 8d ist der Schichtwerkstoff gekrümmt ausgebildet, wobei diese Krümmung in jeder einzelnen Schicht ausgeprägt ist.In the embodiment of FIG. 8d, the layer material is curved, this curvature being pronounced in each individual layer.
Die Ausführungsform der Figur 8e zeigt gegeneinander verschobene Trägerelemente von verschiedenen Schichten.The embodiment in FIG. 8e shows carrier elements of different layers which are displaced relative to one another.
Gemäß Figur 8f sind Verstrebungen 5 als gesonderte Überlei- tungsträger vorgesehen.According to FIG. 8f, struts 5 are provided as separate transfer supports.
Schließlich zeigt die Ausführungsform der Figur 8g eine Schichtung unterschiedlicher Höhe, die in den Randbereichen geringer ist als im Mittelbereich.Finally, the embodiment of FIG. 8g shows a stratification of different heights, which is less in the edge areas than in the middle area.
Figur 9 zeigt verschiedene Querschnittskonturen von Trägerelementen, wobei Figur 9k eine Längsansicht eines Trägerelementes zeigt, das sich über seine Länge aus unterschiedlichen Materialien zusammensetzt. Figur 9a zeigt eine rechteckige und eine elliptische Querschnittsform. Figur 9b zeigt eine quadratische, kreisförmige, sechseckige und tropfenförmige Querschnittsform. Figur 9c zeigt eine hohle Querschnittsform, während Figur 9d eine Querschnittsform aus Vollmaterial zeigt.FIG. 9 shows different cross-sectional contours of carrier elements, FIG. 9k showing a longitudinal view of a carrier element which is composed of different materials over its length. Figure 9a shows a rectangular and an elliptical cross-sectional shape. Figure 9b shows a square, circular, hexagonal and teardrop-shaped cross-sectional shape. Figure 9c shows a hollow cross-sectional shape, while Figure 9d shows a cross-sectional shape made of solid material.
Gemäß Figur 9e setzt sich der Querschnitt aus einer Vielzahl von Einzelfäden bzw. Einzelfasern zusammen, so daß sich die Form einer "Litze" (eines Bündels) ergibt. Gemäß Figur 9f besteht der Querschnitt aus einem Mantel und einer Seele. Bei Figur 9g sind gasförmige Einschlüsse in der Form von Blasen oder Röhren vorgesehen. ' Gemäß Figur 9h sind feste bzw. flüssige Einschlüsse in der Form von Körnern, Splittern, Fäden, Fasern, Kugeln etc. vorgesehen. Die Aus- führungsformen der Figuren 9i und 9j zeigen unterschiedliche Materialien in einem Querschnitt.According to FIG. 9e, the cross section is composed of a large number of individual threads or individual fibers, so that the shape of a "strand" (bundle) results. According to FIG. 9f, the cross section consists of a jacket and a core. In FIG. 9g, gaseous inclusions in the form of bubbles or tubes are provided. 'Referring to Figure 9h are solid or liquid inclusions in the form of granules, chips, filaments, fibers, etc. provided balls. The embodiments of FIGS. 9i and 9j show different materials in a cross section.
Schließlich zeigen die Figuren 10 und 11 zwei schematische räumliche Darstellungen von weiteren Ausführungsformen von Schichtwerkstoffen, wobei in Figur 10 der Schichtwerkstoff aus mehreren Schichten gebildet wird, in denen die Trägerelemente teilweise gleiche und unterschiedliche Winkellagen einnehmen. Figur 11 zeigt einen Fall, bei denen die Trägerelemente der unterschiedlichen Schichten im wesentlichen parallel zueinander angeordnet sind.Finally, FIGS. 10 and 11 show two schematic spatial representations of further embodiments of layer materials, the layer material being formed from several layers in FIG. 10, in which the carrier elements partially assume the same and different angular positions. FIG. 11 shows a case in which the carrier elements of the different layers are arranged essentially parallel to one another.
Berührungspunkte können über elektromechanische Elemente realisiert werden.Points of contact can be realized via electromechanical elements.
Bei sich bewegenden (drehenden) Teilen kann der Werkstoff über Positionierungshilfen angebracht werden.In the case of moving (rotating) parts, the material can be attached using positioning aids.
Zweckmäßigerweise können die stabformigen Trägerelemente auch aus mehreren Schichten bestehen, d.h. Laminate dar- stellen. The rod-shaped carrier elements can expediently also consist of several layers, i.e. Show laminates.

