EP1332121B1 - Couche d'infiltration metallique regulee par une barriere de carbone pour protection amelioree contre l'oxydation - Google Patents

Couche d'infiltration metallique regulee par une barriere de carbone pour protection amelioree contre l'oxydation Download PDF

Info

Publication number
EP1332121B1
EP1332121B1 EP20010988184 EP01988184A EP1332121B1 EP 1332121 B1 EP1332121 B1 EP 1332121B1 EP 20010988184 EP20010988184 EP 20010988184 EP 01988184 A EP01988184 A EP 01988184A EP 1332121 B1 EP1332121 B1 EP 1332121B1
Authority
EP
European Patent Office
Prior art keywords
composite
silicon carbide
coated
silicon
combination
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP20010988184
Other languages
German (de)
English (en)
Other versions
EP1332121A2 (fr
Inventor
George D. Forsythe
Terence B. Walker
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honeywell International Inc
Original Assignee
Honeywell International Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honeywell International Inc filed Critical Honeywell International Inc
Publication of EP1332121A2 publication Critical patent/EP1332121A2/fr
Application granted granted Critical
Publication of EP1332121B1 publication Critical patent/EP1332121B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/5053Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials non-oxide ceramics
    • C04B41/5057Carbides
    • C04B41/5059Silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/52Multiple coating or impregnating multiple coating or impregnating with the same composition or with compositions only differing in the concentration of the constituents, is classified as single coating or impregnation
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • C04B41/87Ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/89Coating or impregnation for obtaining at least two superposed coatings having different compositions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D69/00Friction linings; Attachment thereof; Selection of coacting friction substances or surfaces
    • F16D69/02Composition of linings ; Methods of manufacturing
    • F16D69/023Composite materials containing carbon and carbon fibres or fibres made of carbonizable material
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00241Physical properties of the materials not provided for elsewhere in C04B2111/00
    • C04B2111/00362Friction materials, e.g. used as brake linings, anti-skid materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249953Composite having voids in a component [e.g., porous, cellular, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/26Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/30Self-sustaining carbon mass or layer with impregnant or other layer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31678Of metal

