EP1338047A2 - Procede pour actionner un systeme de piles a combustible et installation de piles a combustible correspondante - Google Patents

Procede pour actionner un systeme de piles a combustible et installation de piles a combustible correspondante

Info

Publication number
EP1338047A2
EP1338047A2 EP01960152A EP01960152A EP1338047A2 EP 1338047 A2 EP1338047 A2 EP 1338047A2 EP 01960152 A EP01960152 A EP 01960152A EP 01960152 A EP01960152 A EP 01960152A EP 1338047 A2 EP1338047 A2 EP 1338047A2
Authority
EP
European Patent Office
Prior art keywords
fuel cell
fuel
anode
methanol
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP01960152A
Other languages
German (de)
English (en)
Inventor
Walter Preidel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP1338047A2 publication Critical patent/EP1338047A2/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0662Treatment of gaseous reactants or gaseous residues, e.g. cleaning
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04119Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying
    • H01M8/04156Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying with product water removal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0444Concentration; Density
    • H01M8/04447Concentration; Density of anode reactants at the inlet or inside the fuel cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0444Concentration; Density
    • H01M8/0447Concentration; Density of cathode exhausts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the invention relates to a method for operating • a plant with at least one fuel cell, where a fuel is supplied are formed in the of individual fuel cell units, one or more fuel cell stacks, and by combustion in the fuel cell units, as an anode fluid, including gases such as carbon dioxide or the like.
  • the invention also relates to a fuel cell system which contains a fuel cell stack with at least one fuel cell with anode part and cathode part separated by a membrane.
  • the fuel is preferably, but not exclusively, methanol.
  • Fuel cells are operated with liquid or gaseous fuels. If the fuel cell works with hydrogen, a hydrogen infrastructure or a reformer is required to generate the gaseous hydrogen from the liquid fuel.
  • Liquid fuels are e.g. Gasoline or alcohol, such as ethanol or methanol.
  • a so-called DMFC (“Direct Methanol Fuel Cell *) works directly with liquid methanol as a fuel.
  • DMFC direct methanol fuel cell
  • US Pat. No. 5,599,638 The system of a direct methanol fuel cell (DMFC) is described, for example, in US Pat. No. 5,599,638.
  • the DMFC has a number of system-inherent peculiarities which are taken into account accordingly in the operating concept of the system have to. These peculiarities are: a) Since the currently commercially available proton-conducting membranes are liquid water for the line mechanism pressure and temperature must be selected for the anode liquid so that the boiling point of the liquid is not exceeded.
  • the pressure difference between the anode and cathode must not exceed the mechanical strength of the membrane and even water and methanol are transported from the anode to the cathode by a pressure gradient, the pressure difference between the anode and cathode should be as small as possible.
  • nitrogen must also be compressed for air operation and fed to the cathode, so that energy is wasted depending on the pressure level. A downstream expander can only reduce this loss, but not avoid it.
  • the electrode reaction produces carbon dioxide on the anode side, which must be separated as gas from the anode liquid and leaves the system as exhaust gas. In this way, however, the fuel methanol as steam will leave the system together with the carbon dioxide.
  • point (a) regulates the temperature of the system via the mileage of the pump for the anode liquid, and the pressure is thus adjusted via the temperature and the respective output of the compressor / expander. Since the fuel concentration is kept constant in the system described there, the fuel losses in part-load operation are inevitably very high. The The efficiency advantage of the DMFC in the partial load range compared to a reformer / H 2 -PEM system does not come into play in this way.
  • the carbon dioxide produced at the anode in accordance with point (b) is mixed into the cathode exhaust gas and the methanol is thus diluted in order to meet the emission requirements.
  • a cooler and water separator are installed downstream of the expander so that the water condenses as much as possible.
  • the invention realizes an improved operating concept for a fuel cell.
  • the carbon dioxide that is generated at the anode is hotly separated from the anode liquid immediately after it leaves the anode of the stack.
  • the separation is most effective in this situation because the solubility of the carbon dioxide is the lowest due to the high temperature.
  • Cathode exhaust gas is recovered, countercurrently depleted by methanol. - This warmer water is again mixed into the anode liquid in front of the methanol sensor.
  • the methanol concentration is not kept constant, but, depending on the current, is added to the anode circuit by means of a pump.
  • the volume of the anode liquid is kept as low as possible so that the regulation is as fast as possible. This reduces losses, increases efficiency, particularly when there is a load change, improves the dynamics of the system and also speeds up heating to operating temperature.
  • the anode liquid is pumped around as quickly as possible so that the methanol supply is sufficient even at low concentrations. This quickly transports the carbon dioxide away from the catalyst layer.
  • the cooler can thus consist of a condenser in which the heat of condensation is given off to cooling water or to an air stream.
  • Figure 1 shows the operating concept of a DMFC fuel cell and Figure 2 an addition to Figure 1 on the cathode side using an expander.
  • FIG. 1 shows an overview of a methanol fuel cell unit 10 with the associated operating units.
  • liquid / gas cycles are essentially important, but electrical control is also important.
  • FIG. 1 shows a methanol tank 1 with a subsequent metering pump 2 and a heater 3, via which the liquid methanol reaches the fuel cell unit 10 as operating material.
  • the fuel cell unit 10 is implemented as a direct methanol fuel cell (DMFC) and is essentially characterized by an anode 11, a membrane 12 and a cathode 13.
  • a cooler 4, a CO 2 separator 5, a unit 6 for rectification and a methanol sensor 8 are assigned to the anode part.
  • DMFC direct methanol fuel cell
  • a compressor 14 for air On the cathode side there is a compressor 14 for air, a cooler or water separator 15 for the cathode liquid and a C0 2 sensor 16. Furthermore, a unit 25 for controlling the fuel cell unit 10 and optionally an electrical inverter 26 are provided for the operation of the system.
  • the carbon dioxide formed at the anode 11 is hotly separated from the anode liquid immediately after it leaves the anode 11 of the fuel cell stack.
  • the separation is most effective because the Solubility of carbon dioxide is the lowest due to the high temperature present here.
  • the methanol vapor separated off with the carbon dioxide is depleted with the cold water, which is obtained in the cooler 16 or condenser of the cathode exhaust gas, in countercurrent to methanol, which takes place in unit 6 rectification.
  • the resulting warm water is again mixed with the anode liquid, in front of the methanol sensor 8.
  • the methanol concentration is not kept constant, but is mixed into the anode circuit by means of the circulation pump 7, depending on the current.
  • methanol losses through the membrane 12 of the fuel cell unit 10, which are caused by diffusion and electroosmosis, can be detected by measuring the carbon dioxide concentration in the cathode exhaust gas by means of the sensor 16, which is taken into account in the metering of methanol in the anode circuit.
  • the volume of the anode liquid can be kept as low as possible, so that a quick regulation is created. Losses are minimized and the efficiency, especially when changing loads, is increased.
  • the dynamics of the entire system is improved compared to known systems and the heating up to operating temperature is accelerated.
  • the anode liquid can be pumped around quickly, which means that the methanol supply is sufficient even at low concentrations.
  • the disruptive carbon dioxide is quickly transported away from the catalyst layer.
  • the cooler 15 can thus consist of a condenser in that the heat of condensation is given off to cooling water or to an air flow.
  • Water molecules that are transported to the cathode are also condensed by specifying the dew point of the condensation of one molecule • in the air on the cathode side, since their dew point temperature is higher because it is additional water and thus condenses out at a higher dew point.
  • FIG. 1 there is an electrical inverter 26.
  • This inverter 26 is optional in order to convert the DC voltage into AC voltage, if necessary.
  • FIG. 2 there is an additive expander 17 at the cathode outlet behind the condenser / cooler / water separator in order to recover energy from the expansion.
  • a further water separator 18 is arranged behind the expander 17 in order to recover the water which condenses in the expander 17 due to the further cooling of the exhaust air. The dew point is thus further reduced. Since this is not absolutely necessary for the water balance, the condenser / cooler 15 can therefore be reduced in size before the expander.
  • the heating unit 3 is provided for the anode liquid in order to shorten the start-up time of the fuel cell, particularly at temperatures ⁇ 10 ° C.
  • heating of the anode liquid before entering the anode of the fuel cell stack is not absolutely necessary.
  • the exhaust air has a high heat content due to the loading with the water vapor, it is advantageous to heat the supply air to the operating temperature by means of the exhaust air in counterflow by means of an additional heat exchanger. In this way, the temperature gradient in the stack is reduced, thereby increasing the effectiveness of the system and cooling the exhaust air somewhat, and thus the exhaust air condenser / cooler can be somewhat reduced.
  • the methanol concentration of the liquid can be estimated, since the viscosity of the methanol / water mixture depends on the methanol content. The viscosity of the mixture also depends on the temperature. At temperatures above 80 ° C, however, the effect is very slight.
  • the electrical current of the pump at constant speed, ie at constant Promotion is then a measure of the methanol concentration at constant temperature.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

