EP1332290B1 - Soupape pilotée de coupure de pression et arrangement de valve pilote - Google Patents

Soupape pilotée de coupure de pression et arrangement de valve pilote Download PDF

Info

Publication number
EP1332290B1
EP1332290B1 EP01992837A EP01992837A EP1332290B1 EP 1332290 B1 EP1332290 B1 EP 1332290B1 EP 01992837 A EP01992837 A EP 01992837A EP 01992837 A EP01992837 A EP 01992837A EP 1332290 B1 EP1332290 B1 EP 1332290B1
Authority
EP
European Patent Office
Prior art keywords
pilot
piston
pressure
fact
pilot piston
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP01992837A
Other languages
German (de)
English (en)
Other versions
EP1332290A2 (fr
Inventor
Günter KRENZER
Karl Josef Meyer
Peter Lauer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bosch Rexroth AG
Original Assignee
Bosch Rexroth AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bosch Rexroth AG filed Critical Bosch Rexroth AG
Publication of EP1332290A2 publication Critical patent/EP1332290A2/fr
Application granted granted Critical
Publication of EP1332290B1 publication Critical patent/EP1332290B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B1/00Installations or systems with accumulators; Supply reservoir or sump assemblies
    • F15B1/02Installations or systems with accumulators
    • F15B1/027Installations or systems with accumulators having accumulator charging devices
    • F15B1/0275Installations or systems with accumulators having accumulator charging devices with two or more pilot valves, e.g. for independent setting of the cut-in and cut-out pressures
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/2496Self-proportioning or correlating systems
    • Y10T137/2559Self-controlled branched flow systems
    • Y10T137/2574Bypass or relief controlled by main line fluid condition
    • Y10T137/2605Pressure responsive
    • Y10T137/2622Bypass or relief valve responsive to pressure downstream of outlet valve
    • Y10T137/2625Pilot valve
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/2496Self-proportioning or correlating systems
    • Y10T137/2559Self-controlled branched flow systems
    • Y10T137/2574Bypass or relief controlled by main line fluid condition
    • Y10T137/2605Pressure responsive
    • Y10T137/263Plural sensors for single bypass or relief valve
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/2496Self-proportioning or correlating systems
    • Y10T137/2559Self-controlled branched flow systems
    • Y10T137/2574Bypass or relief controlled by main line fluid condition
    • Y10T137/2605Pressure responsive
    • Y10T137/2635Pilot valve operated
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/7722Line condition change responsive valves
    • Y10T137/7758Pilot or servo controlled
    • Y10T137/7762Fluid pressure type
    • Y10T137/7764Choked or throttled pressure type
    • Y10T137/7766Choked passage through main valve head
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/7722Line condition change responsive valves
    • Y10T137/7758Pilot or servo controlled
    • Y10T137/7762Fluid pressure type
    • Y10T137/7769Single acting fluid servo
    • Y10T137/777Spring biased