Definitions

  • the present invention provides for oxidatively resistant silicon carbide coated carbon/carbon (C/C) composites which comprise a C/C composite base that is strongly bound to a durable silicon carbide protective layer, a method for the preparation of these materials using a reactive carbon powder as a reactant in the step of forming the silicon carbide layer, and the use of the silicon carbide coated C/C composite in high temperature applications, preferably in brakes for airplanes.
  • C/C oxidatively resistant silicon carbide coated carbon/carbon
  • the C/C composites When the C/C composites are utilized as a stack of discs in airplane brakes, they are required to absorb large amounts of kinetic energy in order to stop the aircraft during landing or in the event of a rejected take-off. During some of the stops, the carbon is heated to sufficiently high temperatures that surfaces exposed to air will oxidize. Some conventional carbon composites have the necessary thermal and mechanical properties required for specific brake designs; however, these conventional composites have open porosities (typically 5% to 10%) which permit internal oxidation. The internal oxidation weakens the material in and around the brake rotor lugs or stator slots, which are areas that transmit the torque during braking.
  • a known method to improve oxidation resistance is by coating the non-friction surfaces of the composite with materials which act as oxidation inhibitors and seal the surface to limit oxygen access.
  • the silicon carbide When a protective layer of silicon carbide is applied directly onto the C/C composite base, the silicon carbide is highly flaw sensitive. Breach of the silicon carbide layer may occur during the curing step when pressure and/or temperature changes are inadvertently performed too rapidly. Rapid thermal transients induced during component use can also be a major cause of cracking due to the thermal expansion difference between carbon and silicon carbide. Accordingly, what is desired is a method of forming a silicon carbide protective layer which is strongly bound to a C/C composite base wherein the silicon carbide layer is formed on a relatively flaw free smooth coherent surface.
  • Kaplan et al. (US 5,283,109) teach a silicon carbide coated carbon composite formed with a carbon interlayer.
  • the carbon interlayer is prepared by coating a carbon composite base with a paste-like mixture of carbon powder and a liquid carrier followed by curing.
  • the coated carbon composite is then subjected to chemical vapor deposition with silicon carbide.
  • an open porous layer is needed to allow penetration of the chemical vapor.
  • This final coated composite is inadequate for applications such as airplane brakes, due to a tendency for the composite to crack or peel under extreme conditions as a result of the relatively weak bond between the carbon interlayer and either the carbon composite base or the silicon carbide layer.
  • Silicon infiltration pretreatment of CVD SiC coated C/C composites is disclosed in Y.-C. Zhu et al., Carbon 36, 929 (1988). It was found that free silicon diffused into a depth of ca. 50 ⁇ m.
  • the present invention provides an oxidatively resistant C/C composite which is stable under extreme conditions.
  • the present invention is a recognition that further treating the SiC coated C/C composite with a phosphoric acid-based retardant solution significantly improves the oxidative resistance at the high end of the typical operating temperature range and in the presence of high concentrations of known oxidation catalysts, such as potassium acetate, a common constituent in aircraft runway deicers.
  • the improvement to the oxidative resistance is unexpected in view of the apparent synergistic interaction between the SiC coating and the phosphoric acid-based retardant solution.
  • the present invention provides for a silicon carbide coated C/C composite, which is resistant to oxidation at high temperatures comprising:
  • wicking is defined as the tendency for a liquid to travel along a fiber upon contact due to the affinity between the fiber and the liquid.
  • the present invention also provides a method for the preparation of these materials using a reactive carbon powder as a reactant in the step of forming the silicon carbide layer, and the use of this method to increase the oxidative resistance of a carbon/carbon composite.
  • the oxidatively resistant C/C composites according to the present invention are preferably used in brakes for airplanes, but may also be used in other high temperature applications, such as electrodes for arc melting of steel, mold stock for metal casting, rocket nozzles, furnace linings, and Hall cell anodes.
  • the present invention includes a silicon carbide coated C/C composite of the type described above, which is resistant to oxidation at high temperatures.
  • the present invention further includes a method for forming such a composite, the method comprising:
  • the reactive carbon containing composition of step (a) is preferably a suspension of a reactive carbon powder.
  • Any reactive carbon powder known in the art can be used, although the carbon powder should be essentially free of metals.
  • the reactive carbon powder includes lampblack and colloidal graphite. Some examples include products AEROSPERSE 15V and AQUADAG E (marketed by the ACHESON CHEMICAL CO.).
  • step (a) It is preferred to heat the reactive carbon coated C/C composite formed in step (a) to 50-120°C until essentially all volatiles are removed or until the rate of weight loss approaches zero.
  • the reactive carbon coated C/C composite formed in step (a) has a reactive carbon coating having an areal density of 0.00005-0.0020 g/cm 2 .
  • the areal density is 0.0007-0.0009 g/cm 2 .