Dans des piles à combustible (DMFC) le combustible utilisé est du méthanol et est acheminé jusqu'au système. Après combustion, le liquide d'anode y compris les gaz brûlés, tels que le dioxyde de carbone ou similaire, doivent être évacués. Selon l'invention, le dioxyde de carbone qui se forme sur l'anode est séparé du liquide d'anode à l'état chaud, après sa sortie de l'anode de l'empilement de piles à combustible. A cet effet, le combustible à l'état de vapeur séparé conjointement avec le dioxyde de carbone à contre-courant avec de l'eau, produite dans le condenseur des gaz brûlés de la cathode est appauvri et l'eau plus chaude est mélangée au liquide de l'anode. L'invention concerne en outre une installation correspondante qui comporte au moins un refroidisseur (4) avec un séparateur de CO2 (5) monté en aval, ainsi qu'une unité (6) de rectification avec laquelle le combustible contenu dedans est renvoyé dans le circuit de combustible.
EP01960152A 2000-08-16 2001-08-03 Procede pour actionner un systeme de piles a combustible et installation de piles a combustible correspondante Withdrawn EP1338047A2 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10040088A DE10040088A1 (de) 2000-08-16 2000-08-16 Verfahren zum Betrieb eines Brennstoffzellensystems und zugehörige Brennstoffzellenanlage
DE10040088 2000-08-16
PCT/DE2001/002981 WO2002015307A2 (fr) 2000-08-16 2001-08-03 Procede pour actionner un systeme de piles a combustible et installation de piles a combustible correspondante

