EP1338047A2 - Procede pour actionner un systeme de piles a combustible et installation de piles a combustible correspondante - Google Patents
Procede pour actionner un systeme de piles a combustible et installation de piles a combustible correspondanteInfo
- Publication number
- EP1338047A2 EP1338047A2 EP01960152A EP01960152A EP1338047A2 EP 1338047 A2 EP1338047 A2 EP 1338047A2 EP 01960152 A EP01960152 A EP 01960152A EP 01960152 A EP01960152 A EP 01960152A EP 1338047 A2 EP1338047 A2 EP 1338047A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- fuel cell
- fuel
- anode
- methanol
- water
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/06—Combination of fuel cells with means for production of reactants or for treatment of residues
- H01M8/0662—Treatment of gaseous reactants or gaseous residues, e.g. cleaning
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04082—Arrangements for control of reactant parameters, e.g. pressure or concentration
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04007—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04082—Arrangements for control of reactant parameters, e.g. pressure or concentration
- H01M8/04089—Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04082—Arrangements for control of reactant parameters, e.g. pressure or concentration
- H01M8/04089—Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
- H01M8/04119—Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying
- H01M8/04156—Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying with product water removal
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04298—Processes for controlling fuel cells or fuel cell systems
- H01M8/04313—Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
- H01M8/0444—Concentration; Density
- H01M8/04447—Concentration; Density of anode reactants at the inlet or inside the fuel cell
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04298—Processes for controlling fuel cells or fuel cell systems
- H01M8/04313—Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
- H01M8/0444—Concentration; Density
- H01M8/0447—Concentration; Density of cathode exhausts
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Definitions
- the invention relates to a method for operating • a plant with at least one fuel cell, where a fuel is supplied are formed in the of individual fuel cell units, one or more fuel cell stacks, and by combustion in the fuel cell units, as an anode fluid, including gases such as carbon dioxide or the like.
- the invention also relates to a fuel cell system which contains a fuel cell stack with at least one fuel cell with anode part and cathode part separated by a membrane.
- the fuel is preferably, but not exclusively, methanol.
- Fuel cells are operated with liquid or gaseous fuels. If the fuel cell works with hydrogen, a hydrogen infrastructure or a reformer is required to generate the gaseous hydrogen from the liquid fuel.
- Liquid fuels are e.g. Gasoline or alcohol, such as ethanol or methanol.
- a so-called DMFC (“Direct Methanol Fuel Cell *) works directly with liquid methanol as a fuel.
- DMFC direct methanol fuel cell
- US Pat. No. 5,599,638 The system of a direct methanol fuel cell (DMFC) is described, for example, in US Pat. No. 5,599,638.
- the DMFC has a number of system-inherent peculiarities which are taken into account accordingly in the operating concept of the system have to. These peculiarities are: a) Since the currently commercially available proton-conducting membranes are liquid water for the line mechanism pressure and temperature must be selected for the anode liquid so that the boiling point of the liquid is not exceeded.
- the pressure difference between the anode and cathode must not exceed the mechanical strength of the membrane and even water and methanol are transported from the anode to the cathode by a pressure gradient, the pressure difference between the anode and cathode should be as small as possible.
- nitrogen must also be compressed for air operation and fed to the cathode, so that energy is wasted depending on the pressure level. A downstream expander can only reduce this loss, but not avoid it.
- the electrode reaction produces carbon dioxide on the anode side, which must be separated as gas from the anode liquid and leaves the system as exhaust gas. In this way, however, the fuel methanol as steam will leave the system together with the carbon dioxide.
- point (a) regulates the temperature of the system via the mileage of the pump for the anode liquid, and the pressure is thus adjusted via the temperature and the respective output of the compressor / expander. Since the fuel concentration is kept constant in the system described there, the fuel losses in part-load operation are inevitably very high. The The efficiency advantage of the DMFC in the partial load range compared to a reformer / H 2 -PEM system does not come into play in this way.
- the carbon dioxide produced at the anode in accordance with point (b) is mixed into the cathode exhaust gas and the methanol is thus diluted in order to meet the emission requirements.
- a cooler and water separator are installed downstream of the expander so that the water condenses as much as possible.