Claims

Patentansprüche claims
1. Schichtwerkstoff zur Beeinflussung des Schwing-, Abstrahl- und/oder Klangverhaltens von insbesondere flächigen schallabstrahlenden Elementen, dadurch gekennzeichnet, daß er mindestens zwei übereinander angeordnete und miteinander verbundene Schichten (6) je aus mit Abstand parallel oder winklig zueinander angeordneten stabformigen Trägereiementen (1, 2) umfaßt, deren Anfangs- und Endpunkte mit anderen Trägerelementen (1, 2) oder im am schallabstrahlenden Element installierten Zustand mit diesem verbunden sind und die mit winklig hierzu angeordneten Trägerelementen (1, 2) der gleichen Schicht (6) und/oder einer benachbarten Schicht (6) Knotenpunkte (3) bilden, und daß das Material der Trägerelemente1. layered material for influencing the vibration, radiation and / or sound behavior of, in particular, flat sound-radiating elements, characterized in that it has at least two layers (6) arranged one above the other and connected to one another, each consisting of rod-shaped support elements (1 , 2), the start and end points of which are connected to other support elements (1, 2) or in the state installed on the sound-radiating element, and the support elements (1, 2) of the same layer (6) and / or arranged at an angle thereto an adjacent layer (6) form nodes (3), and that the material of the support elements
(1,2) plastisch, plasto-elastisch oder elastisch ist.(1,2) is plastic, plasto-elastic or elastic.
2. Schichtwerkstoff nach Anspruch 1, dadurch gekennzeichnet, daß die Trägereiemente (1 bzw. 2) einer Schicht (6) in geraden oder knickenden Linien angeordnet sind, die parallele oder winklige Scharen bilden.2. Layered material according to claim 1, characterized in that the carrier elements (1 or 2) of a layer (6) are arranged in straight or kinking lines which form parallel or angled groups.
3. Schichtwerkstoff nach Anspruch 1, dadurch gekennzeichnet, daß die Trägerelemente einer Schicht gitterförmig angeordnet sind. 3. Layer material according to claim 1, characterized in that the carrier elements of a layer are arranged in a lattice shape.
4. Schichtwerkstoff nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, daß zwischen zwei Trägerelemente (1, 2) aufweisenden Schichten (6) eine schallabstrahlungsneutrale Zwischenschicht angeordnet ist.4. Layer material according to one of the preceding claims, characterized in that between two carrier elements (1, 2) having layers (6) a sound radiation neutral intermediate layer is arranged.
5. Schichtwerkstoff nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, daß er eine schallab- strahlungsneutrale Endschicht aufweist.5. Layer material according to one of the preceding claims, characterized in that it has a sound-neutral end layer.
6. Schichtwerkstoff nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, daß die Knotenpunkte (3) eine Beschichtung aufweisen.6. Layer material according to one of the preceding claims, characterized in that the nodes (3) have a coating.
7. Schichtwerkstoff nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, daß die Knotenpunkte (3) verjüngt sind.7. Layer material according to one of the preceding claims, characterized in that the nodes (3) are tapered.
8. Schichtwerkstoff nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, daß die stabformigen Trägerelemente (1, 2) im Querschnitt rund, elliptisch, vieleckig in unregelmäßiger oder regelmäßiger Weise ausgebildet sind.8. Layered material according to one of the preceding claims, characterized in that the rod-shaped carrier elements (1, 2) are round, elliptical, polygonal in cross-section in an irregular or regular manner.