Definitions

  • the invention relates to a pilot-operated pressure shut-off valve, which, when in a hydraulic system with a hydraulic accumulator, an upper system limit pressure is reached, connects a hydraulic system feeding inlet with a drain to a tank and separates this connection, if by removing hydraulic fluid from the hydraulic accumulator system pressure a lower system pressure limit has fallen and according to the preamble of claim 1, a main control piston and the control of the main control piston has a pilot valve arrangement with two pilot piston and two pilot control, by the adjustment of the upper system limit pressure and the lower system limit pressure can be set independently.
  • the invention also relates to the mere pilot valve arrangement.
  • a pilot-operated pressure shut-off valve is e.g. from DE 41 12 065 A1, from DE 10 43 819 B, from DE 36 08 100 C2 or from US-A-3,024,732.
  • the pilot valve arrangement consists of two complete pilot valves, each with a valve housing, with a pilot piston in a bore of the valve housing and with a spring located in a spring chamber pilot whose bias can be changed by means of an adjusting screw.
  • the two pilot valves are mounted one above the other on the housing of the main stage. This pressure shut-off valve is quite large and is relatively expensive.
  • the pilot valve arrangement has only one valve housing. In this run at a distance and parallel to each other two valve holes, each of which receives one of the two pilot piston.
  • the two Vorberichtfedem are in extension of the valve holes side by side in a valve housing to the Vorberichtventilanord housed attached lid. Even with this pressure shut-off valve, the pilot control valve assembly is still quite complex.
  • the main control piston and the two pilot pistons are accommodated in a common valve housing, wherein separate valve bores are provided for all control pistons.
  • pilot-operated pressure shut-off valves in which the pilot control valve arrangement has only one pilot piston and one pilot control spring and an adjustment of the one system limit pressure always also entails an adjustment of the other system limit pressure.
  • the difference between the two limit pressures is a percentage of the system upper limit pressure, which percentage depends on the magnitude of a differential area on the pilot piston and on the bias of the pilot.
  • Such a pilot-operated pressure shut-off valve in which the system upper limit pressure and the system lower limit pressure can not be independently set, is e.g. from the data sheet RD 26 411 / 03.98 the applicant known.
  • the invention has for its object to provide a pilot valve assembly for a pilot operated Druckabschaltventil that is compact and simple, can be produced inexpensively and against a pilot valve arrangement of a Druckabschaltventils in which the upper system limit pressure and the lower system limit pressure can not be set independently, is interchangeable.
  • the desired aim is inventively achieved in that in a pilot-operated pressure shut-off valve with the features of the preamble of claim 1 in accordance with the characterizing part of claim 1, the two pilot spool, the two pilot springs and the two adjusting screws are concentrically arranged one inside the other. In a corresponding manner, this also applies to a pilot valve arrangement according to claim 16. In this way, the pilot valve assembly is very compact with low height. It is only a valve housing for the pilot valve assembly necessary. This can easily be built on a main stage instead of a conventional pilot valve arrangement, which does not allow independent adjustment of the two limit pressures from each other.
  • the machining of the valve housing of a pilot valve arrangement according to the invention is substantially simplified, since only one valve bore for the two pilot pistons is necessary.
  • the compact concentric Arrangement of the pilot piston, the pilot valve and the adjusting screws also allows a previously unrealizable cartridge design.
  • a stepped piston In front of the step surface, a pressure space is formed in which pump pressure is present when the main stage is closed and is relieved of pressure by or to switch the first pilot piston when reaching the upper limit system pressure. From the pressure prevailing in the pressure chamber, the first pilot piston is acted on the step surface in the same direction as from the first pilot spring. Contrary to the effective direction of the first pilot spring, the first pilot piston is acted upon by the system pressure at a large, first effective area.
  • the minimum system lower limit pressure is determined at a fixed system upper limit pressure.
  • the step surface of the first pilot piston or more generally the effective area on the first pilot piston, at which the pump pressure generates a force directed in the same direction as the spring force at least one third of the size of the large effective area at which the system pressure generates a counterforce.
  • the first pilot piston already switches safely.
  • the step surface about two thirds of the size of the large effective area. Basically, the step surface can be made even larger compared to the large effective area. However, this is no longer in the sense of a compact design.
  • a size ratio of two-thirds is sufficient to provide the largest desired difference between the upper limit system pressure and the lower limit system pressure.
  • the second pilot piston is designed as a stepped piston and is acted upon by the pump pressure on the step surface in the direction of action of the second pilot spring, while it is acted upon by the system pressure against a large, first effective area against the effective direction of the second pilot spring. This ensures that the second pilot piston safely reaches the switching position determined by the second pilot control spring in the entire pressure and quantity range of the pressure shut-off valve.
  • the size of the step surface of the second pilot piston is according to claim 7 preferably in the range of 5 percent of the large end-side effective area of the second pilot piston.
  • the objective pursued by the invention can be achieved independently of which of the two pilot pistons is the outer pilot piston, which receives the other pilot piston in itself.
  • the first pilot piston is the hollow piston, in which the second pilot piston is guided.
  • control arrangement according to claim 9 particularly favorable is the control arrangement according to claim 9, however, when the two pilot pistons are arranged one inside the other, since then, as indicated in claim 11, the discharge of the control chamber on the main spool, so opening the two in series flow cross-sections, with low Structural effort is possible. If the first pilot piston is the outer pilot piston, then the fluid path across the two flow cross sections in a design according to claim 12 is particularly simple.
