EP1337283A1 - Verfahren zur behandlung von gefässerkrankungen, die durch stickoxidmangel gekennzeichnet sind - Google Patents

Verfahren zur behandlung von gefässerkrankungen, die durch stickoxidmangel gekennzeichnet sind

Info

Publication number
EP1337283A1
EP1337283A1 EP01932915A EP01932915A EP1337283A1 EP 1337283 A1 EP1337283 A1 EP 1337283A1 EP 01932915 A EP01932915 A EP 01932915A EP 01932915 A EP01932915 A EP 01932915A EP 1337283 A1 EP1337283 A1 EP 1337283A1
Authority
EP
European Patent Office
Prior art keywords
nitric oxide
compound
nitrosated
hypertension
antioxidant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
EP01932915A
Other languages
English (en)
French (fr)
Other versions
EP1337283A4 (de
Inventor
Joseph Loscalzo
Joseph A. Vita
Michael D. Loberg
Manuel Worcel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Boston University
Nitromed Inc
Original Assignee
Boston University
Nitromed Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US09/697,317 external-priority patent/US6635273B1/en
Application filed by Boston University, Nitromed Inc filed Critical Boston University
Publication of EP1337283A1 publication Critical patent/EP1337283A1/de
Publication of EP1337283A4 publication Critical patent/EP1337283A4/de
Ceased legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • A61K45/06Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/12Ketones
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/185Acids; Anhydrides, halides or salts thereof, e.g. sulfur acids, imidic, hydrazonic or hydroximic acids
    • A61K31/19Carboxylic acids, e.g. valproic acid
    • A61K31/195Carboxylic acids, e.g. valproic acid having an amino group
    • A61K31/197Carboxylic acids, e.g. valproic acid having an amino group the amino and the carboxyl groups being attached to the same acyclic carbon chain, e.g. gamma-aminobutyric acid [GABA], beta-alanine, epsilon-aminocaproic acid, pantothenic acid
    • A61K31/198Alpha-aminoacids, e.g. alanine, edetic acids [EDTA]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/335Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
    • A61K31/35Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having six-membered rings with one oxygen as the only ring hetero atom
    • A61K31/352Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having six-membered rings with one oxygen as the only ring hetero atom condensed with carbocyclic rings, e.g. methantheline 
    • A61K31/3533,4-Dihydrobenzopyrans, e.g. chroman, catechin
    • A61K31/355Tocopherols, e.g. vitamin E
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/335Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
    • A61K31/365Lactones
    • A61K31/375Ascorbic acid, i.e. vitamin C; Salts thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/50Pyridazines; Hydrogenated pyridazines
    • A61K31/502Pyridazines; Hydrogenated pyridazines ortho- or peri-condensed with carbocyclic ring systems, e.g. cinnoline, phthalazine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7042Compounds having saccharide radicals and heterocyclic rings
    • A61K31/7048Compounds having saccharide radicals and heterocyclic rings having oxygen as a ring hetero atom, e.g. leucoglucosan, hesperidin, erythromycin, nystatin, digitoxin or digoxin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/43Enzymes; Proenzymes; Derivatives thereof
    • A61K38/44Oxidoreductases (1)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/43Enzymes; Proenzymes; Derivatives thereof
    • A61K38/44Oxidoreductases (1)
    • A61K38/446Superoxide dismutase (1.15)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P13/00Drugs for disorders of the urinary system
    • A61P13/12Drugs for disorders of the urinary system of the kidneys
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/02Drugs for skeletal disorders for joint disorders, e.g. arthritis, arthrosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/10Antimycotics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P7/00Drugs for disorders of the blood or the extracellular fluid
    • A61P7/02Antithrombotic agents; Anticoagulants; Platelet aggregation inhibitors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P7/00Drugs for disorders of the blood or the extracellular fluid
    • A61P7/04Antihaemorrhagics; Procoagulants; Haemostatic agents; Antifibrinolytic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P7/00Drugs for disorders of the blood or the extracellular fluid
    • A61P7/10Antioedematous agents; Diuretics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/04Inotropic agents, i.e. stimulants of cardiac contraction; Drugs for heart failure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/08Vasodilators for multiple indications
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/10Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/12Antihypertensives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0053Mouth and digestive tract, i.e. intraoral and peroral administration
    • A61K9/0056Mouth soluble or dispersible forms; Suckable, eatable, chewable coherent forms; Forms rapidly disintegrating in the mouth; Lozenges; Lollipops; Bite capsules; Baked products; Baits or other oral forms for animals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/70Web, sheet or filament bases ; Films; Fibres of the matrix type containing drug
    • A61K9/7023Transdermal patches and similar drug-containing composite devices, e.g. cataplasms