Publications (1)

Publication Number Publication Date
EP1338047A2 true EP1338047A2 (fr) 2003-08-27

Family

ID=7652661

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01960152A Withdrawn EP1338047A2 (fr) 2000-08-16 2001-08-03 Procede pour actionner un systeme de piles a combustible et installation de piles a combustible correspondante

Country Status (6)

Country Link
US (1) US20030148151A1 (fr)
EP (1) EP1338047A2 (fr)
JP (1) JP2004507050A (fr)
CA (1) CA2419468A1 (fr)
DE (1) DE10040088A1 (fr)
WO (1) WO2002015307A2 (fr)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1383190B1 (fr) * 2002-07-01 2006-11-08 SFC Smart Fuel Cell AG Procédé de réglage de la répartition d'eau dans des systèmes de piles à combustible
DE10231349A1 (de) * 2002-07-11 2004-01-29 Zf Friedrichshafen Ag Mehrstufengetriebe
JP2004265787A (ja) * 2003-03-03 2004-09-24 Toshiba Corp 直接型メタノール燃料電池システム
DE10330123A1 (de) * 2003-07-04 2005-01-20 Volkswagen Ag Brennstoffzellensystem und Verfahren zum Betrieb desselben
US7655331B2 (en) 2003-12-01 2010-02-02 Societe Bic Fuel cell supply including information storage device and control system
DE102004036020A1 (de) * 2004-07-23 2006-02-16 Behr Gmbh & Co. Kg Wärmeübertrager, insbesondere Kondensator
CN100369307C (zh) * 2004-08-17 2008-02-13 比亚迪股份有限公司 燃料电池的质子交换膜增湿方法及装置
DE102005033821B4 (de) * 2005-07-11 2011-03-10 Deutsches Zentrum für Luft- und Raumfahrt e.V. Direktoxidations-Brennstoffzellensystem und Verfahren zur Steuerung/Regelung des Wasserhaushalts eines Direktoxidations-Brennstoffzellensystems
US7781114B2 (en) * 2005-10-05 2010-08-24 Panasonic Corporation High electrical performance direct oxidation fuel cells & systems
DE102006048825B4 (de) * 2006-10-09 2017-02-09 Deutsches Zentrum für Luft- und Raumfahrt e.V. Direktoxidations-Brennstoffzellensystem und Verfahren zum Betrieb eines Direktoxidations-Brennstoffzellensystems
KR100805529B1 (ko) * 2007-02-21 2008-02-20 삼성에스디아이 주식회사 연료전지 스택 및 연료전지 시스템
KR100982324B1 (ko) * 2008-01-24 2010-09-15 삼성에스디아이 주식회사 연료전지 시스템
US8735008B2 (en) * 2009-02-17 2014-05-27 Samsung Sdi Co., Ltd. Fuel cell system
DE102011116679B4 (de) 2011-10-21 2016-02-25 Otto-Von-Guericke-Universität Magdeburg Portables Brennstoffzellensystem mit Flüssigkeitsabscheidern und Verwendung, Verfahren zur Rückgewinnung einer Flüssigkeit sowie Simulationsmodell
CN102723516B (zh) * 2012-06-15 2014-05-14 东营杰达化工科技有限公司 一种以液态金属锡为阳极的直碳燃料电池装置
US9954235B2 (en) * 2014-12-22 2018-04-24 Intelligent Energy Limited Anode chambers with variable volumes