  • the security of the switching is increased to the compound inlet system. Because the second pilot piston makes due to the further breakthrough of the first pilot piston another way in the closing direction. If then moves due to the pressure increase in the outer annulus, the first pilot piston faster than the second pilot piston in the closing direction, its first openings are already covered by the housing-fixed control edge, if they are opened inside again. In this case, the small clearance between the pilot piston and between the first pilot piston and the housing is specifically exploited for a small leakage current from the further breakthrough in the discharge space, the leakage current may also include the first breakthroughs and makes up a portion of the total leakage current.
  • the second pilot piston makes the larger way.
  • the pilot-operated pressure shut-off valve shown comprises a main stage 10 and a pilot valve assembly 11, each characterized by a dash-dotted rectangle.
  • the main stage 10 has an inlet port 12, a drain port 13 and a system port 14. From this goes from a system line 15, to which a hydraulic accumulator 16 and not shown directional valves for controlling hydraulic consumers are connected.
  • the inlet connection 12 and the system connection 14 are connected to one another via a check valve 17, which opens from the inlet connection to the system connection.
  • the main level 10 includes a Main control piston 20, with which a flow area between the inlet port 12 and the drain port 13 is open and closed.
  • the main control piston is guided on a first diameter in a bore 21 of the housing 22 of the main stage and is able to absorb with a frusto-conical surface 23 on a seat edge 24 whose diameter is slightly smaller than the guide diameter.
  • the bore 21 is closed on the one hand by the patch on the valve housing 22 valve housing 25 of the pilot valve assembly 11.
  • a control chamber 26 is formed in the bore, from which a weak helical compression spring 27 is received, which is supported on the housing 25 and the main control piston 20 and this loaded in the direction of the seat edge 24.
  • the lying within the seat edge 24 end face 28 of the main control piston 20 defines a space which is open to the inlet port 12 out. This space is fluidically connected to the control chamber 26 via a nozzle 29 formed in the main control piston 20.
  • a hydraulic pump 30 is connected, which is driven by an electric motor 31.
  • the hydraulic fluid delivered by the hydraulic pump 30 flows via the check valve 17 to the system line 15 and thus to the hydraulic accumulator 16. If the system line 15 takes less pressure medium quantity than it flows into, then the pressure in it and in the hydraulic accumulator 16 increases.
  • the main stage 10 of the pressure shut-off valve shown is now controlled so that the main control piston 20 opens when the pressure in the hydraulic accumulator 16 has reached an upper system limit pressure.
  • the hydraulic pump 30 conveys the sucked from the tank 32 hydraulic fluid via the inlet port 12, through the flow area between the seat edge 24 of the housing 22 and the truncated cone surface 23 of the main control piston 20 and the drain port 13 in circulation to the tank 32 back.
  • the main control piston 20 closes the flow area between the inlet port 12 and the drain port 13, so that the hydraulic pump 30 promotes back into the system line 15.
  • the pressure in the inlet port 12 is low and essentially determined by the force of the helical compression spring 27.
  • the check valve 17 prevents hydraulic fluid from flowing out of the system line 15 into the inlet connection and via the main control piston 20 and the outlet connection 13 to the tank 32.
  • the main control piston 20 is controlled by the pilot valve assembly 11, which, in terms of circuitry, has two pilot valves 40 and 41, which are designed as 2/2-way valves and which are in series between the control chamber 26 on the main control piston 20 and the drain port 13, wherein from the pilot valve 40, a relief line 42 through the pilot valve housing 25 and the valve housing 22 of the main stage 10 passes through to the drain port 13.
  • the control chamber 26 is connected to the pilot valve 41 via a damping nozzle 43.
  • the first pilot valve 40 has a first pilot piston 44, which is acted upon in the direction of the closed position by a first helical compression spring 45, the bias voltage for adjusting the upper limit system pressure can be changed.
  • the pilot valve 41 has a second pilot piston 48, which is acted upon in the closing direction by a second helical compression spring 49, the bias voltage for adjusting the lower system limit pressure is variable.
  • the bias voltage for adjusting the lower system limit pressure is variable.
  • the opening direction of the pilot piston 48 as the pilot piston 44 from the system pressure, namely an effective area 50, applied.
  • the helical compression spring 49 acts in the closing direction on the pilot piston 48 in turn the pending between the damping nozzle 43 and the pilot valve 41 pressure.
  • the size of the effective area 51 for this pressure is approximately only 5 percent of the size of the effective area 50.
  • the main control piston 20 When in operation, the main control piston 20 assumes its closed position and the funded by the hydraulic pump 30 hydraulic fluid passes through the check valve 17 to the hydraulic accumulator 16, the pilot valve 40 is in its closed position and the pilot valve 41 in its open position. The control chamber 26 is thus shut off to the discharge line 42. The pressure in it is equal to the pressure in the inlet port 12. Under the action of this pressure and under the action of the helical compression spring 27, the main control piston 20 maintains its closed position. At the active surfaces 46 and 47 of the pilot valve 40 and the active surfaces 50 and 51 of the pilot valve 41 is practically the same pressure. The pressure drop across the check valve 17 is negligible.
  • the pressure in the hydraulic accumulator 16 increases with the inflow of pressure medium and is finally so large that the differential area between the two active surfaces 46 and 47 is sufficient as pressure application surface, so that a flow area is opened in the pilot valve 40.
  • the pending on the active surface 47 pressure begins to fall instantly, so that the pilot valve 40 securely switches through in its open position.
  • Pressure fluid can now flow out of the control chamber 26 via the two pilot valves 40 and 41 and the relief line 42 to the tank 32.