Definitions

  • the present invention provides methods of treating and/or preventing vascular diseases characterized by nitric oxide insufficiency by administering a therapeutically effective amount of at least one antioxidant or a pharmaceutically acceptable salt thereof, and at least one compound that donates, transfers or releases nitric oxide, elevates endogenous levels of endothelium-derived relaxing factor, stimulates endogenous synthesis of nitric oxide or is a substrate for nitric oxide synthase, and, optionally, at least one nitrosated angiotensin- converting enzyme inhibitor, nitrosated beta-adrenergic blocker, nitrosated calcium channel blocker, nitrosated endothelin antagonist, nitrosated angiotensin II receptor antagonist, nitrosated renin inhibitor, and/or at least one compound used to treat cardiovascular diseases.
  • the antioxidant may preferably be a hydralazine compound or a pharmaceutically acceptable salt thereof.
  • the compound that donates, transfers or releases nitric oxide, elevates endogenous levels of endothelium-derived relaxing factor, stimulates endogenous synthesis of nitric oxide or is a substrate for nitric oxide synthase may preferably be isosorbide dinitrate and/or isosorbide mononitrate.
  • the present invention also provides methods of treating and/or preventing vascular diseases characterized by nitric oxide insufficiency by administering a therapeutically effective amount of at least one nitrosated angiotensin- converting enzyme inhibitor, nitrosated beta-adrenergic blocker, nitrosated calcium channel blocker, nitrosated endothelin antagonist, nitrosated angiotensin II receptor antagonist and/or nitrosated renin inhibitor, and, optionally, at least one antioxidant and/or at least one compound used to treat cardiovascular diseases.
  • the present invention also provides methods of treating and/or preventing Raynaud's syndrome by administering a therapeutically effective amount of at least one antioxidant or a pharmaceutically acceptable salt thereof, and at least one compound that donates, transfers or releases nitric oxide, elevates endogenous levels of endothelium-derived relaxing factor, stimulates endogenous synthesis of nitric oxide or is a substrate for nitric oxide synthase, and, optionally, at least one nitrosated angiotensin- converting enzyme inhibitor, nitrosated calcium channel blocker, nitrosated endothelin antagonist, nitrosated angiotensin II receptor antagonist and/or nitrosated renin inhibitor.
  • the present invention also provides novel transdermal patches comprising at least one antioxidant or a pharmaceutically acceptable salt thereof, and at least one compound that donates, transfers or releases nitric oxide, elevates endogenous levels of endothelium-derived relaxing factor, stimulates endogenous synthesis of nitric oxide or is a substrate for nitric oxide synthase, and, optionally, at least one nitrosated angiotensin-converting enzyme inhibitor, nitrosated beta-adrenergic blocker, nitrosated calcium channel blocker, nitrosated endothelin antagonist, nitrosated angiotensin II receptor antagonist, nitrosated renin inhibitor, and/or at least one compound used to treat cardiovascular diseases.
  • the present invention also provides sustained release formulation comprising at least one antioxidant or a pharmaceutically acceptable salt thereof, and at least one nitric oxide donor, and, optionally, at least one nitrosated compound.
  • the present invention provides methods for treating and/or preventing vascular diseases characterized by nitric oxide insufficiency by administering to a patient a therapeutically effective amount of at least one antioxidant or a pharmaceutically acceptable salt thereof, and at least one compound that donates, transfers or releases nitric oxide, elevates endogenous levels of endothelium-derived relaxing factor, stimulates endogenous synthesis of nitric oxide or is a substrate for nitric oxide synthase, and, optionally, at least one nitrosated angiotensin-converting enzyme inhibitor, nitrosated beta-adrenergic blocker, nitrosated calcium channel blocker, nitrosated endothelin antagonist, nitrosated angiotensin II receptor antagonist, nitrosated renin inhibitor, and/or at least one compound used to treat cardiovascular diseases.
  • the antioxidant may preferably be a hydralazine compound or a pharmaceutically acceptable salt thereof.
  • the compound that donates, transfers or releases nitric oxide, elevates endogenous levels of endothelium-derived relaxing factor, stimulates endogenous synthesis of nitric oxide or is a substrate for nitric oxide synthase may preferably be isosorbide dinitrate and/or isosorbide mononitrate.
  • the antioxidant and the nitric oxide donor and optional nitrosated compound and/or compound used to treat cardiovascular diseases can be administered separately or as components of the same composition.
  • Another aspect of the present invention provides methods for treating and/or preventing vascular diseases characterized by nitric oxide insufficiency by administering to a patient a therapeutically effective amount of at least one nitrosated angiotensin-converting enzyme inhibitor, nitrosated beta-adrenergic blocker, nitrosated calcium channel blocker, nitrosated endothelin antagonist, nitrosated angiotensin II receptor antagonist and/or nitrosated renin inhibitor, and, optionally, at least one antioxidant and/or at least one compound used to treat cardiovascular diseases.
  • the nitrosated compound and optional antioxidant and/or compound used to treat cardiovascular diseases can be administered separately or as components of the same composition.
  • the present invention provides methods for treating and/or preventing Raynaud's syndrome by administering to a patient a therapeutically effective amount of at least one antioxidant or a pharmaceutically acceptable salt thereof, and at least one compound that donates, transfers or releases nitric oxide, elevates endogenous levels of endothelium-derived relaxing factor, stimulates endogenous synthesis of nitric oxide or is a substrate for nitric oxide synthase, and, optionally, at least one nitrosated angiotensin- converting enzyme inhibitor, nitrosated calcium channel blocker, nitrosated endothelin antagonist, nitrosated angiotensin II receptor antagonist and/or nitrosated renin inhibitor.
  • the antioxidant, nitric oxide donor, and nitrosated compound can be administered separately or as components of the same composition.
  • the present invention provides novel transdermal patches comprising a therapeutically effective amount of at least one antioxidant at least one compound that donates, transfers or releases nitric oxide, elevates endogenous levels of endothelium-derived relaxing factor, stimulates endogenous synthesis of nitric oxide or is a substrate for nitric oxide synthase, and, optionally, at least one nitrosated angiotensin- converting enzyme inhibitor, nitrosated beta-adrenergic blocker, nitrosated calcium channel blocker, nitrosated endothelin antagonist, nitrosated angiotensin II receptor antagonist, nitrosated renin inhibitor, and/or at least one compound used to treat cardiovascular diseases.
  • the present invention provides sustained release formulations comprising a therapeutically effective amount of at least one antioxidant or a pharmaceutically acceptable salt thereof, and at least one nitric oxide donor, and, optionally, at least one nitrosated compound.
  • FIG. 1 shows that nitric oxide (NO) insufficiency is associated with increased salt and water retention and a low-renin state.
  • NO nitric oxide
  • Increased intracellular sodium and calcium in conjunction with reduced NO leads to enhanced sensitivity of vascular smooth muscle cells and cardiomyocytes to the tonic and growth-stimulating properties of catecholamines and angiotensin II.
  • Increased vascular tone, left ventricular hypertrophy with inadequate capillary angiogenesis, and increased matrix production with myocardial fibrosis result.
  • These intermediate phenotypes lead to the clinical disorders of low-renin, salt-sensitive hypertension; disproportionate left ventricular hypertrophy and diastolic dysfunction; and microvascular myocardial ischemia.
  • Fig. 2 shows forearm blood flow responses to intra-arterial methacholine that were assessed using venous occlusion plethysmography in 20 white and 16 black patients with a clinical history of hypertension (BP>140/90).
  • Fig. 2 shows that endothelium-derived NO action is impaired in the forearm microvessels of the black patients compared to the white patients.
  • Figs. 3A and 3B show forearm blood flow responses to nitroprusside (Fig. 3A) and methacholine (Fig.3B) that were assessed by venous occlusion plethysmography in 25 white and 21 black patients without hypertension.
  • the dilator response to sodium nitroprusside (Fig. 3 A) was significantly lower in black patients, while there was no racial difference in response to methacholine (Fig. 3B).
  • Figs. 4A and 4B show the effect of salt-sensitivity on forearm microvascular function.
  • ANON A By repeated measures ANON A, there were trends for impaired responses to methacholine
  • Fig. 4A and sodium nitroprusside (Fig. 4B) in salt-sensitive black patients.
  • Fig. 4A and sodium nitroprusside (Fig. 4B) in salt-sensitive black patients.
  • Fig. 4B sodium nitroprusside
  • “Therapeutically effective amount” refers to the amount of the compound and/or composition that is effective to achieve its intended purpose.
  • Transdermal refers to the delivery of a compound by passage through the skin and into the blood stream.
  • Transmucosal refers to delivery of a compound by passage of the compound through the mucosal tissue and into the blood stream.
  • Poration enhancement refers to an increase in the permeability of the skin or mucosal tissue to a selected pharmacologically active compound such that the rate at which the compound permeates through the skin or mucosal tissue is increased.
  • Carriers or “vehicles” refers to carrier materials suitable for compound administration and include any such material known in the art such as, for example, any liquid, gel, solvent, liquid diluent, solubilizer, or the like, which is non-toxic and which does not interact with any components of the composition in a deleterious manner.
  • sustained release refers to the release of a therapeutically active compound and/or composition such that the blood levels of the therapeutically active compound are maintained within a desirable therapeutic range over an extended period of time.
  • the sustained release formulation can be prepared using any conventional method known to one skilled in the art to obtain the desired release characteristics.
  • Nitric oxide donor or “NO donor” refers to compounds that donate, release and/or directly or indirectly transfer a nitrogen monoxide species, and/or stimulate the endogenous production of nitric oxide or endothelium-derived relaxing factor (EDRF) in vivo and/or elevate endogenous levels of nitric oxide or EDRF in vivo.
  • NO donor also includes compounds that are substrates for nitric oxide synthase.
  • Nitric oxide adduct or “NO adduct” refers to compounds and functional groups which, under physiological conditions, can donate, release and/or directly or indirectly transfer any of the three redox forms of nitrogen monoxide (NO + , NO " , NO»), such that the biological activity of the nitrogen monoxide species is expressed at the intended site of action.
  • Nitric oxide releasing or “nitric oxide donating” refers to methods of donating, releasing and/or directly or indirectly transferring any of the three redox forms of nitrogen monoxide (NO + , NO-, NO»), such that the biological activity of the nitrogen monoxide species is expressed at the intended site of action.
  • Alkyl refers to a lower alkyl group, a haloalkyl group, an alkenyl group, an alkynyl group, a bridged cycloalkyl group, a cycloalkyl group or a heterocyclic ring, as defined herein.
  • Lower alkyl refers to branched or straight chain acyclic alkyl group comprising one to about ten carbon atoms (preferably one to about eight carbon atoms, more preferably one to about six carbon atoms).
  • Exemplary lower alkyl groups include methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, t-butyl, pentyl, neopentyl, iso-amyl, hexyl, octyl, and the like.
  • ''Haloalkyl refers to a lower alkyl group, an alkenyl group, an alkynyl group, a bridged cycloalkyl group, a cycloalkyl group or a heterocyclic ring, as defined herein, to which is appended one or more halogens, as defined herein.
  • exemplary haloalkyl groups include trifluoromethyl, chloromethyl, 2-bromobutyl, l-bromo-2-chloro-pentyl, and the like.
  • Alkenyl refers to a branched or straight chain C 2 -C ⁇ 0 hydrocarbon (preferably a C 2 -
  • C 8 hydrocarbon more preferably a C 2 -C 6 hydrocarbon which can comprise one or more carbon-carbon double bonds.
  • alkenyl groups include propylenyl, buten-1-yl, isobutenyl, penten-1-yl, 2,2-methylbuten-l-yl, 3-methylbuten-l-yl, hexan-1-yl, hepten-1-yl, octen-1-yl, and the like.
  • Alkynyl refers to an unsaturated acyclic C 2 -C ⁇ 0 hydrocarbon (preferably a C 2 -C 8 hydrocarbon, more preferably a C 2 -C 6 hydrocarbon) which can comprise one or more carbon- carbon triple bonds.
  • exemplary alkynyl groups include ethynyl, propynyl, butyn-1-yl, butyn- 2-yl, pentyl-1-yl, pentyl-2-yl, 3-methylbutyn-l-yl, hexyl-1-yl, hexyl-2-yl, hexyl-3-yl, 3,3- dimethyl-butyn-1-yl, and the like.
  • Bridged cycloalkyl refers to two or more cycloalkyl groups, heterocyclic groups, or a combination thereof fused via adjacent or non-adjacent atoms. Bridged cycloalkyl groups can be unsubstituted or substituted with one, two or three substituents independently selected from alkyl, alkoxy, amino, alkylamino, dialkylamino, hydroxy, halo, carboxyl, alkylcarboxylic acid, aryl, amidyl, ester, alkylcarboxylic ester, carboxamido, alkylcarboxamido, oxo and nitro.