9. Schichtwerkstoff nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, daß die Trägerelemente (1, 2) im Querschnitt voll, hohl und/oder beschichtet ausgebildet sind.9. Layered material according to one of the preceding claims, characterized in that the carrier elements (1, 2) are designed to be full, hollow and / or coated in cross section.
10. Schichtwerkstoff nach einem der voranangehenden Ansprüche, dadurch gekennzeichnet, daß die Trägerelemente aus Einzelfäden bzw. Einzelfasern bestehen oder solche aufweisen. 10. Layered material according to one of the preceding claims, characterized in that the carrier elements consist of individual threads or individual fibers or have such.
11. Schichtwerkstoff nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, daß die Trägerelemente (1, 2) Einschlüsse aus gasförmigen, festen und/oder flüssigen Materialien besitzen.11. Layered material according to one of the preceding claims, characterized in that the carrier elements (1, 2) have inclusions of gaseous, solid and / or liquid materials.
12. Schichtwerkstoff nach einem der vorangehendne Ansprüche, dadurch gekennzeichnet, daß die Trägerelemente (1, 2) länger als ihre größte QuerSchnittsabmessung ausgebildet sind.12. Layer material according to one of the preceding claims, characterized in that the carrier elements (1, 2) are longer than their largest cross-sectional dimension.
13. Schichtwerkstoff nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, daß die Trägerelemente in sich elektro-mechanische Elemente (Aktoren/Reaktoren) aufweisen.13. Layered material according to one of the preceding claims, characterized in that the carrier elements have electro-mechanical elements (actuators / reactors).
14. Schichtwerkstoff nach Anspruch 4, dadurch gekennzeichnet, daß die schallabstrahlungsneutrale Zwischenschicht elektrische Leiter, elektrische Anschlüsse und/oder elektromechanische Elemente enthält .14. Layer material according to claim 4, characterized in that the sound radiation neutral intermediate layer contains electrical conductors, electrical connections and / or electromechanical elements.
15. Schichtwerkstoff nach Anspruch 13 oder 14, dadurch gekennzeichnet, daß die elektromechanischen Elemente Bewegungen senkrecht und/oder parallel zu dem entsprechenden Punkt des Flächenelementes ausführen und/oder aufnehmen.15. Layered material according to claim 13 or 14, characterized in that the electromechanical elements perform and / or record movements perpendicular and / or parallel to the corresponding point of the surface element.
16. Schichtwerkstoff nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, daß das Material der Trägerelemente allgemein, statistisch oder periodisch ho- mögen ist.16. Layered material according to one of the preceding claims, characterized in that the material of the carrier elements is generally, statistically or periodically high.
17. Schichtwerkstoff nach einem der vorangehenden Ansprüche, dadurch gekennzeichet, daß die Trägerelemente in Längsrichtung Segmente mit unterschiedlichen Eigen- schatten aufweisen. 17. Layered material according to one of the preceding claims, characterized in that the carrier elements have segments with different properties in the longitudinal direction.
8. Schichtwerkstoff nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, daß die stabformigen Trägerelemente (1, 2) aus mehreren Schichten bestehen. 8. Layered material according to one of the preceding claims, characterized in that the rod-shaped carrier elements (1, 2) consist of several layers.
EP00993916A 2000-11-21 2000-11-21 Layered material for damping sound Expired - Lifetime EP1340221B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/DE2000/004108 WO2002043047A1 (en) 2000-11-21 2000-11-21 Layered material