  • the main control piston 20 is depressurized on the spring side and opens: The pressure in the inlet connection 12 drops to a low value determined by the bias of the helical compression spring 27.
  • the check valve 17 closes.
  • the pressure fluid delivered by the hydraulic pump 30 flows back through the flow area between the seat edge 24 of the housing 22 and the frusto-conical surface of the main control piston 20 to the tank 32.
  • the pressure by which the pilot valve 40 can be brought into its open position is equal to the system upper limit pressure. Its height is determined by the bias of the helical compression spring 45 and can be changed by changing this bias.
  • the pressure in the control chamber 26 is equal to the pressure in the inlet port 12, so that the main control piston 20 under the action of the helical compression spring 27 and the outside of the seat edge 24 at a surplus area closing pump pressure closes.
  • the pressure in the inlet port 12 and the control chamber 26 and the active surfaces 47 and 51 thus increases to the system pressure, which is currently equal to the lower system pressure limit. Even before this lower system limit pressure is reached on the active surface 47, and the pilot valve 40 enters its closed position.
  • the system pressure increases, wherein due to the very small compared to the active surface 50 effective area 51 a small increase above the lower system limit pressure is sufficient to bring the pilot valve back to its open position. This remains without influence on the main control piston, since the pilot valve 40 is already in its closed position and prevents discharge of the control chamber 26. Only when the system pressure is again as high as the upper system limit pressure, the pilot valve 40 switches back to its open position.
  • the active surface 47 should have at least one third of the size of the active surface 46.
  • an upper system limit pressure it follows from the ratio of the size of the surface 47 to the size of the surface 46 acting on the active surface 46 pressure, against which the helical compression spring 45, the pilot valve 40 with relieved active surface 47 without could bring a switching operation of the pilot valve 41 in the closed position. This pressure is thus the minimum system lower limit pressure that can be obtained for a given system upper limit pressure. If the ratio between the surface 47 and the surface 46 is e.g. One third, the minimum lower system limit pressure would be 140 bar at a set upper system pressure of 210 bar.
  • the minimum system lower limit pressure is 70 bar at a set upper system boundary pressure of 210 bar. Within this range, the lower system limit pressure can be adjusted by adjusting the helical compression spring 45. However, the presence of the effective area 51 also limits the minimum distance between the system upper limit pressure and the system lower limit pressure.
  • the two pilot valves 40 and 41 are integrated into each other in a very compact manner, so that they, as can be seen in particular from the section of Figure 1, appear as a single valve.
  • the components of the main stage, the check valve 17, a hydraulic accumulator 16 and a hydraulic pump and an electric motor 31 are similar in Figure 1 as shown in Figure 3 and provided with the same reference numerals as in Figure 3.
  • the pilot valve arrangement according to FIG. 1 has a plate-shaped valve housing 25 into which a large-volume blind bore 55 is introduced from one side surface. Centrally opens into the blind bore 55 a multi-stepped valve bore 56 which has its largest diameter on the opposite side surface and is closed there by a screw plug 57.
  • the smallest Diameter has the valve bore 56 immediately following the bottom 58 of the blind bore 55.
  • a stepped hollow piston is guided as the first pilot piston 44, which projects out of the valve bore 56 out into the blind bore 55.
  • an annular space 61 is formed, into which a radially leading through the valve housing 25 channel 62 opens. Via this channel, the annular space 61 is fluidically connected to the control chamber 26 on the main control piston, wherein the damping nozzle 43 is screwed into the channel 62.
  • the pilot piston 44 is acted upon by a resulting effective surface, which is equal to the step surface 47 of the valve bore 56, in the direction of the screw plug 57.
  • the closure screw 57 is followed by an outer collar 63 connects to the portion of the pilot piston 44 with the outer diameter of the step surface 59, with which the pilot piston 44 on the one hand in the direction of the screw plug 57 to a inserted into the bore 59 and held stationary socket 64 and in Counter direction to another stage 65 of the valve bore 56 can strike.
  • By the two axial stops and the axial extent of the outer collar 63 of the displacement of the pilot piston 44 is fixed.
  • the first pilot piston 44 has a continuous axial bore 69, in which the second pilot piston 48 is axially displaceable.
  • the axial bore 69 is a stepped bore having a bore portion of larger diameter, which opens at the sleeve 64 facing the end face of the pilot piston 44 to the outside, and with a bore portion of smaller diameter, which is open to the blind bore 55 of the housing 25.
  • the cross sections of the two bore portions of the bore 69, in the step surface 51 on the pilot piston 44 merge into each other, differing only about 5 percent from each other.
  • the axial bore 69 is connected to the outside of the pilot piston 44 via a plurality of apertures 70 located axially at the same height.
  • the openings of the located between the step surface 47 of the valve bore 56 and the bottom 58 of the blind bore 55 wall portion of the valve bore 56 are externally covered.
  • the edge between the bottom 58 of the blind bore 55 and the valve bore 56 forms a housing-fixed control edge 71, which cooperates with the openings 70. It is run over by the openings 70 and thus a flow cross section of the apertures 70 in the blind bore 55 made when the pilot piston 44 is displaced away from the socket 64 to the stage 65 of the housing 25.
  • stepped axial bore 69 of the pilot piston 48 is stepped, and has a guide portion in the region of the bore portion of smaller diameter and a diameter slightly larger guide portion in the bore portion of larger diameter.
  • the two guide portions are widely spaced, wherein the diameter of the piston portion between the two guide portions relative to the diameter of the smaller guide portion is withdrawn again.
  • annular space 72 has been created radially between the outer pilot piston 44 and the inner pilot piston 48 and axially between the two pilot sections thereof. This is permanently fluidically connected via a radial bore 73 in the pilot piston 44 with the annular space 61 and thus with the control chamber 26 on the main control piston 20.