  • Exemplary bridged cycloalkyl groups include adamantyl, decahydronapthyl, quinuclidyl, 2,6-dioxabicyclo[3.3.0]octane, 7-oxabycyclo[2.2J]heptyl, 8- azabicyclo[3,2,l]oct-2-enyl and the like.
  • Cycloalkyl refers to a saturated or unsaturated cyclic hydrocarbon comprising from about 3 to about 10 carbon atoms.
  • Cycloalkyl groups can be unsubstituted or substituted with one, two or three substituents independently selected from alkyl, alkoxy, amino, alkylamino, dialkylamino, arylamino, diarylamino, alkylarylamino, aryl, amidyl, ester, hydroxy, halo, carboxyl, alkylcarboxylic acid, alkylcarboxylic ester, carboxamido, alkylcarboxamido, oxo and nitro.
  • Exemplary cycloalkyl groups include cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cyclohexenyl, cyclohepta,l,3-dienyl, and the like.
  • Heterocyclic ring or group refers to a saturated, unsaturated, cyclic or aromatic or poly cyclic hydrocarbon group having about 2 to about 10 carbon atoms (preferably about 4 to about 6 carbon atoms) where l*to about 4 carbon atoms are replaced by one or more nitrogen, oxygen and/or sulfur atoms. Sulfur may be in the thio, sulfinyl or sulfonyl oxidation state.
  • heterocyclic ring or group can be fused to an aromatic hydrocarbon group.
  • Heterocyclic groups can be unsubstituted or substituted with one, two or three substituents independently selected from alkyl, alkoxy, amino, alkylamino, dialkylamino, arylamino, diarylamino, alkylarylamino, hydroxy, oxo, thial, halo, carboxyl, carboxylic ester, alkylcarboxylic acid, alkylcarboxylic ester, aryl, arylcarboxylic acid, arylcarboxylic ester, amidyl, ester, carboxamido, alkylcarboxamido, arylcarboxamido, sulfonic acid, sulfonic ester, sulfonamido and nitro.
  • heterocyclic groups include pyrrolyl, 3-pyrrolinyl,4,5,6-trihydro-2H- pyranyl, pyridinyl, 1,4-dihydropyridinyl, pyrazolyl, triazolyl, pyrimidinyl, pyridazinyl, oxazolyl, thiazolyl, imidazolyl, indolyl, thiophenyl, furanyl, tetrhydrofuranyl, tetrazolyl, 2- pyrrolinyl, 3-pyrrolinyl, pyrrolindinyl, oxazolindinyl 1,3-dioxolanyl, 2,6- dioxabicyclo[3,3,0]octanyl, 2-imidazonlinyl, imidazolindinyl, 2-pyrazolinyl, pyrazolidinyl, isoxazolyl, isothiazolyl, 1,2,3-oxadia
  • Heterocyclic compounds refer to mono- and polycyclic compounds comprising at least one aryl or heterocyclic ring.
  • Aryl refers to a monocyclic, bicyclic, carbocyclic or heterocyclic ring system comprising one or two aromatic rings.
  • Exemplary aryl groups include phenyl, pyridyl, napthyl, quinoyl, tetrahydronaphthyl, furanyl, indanyl, indenyl, indoyl, and the like.
  • Aryl groups can be unsubstituted or substituted with one, two or three substituents independently selected from alkyl, alkoxy, amino, alkylamino, dialkylamino, arylamino, diarylamino, alkylarylamino, hydroxy, carboxyl, carboxylic ester, alkylcarboxylic acid, alkylcarboxylic ester, aryl, arylcarboxylic acid, arylcarboxylic ester, alkylcarbonyl, arylcarbonyl, amidyl, ester, carboxamido, alkylcarboxamido, carbomyl, sulfonic acid, sulfonic ester, sulfonamido and nitro.
  • Exemplary substituted aryl groups include tetrafluorophenyl, pentafluorophenyl, sulfonamide, alkylsulfonyl, arylsulfon
  • Alkylaryl refers to an alkyl group, as defined herein, to which is appended an aryl group, as defined herein.
  • exemplary alkylaryl groups include benzyl, phenylethyl, hydroxybenzyl, fluorobenzyl, fluorophenylethyl, and the like.
  • Arylalkyl refers to an aryl radical, as defined herein, attached to an alkyl radical, as defined herein.
  • Cycloalkylalkyl refers to a cycloalkyl radical, as defined herein, attached to an alkyl radical, as defined herein.
  • Heterocyclicalkyl refers to a heterocyclic ring radical, as defined herein, attached to an alkyl radical, as defined herein.
  • Cycloalkenyl refers to an unsaturated cyclic hydrocarbon having about 3 to about
  • Arylheterocyclic ring refers to a bi- or tricyclic ring comprised of an aryl ring, as defined herein, appended via two adjacent carbon atoms of the aryl ring to a heterocyclic ring, as defined herein.
  • exemplary arylheterocyclic rings include dihydroindole, 1,2,3,4- tetra-hydroquinoline, and the like.
  • Alkoxy refers to R 50 O-, wherein R 50 is an alkyl group, as defined herein.
  • exemplary alkoxy groups include methoxy, ethoxy, t-butoxy, cyclopentyloxy, and the like.
  • Arylalkoxy or alkoxyaryl refers to an alkoxy group, as defined herein, to which is appended an aryl group, as defined herein.
  • exemplary arylalkoxy groups include benzyloxy, phenylethoxy, chlorophenylethoxy, and the like.
  • Aryloxy refers to R 55 O-, wherein R 55 is an aryl group, as defined herein.
  • exemplary aryloxy groups include napthyloxy, quinolyloxy, isoquinolizinyloxy, and the like.
  • Alkoxyalkyl refers to an alkoxy group, as defined herein, appended to an alkyl group, as defined herein.
  • exemplary alkoxyalkyl groups include methoxymethyl, methoxyethyl, isopropoxymethyl, and the like.
  • Alkoxyhaloalkyl refers to an alkoxy group, as defined herein, appended to a haloalkyl group, as defined herein.
  • exemplary alkoxyhaloalkyl groups include 4- methoxy-
  • Cycloalkoxy refers to R 5 O-, wherein R 54 is a cycloalkyl group or a bridged cycloalkyl group, as defined herein.
  • Exemplary cycloalkoxy groups include cyclopropyloxy, cyclopentyloxy, cyclohexyloxy, and the like.
  • Haloalkoxy refers to a haloalkyl group, as defined herein, to which is appended an alkoxy group, as defined herein.
  • Exemplary haloalkyl groups include 1,1,1-trichloroethoxy, 2-bromobutoxy, and the like.
  • Oxy refers to -O " R 77 + wherein R 7 is an organic or inorganic cation.
  • Organic cation refers to a positively charged organic ion.
  • exemplary organic cations include alkyl substituted ammonium cations, and the like.
  • Inorganic cation refers to a positively charged metal ion.
  • Exemplary inorganic cations include Group I metal cations such as for example, sodium, potassium, and the like.
  • “Hydroxyalkyl” refers to a hydroxy group, as defined herein, appended to an alkyl group, as defined herein.
  • Amino refers to -NH 2 .
  • Nirate refers to -O-NO 2 .
  • Nirite refers to -O-NO.
  • Thionitrate refers to -S-NO 2 .
  • Niro refers to the group -NO 2 and “nitrosated” refers to compounds that have been substituted therewith.
  • Niroso refers to the group -NO and “nitrosylated” refers to compounds that have been substituted therewith.
  • Halogen or “halo” refers to iodine (I), bromine (Br), chlorine (Cl), and/or fluorine (F).
  • Alkylamino refers to R S QNH-, wherein R 50 is an alkyl group, as defined herein.
  • exemplary alkylamino groups include methylamino, ethylamino, butylamino, cyclohexylamino, and the like.
  • Arylamino refers to R 55 NH-, wherein R 55 is an aryl group, as defined herein.
  • Dialkylamino refers to R 50 R 52 N-, wherein R 50 and R 52 are each independently an alkyl group, as defined herein. Exemplary dialkylamino groups include dimethylamino, diethylamino, methyl propargylamino, and the like.
  • Diarylamino refers to RssR- ⁇ oN-, wherein R 55 and R 60 are each independently an aryl group, as defined herein.
  • Alkylarylamino refers to R 5 QR55N-, wherein R 50 is an alkyl group, as defined herein, and R 55 is an aryl group, as defined herein.
  • Aminoalkyl refers to an amino group, an alkylamino group, a dialkylamino group, an arylamino group, a diarylamino group, an alkylarylamino group or a heterocyclic ring, as defined herein, to which is appended an alkyl group, as defined herein.
  • Aminoaryl refers to an amino group, an alkylamino group, a dialkylamino group, an arylamino group, a diarylamino group, an alkylarylamino group or a heterocyclic ring, as defined herein, to which is appended an aryl group, as defined herein.
  • Thio refers to -S-.
  • Sulfonic acid refers to -S(O) 2 OR 6 , wherein R 6 is a hydrogen, an organic cation or an inorganic cation.
  • Alkylsulfonic acid refers to a sulfonic acid group, as defined herein, appended to an alkyl group, as defined herein.
  • Arylsulfonic acid refers to an sulfonic acid group, as defined herein, appended to an aryl group, as defined herein
  • Sulfonic ester refers to -S(O) 2 OR 58 , wherein R 58 is an alkyl group, an aryl group, an alkylaryl group or an aryl heterocyclic ring, as defined herein.
  • “Sulfonamido” refers to -S(O) 2 -N(R 51 )(R 57 ), wherein R 51 and R 57 are each independently a hydrogen atom, an alkyl group, an aryl group, an alkylaryl group, or an arylheterocyclic ring, as defined herein, or R 5 ⁇ and R 5 taken together are a heterocyclic ring, a cycloalkyl group or a bridged cycloalkyl group, as defined herein.
  • Alkylsulfonamido refers to a sulfonamido group, as defined herein, appended to an alkyl group, as defined herein.
  • Arylsulfonamido refers to a sulfonamido group, as defined herein, appended to an aryl group, as defined herein.
  • Alkylthio refers to R 50 S-, wherein R 50 is an alkyl group, as defined herein.
  • Arylthio refers to R 55 S-, wherein R55 is an aryl group, as defined herein.
  • Cycloalkylthio refers to R 5 S-, wherein R 54 is a cycloalkyl group or a bridged cycloalkyl group, as defined herein.
  • exemplary cycloalkylthio groups include cyclopropylthio, cyclopentylthio, cyclohexylthio, and the like.
  • Alkylsulfinyl refers to R 50 -S(O)-, wherein R 50 is an alkyl group, as defined herein.
  • Alkylsulfonyl refers to R 5 o-S(O) -, wherein R 50 is an alkyl group, as defined herein.
  • Arylsulfinyl refers to R 55 -S(O)-, wherein R 55 is an aryl group, as defined herein.
  • Arylsulfonyl refers to R 55 -S(O) 2 -, wherein R 55 is an aryl group, as defined herein.
  • “Amidyl” refers to R 51 C(O)N(R 57 )- wherein R 51 and R 57 are each independently a hydrogen atom, an alkyl group, an aryl group, an alkylaryl group, or an arylheterocyclic ring, as defined herein.
  • Ester refers to R 5 ⁇ C(O)O- wherein R 51 is a hydrogen atom, an alkyl group, an aryl group, an alkylaryl group, or an arylheterocyclic ring, as defined herein.
  • Carbamoyl refers to -O-C(O)N(R 51 )(R 57 ), wherein R 51 and R 57 are each independently a hydrogen atom, an alkyl group, an aryl group, an alkylaryl group or an arylheterocyclic ring, as defined herein, or R 51 and R 57 taken together are a heterocyclic ring, a cycloalkyl group or a bridged cycloalkyl group, as defined herein.
  • “Carbamate” refers to R 51 O-C(O)N-(R 57 ), wherein R 51 and R 57 are each independently a hydrogen atom, an alkyl group, an aryl group, an alkylaryl group or an arylheterocyclic ring, as defined herein, or R 51 and R 57 taken together are a heterocyclic ring, a cycloalkyl group or a bridged cycloalkyl group, as defined herein.
  • “Carboxyl” refers to -C(O)OR 76 , wherein R 76 is a hydrogen, an organic cation or an inorganic cation, as defined herein.
  • Carbonyl refers to -C(O .
  • Alkylcarbonyl or “alkanoyl” refers to R 50 -C(O)-, wherein R 50 is an alkyl group, as defined herein.
  • Arylcarbonyl or “aroyl” refers to R 55 -C(O)-, wherein R 55 is an aryl group, as defined herein.
  • Carboxylic ester refers to -C(O)OR 5 8, wherein R 58 is an alkyl group, an aryl group, an alkylaryl group or an aryl heterocyclic ring, as defined herein.
  • Alkylcarboxylic acid and “alkylcarboxyl” refer to an alkyl group, as defined herein, appended to a carboxyl group, as defined herein.
  • Alkylcarboxylic ester refers to an alkyl group, as defined herein, appended to a carboxylic ester group, as defined herein.
  • Arylcarboxylic acid refers to an aryl group, as defined herein, appended to a carboxyl group, as defined herein.
  • Arylcarboxylic ester and arylcarboxyl refer to an aryl group, as defined herein, appended to a carboxylic ester group, as defined herein.
  • Carboxamido refers to -C(O)N(R 5 i)(R 57 ), wherein R51 and R 57 are each independently a hydrogen atom, an alkyl group, an aryl group, an alkylaryl group or an arylheterocyclic ring, as defined herein, or R 51 and R 5 taken together with the nitrogen to which they are attached form a heterocyclic ring, a cycloalkyl group or a bridged cycloalkyl group, as defined herein.
  • Alkylcarboxamido refers to an alkyl group, as defined herein, appended to a carboxamido group, as defined herein.
  • Arylcarboxamido refers to an aryl group, as defined herein, appended to a carboxamido group, as defined herein.
  • Rea refers to -N(R 59 )-C(O)N(R 5 ⁇ )(R 57 ) wherein R 5i , R 57 , and R 59 are each independently a hydrogen atom, an alkyl group, an aryl group, an alkylaryl group, or an arylheterocyclic ring, as defined herein, or R 51 and R 57 taken together with the nitrogen to which they are attached form a heterocyclic ring, as defined herein.
  • Phosphoryl refers to -P(R 70 )(R 7 ⁇ )(R 7 ' 2 ), wherein R 70 is a lone pair of electrons, sulfur or oxygen, and R 7 ⁇ and R 72 are each independently a covalent bond, a hydrogen, a lower alkyl, an alkoxy, an alkylamino, a hydroxy or an aryl, as defined herein.
  • “Silyl” refers to -Si(R 73 )(R 7 )(R 75 ), wherein R 3 , R 7 and R 75 are each independently a covalent bond, a lower alkyl, an alkoxy, an aryl or an arylalkoxy, as defined herein.
  • Hydrazino refers to H 2 N-N(H)-.
  • Haldralazine compound refers to a compound having the formula:
  • a, b and c are independently a single or double bond
  • Rj;and R 2 are each independently a hydrogen, an alkyl, an ester or a heterocyclic ring, wherein alkyl, ester and heterocyclic rind are as defined herein
  • R 3 and R-j. are each independently a lone pair of electrons or a hydrogen, with the proviso that at least one of Ri, R 2 , R 3 and t is not a hydrogen.
  • Exemplary hydralazine compounds include budralazine, cadralazine, dihydralazine, endralazine, hydralazine, pildralazine, todralazine, and the like.