  • the silicon containing composition of step (b) is preferably a suspension of elemental silicon powder.
  • the size of the silicon particles is not particularly limited so long as the coverage is homogeneous. It is preferred to use a fine silicon powder having a particle size of 0.1 to 100 microns. More preferably, the particle size should be 10 to 30 microns.
  • suspension agent for both the reactive carbon containing composition of step (a) and the silicon containing composition of step (b) is not particularly limited, so long as the coatings can be applied relatively homogenously.
  • Typical suspension agents may include ammonium alginate, gelatin, polyacrylic acid, polyvinylalcohol, vegetable gums, and modified starch products.
  • step (b) It is preferred to heat the bi-layered C/C composite farmed in step (b) to 50-120°C until essentially all volatiles are removed or until the rate of weight loss approaches zero.
  • Both the reactive carbon containing composition of step (a) and the silicon containing composition of step (b) can be applied by brush painting, dipping, or other painting techniques.
  • step (c) the bi-layered C/C composite is heated to at least the melting point of silicon to form the silicon carbide coated C/C composite.
  • the bi-layered C/C composite is heated to 1400-1600°C.
  • the amount of elemental silicon, powder applied to the reactive carbon coated C/C composite formed in step (a) is in a molar excess to the reactive carbon to ensure that essentially all of the reactive carbon converts to silicon carbide.
  • the weight of the elemental silicon powder is 1.5-2.5 times the weight of the reactive carbon powder. More preferably, the weight of the elemental silicon powder is 1.9-2.1 times the weight of the reactive carbon powder.
  • the unreacted liquid silicon infiltrates the C/C composite base by wicking, i.e, liquid silicon travels along the carbon fibers in a direction away from the surface of the C/C composite base.
  • the infiltrated silicon is advantageous in that it strengthens the bond between the C/C composite base and the silicon carbide coating.
  • the amount of silicon is chosen so that the infiltration of the excess silicon enters the C/C composite base to a depth of at least 0.5 mm and does not reach a depth of greater than 5 mm.
  • the depth is less than 0.5 mm, the strength of the bond between the C/C composite base and the silicon carbide protective layer is undesirably low. Additionally, when the depth is greater than 5 mm, the friction property of the C/C composite becomes undesirably low, which also lowers its resistance to oxidative attack.
  • the amount of wicked silicon which is converted to SiC can be controlled by varying the duration and temperature of the heat treatment step (c). That is, the amount of wicked silicon which is converted will increase with the temperature and duration of the heat treatment step (c).
  • it is possible to convert all of the wicked silicon to SiC but it is preferred to have less than 98wt% of the wicked silicon convert to SiC. More preferably, less than 50wt% of the wicked silicon is converted to SiC. Most preferably, less than 10wt% of the wicked silicon is converted to SiC. It is preferred to reduce the conversion of the silicon to SiC, since the mechanical advantages of the SiC do not outweigh the added cost of the energy input requirements.
  • the ability to control both the high reaction rate between the reactive carbon layer and the liquid silicon to form SiC and the slow rate of wicking allows for the concurrent formation of a thin relatively defect free layer of silicon carbide along with a desired amount of silicon wicking.
  • the wicked silicon firmly binds the silicon carbide layer to the C/C composite base.
  • the present invention preferably includes further treating the silicon carbide coated C/C composite with a phosphoric acid-based retardant solution which comprises the ions formed from the combination of the following: 10-80 wt% H 2 O and 90-20 wt% H 3 PO 4 .
  • the phosphoric acid-based retardant solution preferably comprises the ions formed from the combination of the following: 10-80 wt% H 2 O, 20-70 wt% H 3 PO 4 , 0-25 wt% MnHPO 4 •1.6H 2 O, 0-30 wt% Al (H 2 PO 4 ) 3 0-2 wt% B 2 O 3 , 0-10 wt% Zn 3 (PO 4 ) 2 and 0.1-25 wt% alkali metal mono-, di-, or tri-basic phosphate, wherein at least one of Al (H 2 PO 4 ) 3 MnHPO 4 •1.6H 2 O, Zn 3 (PO 4 ) 2 is present.
  • the phosphoric acid-based retardant solution comprises the ions formed from the combination of the following: 20-50 wt% H 2 O, 30-55 wt% H 3 PO 4 , and 5-20 wt% alkali metal mono-, di-, or tri-basic phosphate by weight.
  • the phosphoric acid-based retardant solution comprises the ions formed from the combination of the following: 20-50 wt% H 2 O, 30-55 wt% H 3 PO 4 ,0-15 wt% MnHPO 4 •1.6H 2 O, 2-15 wt% Al (H 2 PO 4 ) 3 , 0.5-2 wt% B 2 O 3 , 1-7 wt% Zn 3 (PO 4 ) 2 and 10-20 wt% alkali metal mono-, di-, or tri-basic phosphate by weight.
  • the phosphoric acid-based retardant solution comprises the ions formed from the combination of the following: 20-50 wt% H 2 O, 30-55 wt% H 3 PO 4 , 2-15 wt% AlPO 4 , 0.5-2 wt% B 2 O 3 , and 10-20 wt% alkali metal mono-, di-, or tri-basic phosphate by weight.
  • the phosphoric acid-based retardant solution comprises the ions formed from the combination of the following: 20-50 wt% H 2 O, 30-55 wt% H 3 PO 4 , 1-7 wt% Zn 3 (PO 4 ) 2 and 10-20 wt% alkali metal mono-, di-, or tri-basic phosphate by weight.
  • the phosphoric acid-based retardant solution comprises the ions formed from the combination of the following: 20-50 wt% H 2 O, 30-55 wt% H 3 PO 4 , 2-15 wt% MnHPO 4 •1.6H 2 O and 10-20 wt% alkali metal mono-, di-, or tri-basic phosphate by weight.