  • the second pilot piston 48 projects in the direction of the screw plug 57 to beyond the pilot piston 44, passes through an inner collar of the sleeve 64 and is trapped between this inner collar and the sleeve 66 with a head 75.
  • the sleeve 66 is externally provided with a recess 76 which is open to a bore 77 of the housing 25, which is fluidly connected to the system line 15 and thus to the hydraulic accumulator 16.
  • a recess 76 which is open to a bore 77 of the housing 25, which is fluidly connected to the system line 15 and thus to the hydraulic accumulator 16.
  • the closure screw 57 facing end surfaces of the pilot piston 44 and 48 in the recess 76 pending pressure, so exposed to the system pressure. This pressure generates a force on the pilot piston, which acts on it in the direction of the blind bore 55 in the direction of the bushings 64 and 66, respectively.
  • the active surface on the pilot piston 44 is equal to an annular surface with an inner diameter which is equal to the diameter of the larger portion of the axial bore 69, and with an outer diameter which is equal to the outer diameter of the step surface 47 of the housing 25.
  • the effective area on the pilot piston 48 is equal to the cross-sectional area of the larger guide portion of this piston.
  • pilot springs 45 and 49 In the blind bore 55 are the two pilot springs 45 and 49, which are arranged as the pilot piston 44 and 48 concentric with each other.
  • the outer preselector spring 45 is supported by a spring plate 77 on the first pilot piston 44, which is to be loaded in the direction of the closure screw 57.
  • it is based on an adjusting screw 78, which is screwed into the blind bore 55.
  • the inner pilot control spring 49 is supported via a spring plate 78 on the pilot piston projecting beyond the pilot piston 44
  • the pilot spring 49 is supported on an adjusting screw 80, which is screwed centrally into the adjusting screw 78 and can be adjusted by turning axially to the adjusting screw 78 from 48 and also loads this in the direction of the screw.
  • the blind bore 55 is part of the relief channel 42, to which a transverse bore 81 in the housing 25 belongs, via which the relief fluid path leads to the tank 32.
  • the pilot control pistons 44 and 48 assume the switching positions shown in circuit diagram in FIG.
  • the openings 70 in the pilot piston 44 are covered on the inside by the pilot piston 48 and externally by the housing 25.
  • In the control chamber 26 on the main control piston 20 and in the annular spaces 61 and 72 is pump pressure.
  • the resulting effective surface on which the pump pressure acts on the pilot piston 44 does not exactly correspond to the size of the surface 47, but is opposite to the surface 47 reduced by the area 51.
  • the corresponding stage of the valve bore 56 is provided with the reference numeral 47 of FIG.
  • the pilot piston 44 and 48 are applied to the already explained active surfaces of the system pressure. This pressure is practically equal to the pump pressure when the hydraulic accumulator 16 is being charged.
  • the openings 70 are also opened on the outside, so that pressure fluid from the annular space 61 via the radial bore 73, the annular space 72 and the openings 70 in the blind bore 55 and from there into the tank 32 can flow.
  • the resulting pressure drop in the annular space 61 leads to a rapid switching through the pilot piston 44.
  • the active surface at which the system pressure acts on the pilot piston 48 is now equal to the cross section of the larger guide portion of the pilot piston 48. Accordingly, the force acting against the pilot spring 49 compressive force is greater than the first time loading of the hydraulic accumulator 16.
  • the pilot piston 48 is therefore at brought back to a pressure in the switching position shown in Figure 1, which is slightly lower than the pressure which has been sufficient for the first time loading of the hydraulic accumulator 16 to bring the pilot piston 48 against the pilot spring 49 in the switching position, not shown in Figure 1.
  • the openings 70 in the pilot piston 44 are closed inside, so that the pressure in the annular spaces 61 and 72 again equal to the pressure in the inlet from the pump to the main control piston 20. Therefore, the main control piston 20 closes the connection between the inlet and the tank 32.
  • the pressure in the inlet and in the annular spaces 61 and 72 increases to the system pressure, whereby the pilot piston 44 is returned to the switching position shown in Figure 1. This happens rather than the pilot piston 48 again against the spring 49 in the other switching position in which the openings 70 are opened inside again, is moved.
  • a first difference is that the first pilot piston 44 now does not run as in the embodiment of Figure 1 directly in a plate-shaped housing, but that the pilot valve is designed in cartridge design and has a valve sleeve 85 which receives the pistons and springs and in a valve plate 86 is screwed.
  • the first pilot piston 44 in the region of holes 84 which correspond to the apertures 70 of Figure 1 and of which four equally large in the same radial plane are evenly distributed over the circumference another smaller diameter bore 87, seen in the circumferential direction , is located centrally between two holes 84, but in the axial direction is offset relative to the holes 84 in the direction of the step in the axial bore 69 of the pilot piston 44.
  • the control edge 74 leaves the bore 87 still partially open inside, when the holes 84 are already covered inside.
  • the diameter of the holes 84 is presently 1.2 mm and the diameter of the bore 87 0.7 mm.
  • the two pilot pistons 44 and 48 are displaced to the right to the stop.
  • the downshift phase after reaching the lower system limit pressure first moves the second pilot piston 48 to the left and closes the inside holes 84, so that in the annulus 61, the pressure increases.
  • a certain, dependent on the upper system pressure limit and the lower system pressure limit pressure must be achieved so that the pilot piston 44 switches back.
  • the second pilot spool 48 continues to move and also closes the bore 87.
  • the pressure in the annulus 61 increases, and then, when the particular pressure is reached, the first pilot spool 44 moves to the left and the holes 84 are also closed on the outside. Then the main control piston closes and the accumulator pressure rises.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fluid-Driven Valves (AREA)
  • Control Of Fluid Pressure (AREA)
  • Fluid-Pressure Circuits (AREA)
  • Sliding Valves (AREA)
  • Safety Valves (AREA)