  • Compound used to treat cardiovascular diseases refers to any therapeutic compound, or a pharmaceutically acceptable salt thereof, used to treat any cardiovascular disease.
  • Suitable compounds include, but are not limited to, angiotensin-converting enzyme (ACE) inhibitors (such as, for example, alacepril, benazepril, captopril, ceronapril, cilazapril, delapril, duinapril, enalapril, enalaprilat, fosinopril, imidapril, lisinopril, losartan, moveltipril, naphthopidil, pentopril, perindopril, quinapril, ramipril, rentipril, spirapril, temocapril, trandolapril, urapidil, zofenopril, and the like); beta-adrenergic blockers (such as, for example, acebutolol, alpreno
  • Vascular diseases characterized by nitric oxide insufficiency include, but are not limited to, cardiovascular diseases; diseases resulting from oxidative stress; hypertension (e.g., low-renin hypertension; salt-sensitive hypertension; low-renin, salt-sensitive hypertension; primary pulmonary hypertension; thromboembolic pulmonary hypertension; pregnancy-induced hypertension; renovascular hypertension; hypertension-dependent end- stage renal disease), heart failure (e.g., microvascular cardiac ischemia), and left ventricular hypertrophy with disproportionate microvascularization, (i.e., inadequate vascularity) or diastolic dysfunction.
  • hypertension e.g., low-renin hypertension; salt-sensitive hypertension; low-renin, salt-sensitive hypertension; primary pulmonary hypertension; thromboembolic pulmonary hypertension; pregnancy-induced hypertension; renovascular hypertension; hypertension-dependent end- stage renal disease
  • heart failure e.g., microvascular cardiac ischemia
  • Cardiovascular diseases refers to any cardiovascular disease, including but not limited to, congestive heart failure, hypertension, pulmonary hypertension, myocardial and cerebral infarctions, atherosclerosis, atherogenesis, thrombosis, ischemic heart disease, post- angioplasty restenosis, coronary artery diseases, renal failure, stable, unstable and variant (Prinzmetal) angina, cardiac edema, renal insufficiency, nephrotic edema, hepatic edema, stroke, transient ischemic attacks, cerebrovascular accidents, restenosis, controlling blood pressure in hypertension, platelet adhesion, platelet aggregation, smooth muscle cell proliferation, vascular complications associated with the use of medical devices, wounds associated with the use of medical devices, pulmonary thromboembolism, cerebral thromboembolism, thrombophlebitis, tlirornbocytopenia, bleeding disorders, and the like.
  • Diseases resulting from oxidative stress refers to any disease that involves the generation of free radicals or radical compounds, such as, for example, atherogenesis, atheromatosis, arteriosclerosis, artherosclerosis, vascular hypertrophy associated with hypertension, hyperlipoproteinaemia, normal vascular degeneration through aging, parathyroidal reactive hyperplasia, chronic renal disease, neoplastic diseases, inflammatory diseases, neurological and acute bronchopulmonary disease, tumorigenesis, ischemia- reperfusion syndrome, arthritis, sepsis, and the like.
  • free radicals or radical compounds such as, for example, atherogenesis, atheromatosis, arteriosclerosis, artherosclerosis, vascular hypertrophy associated with hypertension, hyperlipoproteinaemia, normal vascular degeneration through aging, parathyroidal reactive hyperplasia, chronic renal disease, neoplastic diseases, inflammatory diseases, neurological and acute bronchopulmonary disease, tumorigenesis, ischemia- reperfusion syndrome, arthritis, sepsis, and the
  • vascular diathesis may involve the endothelium, which has a limited capacity to generate vasodilator and antiproliferative factors or an increased capacity to produce vasoconstrictor and proliferative factors; the vascular smooth muscle cell, which manifests increased sensitivity to vasoconstrictor and proliferative factors; or both, in these individuals.
  • NO endothelium-derived nitric oxide
  • Nitric oxide produced by the endothelial cells induces vascular smooth muscle cell relaxation, contributing importantly to resting vascular tone.
  • NO inhibits vascular smooth muscle cell proliferation and induces apoptosis in smooth muscle cells, which leads to the release of basic fibroblast growth factor and vascular endothelial cell growth factor, in turn supporting endothelial cell proliferation. This sequence of cellular responses is believed to sustain angiogenesis under hypoxic or ischemic conditions.
  • nitric oxide insufficiency suppresses renin release from the juxtaglomerular cells, and induces a sodium chloride/volume sensitive increase in blood pressure. Furthermore, nitric oxide insufficiency leads to an increased sensitivity of vascular smooth muscle cells to vasoconstrictors, such as angiotensin II and catecholamines, which amplify the increase in vascular resistance.
  • Nitric oxide insufficiency promotes vascular smooth muscle cell proliferation following vascular injury, and sustains smooth muscle cell and cardiomyocyte hypertrophy in response to catecholamines and angiotensin II. Furthermore, inadequate nitric oxide leads to increased production of extracellular matrix with consequent myocardial fibrosis. These many cardiovascular responses that result from inadequate NO in the vasculature have clear clinical correlates in the black population.
  • the clinical vascular phenotype of blacks that distinguishes them from whites with similar cardiovascular disorders is one of salt-sensitive, low-renin hypertension; left ventricular hypertrophy disproportionate to afterload and with an inadequate angiogenic response; and microvascular ischemia in the absence of significant epicardial coronary artery disease. The net pathophysiological consequences of these effects are increased peripheral vascular resistance with accompanying arterial hypertension; and an inadequately vascularized, fibrotic increase in left ventricular mass with accompanying diastolic dysfunction and microvascular ischemia.
  • Nitric oxide insufficiency states can be a consequence of reduced synthesis of nitric oxide, enhanced inactivation of nitric oxide, or both. Possible candidate mechanisms include alterations in the genes that code for endothelial nitric oxide.
  • nitric oxide synthase or the inducible microvascular and cardiomyocyte nitric oxide synthase leading to reduced expression of a normal gene product or appropriate expression of a less active gene product; reduction in the enzymatic activity of nitric oxide synthase owing to inadequate cofactor concentrations; or enhanced inactivation of nitric oxide by oxidant stress.
  • oxidant stress may both precede the development of the vascular diathesis and promote its progression once established.
  • Nitric oxide is synthesized by one of several isoforms of the NO synthase (NOS) family of enzymes, two of which are found in the vasculature, endothelial NOS (eNOS) and inducible NOS (iNOS).
  • NOS NO synthase
  • eNOS endothelial NOS
  • iNOS inducible NOS
  • eNOS is synthesized by endothelial cells
  • iNOS is synthesized by a variety of cell types, including vascular smooth muscle cells, fibroblasts, and
  • Nitric oxide contributes importantly to resting tone in conductance as well as resistance arteries (Ouyyumi et al, J Gin Invest, 95:1747-1755 (1995)), and plays a critical role in the maintenance of peripheral vascular resistance and arterial pressure responses.
  • Inhibition of NOS activity is associated with enhanced vascular sensitivity to vasoconstrictors, such as norepineplirine and angiotensin II (Conrad et al, Am JPhysiol, 262 :R1137-Rl 144 (1992)), and this effect appears to be mediated, in part, by increased calcium sensitivity (Bank et al, Hypertension, 24:322-328 (1994)).
  • Nitric oxide release from the cardiovascular regulatory center in the brain may also be involved in the central regulation of blood pressure, suggesting a role for neuronal NOS in the regulation of vascular tone (Cabrera et al, Biochem Biophys Res Comm, 206:77-81 (1995); Mattson et al, Hypertension, 28:297-303 (1996)).
  • Nitric oxide activates renin gene expression in the kidney, and is involved in the baroreceptor-mediated regulation of renin gene expression (Schricker et al, PflugArch, 428:261-268 (1994)).
  • the dependence of blood pressure on salt intake appears to depend on NO, and NO deficiency states are associated with salt-sensitivity (Tolins et al, Kidney Internat, 46:230-236 (1994)).
  • Selective inhibition of iNOS in Dahl R rats has been shown to lead to salt-sensitivity and to the development of salt-dependent hypertension similar to Dahl
  • mice deficient in iNOS may develop hypertension in response to salt feeding (Rudd et al, Circulation, 98:1A (1998)).
  • Nitric oxide also affects myocardial contractility, and does so both by mediating muscarinic-cholinergic slowing of the heart rate and the contractile response to beta-adrenergic stimulation (Balligand et al, Proc Nat'lAcad Sci USA, 90:347-351 (1993)). This latter effect appears to be mediated in vivo through the vagus nerve (Hare et al, J Gin Invest, 95:360-366 (1995)).
  • NO inhibits cellular proliferation and limits the proliferative response to growth-promoting substances (Garg et al,
  • bradykinin increases myocardial blood flow by inducing release of NO from microvascular endothelial cells, and increased blood flow is a powerful stimulus for capillary proliferation (Mall et al, Bas Res Cardiol, 85:531-540 (1990)).
  • Normal metabolic processes in vascular cells are associated with the generation of reactive oxygen intermediates that must be neutralized to limit oxidative damage and cellular dysfunction.
  • ROS oxy gen species
  • Endogenous antioxidants important for the neutralization (i.e., reduction) of ROS can be categorized into two groups: small-molecule antioxidants and antioxidant enzymes.
  • the former group comprises molecules such as GSH, NADPH, ⁇ -tocopherol, vitamin C, and ubiquinol-10; while the latter group comprises the superoxide dismutases, catalase, and glutathione peroxidases.
  • Deficiencies in several of these molecular species have been shown to lead to increased steady-state levels of ROS and vascular dysfunction, including increased platelet activation, arterial thrombosis (Freedman et al, ' Gin Invest, 97:979-987 (1996); Freedman et al, Circulation, 98: 1481-1486 (1998)), and reduced production of platelet-derived NO (Kenet et al, Arterio Thromb Vase Biol, 19(8): 2017-2023 (1999)), which is important for limiting expansion of a platelet thrombus (Freedman et al, Grc Res, 84:1416-142 (1999)).
  • ROS generation accompanies the vascular dysfunction associated with several models of atherothrombotic and hypertensive vascular diseases.
  • Hyperhomo-cysteinemic mice i.e., cystathionine ⁇ -synthase knock-out mice
  • cellular glutathione peroxidase-deficient mice i.e., cellular glutathione peroxidase knock-out mice
  • salt-induced hypertensive rats i.e., salt-fed Dahl S rats
  • Endothelial function and NO availability can be improved by improving antioxidant status with a cysteine precursor (Vita et a ⁇ , J Gin Invest, 101:1408-1414 (1998)).
  • ⁇ -tocopherol leads to platelet inhibition (Freedman et al, Circulation, 94:2434-2440 (1996)) as one mechanism of its atherothrombotic benefit (Stephens et al, Lancet, 347:781-786 (1996)).
  • salt-loading salt-sensitive individuals leads to an approximate 5-fold increase in plasma F 2 -isoprostanes (8-epi-prostaglandin F 2 ), and this increase precedes the development of florid hypertension.
  • Blacks tend to have • greater left ventricular mass than whites for any given level of blood pressure (Koren et al, Am J Hypertension, 6:815-823 (1993); Chaturvedi et al, J Am Coll Cardiol, 24:1499-1505 (1994)). While not quantitated in any necropsy study, this response is likely to be accompanied by inadequate capillary angiogenesis which, in turn, may account for the diastolic dysfunction and the microvascular ischemia observed in blacks.
  • African Americans have a unique vascular diathesis that may serve as the basis for clinically important cardiovascular syndromes.
  • differences in the outcome of left ventricular dysfunction may be a consequence of the enhanced (perhaps salt-dependent) increase in oxidant stress coupled with microvascular endothelial dysfunction and an inadequately vascularized, hypertrophied left ventricle.
  • This constellation of pathophysiological abnormalities may provide the substrate for the important differences in outcome between blacks and whites with left ventricular dysfunction (Dreis et al, NEngUMed, 340:609-616 (1999)).
  • the present invention provides methods of treating and/or preventing vascular diseases characterized by nitric oxide (NO) insufficiency by administering a therapeutically effective amount of at least one antioxidant or a pharmaceutically acceptable salt thereof, and at least one compound that donates, transfers or releases nitric oxide, elevates endogenous levels of endothelium-derived relaxing factor, stimulates endogenous synthesis of nitric oxide or is a substrate for nitric oxide synthase, and, optionally, at least one nitrosated angiotensin-converting enzyme inhibitor, nitrosated beta- adrenergic blocker, nitrosated calcium channel blocker, nitrosated endothelin antagonist, nitrosated angiotensin II receptor antagonist, nitrosated renin inhibitor, and/or at least one compound used to treat cardiovascular diseases.
  • NO nitric oxide
  • the patient can be administered an antioxidant and a nitric oxide donor, or the patient can be administered an antioxidant, a nitric oxide donor and a nitrosated compound, or the patient can be administered an antioxidant, a nitric oxide donor, a nitrosated compound and a compound used to treat cardiovascular diseases.