Publications (2)

Publication Number Publication Date
EP1340221A1 true EP1340221A1 (en) 2003-09-03
EP1340221B1 EP1340221B1 (en) 2008-08-20

Family

ID=5648014

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00993916A Expired - Lifetime EP1340221B1 (en) 2000-11-21 2000-11-21 Layered material for damping sound

Country Status (5)

Country Link
EP (1) EP1340221B1 (en)
AT (1) ATE405917T1 (en)
AU (1) AU2001228261A1 (en)
DE (1) DE50015321D1 (en)
WO (1) WO2002043047A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2870308B1 (en) * 2004-05-13 2006-07-21 Eurocopter France ABSORBENT COATING WITH HIGH AMBINANT POWER
FR2909740B1 (en) * 2006-12-11 2009-01-30 Eurocopter France ABSORBENT COATING
WO2011024034A1 (en) * 2009-08-28 2011-03-03 Thomas Petzoldt Shaped article for absorbing, reflecting and/or attenuating airborne sound waves

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1187471A (en) * 1957-12-04 1959-09-11 Dricat Acoustic insulation process and device for its implementation
DE3013861C2 (en) * 1980-04-10 1983-04-07 Messerschmitt-Bölkow-Blohm GmbH, 8000 München Cushioning lining
DE4141855C2 (en) * 1991-12-18 1996-06-20 Rex Patent Thermal and acoustic insulating laminate
AT405069B (en) * 1995-06-02 1999-05-25 Wiesner Hager Baugruppe Gmbh ACOUSTIC PANEL AND METHOD FOR PRODUCING THE SAME
US5831401A (en) * 1996-03-27 1998-11-03 Bbn Corp Impedance controller
FR2767411B1 (en) * 1997-08-13 2001-11-16 Aerospatiale ACOUSTICALLY RESISTIVE LAYER, METHOD FOR MANUFACTURING THE SAME AND ACOUSTICALLY ABSORBING PANEL PROVIDED WITH AT LEAST ONE SUCH LAYER
EP1109150A3 (en) * 1999-12-17 2001-09-05 ISOLITH Leichtbauplattenwerk M. Hattinger Gesellschaft mbH Acoustic panel

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO0243047A1 *

Also Published As

Publication number Publication date
EP1340221B1 (en) 2008-08-20
DE50015321D1 (en) 2008-10-02
AU2001228261A1 (en) 2002-06-03
ATE405917T1 (en) 2008-09-15
WO2002043047A1 (en) 2002-05-30

Similar Documents

Publication Publication Date Title
DE3147169C2 (en) Dynamic loudspeaker with multiple magnetic circuits
DE69022007T2 (en) ARRANGEMENT FOR DAMPING VIBRATIONS.
DE19603111A1 (en) Laser system
DE1805834B2 (en) WAVE GUIDE ARRANGEMENT FOR ELASTIC WAVES
EP1188547B1 (en) Sound absorbing multi-layered panel
EP0924959B1 (en) Sound reproduction arrangement
DE3723245A1 (en) FIBER REINFORCED PLASTIC REFLECTOR
EP1427951B1 (en) Device for refrigeration
DE4337162C2 (en) Vibration absorber for damping structure-borne noise
EP0317732A2 (en) Spring element
EP3449292A1 (en) Beam forming lens system for laser cutting, and apparatus comprising same
EP2940341B1 (en) Lightweight construction structure
EP0053284A1 (en) Safety steering column for automobiles
EP3643848A1 (en) Structural element for reflection and/or light scatter and/or absorption of acoustic waves, system comprising a structural element or a plurality of structural elements, corresponding method for manufacturing a structural element and their use
WO1995027975A1 (en) Vibration and sound absorber
EP1340221B1 (en) Layered material for damping sound
DE19923547B4 (en) Layer material for influencing, in particular damping, the vibration, emission and / or sound behavior of elements
DE3119499C2 (en) Structure-borne silencer
DE60004045T2 (en) BENDING SHAFT ACOUSTIC DEVICE
WO2017055124A1 (en) Sound-absorbing element
EP2544177A2 (en) Sound absorber made of mechanically flexible blades
DE4113628C2 (en)
EP0870447B1 (en) Upholstery made of foam material
DE10327633B4 (en) Device for absorbing sound energy from sound waves in liquid or gaseous media
DE3738668A1 (en) DEVICE FOR NOISE REDUCTION

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20030623

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: LT LV

17Q First examination report despatched

Effective date: 20060217

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RTI1 Title (correction)

Free format text: LAYERED MATERIAL FOR DAMPING SOUND

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 50015321

Country of ref document: DE

Date of ref document: 20081002

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081201

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080820

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20081119

Year of fee payment: 9

Ref country code: LU

Payment date: 20081127

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080820

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20081125

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20081208

Year of fee payment: 9

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: HEPP, WENGER & RYFFEL AG

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080820

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080820

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20081127

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090120

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081130

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20081120

Year of fee payment: 9

26N No opposition filed

Effective date: 20090525

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080820

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081120

BERE Be: lapsed

Owner name: WIEGEL, THOMAS

Effective date: 20091130

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20091121

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080820

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20100730

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080820

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091121

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091130

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091130

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091130

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091130

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081121

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091121

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091121

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 50015321

Country of ref document: DE

Representative=s name: HAUCK PATENTANWALTSPARTNERSCHAFT MBB, DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20160525

Year of fee payment: 16

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50015321

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170601