Claims (16)

  1. Valve de coupure de pression pilotée, dotée d'un tiroir (20) de commande principal, qui, lorsqu'une pression limite supérieure du système est atteinte dans le système hydraulique, raccorde une alimentation (12), laquelle permet d'alimenter un système hydraulique en fluide de pression, à une évacuation (13), par prise d'une première position de commutation, et qui, lorsqu'une pression limite inférieure du système est atteinte, l'isole de l'évacuation (13), par prise d'une seconde position de commutation,
    et dotée d'un dispositif (11) de valves de pilotage, qui pour commander le tiroir (20) de commande principal peut faire varier la connexion par voie fluide d'une chambre (26) de commande avoisinant le tiroir (20) de commande principal et qui présente un corps (25, 85) de valve et, hébergés à l'intérieur de celui-ci, un premier tiroir (44) de pilotage et un second tiroir (48) de pilotage, qui peuvent être actionnés par voie mécanique, l'un parfaitement indépendamment de l'autre,
    d'un premier ressort (45) de pilotage, contre l'effet duquel le premier tiroir (44) de pilotage peut être amené à commuter d'une première dans une seconde position de commutation, par voie hydraulique,
    et d'un second ressort (49) de pilotage, contre l'effet duquel le second tiroir (48) de pilotage peut être amené à commuter d'une première dans une seconde position de commutation, par voie hydraulique,
    ainsi qu'une première vis (78) de réglage, qui permet d'ajuster le premier ressort (45) de pilotage pour calibrer la pression limite supérieure du système, et une seconde vis (80) de réglage, qui permet d'ajuster le second ressort (49) de pilotage pour calibrer la pression limite inférieure du système,
    caractérisée en ce
    que les deux tiroirs (44, 48) de pilotage, les deux ressorts (45, 49) de pilotage et les deux vis (78, 80) de réglage sont disposés concentriquement, couchés les uns à l'intérieur des autres.
  2. Valve de coupure de pression pilotée selon la revendication n° 1, caractérisée en ce que par une collerette (63) extérieure, le tiroir (44) de pilotage extérieur est disposé entre deux butées (64, 65) solidaires avec le corps, que l'une des butées est formée au niveau d'une douille (64) insérée dans le corps (25, 85) de valve et que le tiroir (48) de pilotage intérieur traverse la douille (64) et, par une collerette (75) extérieure, est disposé entre la douille (64) et un autre insert (66) inséré dans le corps (25) de valve.
  3. Valve de coupure de pression pilotée selon la revendication n° 1 ou n° 2, caractérisée en ce que le premier tiroir (44) de pilotage est un tiroir étagé et forme une chambre (61) de pression devant la surface étagée, que le premier tiroir (44) de pilotage est soumis à la pression régnant dans la chambre (61) de pression au niveau d'une seconde surface (47) active, dans le même sens que l'effet du premier ressort (45) de pilotage, et que le premier tiroir (44) de pilotage est soumis à la pression du système au niveau d'une grande première surface (46) active, contre le sens d'action du premier ressort (45) de pilotage.
  4. Valve de coupure de pression pilotée selon la revendication n° 3, caractérisée en ce que la seconde surface (47) active du premier tiroir (44) de pilotage présente au moins un tiers de la taille de la première surface (46) active.
  5. Valve de coupure de pression pilotée selon la revendication n° 3 ou n° 4, caractérisée en ce que la seconde surface (47) active du premier tiroir (44) de pilotage présente environ deux tiers de la taille de la première surface (46) active.
  6. Valve de coupure de pression pilotée selon une revendication précédente, caractérisée en ce que le second tiroir (48) de pilotage est conçu sous forme de tiroir étagé et est soumis à la pression au niveau d'une seconde surface (51) active dans le sens d'action du second ressort (49) de pilotage, cependant qu'il est soumis à la pression du système au niveau d'une grande, première surface (50) active, contre le sens d'action du second ressort (49) de pilotage.
  7. Valve de coupure de pression pilotée selon la revendication n° 6, caractérisée en ce que la taille de la seconde surface (51) active est de environ 5 pour cent de la taille de la première surface (50) active du second tiroir (48) de pilotage.
  8. Valve de coupure de pression pilotée selon une revendication précédente, caractérisée en ce que le premier tiroir (44) de pilotage est conçu sous forme de tiroir creux et le second tiroir (48) de pilotage est guidé dans le premier tiroir (44) de pilotage.
  9. Valve de coupure de pression pilotée selon une revendication précédente, caractérisée en ce que les deux tiroirs (44, 48) de pilotage du dispositif (11) de valves de pilotage permettent de commander deux segments de débit, qui sont disposés en série l'une par rapport à l'autre entre la chambre (26) de commande du tiroir (20) de commande principal et une évacuation (13), que le premier tiroir (44) de pilotage peut être soumis, dans le sens d'une ouverture de la section de débit qu'il commande, à la pression du système au niveau d'une première surface (46) active et, dans le sens d'une fermeture de la section de débit, à la pression régnant dans la chambre (26) de commande du tiroir (20) de commande principal au niveau d'une seconde surface (47) active, qui est plus petite que la première surface (46) active, et au premier ressort (45) de pilotage, et que le second tiroir (48) de pilotage peut être soumis, dans le sens d'une ouverture de la section de débit qu'il commande, à la pression du système au niveau d'une surface (50) active et, dans le sens d'une fermeture de la section de débit, au second ressort (49) de pilotage.
  10. Valve de coupure de pression pilotée selon la revendication n° 9, caractérisée en ce que le second tiroir (48) de pilotage peut être soumis, dans le sens d'une fermeture de la section de débit, à la pression régnant dans la chambre (26) de commande du tiroir (20) de commande principal au niveau d'une seconde surface (51) active, qui est nettement plus petite que la première surface (50) active.
  11. Valve de coupure de pression pilotée selon la revendication n° 9 ou n° 10, caractérisée en ce que le tiroir (44) de pilotage extérieur présente dans sa paroi au moins un perçage (70, 84), qui dans la position de fermeture du tiroir (44) de pilotage extérieur est recouvert extérieurement par une arête (71) de commande solidaire avec le corps et qui dans sa position d'ouverture est ouvert sur une chambre (55) de déchargement, que le tiroir (48) de pilotage intérieur présente une arête (74) de commande, qui dans la position de fermeture du tiroir (48) de pilotage intérieur recouvre intérieurement les perçages (70, 84) du tiroir (44) de pilotage extérieur, indépendamment de sa position, cependant que dans la position d'ouverture du tiroir (48) de pilotage intérieur, les perçages (70, 84) du tiroir (44) de pilotage extérieur, indépendamment de sa position, sont ouverts intérieurement sur une chambre (72) annulaire, laquelle est formée entre les deux tiroirs (44, 48) de pilotage et est raccordée par voie fluide, par un perçage (73) supplémentaire dans le tiroir (44) de pilotage extérieur, à la chambre (26) de commande au niveau du tiroir (20) de commande principal.
  12. Valve de coupure de pression pilotée selon les revendications n° 8 et n° 11, caractérisée en ce que dans la direction axiale, entre un étage du premier tiroir (44) de pilotage et un étage (47) du corps (25) de valve, est formée une chambre (61) annulaire extérieure, où débouche un canal (62) traversant le corps (25) de valve et menant à la chambre (26) de commande au niveau du tiroir (20) de commande principal, qu'un évidement annulaire au niveau du second tiroir (48) de pilotage forme une chambre (72) annulaire intérieure entre le premier et le second tiroir (44, 48) de pilotage, laquelle est raccordée par voie fluide par au moins un alésage (73) radial dans le tiroir (44) de pilotage extérieur à la chambre (61) annulaire extérieure, et qu'une arête (74) de commande du second tiroir (48) de pilotage, délimitant l'évidement annulaire, peut passer sur le perçage (70, 85) dans le premier tiroir (44) de pilotage, qui ouvre sur l'extérieur vers la chambre (55) de déchargement.
  13. Valve de coupure de pression pilotée selon la revendication n° 12, caractérisée en ce que le second tiroir (48) de pilotage au niveau de l'arête (74) de commande présente un diamètre donné et, de l'autre côté de l'évidement annulaire, un diamètre légèrement plus grand que le précédent.
  14. Valve de coupure de pression pilotée selon la revendication n° 12 ou n° 13, caractérisée en ce que le premier tiroir (44) de pilotage dans sa paroi présente au moins un perçage (87) supplémentaire, qui quelle que soit la position du premier tiroir (44) de pilotage est recouvert extérieurement et dont la section d'ouverture intérieure dans la chambre (72) annulaire intérieure est modifiable par la position de l'arête (74) de commande du second tiroir (48) de pilotage par rapport au premier tiroir (44) de pilotage.
  15. Valve de coupure de pression pilotée selon la revendication n° 14, caractérisée en ce que les perçages (84) ouvrant sur la chambre (55) de déchargement sont de premiers alésages de taille identique, disposés dans le même plan radial et disposés à la même distance angulaire les uns des autres, que le perçage (87) supplémentaire dans le premier tiroir (44) de pilotage est un second alésage, dont le diamètre est plus faible que le diamètre des premiers alésages (84) et qui dans le sens de l'éloignement de la chambre (55) de déchargement dépasse les premiers alésages (84) tout au plus d'un demi diamètre.
  16. Dispositif de valves de pilotage pour une valve de coupure de pression pilotée, qui présente un corps (25, 85) de valve, hébergés dans celui-ci un premier tiroir (44) de pilotage et second tiroir (48) de pilotage, qui peuvent être actionnés par voie mécanique de façon parfaitement indépendante l'un de l'autre,
    un premier ressort (45) de pilotage, contre l'effet duquel le premier tiroir (44) de pilotage peut être commuté par voie hydraulique hors d'une première, dans une seconde position de commutation,
    et un second ressort (49) de pilotage, contre l'effet duquel le second tiroir (48) de pilotage peut être commuté par voie hydraulique hors d'une première, dans une seconde position de commutation,
    ainsi qu'une première vis (78) de réglage, qui permet de régler le premier ressort (45) de pilotage pour le calibrage de la pression limite supérieure du système, et une seconde vis (80) de réglage, qui permet de régler le second ressort (49) de pilotage pour le calibrage de la pression limite inférieure du système,
    caractérisé en ce que
    les deux tiroirs (44, 48) de pilotage, les deux ressorts (45, 49) de pilotage et les deux vis (78, 80) de réglage sont disposés concentriquement, couchés les uns à l'intérieur des autres.
EP01992837A 2000-11-04 2001-10-19 Soupape pilotée de coupure de pression et arrangement de valve pilote Expired - Lifetime EP1332290B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10054704A DE10054704A1 (de) 2000-11-04 2000-11-04 Vorgesteuertes Druckabschaltventil
DE10054704 2000-11-04
PCT/EP2001/012094 WO2002036967A2 (fr) 2000-11-04 2001-10-19 Soupape de coupure de pression