  • Another aspect of the present invention provides methods for treating and/or preventing vascular diseases characterized by nitric oxide insufficiency by administering to a patient a therapeutically effective amount of at least one nitrosated angiotensin-converting enzyme inhibitor, nitrosated beta-adrenergic blocker, nitrosated calcium channel blocker, nitrosated endothelin antagonist, nitrosated angiotensin II receptor antagonist and/or nitrosated renin inhibitor, and, optionally, at least one antioxidant and/or at least one compound used to treat cardiovascular diseases.
  • the present invention also provides methods of preventing and treating Raynaud's syndrome by administering a therapeutically effective amount of at least one antioxidant or a pharmaceutically acceptable salt thereof, and at least one compound that donates, transfers or releases nitric oxide, elevates endogenous levels of endothelium-derived relaxing factor, stimulates endogenous synthesis of nitric oxide or is a substrate for nitric oxide synthase, and, optionally, at least one nitrosated angiotensin-converting enzyme inhibitor, nitrosated calcium channel blocker, nitrosated endothelin antagonist, nitrosated angiotensin II receptor antagonist and/or nitrosated renin inhibitor.
  • the patient can be administered an antioxidant and a nitric oxide donor, or the patient can be administered an antioxidant and a nitrosated compound.
  • the antioxidant, nitric oxide donor and nitrosated compound can be administered separately or as components of the same composition.
  • Raynaud's syndrome is a condition that causes a loss of blood flow to the fingers, toes, nose and/or ears.
  • the affected area turns white from the lack of circulation, then blue and cold, and finally numb.
  • the affected area may also turn red, and may throb, tingle or swell.
  • Another aspect of the present invention provides novel transdermal patches comprising a therapeutically effective amount of at least one antioxidant and at least one compound that donates, transfers or releases nitric oxide, elevates endogenous levels of endothelium-derived relaxing factor, stimulates endogenous synthesis of nitric oxide or is a substrate for nitric oxide synthase, and, optionally, at least one nitrosated angiotensin- converting enzyme inliibitor, nitrosated beta-adrenergic blocker, nitrosated calcium channel blocker, nitrosated endothelin antagonist, nitrosated angiotensin II receptor antagonist, nitrosated renin inhibitor, and/or at least one compound used to treat cardiovascular diseases
  • Yet another aspect of the present invention provides sustained release formulations comprising a therapeutically effective amount of at least one antioxidant or a pharmaceutically acceptable salt thereof, and at least one nitric oxide donor, and, optionally at least one nitrosated compound.
  • the antioxidants include small-molecule antioxidants and antioxidant enzymes.
  • Antioxidant refers to and includes any compound that can react and quench a free radical.
  • Suitable small-molecule antioxidants include, but are not limited to, hydralazine compounds, glutathione, vitamin C, vitamin E, cysteine, N-acetyl-cysteine, ⁇ - carotene, ubiquinone, ubiquinol-10, tocopherols, coenzyme Q, and the like.
  • Suitable antioxidant enzymes include, but are not limited to, superoxide dismutase, catalase, glutathione peroxidase, and the like.
  • the antioxidant enzymes can be delivered by gene therapy as a viral vertor and/or a non- viral vector. Suitable antioxidants are described more fully in the literature, such as in Goodman and Gilman, The Pharmacological Basis of Therapeutics (9th Edition), McGraw-Hill, 1995; and the Merck Index on CD-ROM, Twelfth Edition, Version 12:1, 1996; and on STN Express, file phar and file reg.
  • the preferred antioxidant may be a hydralazine compound that might preferably be administered as a pharmaceutically acceptable salt; more preferably as hydralazine hydrochloride.
  • Hydralazine hydrochloride (1-hydrazinophthalazine monohydrochloride), USP, is a white to off-white crystalline powder. It is soluble in water, slightly soluble in ethanol and practically insoluble in ether. Hydralazine hydrochloride is commercially available from, for example, Lederle Standard Products (Pearl River, NY), and Par Pharmaceuticals Inc. (Spring Valley, NY).
  • Compounds contemplated for use in the present invention are used in combination with nitric oxide and compounds that release nitric oxide or otherwise directly or indirectly deliver or transfer nitric oxide to a site of its activity, such as on a cell membrane in vivo.
  • Nitrogen monoxide can exist in three forms: NO- (nitroxyl), NO* (nitric oxide) and NO + (nitrosonium).
  • NO* is a highly reactive short-lived species that is potentially toxic to cells. This is critical because the pharmacological efficacy of NO depends upon the form in which it is delivered.
  • NO » nitric oxide radical
  • NO 4" nitrosonium
  • NO and NO- are also resistant to decomposition in the presence of many redox metals. Consequently, administration of charged NO equivalents (positive and/or negative) does not result in the generation of toxic by-products or the elimination of the active NO moiety.
  • nitric oxide encompasses uncharged nitric oxide (NO » ) and charged nitrogen monoxide species, preferably charged nitrogen monoxide species, such as nitrosonium ion (NO + ) and nitroxyl ion (NO-).
  • the reactive form of nitric oxide can be provided by gaseous nitric oxide.
  • the nitric oxide releasing, delivering or transferring compounds have the structure F-NO, wherein F is a nitric oxide releasing, delivering or transferring moiety, include any and all such compounds which provide nitric oxide to its intended site of action in a form active for its intended purpose.
  • NO adducts encompasses any nitrogen monoxide releasing, delivering or transferring compounds, including, for example, S-nitrosothiols, nitrites, nitrates, S-nitrothiols, sydnonimines, 2- hydroxy-2-nitrosohydrazines (NONOates), (E)-alkyl-2-((E)-hydroxyimino)-5-nitro-3-hexene amines or amides, nitrosoamines, furoxans as well as substrates for the endogenous enzymes which synthesize nitric oxide.
  • the "NO adducts" can be mono-nitrosylated, poly- nifrosylated, mono-nitrosated and/or poly-nitrosated or a combination thereof at a variety of naturally susceptible or artificially provided binding sites for biologically active forms of nitrogen monoxide.
  • S-nitrosothiols are compounds that include at least one -S-NO group. These compounds include S-nitroso-polypeptides (the term
  • polypeptide includes proteins and polyamino acids that do not possess an ascertained biological function, and derivatives thereof); S-nitrosylated amino acids (including natural and synthetic amino acids and their stereoisomers and racemic mixtures and derivatives thereof); S-nitrosylated sugars; S-nitrosylated, modified and unmodified, oligonucleotides (preferably of at least 5, and more preferably 5-200 nucleotides); straight or branched, saturated or unsaturated, aliphatic or aromatic, substituted or unsubstituted S-nitrosylated hydrocarbons; and S-nitroso heterocyclic compounds.
  • S-nitrosothiols and methods for preparing them are described in U.S. Patent Nos. 5,380,758 and 5,703,073; WO 97/27749;
  • S-nitroso amino acids where the nitroso group is linked to a sulfur group of a sulfur-containing amino acid or derivative thereof.
  • Such compounds include, for example, S-nitroso-N-acetylcysteine, S-nitroso- captopril, S-nitroso-N-acetylpenicillamine, S-nitroso-homocysteine, S-nitroso-cysteine, S- nitroso-glutathione and S-nitroso-cysteinyl-glycine.
  • Suitable S-nitrosylated proteins include thiol-containing proteins (where the NO group is attached to one or more sulfur groups on an amino acid or amino acid derivative thereof) from various functional classes including enzymes, such as tissue-type plasminogen activator (TPA) and cathepsin B; transport proteins, such as lipoproteins; heme proteins, such as hemoglobin and serum albumin; and biologically protective proteins, such as immunoglobulins, antibodies and cytokines.
  • TPA tissue-type plasminogen activator
  • cathepsin B transport proteins, such as lipoproteins; heme proteins, such as hemoglobin and serum albumin; and biologically protective proteins, such as immunoglobulins, antibodies and cytokines.
  • nitrosylated proteins are described in WO 93/09806, the disclosure of which is incorporated by reference herein in its entirety. Examples include polynitrosylated albumin where one or more thiol or other nucleophilic centers in the protein are modified.
  • S-nitrosothiols include:
  • R e and R f are each independently a hydrogen, an alkyl, a cycloalkoxy, a halogen, a hydroxy, an hydroxyalkyl, an alkoxyalkyl, an arylheterocyclic ring, an alkylaryl, a cycloalkylalkyl, a heterocyclicalkyl, an alkoxy, a haloalkoxy, an amino, an alkylamino, a dialkylamino, an arylamino, a diarylamino, an alkylarylamino, an alkoxyhaloalkyl, a hal
  • R e and R f are a heterocyclic ring or R e and R f when taken together with the carbon atoms to which they are attached are a heterocyclic ring, then R; can be a substituent on any disubstituted nitrogen contained within the radical wherein R; is as defined herein.
  • Nitrosothiols can be prepared by various methods of synthesis. In general, the thiol precursor is prepared first, then converted to the S-nitrosothiol derivative by nitrosation of the thiol group with NaNO under acidic conditions (pH is about 2.5) which yields the S-nitroso derivative. Acids which can be used for this purpose include aqueous sulfuric, acetic and hydrochloric acids.
  • the thiol precursor can also be nitrosylated by reaction with an organic nitrite such as tert-butyl nitrite, or a nitrosonium salt such as nitrosonium tetrafluoroborate in an inert solvent.
  • organic nitrite such as tert-butyl nitrite
  • a nitrosonium salt such as nitrosonium tetrafluoroborate in an inert solvent.
  • NO adducts for use in the present invention, where the NO adduct is a compound that donates, transfers or releases nitric oxide, include compounds comprising at least one ON-O-, ON-N- or ON-C- group.
  • the compounds that include at least one ON-O-, ON-N- or ON-C- group are preferably ON-O-, ON-N- or ON-C-polypeptides (the term
  • polypeptide includes proteins and polyamino acids that do riot possess an ascertained biological function, and derivatives thereof); ON-O, ON-N- or ON-C-amino acids (including natural and synthetic amino acids and their stereoisomers and racemic mixtures); ON-O-, ON-N- or ON-C-sugars; ON-O-, ON-N- or ON-C- modified or unmodified oligonucleotides (comprising at least 5 nucleotides, preferably 5-200 nucleotides); ON-O-, ON-N- or ON-C- straight or branched, saturated or unsaturated, aliphatic or aromatic, substituted or unsubstituted hydrocarbons; and ON-O-, ON-N- or ON-C-heterocyclic compounds.
  • NO adducts for use in the present invention include nitrates that donate, transfer or release nitric oxide, such as compounds comprising at least one O 2 N-O-, O 2 N-N-, O 2 N-S- or O N-C- group.
  • O 2 N-O-, O N-N-, O 2 N-S- or O 2 N-C- polypeptides are O 2 N-O-, O N-N-, O 2 N-S- or O 2 N-C- polypeptides (the term "polypeptide” includes proteins and also polyamino acids that do not possess an ascertained biological function, and derivatives thereof); O 2 N-O-, O 2 N-N-, O 2 N-S- or O N-C- amino acids (including natural and synthetic amino acids and their stereoisomers and racemic mixtures); O 2 N-O-, O 2 N-N-, O N-S- or O 2 N-C-sugars; O 2 N-O-, O 2 N-N-, O 2 N-S- or O 2 N-C- modified and unmodified oligonucleotides (comprising at least 5 nucleotides, preferably 5-200 nucleotides); O 2 N-O-, O 2 N-N-, O 2 N
  • Preferred examples of compounds comprising at least one O 2 N- O-, O 2 N-N-, O 2 N-S- or O 2 N-C- group include isosorbide dinitrate, mononitrate, clonitrate, erythrityl tetranitrate, mannitol hexanitrate, nitroglycerin, pentaerythritoltetranitrate, pentrinitrol and propatylnitrate, most preferred are isosorbide dinitrate and/or isosorbide mononitrate.
  • R 1 R 2 -N(O-M + )-NO Another group of NO adducts are N-oxo-N-nitrosoamines that donate, transfer or release nitric oxide and are represented by the formula: R 1 R 2 -N(O-M + )-NO, where R 1 and R 2 are each independently a polypeptide, an amino acid, a sugar, a modified or unmodified oligonucleotide, a straight or branched, saturated or unsaturated, aliphatic or aromatic, substituted or unsubstituted hydrocarbon, or a heterocyclic group, and M + is as defined herein.
  • R 1 -(S)-NO 2 Another group of NO adducts are thionitrates that donate, transfer or release nitric oxide and are represented by the formula: R 1 -(S)-NO 2 , where R 1 is a polypeptide, an amino acid, a sugar, a modified or unmodified oligonucleotide, a straight or branched, saturated or unsaturated, aliphatic or aromatic, substituted or unsubstituted hydrocarbon, or a heterocyclic group.
  • R 1 is a polypeptide or hydrocarbon with a pair or pairs of thiols that are sufficiently structurally proximate, i.e., vicinal, that the pair of thiols will be reduced to a disulfide.
  • Compounds which form disulfide species release nitroxyl ion (NO-) and uncharged nitric oxide (NO*).
  • the present invention is also directed to compounds that stimulate endogenous NO or elevate levels of endogenous endothelium-derived relaxing factor (EDRF) in vivo or are substrates for the enzyme, nitric oxide synthase.