  • the alkali metal mono-, di-, or tri-basic phosphate is selected from the group consisting of NaH 2 PO 4 , KH 2 PO 4 and mixtures thereof. KH 2 PO 4 is most preferred.
  • the retardant solution contains essentially no HCl, tin oxides, silicon oxides, titanium oxides or lithium compounds.
  • Carbon-carbon composites are generally prepared from carbon preforms.
  • Carbon preforms are made of carbon fibers, which may be formed from pre-oxidized acrylonitrile resin. In one embodiment, these fibers can be layered together to form a shape, such as a friction brake. The shape is heated and infiltrated with methane or another pyrolyzable carbon source to form the carbon-carbon composites.
  • the carbon-carbon composite has a density from about 1.6 to about 1.9 g/cm 3 .
  • a particularly useful carbon-carbon composite has a density of about 1.75 g/cm 3 .
  • Carbon-carbon composites and methods of their manufacture are known to those in the art. Several U.S.
  • Patents describing C/C composites which would be useful in this invention include 5,402,865; 5,437,352; 5,494,139; 5,944,147; 5,699,881; 5,819,882; 5,926,932; 5,143,184; 4,955,123; 5,184,387; 5,113,568; 5,081,754; 5,323,523; 5,705,264; 5,737,821; 5,882,781; 5,388,320; 5,664,305; and 5,962,135.
  • the C/C composite friction material to be protected is masked so that all friction surfaces will remain unaltered.
  • the remaining surfaces comprising the inside and outside surfaces of the disks, non-friction back faces where present, and all surfaces of the insert and anti-rotation notches are covered by brushing or alternatively by spraying with a layer of a carbon suspension to such a level as to fill random surface defects, and leave a substantially continuous layer of carbon at a nominal areal density of 0.005 g/in 2 . (approx. 0.0008 g/cm 2 ).
  • a suitable suspension for this coating comprises 1 part of a carbon black particulate named "AEROSPERSE 15V" and 2 parts de-ionized (DI) water containing approx. 1 ⁇ 2 % of the suspension aid "SUPERLOID” marketed by KELCO ALGINATES (an ammonium alginate compound).
  • the coated materials are air dried in an oven at 70-100°C. for such time as is necessary to stop further weight loss.
  • An alternative method for preparing the C/C composite with a reactive carbon coating is to place the C/C composite in a very smoky flame. This is not the preferred method, since it is not easy to control.
  • the coated materials are overcoated by spraying with an aqueous suspension of pure silicon powder (approx. 20 micron particle size).
  • a suitable goal for this coating would be an areal density of 0.15 g/in 2 .
  • a typical recipe for this spray is: 17g of 1 ⁇ 2 % SUPERLOID in DI water, 23 g of DI water, 53 g of Si powder (20 micron size).
  • the coated materials are again air dried in an oven at 70-100 deg C. for such a time as necessary to stop further weight loss.
  • the twice coated material is placed in a vacuum furnace and heated to approximately 1450 °C for 1 hour to complete the process.
  • Sample disks of C/C composite brake material were prepared for oxidation rate testing. These samples were in the form of disks, all cut for use from the same commercial C/C brake rotor. The disks were machined to approximately two (2) inches in diameter, and the circular faces were ground flat to approximately 0.25 inch thickness to form the uncoated sample coupons. An uncoated sample coupon, denoted Comparative Example 1, was tested for oxidative resistance, and the results are given in the following table.
  • Inventive Examples 1-3 were prepared by coating the sample coupons with a SiC layer.
  • the coupons were first coated with a layer of carbon black dispersed in deionized water containing 0.5 % of an ammonium alginate polymer as a suspension aid.
  • the coating thickness was maintained in the range 0.005-0.010 gm/in 2 .
  • This coating was dried in an air oven at ⁇ 75° C.
  • a suspension of silicon powder (-20 mesh) in deionized water containing 0.5% of an ammonium alginate polymer as a suspension aid a second coating was applied over the carbon black layer at a rate of 0.05-0.20 gm/in 2 .
  • the coated disks were placed in a vacuum furnace and heated to 1450°C. The sample disks were held at this temperature for one hour, and then cooled to room temperature before removal from the furnace to form the SiC coated C/C composite coupons.
  • Comparative Examples 2 and 3 were prepared by painting solutions of Retardants A and B, respectively, on the uncoated sample coupons. Likewise, Inventive Examples 2 and 3 were prepared by painting solutions of Retardants A and B, respectively, on SiC coated C/C composite coupons.
  • Retardant A was prepared by combining 29.6 wt% H 2 O, 49.5 wt% H 3 PO 4 (85%), 2.9 wt% MnHPO 4 , 13.6 wt% Al(H 2 PO 4 ) 3 , 0.9 wt% B 2 O 3 , and 3.5 wt% Zn 3 (PO 4 ) 2 as described in U.S. patent No. 4,837,073.
  • Retardant B is essentially equivalent to Retardant A, except Retardant B also includes 12 wt% of potassium dihydrogen phosphate (KH 2 PO 4 ), as described in U.S patent No. 6,455,159.
  • the sample coupons were weighed, and then exposed to a cyclic heating in air using a cycle of the following description:
  • the synergistic effect is due to the fact that the phosphate compounds, which have inherent oxidation resistant properties, are less likely to be volatilized due to the SiC coating and the phosphate compounds tend to block the passage of oxygen into the interior of the composite by migration into the microcracks of the SiC coating.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Mechanical Engineering (AREA)
  • Ceramic Products (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Braking Arrangements (AREA)
  • Laminated Bodies (AREA)
  • Electroluminescent Light Sources (AREA)
  • Paints Or Removers (AREA)