Publications (2)

Publication Number Publication Date
EP1332290A2 EP1332290A2 (fr) 2003-08-06
EP1332290B1 true EP1332290B1 (fr) 2007-03-14

Family

ID=7662144

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01992837A Expired - Lifetime EP1332290B1 (fr) 2000-11-04 2001-10-19 Soupape pilotée de coupure de pression et arrangement de valve pilote

Country Status (5)

Country Link
US (1) US7204266B2 (fr)
EP (1) EP1332290B1 (fr)
JP (1) JP2004515723A (fr)
DE (2) DE10054704A1 (fr)
WO (1) WO2002036967A2 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107606292A (zh) * 2017-09-29 2018-01-19 中国长江电力股份有限公司 一种嵌套式双活塞先导阀

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005075834A1 (fr) * 2004-02-05 2005-08-18 Bosch Rexroth Ag Systeme diaphragme de mesure d'un appareil hydraulique de division et d'addition de debit
JP4600071B2 (ja) * 2005-02-15 2010-12-15 アイシン精機株式会社 自動変速機の油圧制御装置
DE602006006676D1 (de) * 2006-09-01 2009-06-18 Parker Hannifin Ab Ventilanordnung
US8683795B1 (en) 2010-05-04 2014-04-01 The Boeing Company Control valve for a hydraulic refueling boom system
CN113898619B (zh) * 2021-09-10 2022-10-11 常德中联重科液压有限公司 蓄能器充液阀及液压制动系统