  • Such compounds include, for example, L- arginine, L-homoarginine, and N-hydroxy-L-arginine, including their nitrosated and nitrosylated analogs (e.g., nitrosated L-arginine, nitrosylated L-arginine, nitrosated N- hydroxy-L-arginine, nitrosylated N-hydroxy-L-arginine, nitrosated L-homoarginine and nitrosylated L-homoarginine), precursors of L-arginine and/or physiologically acceptable salts thereof, including, for example, citrulline, ornithine, glutamine, lysine, polypeptides comprising at least one of these amino acids, inhibitors of the enzyme arginas
  • EDRF is a vascular relaxing factor secreted by the endothelium, and has been identified as nitric oxide (NO) or a closely related derivative thereof (Palmer et al, Nature, 327:524-526 (1987); Ignarro et al, Proc. Natl. Acad. Sci. USA, 84:9265-9269 (1987)).
  • the compound that donates, transfers or releases nitric oxide as a charged species, or elevates levels of endogenous EDRF or nitric oxide, or is a substrate for nitric oxide synthase may preferably be isosorbide dinitrate and/or isosorbide mononitrate, more preferably isosorbide dinitrate.
  • Diluted isosorbide dinitrate (1,4,3,6- dianhydro-D-glucitol-2,5-dinitrate), USP is a white to off-white powder that has a melting point of 70 °C and has an optical rotation of +135° (3 mg/mL, ethanol).
  • Isosorbide dinitrate is commercially available, for example, under the trade names DILATRATE®-SR (Schwarz Pharma, Milwaukee, WI); ISORDIL® and ISORDILR TITRADOSE® (Wyeth Laboratories Inc., Philadelphia, PA); and SORBITRATE® (Zeneca
  • Isosorbide mononitrate is commercially available, for example, under the trade names IMDUR® (A. B. Astra, Sweden); MONOKET® (Schwarz Pharma, Milwaukee, WI); and ISMO® (Wyeth-Ayerst company, Philadelphia, PA).
  • Nonrosated compound refers to any compound that has been substituted with a nitro group, i.e., -NO group.
  • the nitrosated angiotensin-converting enzyme inhibitors, nitrosated beta-adrenergic blockers, nitrosated calcium channel blockers, nitrosated endothelin antagonists, nitrosated angiotensin II receptor antagonists and nitrosated renin inhibitors of the present invention include any known angiotensin-converting enzyme inhibitors, beta- adrenergic blockers, calcium channel blockers, endothelin antagonists, angiotensin II receptor antagonists and renin inhibitors that have been nitrosated through one or more sites such as oxygen (hydroxyl condensation), sulfur (sulfhydryl condensation), and/or nitrogen.
  • nitrosated compounds of the present invention can be prepared using conventional methods known to one skilled in the art. For example, known methods for nitrosating compounds are described in U.S. Patent Nos. 5,380,758 and 5,703,073; WO 97/27749; WO 98/19672; and Oae et al, Org. Prep. Proc. Int., i5(3):165-198 (1983), the disclosures of each of which are incorporated by reference herein in their entirety.
  • WO 98/21193 discloses nitrosated ACE inhibitors and nitrosated beta-adrenergic blockers, the disclosure of which is incorporated by reference herein in its entirety.
  • WO 99/00361 discloses nitrate salts of ACE inhibitors, the disclosure of which is incorporated by reference herein in its entirety.
  • Suitable angiotensin-converting enzyme inhibitors include, but are not limited to, alacepril, benazepril, captopril, ceronapril, cilazapril, delapril, duinapril, enalapril, enalaprilat, fosinopril, imidapril, lisinopril, losartan, moveltipril, naphthopidil, pentopril, perindopril, quinapril, ramipril, rentipril, spirapril, temocapril, trandolapril, urapidil, zofenopril, and the like.
  • Suitable angiotensin-converting enzyme inhibitors are described more fully in the literature, such as in Goodman and Gilman, The Pharmacological Basis of Therapeutics (9th Edition), McGraw-Hill, 1995; and the Merck Index on CD-ROM, Twelfth Edition, Version 12:1, 1996; and on STN Express, file phar and file registry.
  • Suitable beta-adrenergic blockers include, but are not limited to, acebutolol, alprenolol, amosulalol, arotinolol, atenolol, betaxolol, bethanidine, bevantolol, bisoprolol, bopindolol, bucumolol, bufetolol, bufuralol, bunitrolol, bupranolol, butafilolol, carazolol, carteolol, carvedilol, celiprolol, cetamolol, dilevalol, epanolol, esmolol, indenolol, labetalol, mepindolol, metipranolol, metoprolol, moprolol, nadolol, nadoxolol, nebivolol, nif
  • Suitable beta-adrenergic blockers are described more fully in the literature, such as in Goodman and Gilman, The Pharmacological Basis of Therapeutics (9th Edition), McGraw-Hill, 1995; and the Merck Index on CD-ROM, Twelfth Edition, Version 12:1, 1996; and on STN Express, file phar and file registry.
  • Suitable calcium channel blockers include, but are not limited to, amlodipine, aranidipine, barnidipine, benidipine, cilnidipine, clentiazem, diltiazen, efonidipine, fantofarone, felodipine, isradipine, lacidipine, lercanidipine, manidipine, mibefradil, nicardipine, nifedipine, nilvadipine, nisoldipine, nitrendipine, semotiadil, verastrial, and the like.
  • Suitable calcium channel blockers are described more fully in the literature, such as in Goodman and Gilman, The Pharmacological Basis of Therapeutics (9th Edition), McGraw- Hill, 1995; and the Merck Index on CD-ROM, Twelfth Edition, Version 12:1, 1996; and on STN Express, file phar and file registry.
  • Suitable endothelin antagonists include, but are not limited to, bosentan, sulfonamide endothelin antagonists, BQ-123, SQ 28608, and the like. Suitable endothelin antagonists are described more fully in the literature, such as in Goodman and Gilman, The Pharmacological Basis of Therapeutics (9th Edition), McGraw-Hill, 1995; and the Merck Index on CD-ROM, Twelfth Edition, Version 12:1, 1996; and on STN Express, file phar and file registry.
  • Suitable angiotensin II receptor antagonists include, but are not limited to, ciclosidomine, eprosartan, furosemide, irbesartan, losartan, saralasin, valsartan, and the like. Suitable angiotensin II receptor antagonists are described more fully in the literature, such as in Goodman and Gilman, The Pharmacological Basis of Therapeutics (9th Edition), McGraw-Hill, 1995; and the Merck Index on CD-ROM, Twelfth Edition, Version 12:1,
  • Suitable renin inhibitors include, but are not limited to, enalkrein, RO 42-5892, A 65317, CP 80794, ES 1005, ES 8891, SQ 34017, and the like). Suitable renin inhibitors are described more fully in the literature, such as in Goodman and Gilman, The Pharmacological Basis of Therapeutics (9th Edition), McGraw-Hill, 1995; and the Merck Index on CD-ROM,
  • the antioxidant and at least one compound that donates, transfers or releases nitric oxide, elevates endogenous levels of endothelium-derived relaxing factor, stimulates endogenous synthesis of nitric oxide or is a substrate for nitric oxide synthase, and, optionally, at least one nitrosated compound, and/or compound used to treat cardiovascular diseases can be administered as separate components or as components of the same composition.
  • the antioxidant and at least one nitric oxide donor are administered as separate components for the treatment of vascular diseases characterized by nitric oxide insufficiency or Raynaud's syndrome, they are preferably administered to the patient at about the same time.
  • “About the same time” means that within about tliirty minutes of administering one compound (e.g., antioxidant or nitric oxide donor) to the patient, the other compound (e.g., nitric oxide donor or antioxidant) is administered to the patient. “About the same time” also includes simultaneous administration of the compounds.
  • one compound e.g., antioxidant or nitric oxide donor
  • the other compound e.g., nitric oxide donor or antioxidant
  • the patients can receive digitalis such as digoxin and/or diuretics and/or at least one nitrosated angiotensin-converting enzyme inhibitor, nitrosated beta-adrenergic blocker, nitrosated calcium channel blocker, nitrosated endothelin antagonist, angiotensin II receptor antagonist, nitrosated renin inhibitor, and/or at least one compound used to treat cardiovascular diseases.
  • digitalis such as digoxin and/or diuretics and/or at least one nitrosated angiotensin-converting enzyme inhibitor, nitrosated beta-adrenergic blocker, nitrosated calcium channel blocker, nitrosated endothelin antagonist, angiotensin II receptor antagonist, nitrosated renin inhibitor, and/or at least one compound used to treat cardiovascular diseases.
  • the digoxin is preferably administered orally to achieve a steady state blood serum concentration of at least about 0.7 nanograms per ml to about 2.0 nanograms per ml.
  • the diuretic is administered, preferably orally, to manage edema. Suitable diuretics include, but are not limited to, thiazides (such as, for example, chlorothiazide, hydrochlorothiazide); ethacrynic acid, furosemide, spironalactone, triamterene or mixtures thereof.
  • potassium may also be administered to the patient in order to optimize the fluid balance while avoiding hypokalemic alkalosis.
  • the administration of potassium can be potassium chloride or by the daily ingestion of foods with high potassium content such as, for example, bananas, orange juice, and the like.
  • the method of administration of these compounds is described in further detail in U.S. Patent No. 4,868,179, the disclosure of which is incorporated by reference herein in its entirety.
  • compositions of the invention can be administered by any available and effective delivery system including, but not limited to, orally, bucally, parenterally, by inhalation spray, topically (including transdermally), or rectally in dosage unit formulations containing conventional nontoxic pharmaceutically acceptable carriers, adjuvants, and vehicles as desired.
  • the preferred methods of administration are by oral administration or topical application (transdermal application).
  • Topical administration can also involve the use of transdermal administration such as transdermal patches or iontophoresis devices.
  • Dosage forms for topical administration of the compounds and compositions can include creams, sprays, lotions, gels, ointments, and the like.
  • the compositions of the invention can be mixed to form white, smooth, homogeneous, opaque cream or lotion with, for example, benzyl alcohol 1% or 2% (wt/wt) as a preservative, emulsifying wax, glycerin, isopropyl palmitate, lactic acid, purified water and sorbitol solution.
  • the compositions can contain polyethylene glycol
  • ointments can be mixed to form ointments with, for example, benzyl alcohol 2% (wt/wt) as preservative, white petrolatum, emulsifying wax, and tenox II (butylated hydroxyanisole, propyl gallate, citric acid, propylene glycol).
  • Woven pads or rolls of bandaging material e.g., gauze, can be impregnated with the compositions in solution, lotion, cream, ointment or other such form can also be used for topical, application.
  • compositions can also be applied topically using a transdermal system, such as one of an acrylic-based polymer adhesive with a resinous crosslinking agent impregnated with the composition and laminated to an impermeable backing.
  • a transdermal system such as one of an acrylic-based polymer adhesive with a resinous crosslinking agent impregnated with the composition and laminated to an impermeable backing.
  • the compositions of the present invention are administered as a transdermal patch, more particularly as a sustained-release transdermal patch.
  • the transdermal patches of the present invention can include any conventional form such as, for example, adhesive matrix, polymeric matrix, reservoir patch, matrix or monolithic-type laminated structure, and are generally comprised of one or more backing layers, adhesives, penetration enhancers, an optional rate controlling membrane and a release liner which is removed to expose the adhesives prior to application.
  • Polymeric matrix patches also comprise a polymeric-matrix forming material.
  • Suitable transdermal patches are described in more detail in, for example, U. S. Patent Nos. 5,262,165, 5,948,433, 6,010,715 and 6,071,531, the disclosure of each of which are incorporated herein in their entirety.
  • Solid dosage forms for oral administration can include capsules, sustained-release capsules, tablets, sustained release tablets, chewable tablets, sublingual tablets, effervescent tablets, pills, powders, granules and gels.
  • the active compounds can be admixed with at least one inert diluent, such as sucrose, lactose or starch.
  • Such dosage forms can also comprise, as is normal practice, additional substances other than inert diluents, e.g., lubricating agents, such as magnesium stearate.
  • the dosage forms can also comprise buffering agents.
  • Soft gelatin capsules can be prepared to contain a mixture of the active compound or composition and vegetable oil.
  • Hard gelatin capsules can contain granules of the active compound in combination with a solid, pulverulent carrier, such as lactose, saccharose, sorbitol, mannitol, potato starch, corn starch, amylopectin, or cellulose derivatives of gelatin. Tablets and pills can be prepared with enteric coatings.
  • a solid, pulverulent carrier such as lactose, saccharose, sorbitol, mannitol, potato starch, corn starch, amylopectin, or cellulose derivatives of gelatin.
  • Tablets and pills can be prepared with enteric coatings.
  • Liquid dosage forms for oral administration can include pharmaceutically acceptable emulsions, solutions, suspensions, syrups, and elixirs containing inert diluents commonly used in the art, such as water.
  • Such compositions can also comprise adjuvants, such as wetting agents, emulsifying and suspending agents, and sweetening, flavoring, and perfuming agents.
  • Suppositories for rectal administration of the compounds or compositions can be prepared by mixing the drug with a suitable nonirritating excipient such as cocoa butter and polyethylene glycols which are solid at room temperature but liquid at rectal temperature, such that they will melt in the rectum and release the drug.