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3826955A1 (de) * 1988-08-09 1990-02-15 Krupp Gmbh Verfahren und vorrichtung zum eintragen von sauerstoff in fluessigkeiten
US5235846A (en) * 1991-12-30 1993-08-17 International Fuel Cells Corporation Fuel cell leakage detection technique
US5599638A (en) * 1993-10-12 1997-02-04 California Institute Of Technology Aqueous liquid feed organic fuel cell using solid polymer electrolyte membrane
US5573866A (en) * 1995-05-08 1996-11-12 International Fuel Cells Corp. Direct methanol oxidation polymer electrolyte membrane power system
DE19701560C2 (de) * 1997-01-17 1998-12-24 Dbb Fuel Cell Engines Gmbh Brennstoffzellensystem
CA2315325A1 (fr) * 1998-02-25 1999-09-02 Ballard Power Systems Inc. Piles a combustible utilisant directement l'ether dimetylique
DE19807878C2 (de) * 1998-02-25 2001-10-31 Xcellsis Gmbh Brennstoffzellensystem
DE19911016C2 (de) * 1999-03-12 2001-07-26 Daimler Chrysler Ag Brennstoffzellensystem mit kathodenseitigen Wasserabtrennmitteln
JP2001126742A (ja) * 1999-10-27 2001-05-11 Sanyo Electric Co Ltd 燃料電池発電装置
DE19954546A1 (de) * 1999-11-12 2001-05-31 Daimler Chrysler Ag Verfahren und Anordnung zur Wiedergewinnung eines wasserläslichen Brennstoffs aus einem Abgasstrom einer Direkt-Brennstoff-Brennstoffzelle
NL1014585C2 (nl) * 2000-03-08 2001-09-21 Kema Nv Brandstofcel met een verbeterd rendement voor het opwekken van elektrische energie.
US6686078B1 (en) * 2000-09-29 2004-02-03 Plug Power Inc. Method of reformer operation to prevent fuel cell flooding
US6869716B2 (en) * 2001-06-14 2005-03-22 Mti Microfuel Cells Inc. Flow through gas separator

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO0215307A2 *

Also Published As

Publication number Publication date
WO2002015307A3 (fr) 2003-05-22
US20030148151A1 (en) 2003-08-07
DE10040088A1 (de) 2002-04-25
CA2419468A1 (fr) 2003-02-14
JP2004507050A (ja) 2004-03-04
WO2002015307A2 (fr) 2002-02-21

Similar Documents

Publication Publication Date Title
DE19701560C2 (de) Brennstoffzellensystem
WO2002015307A2 (fr) Procede pour actionner un systeme de piles a combustible et installation de piles a combustible correspondante
EP0850494B1 (fr) Procede d'actionnement d'un systeme de piles a combustible et systeme de piles a combustible permettant de mettre ledit procede en oeuvre
DE19807876C2 (de) Brennstoffzellensystem
EP0985240B1 (fr) Systeme de pile a combustible
EP1050086B1 (fr) Procede et dispositif pour actionner une pile a combustible methanol directe avec un combustible gazeux
DE19807878C2 (de) Brennstoffzellensystem
DE102019216242A1 (de) Dampfturbinenanlage sowie Verfahren zum Betreiben einer solchen Dampfturbinenanlage
DE112004002069T5 (de) Brennstoffzellensystem und Wasserrückgewinnungsverfahren desselben
EP1974414A1 (fr) Procédé et système de fonctionnement d'une pile à combustible haute température
DE19908099A1 (de) Brennstoffzellensystem
DE19943059A1 (de) System zur Auskondensation einer Flüssigkeit aus einem Gasstrom
DE112010002798T5 (de) Verringern des verlusts von flüssigem elektrolyt aus einerhochtemperatur-polymerelektrolytmembran-brennstoffzelle
DE102020101292A1 (de) Brennstoffzellensystem, Verfahren zum Betreiben eines Brennstoffzellensystems und Kraftfahrzeug
DE102021006231A1 (de) Verfahren zur Wärme - und Dampfrückgewinnung bei der Dampfelektrolyse sowie Dampfelektrolyseanlage
DE102017100163A1 (de) Vorrichtung und Verfahren zur Ansteuerung eines Brennstoffzellensystems
EP1061600A2 (fr) Système de cellules à combustible
DE102014115849A1 (de) Verfahren und Anordnung zur Erzeugung und thermischen Kompression von Sauerstoff
DE102021201398A1 (de) Brennstoffzellensystem und Verfahren zum Regenerieren einer Trocknungseinrichtung
DE102009053839A1 (de) Brennstoffzellensystem und Verfahren zum Betrieb eines Brennstoffzellensystems
EP1428283B1 (fr) Procede et dispositif pour exploiter une pile a combustible
DE102021204461A1 (de) Brennstoffzellensystem und Verfahren zum thermischen Konditionieren
DE10329201B4 (de) Brennstoffzellensystem
WO2023198328A2 (fr) Procédé pour faire fonctionner une installation d'électrolyse et installation d'électrolyse
DE102022214228A1 (de) Brennstoffzellenvorrichtung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20030120

AK Designated contracting states

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20040301