- the invention realizes an improved operating concept for a fuel cell.
- the carbon dioxide that is generated at the anode is hotly separated from the anode liquid immediately after it leaves the anode of the stack.
- the separation is most effective in this situation because the solubility of the carbon dioxide is the lowest due to the high temperature.
- Cathode exhaust gas is recovered, countercurrently depleted by methanol. - This warmer water is again mixed into the anode liquid in front of the methanol sensor.
- the methanol concentration is not kept constant, but, depending on the current, is added to the anode circuit by means of a pump.
- the volume of the anode liquid is kept as low as possible so that the regulation is as fast as possible. This reduces losses, increases efficiency, particularly when there is a load change, improves the dynamics of the system and also speeds up heating to operating temperature.
- the anode liquid is pumped around as quickly as possible so that the methanol supply is sufficient even at low concentrations. This quickly transports the carbon dioxide away from the catalyst layer.
- the cooler can thus consist of a condenser in which the heat of condensation is given off to cooling water or to an air stream.
- Figure 1 shows the operating concept of a DMFC fuel cell and Figure 2 an addition to Figure 1 on the cathode side using an expander.
- FIG. 1 shows an overview of a methanol fuel cell unit 10 with the associated operating units.
- liquid / gas cycles are essentially important, but electrical control is also important.
- FIG. 1 shows a methanol tank 1 with a subsequent metering pump 2 and a heater 3, via which the liquid methanol reaches the fuel cell unit 10 as operating material.
- the fuel cell unit 10 is implemented as a direct methanol fuel cell (DMFC) and is essentially characterized by an anode 11, a membrane 12 and a cathode 13.
- a cooler 4, a CO 2 separator 5, a unit 6 for rectification and a methanol sensor 8 are assigned to the anode part.
- DMFC direct methanol fuel cell
- a compressor 14 for air On the cathode side there is a compressor 14 for air, a cooler or water separator 15 for the cathode liquid and a C0 2 sensor 16. Furthermore, a unit 25 for controlling the fuel cell unit 10 and optionally an electrical inverter 26 are provided for the operation of the system.
- the carbon dioxide formed at the anode 11 is hotly separated from the anode liquid immediately after it leaves the anode 11 of the fuel cell stack.
- the separation is most effective because the Solubility of carbon dioxide is the lowest due to the high temperature present here.
- the methanol vapor separated off with the carbon dioxide is depleted with the cold water, which is obtained in the cooler 16 or condenser of the cathode exhaust gas, in countercurrent to methanol, which takes place in unit 6 rectification.
- the resulting warm water is again mixed with the anode liquid, in front of the methanol sensor 8.
- the methanol concentration is not kept constant, but is mixed into the anode circuit by means of the circulation pump 7, depending on the current.
- methanol losses through the membrane 12 of the fuel cell unit 10, which are caused by diffusion and electroosmosis, can be detected by measuring the carbon dioxide concentration in the cathode exhaust gas by means of the sensor 16, which is taken into account in the metering of methanol in the anode circuit.
- the volume of the anode liquid can be kept as low as possible, so that a quick regulation is created. Losses are minimized and the efficiency, especially when changing loads, is increased.
- the dynamics of the entire system is improved compared to known systems and the heating up to operating temperature is accelerated.
- the anode liquid can be pumped around quickly, which means that the methanol supply is sufficient even at low concentrations.
- the disruptive carbon dioxide is quickly transported away from the catalyst layer.
- the cooler 15 can thus consist of a condenser in that the heat of condensation is given off to cooling water or to an air flow.
- Water molecules that are transported to the cathode are also condensed by specifying the dew point of the condensation of one molecule • in the air on the cathode side, since their dew point temperature is higher because it is additional water and thus condenses out at a higher dew point.
- FIG. 1 there is an electrical inverter 26.
- This inverter 26 is optional in order to convert the DC voltage into AC voltage, if necessary.
- FIG. 2 there is an additive expander 17 at the cathode outlet behind the condenser / cooler / water separator in order to recover energy from the expansion.
- a further water separator 18 is arranged behind the expander 17 in order to recover the water which condenses in the expander 17 due to the further cooling of the exhaust air. The dew point is thus further reduced. Since this is not absolutely necessary for the water balance, the condenser / cooler 15 can therefore be reduced in size before the expander.