Claims (18)

  1. Composite C/C revêtu de carbure de silicium, qui est résistant à l'oxydation à températures élevées, comprenant :
    (a) une base formée d'un composite C/C,
    (b) une couche de carbure de silicium formée sur une surface de la base (a), dans laquelle la couche de carbure de silicium (b) est fermement liée à la base de composite C/C (a) par l'intermédiaire d'un excès de silicium n'ayant pas réagi qui s'infiltre de 0,5-5 mm sous la surface de la base de composite C/C (a), comme mesuré dans une direction normale à la surface de la base (a).
  2. Composite C/C revêtu de carbure de silicium selon la revendication 1, dans lequel le composite C/C revêtu de carbure de silicium a été traité à l'aide d'une solution d'agent retardateur qui comprend les ions formés à partir de la combinaison de: 10-80 % en poids de H2O et 90-20 % en poids de H3PO4.
  3. Composite C/C revêtu de carbure de silicium selon la revendication 2, dans lequel le composite C/C revêtu de carbure de silicium a été traité à l'aide d'une solution d'agent retardateur qui comprend les ions formés à partir de la combinaison de: 10-80 % en poids de H2O, 20-70 % en poids de H3PO4, 0-25 % en poids de MnHPO4•1,6H2O, 0-30 % en poids de Al (H2PO4) 3, 0-2 % en poids de B2O3, 0-10 % en poids de Zn3 (PO4) 2 et 0,1-25 % en poids de phosphate mono-, di- ou tri-basique d'un métal alcalin, dans lequel au moins l'un des composés Al (H2PO4) 3, MnHPO4 · 1, 6H2O, et Zn3(PO4) 2 est présent.
  4. Composite C/C revêtu de carbure de silicium selon la revendication 2, dans lequel le composite C/C revêtu de carbure de silicium a été traité à l'aide d'une solution d'agent retardateur qui comprend les ions formés à partir de la combinaison de: 20-50 % en poids de H2O, 30-55 % en poids de H3PO4, et 5-20 % en poids de phosphate mono-, di-, ou tri-basique d'un métal alcalin.
  5. Composite C/C revêtu de carbure de silicium selon la revendication 2, dans lequel le composite C/C revêtu de carbure de silicium a été traité à l'aide d'une solution d'agent retardateur qui comprend les ions formés à partir de la combinaison de: 20-50 % en poids de H2O, 30-55 % en poids de H3PO4, 0-15 % en poids de MnHPO4 · 1, 6H2O, 2-15 % en poids de Al (H2PO4) 3, 0.5-2 % en poids de B2O3, 1-7 % en poids de Zn3 (PO4) 2 et 10-20 % en poids de phosphate mono-, di- ou tri-basique d'un métal alcalin.
  6. Composite C/C revêtu de carbure de silicium selon la revendication 2, dans lequel le composite C/C revêtu de carbure de silicium a été traité à l'aide d'une solution d'agent retardateur qui comprend les ions formés à partir de la combinaison de: 20-50 % en poids de H2O, 30-55 % en poids de H3PO4, 2-15 % en poids de Al (H2PO4) 3, 0,5-2 % en poids de B2O3 et 10-20 % en poids de phosphate mono-, di- ou tri-basique d'un métal alcalin.
  7. Composite C/C revêtu de carbure de silicium selon la revendication 2, dans lequel le composite C/C revêtu de carbure de silicium a été traité à l'aide d'une solution d'agent retardateur qui comprend les ions formés à partir de la combinaison de: 20-50 % en poids de H2O, 30-55 % en poids de H3PO4, 1-7 % en poids de Zn3 (PO4) 2 et 10-20 % en poids de phosphate mono-, di- ou tri-basique d'un métal alcalin.
  8. Composite C/C revêtu de carbure de silicium selon la revendication 2, dans lequel le composite C/C revêtu de carbure de silicium a été traité à l'aide d'une solution d'agent retardateur qui comprend les ions formés à partir de la combinaison de: 20-50 % en poids de H2O, 30-55 % en poids de H3PO4, 2-15 % en poids de MnHPO4 · 1, 6H2O et 10-20 % en poids de phosphate mono-, di- ou tri-basique d'un métal alcalin.
  9. Procédé de préparation d'un composite C/C revêtu de carbure de silicium, selon la revendication 1, qui est résistant à l'oxydation à températures élevées, le procédé comprenant :
    (a) le revêtement d'une base de composite C/C à l'aide d'une composition contenant un carbone réactif pour former un composite C/C revêtu de carbone réactif, opération suivie