  • a suitable nonirritating excipient such as cocoa butter and polyethylene glycols which are solid at room temperature but liquid at rectal temperature, such that they will melt in the rectum and release the drug.
  • parenteral includes subcutaneous injections, intravenous, intramuscular, intrasternal injection, or infusion techniques.
  • injectable preparations for example, sterile injectable aqueous or oleaginous suspensions can be formulated according to the known art using suitable dispersing agents, wetting agents and/or suspending agents.
  • the sterile injectable preparation can also be a sterile injectable solution or suspension in a nontoxic parenterally acceptable diluent or solvent, for example, as a solution in 1,3-butanediol.
  • acceptable vehicles and solvents that can be used are water, Ringer's solution, and isotonic sodium chloride solution.
  • Sterile fixed oils are also conventionally used as a solvent or suspending medium.
  • the compounds and compositions of the invention will typically be administered in a pharmaceutical composition comprising one or more carriers or excipients.
  • suitable carriers include, for example, water, silicone, waxes, petroleum jelly, polyethylene glycols, propylene glycols, liposomes, sugars, salt solutions, alcohol, vegetable oils, gelatins, lactose, amylose, magnesium stearate, talc, surfactants, silicic acids, viscous paraffins, perfume oils, fatty acid monoglycerides and diglycerides, petroethral fatty acid esters, hydroxymethylcelluloses, polyvinyl-pyrrolidones, and the like.
  • the pharmaceutical preparations can be sterilized and if desired, mixed with auxiliary agents, e.g., lubricants, preservatives, stabilizers, wetting agents, emulsifiers, salts for influencing osmotic pressure, buffers, colorings, flavorings and/or aromatic substances and the like which do not deleteriously react with the active compounds.
  • auxiliary agents e.g., lubricants, preservatives, stabilizers, wetting agents, emulsifiers, salts for influencing osmotic pressure, buffers, colorings, flavorings and/or aromatic substances and the like which do not deleteriously react with the active compounds.
  • compositions can also include one or more permeation enhancers including, for example, dimethylsulfoxide (DMSO), dimethyl formamide (DMF), N,N-dimethylacetamide (DMA), decylmethylsulfoxide (C10MSO), polyethylene glycol monolaurate (PEGML), glyceral monolaurate, lecithin, 1 -substituted azacycloheptan-2-ones, particularly 1-N- dodecylcyclazacycoheptan-2-ones (available under the trademark AZONE from Nelson Research & Development Co., Irvine CA), alcohols and the like.
  • permeation enhancers including, for example, dimethylsulfoxide (DMSO), dimethyl formamide (DMF), N,N-dimethylacetamide (DMA), decylmethylsulfoxide (C10MSO), polyethylene glycol monolaurate (PEGML), glyceral monolaurate, lecithin, 1 -substi
  • suitable vehicles consist of solutions, preferably oily or aqueous solutions, as well as suspensions, emulsions, or implants.
  • Aqueous suspensions can contain substances which increase the viscosity of the suspension and include, for example, sodium carboxymethyl cellulose, sorbitol and/or dextran.
  • the suspension can contain stabilizers.
  • the compositions if desired, can also contain minor amounts of wetting agents, emulsifying agents and/or pH buffering agents.
  • the composition can also contain minor amounts of wetting agents, emulsifying agents and/or pH buffering agents.
  • the composition can be a liquid solution, suspension, emulsion, tablet, pill, capsule, sustained release formulation, or powder.
  • the composition can be formulated as a suppository, with traditional binders and carriers such as triglycerides.
  • Oral formulations can include standard carriers such as pharmaceutical grades of mannitol, lactose, starch, magnesium stearate, sodium saccharine, cellulose, magnesium carbonate, and the like.
  • Various delivery systems are known and can be used to administer the compounds or compositions of the present invention, including, for example, encapsulation in liposomes, microbubbles, emulsions, microparticles, microcapsules, nanoparticles, and the like.
  • the required dosage can be administered as a single unit or in a sustained release form.
  • bioavailabilty of the compositions can be enhanced by micronization of the formulations using conventional techniques such as grinding, milling, spray drying and the like in the presence of suitable excipients or agents such as phospholipids or surfactants.
  • Sustained release dosage forms of the invention may comprise microparticles and/or nanoparticles having a therapeutic agent dispersed therein or may comprise the therapeutic agent in pure, preferably crystalline, solid form.
  • microparticle dosage forms comprising pure, preferably crystalline, therapeutic agents are preferred.
  • the therapeutic dosage forms of this aspect of the present invention may be of any configuration suitable for sustained release.
  • Nanoparticle sustained release therapeutic dosage forms are preferably biodegradable and, optionally, bind to the vascular smooth muscle cells and enter those cells, primarily by endocytosis.
  • the biodegradation of the nanoparticles occurs over time (e.g., 30 to 120 days; or 10 to 21 days) in prelysosomic vesicles and lysosomes.
  • Preferred larger microparticle therapeutic dosage forms of the present invention release the therapeutic agents for subsequent target cell uptake with only a few of the smaller microparticles entering the cell by phagocytosis.
  • a target cell assimilates and metabolizes a dosage form of the present invention depends on the morphology, physiology and metabolic processes of those cells.
  • the size of the particle sustained release therapeutic dosage forms is also important with respect to the mode of cellular assimilation. For example, the smaller nanoparticles can flow with the interstitial fluid between cells and penetrate the infused tissue. The larger microparticles tend to be more easily trapped interstitially in the irifused primary tissue, and thus are useful to deliver anti- proliferative therapeutic agents.
  • biodegradable microparticles or nanoparticles comprise biodegradable microparticles or nanoparticles. More particularly, biodegradable microparticles or nanoparticles are formed of a polymer containing matrix that biodegrades by random, nonenzymatic, hydrolytic scissioning to release therapeutic agent, thereby forming pores within the particulate structure.
  • the compositions of the present invention are orally administered as a sustained release tablet or a sustained release capsule.
  • the sustained release formulations can comprise a therapeutically effective amount of at least one antioxidant or a pharmaceutically acceptable salt thereof, and at least one nitric oxide donor, or the sustained release formulations can comprise a therapeutically effective amount of at least one antioxidant or a pharmaceutically acceptable salt thereof, and at least one nitric oxide donor, and, optionally at least one nitrosated compound.
  • the sustain release formulation comprises hydralazine hydrochloride and isosorbide dinitrate and/or isosorbide mononitrate.
  • the dosage required to provide an effective amount of the compounds and compositions will vary depending on the age, health, physical condition, sex, diet, weight, extent of the dysfunction of the recipient, frequency of treatment and the nature and scope of the dysfunction or disease, medical condition of the patient, the route of administration, pharmacological considerations such as the activity, efficacy, pharmacokinetic and toxicology profiles of the particular compound used, whether a drug delivery system is used, and whether the compound is administered as part of a drug combination.
  • compositions of the present invention can be formulated as pharmaceutically acceptable salts.
  • Pharmaceutically acceptable salts include, for example, alkali metal salts and addition salts of free acids or free bases.
  • the nature of the salt is not critical, provided that it is pharmaceutically-acceptable.
  • Suitable pharmaceuticaliy- acceptable acid addition salts may be prepared from an inorganic acid or from an organic acid. Examples of such inorganic acids include, but are not limited to, hydrochloric, hydrobromic, hydroiodic, nitric, carbonic, sulfuric and phosphoric acid and the like.
  • organic acids include, but are not limited to, aliphatic, cycloaliphatic, aromatic, heterocyclic, carboxylic and sulfonic classes of organic acids, such as, for example, formic, acetic, propionic, succinic, glycolic, gluconic, lactic, malic, tartaric, citric, ascorbic, glucuronic, maleic, fumaric, pyruvic, aspartic, glutamic, benzoic, anthranilic, mesylic, salicylic, p-hydroxybenzoic, phenylacetic, mandelic, embonic (pamoic), methanesulfonic, ethanesulfonic, benzenesulfonic, pantothenic, toluenesulfonic, 2-hydroxyethanesuifonic, sulfanilic, stearic, algenic, ⁇ -hydroxybutyric, cyclohexylaminosulfonic, galactaric and gal
  • Suitable pharmaceutically-acceptable base addition salts include, but are not limited to, metallic salts made from aluminum, calcium, lithium, magnesium, potassium, sodium and zinc or organic salts made from primary, secondary and tertiary amines, cyclic amines, N,N'-dibenzylethylenediamine, chloroprocaine, choline, diethanolamine, ethylenediamine, meglumine (N-methylglucamine) and procaine and the like. All of these salts may be prepared by conventional means from the corresponding compound by reacting, for example, the appropriate acid or base with the compound.
  • the hydralazine hydrochloride can be administered in an amount of about 30 milligrams per day to about 400 milligrams per day; the isosorbide dinitrate can be administered in an amount of about 5 milligrams per day to about 200 milligrams per day; and the isosorbide mononitrate can be administered in an amount of about 5 milligrams per day to about 120 milligrams per day.
  • the hydralazine hydrochloride can be administered in an amount of about 50 milligrams per day to about 300 milligrams per day; the isosorbide dinitrate can be administered in an amount of about 20 milligrams per day to about 160 milligrams per day; and the isosorbide mononitrate can be administered in an amount of about 15 milligrams per day to about 100 milligrams per day.
  • the hydralazine hydrochloride can be administered in an amount of about 75 milligrams one to four times per day; the isosorbide dinitrate can be administered in an amount of about 40 milligrams one to four time per day; and the isosorbide mononitrate can be administered in an amount of about 20 milligrams one to four times per day.
  • the particular amounts of hydralazine and/or isosorbide dinitrate or isosorbide mononitrate can be administered as a single dose once a day; or in multiple doses several times throughout the day; or as a sustained-release oral formulation; or as a transdermal sustained release patch.
  • nitric oxide donor in the composition will be dependent on the specific nitric oxide donor compound and the mode of administration.
  • L-arginine when L-arginine is the orally administered nitric oxide donor, it can be administered in an amount of about 3 grams to about 15 grams to provide a plasma level in the range of about 0.2 mM to about 30 mM.
  • kits comprising one or more containers filled with one or more of the ingredients of the pharmaceutical compounds and/or compositions.
  • Such kits can also mclude, for example, other compounds and/or compositions
  • a device(s) for administering the compounds and/or compositions e.g., diuretics, digoxin, nitrosated compounds, compounds used to treat cardiovascular diseases and the like
  • a device(s) for administering the compounds and/or compositions e.g., diuretics, digoxin, nitrosated compounds, compounds used to treat cardiovascular diseases and the like
  • written instructions in a form prescribed by a governmental agency regulating the manufacture, use or sale of pharmaceuticals or biological products, which instructions can also reflects approval by the agency of manufacture, use or sale for human administration.
  • Example 1 As described herein, NO deficiency is a central pathophysiologic mechanism for the black vascular diathesis. To examine this issue in forearm microvessels, the vasodilator responses to intra-arterial infusions of methacholine, sodium nitroprusside, and verapamil were examined using venous occlusion plethysmography in 36 white and black hypertensive patients. These patients had no other coronary factors, such as smoking, diabetes mellitus, or hypercholesterolemia, and the two groups were matched in terms of age, gender, lipid levels, blood pressure, and anti-hypertensive treatment.
  • vessel size and systolic blood pressure were the only independent predictors of flow-mediated dilation in this sizable group of patients.
  • both black and white patients with hypertension demonstrate a significant impairment of NO action in conduit arteries (Gokce et al, Circulation, 99(25) 3234-3240 (1999)).
EP01932915A 2000-10-27 2001-05-02 Verfahren zur behandlung von gefässerkrankungen, die durch stickoxidmangel gekennzeichnet sind Ceased EP1337283A4 (de)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
WOPCT/US00/29582 2000-10-27
US09/697,317 US6635273B1 (en) 1999-10-29 2000-10-27 Methods of treating vascular diseases characterized by nitric oxide insufficiency
PCT/US2000/029528 WO2001035961A1 (en) 1999-10-29 2000-10-27 Methods of treating vascular diseases characterized by nitric oxide insufficiency
US697317 2000-10-27
PCT/US2001/014245 WO2002034303A1 (en) 2000-10-27 2001-05-02 Methods of treating vascular diseases characterized by nitric oxide insufficiency