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3273581A (en) * 1966-09-20 Pilot operated unloading valve having relatively
DE1043819B (de) 1956-09-27 1958-11-13 Bosch Gmbh Robert Druckmittelanlage, insbesondere Hydraulikanlage fuer Hebeeinrichtungen auf Fahrzeugen
US3024732A (en) 1957-02-01 1962-03-13 Sargent Engineering Corp Regulating valve
DE1807436A1 (de) 1968-11-07 1970-06-04 Gewerk Eisenhuette Westfalia Abschaltventil fuer hydraulische Pumpanlagen
US3621881A (en) * 1970-08-03 1971-11-23 Acf Ind Inc High-low pressure pilot valve mechanism
US4114637A (en) * 1976-12-20 1978-09-19 Double A Products Company Variable differential pressure unloading valve apparatus
DE3401369A1 (de) 1983-01-26 1984-08-02 Beringer-Hydraulik GmbH, Neuheim, Zug Vorgesteuertes druckbegrenzungsventil
DE3401360A1 (de) * 1984-01-17 1985-08-01 Hans Dieter Wilhelm 4050 Mönchengladbach Goeres Salzkraftwerk zur energielieferung
AT386258B (de) * 1985-03-15 1988-07-25 Hoerbiger Ventilwerke Ag Steuerungsanordnung fuer pneumatische arbeitszylinder
DE3608100A1 (de) * 1986-03-12 1987-09-17 Integral Hydraulik Co Abschaltventil
DE4112065C2 (de) * 1991-04-12 1995-06-29 Rexroth Mannesmann Gmbh Vorgesteuertes Druckabschaltventil mit einstellbarer Schaltdruckdifferenz
WO1997045665A1 (fr) * 1996-05-29 1997-12-04 Kabushiki Kaisha Yokota Seisakusho Dispositif a soupape de commande

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107606292A (zh) * 2017-09-29 2018-01-19 中国长江电力股份有限公司 一种嵌套式双活塞先导阀

Also Published As

Publication number Publication date
DE10054704A1 (de) 2002-05-08
US7204266B2 (en) 2007-04-17
WO2002036967A3 (fr) 2003-02-13
WO2002036967A2 (fr) 2002-05-10
JP2004515723A (ja) 2004-05-27
US20040099828A1 (en) 2004-05-27
DE50112199D1 (de) 2007-04-26
EP1332290A2 (fr) 2003-08-06

Similar Documents

Publication Publication Date Title
EP2382520B1 (fr) Soupape de régulation de pression proportionnelle et son utilisation pour connection hydraulique
EP0638746B1 (fr) Etage piloté pour une soupape limitant la pression
DE102009061003B4 (de) Verstellbare Dämpfventileinrichtung
EP2960561B1 (fr) Vanne hydraulique
EP0864794B1 (fr) Soupape d'étranglement proportionnelle
DE102010063386B4 (de) Verstellbare Dämpfventileinrichtung
EP3256742B1 (fr) Soupape de limitation de pression
DE3323363A1 (de) Vorgesteuertes druckreduzierventil
DE2608791C2 (fr)
DE60304663T2 (de) Hydraulische Ventileinrichtung
DE102014017801A1 (de) Druckbegrenzungsventil
EP1332290B1 (fr) Soupape pilotée de coupure de pression et arrangement de valve pilote
EP1577565B1 (fr) Soupape de régulation de pression
EP0894299A1 (fr) Soupape de regulation de pression a 3 voies pilotee
EP0121600B1 (fr) Soupape de commande
DE19735482A1 (de) Hydraulisches System mit einem Differentialzylinder und einem Eilgangventil sowie Eilgangventil für ein solches hydraulisches System
WO2000034664A1 (fr) Clapet de non retour pilote destine a un systeme de portes pressions
DE102015207259A1 (de) Verstelleinrichtung für eine hydrostatische Kolbenmaschine und hydrostatische Axialkolbenmaschine
EP1996820B1 (fr) Agencement de soupape hydraulique
DE2849704C2 (fr)
DE19503943C2 (de) Bremsventilanordnung für einen reversierbaren hydraulischen Verbraucher
DE102005011138B4 (de) Vorgesteuertes Druckabschaltventil
WO1998021486A1 (fr) Systeme de valve anti-retour
DE4304796A1 (de) Vorgesteuertes Druckbegrenzungsventil
DE102004024354A1 (de) Antrieb für eine Stanz- oder Umformmaschine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20030530

AK Designated contracting states

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

RBV Designated contracting states (corrected)

Designated state(s): DE FR GB IT

17Q First examination report despatched

Effective date: 20050317

RTI1 Title (correction)

Free format text: PILOT-OPERATED PRESSURE SHUT-OFF VALVE AND PILOT VALVE ASSEMBLY THEREFOR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 50112199

Country of ref document: DE

Date of ref document: 20070426

Kind code of ref document: P

GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

Effective date: 20070314

EN Fr: translation not filed
EN Fr: translation not filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070314

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20071217

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070314

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20121023

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20121217

Year of fee payment: 12

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50112199

Country of ref document: DE

Effective date: 20140501

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140501

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131019