    (b) de l'application d'une composition contenant du silicium au composite C/C revêtu de carbone réactif pour former un composite C/C à deux couches,
    (c) du chauffage du composite C/C à deux couches à au moins le point de fusion du silicium pour former le composite C/C revêtu de carbure de silicium.
  10. Procédé selon la revendication 9, dans lequel la composition contenant du silicium comprend une poudre de silicium élémentaire dans une suspension, dans laquelle le poids de la poudre de silicium élémentaire est de 1,5-2,5 fois le poids de la poudre de carbone réactif et dans lequel le composite C/C revêtu de carbone réactif, formé dans l'étape (a), a un revêtement de carbone réactif dont la densité superficielle est de 0,00005-0,0020 g/cm2.
  11. Procédé selon l'une quelconque des revendications 9-10, dans lequel le composite C/C revêtu de carbure de silicium a été traité en plus à l'aide d'une solution d'agent retardateur qui comprend les ions formés à partir de la combinaison de: 10-80 % en poids de H2O et 90-20 % en poids de H3PO4.
  12. Procédé selon la revendication 11, dans lequel la solution d'agent retardateur comprend les ions formés à partir de la combinaison de: 10-80 % en poids de H2O, 20-70 % en poids de H3PO4, 0-25 % en poids de MnHPO4 • 1, 6H2O, 0-30 % en poids de Al (H2PO4) 3, 0-2 % en poids B2O3, 0-10 % en poids de Zn3 (PO4) 2 et 0,1-25 % en poids de phosphate mono-, di- ou tri-basique d'un métal alcalin, dans lequel au moins l'un des composés Al (H2PO4) 3, MnHPO4.1,6H2O, et Zn3 (PO4) 2 est présent.
  13. Procédé selon la revendication 11, dans lequel la solution d'agent retardateur comprend les ions formés à partir de la combinaison de: 20-50 % en poids de H2O, 30-55 % en poids de H3PO4, et 5-20 % en poids de phosphate mono-, di- ou tri-basique d'un métal alcalin.
  14. Procédé selon la revendication 11, dans lequel la solution d'agent retardateur comprend les ions formés à partir de la combinaison de: 20-50 % en poids de H2O, 30-55 % en poids de H3PO4, 0-15 % en poids de MnHPO4.1, 6H2O, 2-15 % en poids de Al (H2PO4) 3, 0,5-2 % en poids de B2O3, 1-7 % en poids de Zn3(PO4) 2 et 10-20 % en poids de phosphate mono-, di- ou tri-basique d'un métal alcalin.
  15. Procédé selon la revendication 11, dans lequel la solution d'agent retardateur comprend les ions formés à partir de la combinaison de: 20-50 % en poids de H2O, 30-55 % en poids de H3PO4, 2-15 % en poids de Al (H2PO4) 3, 0,5-2 % en poids de B2O3 et 10-20 % en poids de phosphate mono-, di-, ou tri-basique d'un métal alcalin.
  16. Procédé selon la revendication 11, dans lequel la solution d'agent retardateur comprend les ions formés à partir de la combinaison de: 20-50 % en poids de H2O, 30-55 % en poids de H3PO4, 1-7 % en poids de Zn3(PO4) 2 et 10-20 % en poids de phosphate mono-, di- ou tri-basique d'un métal alcalin.
  17. Procédé selon la revendication 11, dans lequel la solution d'agent retardateur comprend les ions formés à partir de la combinaison de: 20-50 % en poids de H2O, 30-55 % en poids de H3PO4, 2-15 % en poids de MnHPO4·1,6H2O et 10-20 % en poids de phosphate mono-, di- ou tri-basique d'un métal alcalin.
  18. Utilisation d'un procédé selon l'une quelconque des revendications 9 à 17, pour améliorer la résistance à l'oxydation d'un composite carbone/carbone.
EP20010988184 2000-11-08 2001-11-06 Couche d'infiltration metallique regulee par une barriere de carbone pour protection amelioree contre l'oxydation Expired - Lifetime EP1332121B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US09/708,891 US6555173B1 (en) 2000-11-08 2000-11-08 Carbon barrier controlled metal infiltration layer for enhanced oxidation protection
US708891 2000-11-08
PCT/US2001/044109 WO2002044106A2 (fr) 2000-11-08 2001-11-06 Couche d'infiltration metallique regulee par une barriere de carbone pour protection amelioree contre l'oxydation