- the heating unit 3 is provided for the anode liquid in order to shorten the start-up time of the fuel cell, particularly at temperatures ⁇ 10 ° C.
- heating of the anode liquid before entering the anode of the fuel cell stack is not absolutely necessary.
- the exhaust air has a high heat content due to the loading with the water vapor, it is advantageous to heat the supply air to the operating temperature by means of the exhaust air in counterflow by means of an additional heat exchanger. In this way, the temperature gradient in the stack is reduced, thereby increasing the effectiveness of the system and cooling the exhaust air somewhat, and thus the exhaust air condenser / cooler can be somewhat reduced.
- the methanol concentration of the liquid can be estimated, since the viscosity of the methanol / water mixture depends on the methanol content. The viscosity of the mixture also depends on the temperature. At temperatures above 80 ° C, however, the effect is very slight.
- the electrical current of the pump at constant speed, ie at constant Promotion is then a measure of the methanol concentration at constant temperature.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Fuel Cell (AREA)
Abstract
Dans des piles à combustible (DMFC) le combustible utilisé est du méthanol et est acheminé jusqu'au système. Après combustion, le liquide d'anode y compris les gaz brûlés, tels que le dioxyde de carbone ou similaire, doivent être évacués. Selon l'invention, le dioxyde de carbone qui se forme sur l'anode est séparé du liquide d'anode à l'état chaud, après sa sortie de l'anode de l'empilement de piles à combustible. A cet effet, le combustible à l'état de vapeur séparé conjointement avec le dioxyde de carbone à contre-courant avec de l'eau, produite dans le condenseur des gaz brûlés de la cathode est appauvri et l'eau plus chaude est mélangée au liquide de l'anode. L'invention concerne en outre une installation correspondante qui comporte au moins un refroidisseur (4) avec un séparateur de CO2 (5) monté en aval, ainsi qu'une unité (6) de rectification avec laquelle le combustible contenu dedans est renvoyé dans le circuit de combustible.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE10040088A DE10040088A1 (de) | 2000-08-16 | 2000-08-16 | Verfahren zum Betrieb eines Brennstoffzellensystems und zugehörige Brennstoffzellenanlage |
DE10040088 | 2000-08-16 | ||
PCT/DE2001/002981 WO2002015307A2 (fr) | 2000-08-16 | 2001-08-03 | Procede pour actionner un systeme de piles a combustible et installation de piles a combustible correspondante |
Publications (1)
Publication Number | Publication Date |
---|---|
EP1338047A2 true EP1338047A2 (fr) | 2003-08-27 |
Family
ID=7652661
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP01960152A Withdrawn EP1338047A2 (fr) | 2000-08-16 | 2001-08-03 | Procede pour actionner un systeme de piles a combustible et installation de piles a combustible correspondante |
Country Status (6)
Country | Link |
---|---|
US (1) | US20030148151A1 (fr) |
EP (1) | EP1338047A2 (fr) |
JP (1) | JP2004507050A (fr) |
CA (1) | CA2419468A1 (fr) |
DE (1) | DE10040088A1 (fr) |
WO (1) | WO2002015307A2 (fr) |
Families Citing this family (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1383190B1 (fr) * | 2002-07-01 | 2006-11-08 | SFC Smart Fuel Cell AG | Procédé de réglage de la répartition d'eau dans des systèmes de piles à combustible |
DE10231349A1 (de) * | 2002-07-11 | 2004-01-29 | Zf Friedrichshafen Ag | Mehrstufengetriebe |