Publications (2)

Publication Number Publication Date
EP1337283A1 true EP1337283A1 (de) 2003-08-27
EP1337283A4 EP1337283A4 (de) 2005-05-18

Family

ID=27663595

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01932915A Ceased EP1337283A4 (de) 2000-10-27 2001-05-02 Verfahren zur behandlung von gefässerkrankungen, die durch stickoxidmangel gekennzeichnet sind

Country Status (5)

Country Link
EP (1) EP1337283A4 (de)
JP (1) JP2004521083A (de)
AU (3) AU2001259399B2 (de)
CA (2) CA2421885A1 (de)
WO (1) WO2002034303A1 (de)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6465463B1 (en) 1999-09-08 2002-10-15 Nitromed, Inc. Methods of treating and preventing congestive heart failure with hydralazine compounds and isosorbide dinitrate or isosorbide mononitrate
FR2832634A1 (fr) * 2001-11-29 2003-05-30 Univ Pasteur Utilisation des isomeres l de derives aminoacides de l'hydroxyguanidine pour la production de no, compositions pharmaceutiques les contenant et utilisations pharmaceutiques
US20060166894A1 (en) * 2002-11-29 2006-07-27 Yissum Research Development Company Of The Hebrew University Of Jerusalem Ace-inhibitors having antioxidant and no-donor activity
US7169805B2 (en) * 2003-05-28 2007-01-30 Nicox S.A. Captopril derivatives
ES2294543T3 (es) 2003-07-09 2008-04-01 The Government Of The United States Of America, As Represented By The Secretary, Department Of Heal Uso de sales de nitrilo para el tratamiento de afecciones cardiovasculares.
ES2258365B1 (es) * 2003-10-03 2007-12-01 Lacer, S.A. Derivados de disulfuro, sulfuro, sulfoxido y sulfona de azucares ciclicos y sus usos.
GB0325291D0 (en) * 2003-10-29 2003-12-03 Pfizer Ltd Novel combination
ITMI20032528A1 (it) 2003-12-19 2005-06-20 Francesco Santangelo Uso di cistina o di cisteina per la prevenzione e il
EP1746882A4 (de) * 2004-03-31 2010-08-25 Nitromed Inc Verfahren zur behandlung von blutkrankheiten mit stickoxid-donorverbindungen
TW200612896A (en) * 2004-09-21 2006-05-01 Sankyo Co Pharmaceutical compositions containing with HMG-CoA reductase inhibitor and glutathione
JP4949661B2 (ja) * 2004-09-21 2012-06-13 第一三共株式会社 HMG−CoAリダクターゼ阻害剤とグルタチオンを含有する医薬組成物
WO2006110601A2 (en) * 2005-04-07 2006-10-19 Nitromed, Inc. The genetic risk assessment in heart failure: impact of the genetic variation of nos3
US20070098796A1 (en) 2005-10-31 2007-05-03 Rekhi Gurvinder S Controlled release compositions comprising a combination of isosorbide dinitrate and hydralazine hydrochrloride
US20070098791A1 (en) * 2005-10-31 2007-05-03 Rekhi Gurvinder S Controlled release compositions comprising a combination of isosorbide dinitrate and hydralazine hydrochloride
WO2007106494A2 (en) * 2006-03-13 2007-09-20 Encysive Pharmaceuticals, Inc. Methods and compositions for treatment of diastolic heart failure
US20090306081A1 (en) * 2006-05-16 2009-12-10 Letts L Gordon Solid Dosage Formulations of Hydralazine Compounds and Nitric Oxide Donor Compounds
US20080138326A1 (en) 2006-12-06 2008-06-12 Kaneka Corporation Method for cancer treatment, carcinogenesis suppression or mitigation of adverse reactions of anticancer agents
ES2761224T3 (es) * 2012-02-15 2020-05-19 Kyowa Hakko Bio Co Ltd Agente para prevenir o mejorar la disfunción vascular endotelial
CA2888791C (en) * 2012-10-30 2021-07-27 Kyowa Hakko Bio Co., Ltd. Use of a combination of citrulline and glutathione in the treatment of brain damage and cognitive decline
US20160008394A1 (en) 2013-02-28 2016-01-14 Aires Pharmaceuticals, Inc. Inorganic nitrite to improve cardiopulmonary hemodynamics
CN104366475B (zh) * 2014-11-10 2016-01-20 罗会明 一种增强型保健品
WO2023244805A1 (en) * 2022-06-16 2023-12-21 Georgia Tech Research Corporation Anti-vwf therapeutic for preventing arterial thrombi

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0327263A1 (de) * 1988-01-29 1989-08-09 PROCTOR, Peter H. Haarwachstumanregung mit Nitroxyd und anderen Radikalen
DE4031881A1 (de) * 1990-10-08 1992-04-09 Sanol Arznei Schwarz Gmbh Loesungsmittelfreie, oral zu verabreichende pharmazeutische zubereitung mit verzoegerter wirkstoffreisetzung und verfahren zu deren herstellung
WO1998021193A1 (en) * 1996-11-14 1998-05-22 Nicox S.A. Antithrombotic organic nitrates
WO1999008661A1 (en) * 1997-08-15 1999-02-25 Fuisz Technologies Ltd. Controlled release dosage forms containing water soluble drugs
US5891459A (en) * 1993-06-11 1999-04-06 The Board Of Trustees Of The Leland Stanford Junior University Enhancement of vascular function by modulation of endogenous nitric oxide production or activity
WO2001035961A1 (en) * 1999-10-29 2001-05-25 Nitromed, Inc. Methods of treating vascular diseases characterized by nitric oxide insufficiency

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4584315A (en) * 1981-11-16 1986-04-22 The Upjohn Company Method of treating ischemic states
US4868179A (en) * 1987-04-22 1989-09-19 Cohn Jay N Method of reducing mortality associated with congestive heart failure using hydralazine and isosorbide dinitrate
CA2139930A1 (en) * 1992-07-10 1994-01-20 Alan Martin Birch Dioxycyclobutene derivatives as angiotensin ii antagonists
US5645839A (en) * 1995-06-07 1997-07-08 Trustees Of Boston University Combined use of angiotensin inhibitors and nitric oxide stimulators to treat fibrosis
JP4136029B2 (ja) * 1997-05-12 2008-08-20 帝國製薬株式会社 硝酸イソソルビド含有貼付剤

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0327263A1 (de) * 1988-01-29 1989-08-09 PROCTOR, Peter H. Haarwachstumanregung mit Nitroxyd und anderen Radikalen
DE4031881A1 (de) * 1990-10-08 1992-04-09 Sanol Arznei Schwarz Gmbh Loesungsmittelfreie, oral zu verabreichende pharmazeutische zubereitung mit verzoegerter wirkstoffreisetzung und verfahren zu deren herstellung
US5891459A (en) * 1993-06-11 1999-04-06 The Board Of Trustees Of The Leland Stanford Junior University Enhancement of vascular function by modulation of endogenous nitric oxide production or activity
WO1998021193A1 (en) * 1996-11-14 1998-05-22 Nicox S.A. Antithrombotic organic nitrates
WO1999008661A1 (en) * 1997-08-15 1999-02-25 Fuisz Technologies Ltd. Controlled release dosage forms containing water soluble drugs
WO2001035961A1 (en) * 1999-10-29 2001-05-25 Nitromed, Inc. Methods of treating vascular diseases characterized by nitric oxide insufficiency

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
"Time release technology", Wikipedia , 13 July 2011 (2011-07-13), Retrieved from the Internet: URL:http://en.wikipedia.org/wiki/Sustained_release [retrieved on 2011-07-13] *
A.T.TUCKER ET ALL.: "Effect of nitric-oxide-generating system on microcirculatory blood flow in skin of patients with severe Raynaud's syndrome a randomised trial" THE LANCET, vol. 354, 13 November 1999 (1999-11-13), pages 1670-1675, XP004262867 *
FARIVAR M ET AL: "FACTORIAL DESIGN-BASED OPTIMIZATION OF THE FORMULATION OF ISOSORBIDE-5-MONONITRATE MICROCAPSULES", JOURNAL OF MICROENCAPSULATION, TAYLOR AND FRANCIS, BASINGSTOKE, GB, vol. 10, no. 3, 1 July 1993 (1993-07-01), pages 309-317, XP000338906, ISSN: 0265-2048 *
K.H. Bauer, K.-H. Frömming, C. Führer: "Pharmazeutische Technologie", 1 January 1997 (1997-01-01) pages 354-354, *
ONER L ET AL: "Formulation and release of dihydralazine sulphate from tabletted microcapsules.", JOURNAL OF MICROENCAPSULATION 1984 APR-JUN LNKD- PUBMED:6336521, vol. 1, no. 2, April 1984 (1984-04), pages 123-130, ISSN: 0265-2048 *
See also references of WO0234303A1 *

Also Published As

Publication number Publication date
AU5939901A (en) 2002-05-06
CA2421885A1 (en) 2002-05-02
EP1337283A4 (de) 2005-05-18
CA2678256A1 (en) 2002-05-02
AU2006236103A1 (en) 2006-12-07
JP2004521083A (ja) 2004-07-15
WO2002034303A1 (en) 2002-05-02
AU2001259399B2 (en) 2006-08-17
AU2006236103B2 (en) 2009-04-02

Similar Documents

Publication Publication Date Title
US7235237B2 (en) Methods of treating vascular diseases characterized by nitric oxide insufficiency
US7537785B2 (en) Composition for treating vascular diseases characterized by nitric oxide insufficiency
AU2006236103B2 (en) Methods of treating vascular diseases characterized by nitric oxide insufficiency
EP1406608B1 (de) Nitrosiertes und nitrosyliertes nebivolol und seine metaboliten, zusammensetzungen und anwendungsverfahren
AU780261B2 (en) Methods of treating vascular diseases characterized by nitric oxide insufficiency
US20100068267A1 (en) Compositions for treating vascular diseases characterized by nitric oxide insufficiency
AU2001259399A1 (en) Methods of treating vascular diseases characterized by nitric oxide insufficiency
JP2004528337A5 (de)
ES2400004T3 (es) Composición farmacéutica para el tratamiento de las complicaciones diabéticas
JP2008535858A (ja) 心不全における遺伝リスク、すなわちnos3の遺伝子変異の影響の評価方法
US20090192128A1 (en) Genetic risk assessment in heart failure: impact of genetic variation of beta 1 adrenergic receptor gly389arg polymorphism
JP2005501867A (ja) 新規アスコルビン酸化合物、その合成方法及びその使用方法
AU2007238949A1 (en) The genetic risk assessment in heart failure: impact of the genetic variation of G-protein beta 3 subunit polymorphism
AU2008201838B2 (en) Nitrosated and nitrosylated nebivolol and its metabolites, compositions and methods of use
AU2006299378A1 (en) The genetic risk assessment in heart failure: impact of genetic variation of aldosterone synthase promoter polymorphism
AU2008200518A1 (en) Treatment of restenosis

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20030527

AK Designated contracting states

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

A4 Supplementary search report drawn up and despatched

Effective date: 20050405

RIC1 Information provided on ipc code assigned before grant

Ipc: 7A 61K 31/12 A

17Q First examination report despatched

Effective date: 20060502

REG Reference to a national code

Ref country code: DE

Ref legal event code: R003

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED

18R Application refused

Effective date: 20130124