JP2004265787A (ja) * | 2003-03-03 | 2004-09-24 | Toshiba Corp | 直接型メタノール燃料電池システム |
DE10330123A1 (de) * | 2003-07-04 | 2005-01-20 | Volkswagen Ag | Brennstoffzellensystem und Verfahren zum Betrieb desselben |
US7655331B2 (en) | 2003-12-01 | 2010-02-02 | Societe Bic | Fuel cell supply including information storage device and control system |
DE102004036020A1 (de) * | 2004-07-23 | 2006-02-16 | Behr Gmbh & Co. Kg | Wärmeübertrager, insbesondere Kondensator |
CN100369307C (zh) * | 2004-08-17 | 2008-02-13 | 比亚迪股份有限公司 | 燃料电池的质子交换膜增湿方法及装置 |
DE102005033821B4 (de) * | 2005-07-11 | 2011-03-10 | Deutsches Zentrum für Luft- und Raumfahrt e.V. | Direktoxidations-Brennstoffzellensystem und Verfahren zur Steuerung/Regelung des Wasserhaushalts eines Direktoxidations-Brennstoffzellensystems |
US7781114B2 (en) * | 2005-10-05 | 2010-08-24 | Panasonic Corporation | High electrical performance direct oxidation fuel cells & systems |
DE102006048825B4 (de) * | 2006-10-09 | 2017-02-09 | Deutsches Zentrum für Luft- und Raumfahrt e.V. | Direktoxidations-Brennstoffzellensystem und Verfahren zum Betrieb eines Direktoxidations-Brennstoffzellensystems |
KR100805529B1 (ko) * | 2007-02-21 | 2008-02-20 | 삼성에스디아이 주식회사 | 연료전지 스택 및 연료전지 시스템 |
KR100982324B1 (ko) * | 2008-01-24 | 2010-09-15 | 삼성에스디아이 주식회사 | 연료전지 시스템 |
US8735008B2 (en) * | 2009-02-17 | 2014-05-27 | Samsung Sdi Co., Ltd. | Fuel cell system |
DE102011116679B4 (de) | 2011-10-21 | 2016-02-25 | Otto-Von-Guericke-Universität Magdeburg | Portables Brennstoffzellensystem mit Flüssigkeitsabscheidern und Verwendung, Verfahren zur Rückgewinnung einer Flüssigkeit sowie Simulationsmodell |
CN102723516B (zh) * | 2012-06-15 | 2014-05-14 | 东营杰达化工科技有限公司 | 一种以液态金属锡为阳极的直碳燃料电池装置 |
US9954235B2 (en) * | 2014-12-22 | 2018-04-24 | Intelligent Energy Limited | Anode chambers with variable volumes |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3826955A1 (de) * | 1988-08-09 | 1990-02-15 | Krupp Gmbh | Verfahren und vorrichtung zum eintragen von sauerstoff in fluessigkeiten |
US5235846A (en) * | 1991-12-30 | 1993-08-17 | International Fuel Cells Corporation | Fuel cell leakage detection technique |
US5599638A (en) * | 1993-10-12 | 1997-02-04 | California Institute Of Technology | Aqueous liquid feed organic fuel cell using solid polymer electrolyte membrane |
US5573866A (en) * | 1995-05-08 | 1996-11-12 | International Fuel Cells Corp. | Direct methanol oxidation polymer electrolyte membrane power system |
DE19701560C2 (de) * | 1997-01-17 | 1998-12-24 | Dbb Fuel Cell Engines Gmbh | Brennstoffzellensystem |
CA2315325A1 (fr) * | 1998-02-25 | 1999-09-02 | Ballard Power Systems Inc. | Piles a combustible utilisant directement l'ether dimetylique |
DE19807878C2 (de) * | 1998-02-25 | 2001-10-31 | Xcellsis Gmbh | Brennstoffzellensystem |
DE19911016C2 (de) * | 1999-03-12 | 2001-07-26 | Daimler Chrysler Ag | Brennstoffzellensystem mit kathodenseitigen Wasserabtrennmitteln |
JP2001126742A (ja) * | 1999-10-27 | 2001-05-11 | Sanyo Electric Co Ltd | 燃料電池発電装置 |
DE19954546A1 (de) * | 1999-11-12 | 2001-05-31 | Daimler Chrysler Ag | Verfahren und Anordnung zur Wiedergewinnung eines wasserläslichen Brennstoffs aus einem Abgasstrom einer Direkt-Brennstoff-Brennstoffzelle |
NL1014585C2 (nl) * | 2000-03-08 | 2001-09-21 | Kema Nv | Brandstofcel met een verbeterd rendement voor het opwekken van elektrische energie. |
US6686078B1 (en) * | 2000-09-29 | 2004-02-03 | Plug Power Inc. | Method of reformer operation to prevent fuel cell flooding |
US6869716B2 (en) * | 2001-06-14 | 2005-03-22 | Mti Microfuel Cells Inc. | Flow through gas separator |
-
2000
- 2000-08-16 DE DE10040088A patent/DE10040088A1/de not_active Withdrawn
-
2001
- 2001-08-03 CA CA002419468A patent/CA2419468A1/fr not_active Abandoned
- 2001-08-03 EP EP01960152A patent/EP1338047A2/fr not_active Withdrawn
- 2001-08-03 WO PCT/DE2001/002981 patent/WO2002015307A2/fr not_active Application Discontinuation
- 2001-08-03 JP JP2002520336A patent/JP2004507050A/ja not_active Withdrawn
-
2003
- 2003-02-18 US US10/368,156 patent/US20030148151A1/en not_active Abandoned
Non-Patent Citations (1)
Title |
---|
See references of WO0215307A2 * |
Also Published As
Publication number | Publication date |
---|---|
WO2002015307A3 (fr) | 2003-05-22 |
US20030148151A1 (en) | 2003-08-07 |
DE10040088A1 (de) | 2002-04-25 |
CA2419468A1 (fr) | 2003-02-14 |
JP2004507050A (ja) | 2004-03-04 |
WO2002015307A2 (fr) | 2002-02-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE19701560C2 (de) | Brennstoffzellensystem | |
WO2002015307A2 (fr) | Procede pour actionner un systeme de piles a combustible et installation de piles a combustible correspondante | |
EP0850494B1 (fr) | Procede d'actionnement d'un systeme de piles a combustible et systeme de piles a combustible permettant de mettre ledit procede en oeuvre | |
DE19807876C2 (de) | Brennstoffzellensystem | |
EP0985240B1 (fr) | Systeme de pile a combustible | |
EP1050086B1 (fr) | Procede et dispositif pour actionner une pile a combustible methanol directe avec un combustible gazeux | |
DE19807878C2 (de) | Brennstoffzellensystem | |
DE102019216242A1 (de) | Dampfturbinenanlage sowie Verfahren zum Betreiben einer solchen Dampfturbinenanlage | |
DE112004002069T5 (de) | Brennstoffzellensystem und Wasserrückgewinnungsverfahren desselben | |
EP1974414A1 (fr) | Procédé et système de fonctionnement d'une pile à combustible haute température | |
DE19908099A1 (de) | Brennstoffzellensystem | |
DE19943059A1 (de) | System zur Auskondensation einer Flüssigkeit aus einem Gasstrom | |
DE112010002798T5 (de) | Verringern des verlusts von flüssigem elektrolyt aus einerhochtemperatur-polymerelektrolytmembran-brennstoffzelle | |
DE102020101292A1 (de) | Brennstoffzellensystem, Verfahren zum Betreiben eines Brennstoffzellensystems und Kraftfahrzeug | |
DE102021006231A1 (de) | Verfahren zur Wärme - und Dampfrückgewinnung bei der Dampfelektrolyse sowie Dampfelektrolyseanlage | |
DE102017100163A1 (de) | Vorrichtung und Verfahren zur Ansteuerung eines Brennstoffzellensystems | |
EP1061600A2 (fr) | Système de cellules à combustible | |
DE102014115849A1 (de) | Verfahren und Anordnung zur Erzeugung und thermischen Kompression von Sauerstoff | |
DE102021201398A1 (de) | Brennstoffzellensystem und Verfahren zum Regenerieren einer Trocknungseinrichtung | |
DE102009053839A1 (de) | Brennstoffzellensystem und Verfahren zum Betrieb eines Brennstoffzellensystems | |
EP1428283B1 (fr) | Procede et dispositif pour exploiter une pile a combustible | |
DE102021204461A1 (de) | Brennstoffzellensystem und Verfahren zum thermischen Konditionieren | |
DE10329201B4 (de) | Brennstoffzellensystem | |
WO2023198328A2 (fr) | Procédé pour faire fonctionner une installation d'électrolyse et installation d'électrolyse | |
DE102022214228A1 (de) | Brennstoffzellenvorrichtung |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20030120 |
|
AK | Designated contracting states |
Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20040301 |