Publications (2)

Publication Number Publication Date
EP1332121A2 EP1332121A2 (fr) 2003-08-06
EP1332121B1 true EP1332121B1 (fr) 2004-10-06

Family

ID=24847581

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20010988184 Expired - Lifetime EP1332121B1 (fr) 2000-11-08 2001-11-06 Couche d'infiltration metallique regulee par une barriere de carbone pour protection amelioree contre l'oxydation

Country Status (7)

Country Link
US (2) US6555173B1 (fr)
EP (1) EP1332121B1 (fr)
JP (1) JP2004521054A (fr)
AT (1) ATE278647T1 (fr)
DE (1) DE60106291T2 (fr)
ES (1) ES2228972T3 (fr)
WO (1) WO2002044106A2 (fr)

Families Citing this family (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6896968B2 (en) * 2001-04-06 2005-05-24 Honeywell International Inc. Coatings and method for protecting carbon-containing components from oxidation
DE10161218B4 (de) * 2001-12-13 2004-06-03 Sgl Carbon Ag Verfahren zum Oxidationsschutz faserverstärkter kohlenstoffhaltiger Verbundwerkstoffe und Verwendung eines nach dem Verfahren hergestellten Verbundwerkstoffes
DE10212486A1 (de) * 2002-03-21 2003-10-16 Sgl Carbon Ag Verbundwerkstoff mit Verstärkungsfasern aus Kohlenstoff
US6726753B2 (en) * 2002-07-30 2004-04-27 Honeywell International Inc. Coated carbon brake disc materials
JP4441173B2 (ja) * 2002-12-26 2010-03-31 日本碍子株式会社 セラミックス構造体の製造方法
KR100520436B1 (ko) * 2003-01-30 2005-10-11 한국과학기술원 탄소/탄소 복합재료의 내산화 복합코팅방법
KR100520435B1 (ko) * 2003-01-30 2005-10-11 한국과학기술원 탄소/탄소 복합재료의 내산화 코팅방법
US7641941B2 (en) * 2003-04-22 2010-01-05 Goodrich Corporation Oxidation inhibition of carbon-carbon composites
CN1300260C (zh) * 2004-01-13 2007-02-14 中南大学 碳/碳复合材料抗氧化涂层的前躯体
CN100396649C (zh) * 2005-07-28 2008-06-25 西北工业大学 一种碳/碳复合材料基碳化硅涂层的制备方法
US20070154712A1 (en) * 2005-12-22 2007-07-05 Mazany Anthony M Oxidation inhibition of carbon-carbon composites
US7501181B2 (en) * 2006-03-17 2009-03-10 Honeywell International Inc. Bi-or tri-layer anti-oxidation system for carbon composite brakes
JP4980665B2 (ja) * 2006-07-10 2012-07-18 ルネサスエレクトロニクス株式会社 固体撮像装置
US8262981B2 (en) * 2006-12-18 2012-09-11 Schott Corporation Ceramic material product and method of manufacture
DE102007010675B4 (de) * 2007-03-02 2009-04-23 Astrium Gmbh Verfahren zur Herstellung eines Bauteils aus einer faserverstärkten Keramik, danach hergestelltes Bauteil und dessen Verwendung als Triebwerkskomponente
US20080220256A1 (en) * 2007-03-09 2008-09-11 Ues, Inc. Methods of coating carbon/carbon composite structures
US8603616B1 (en) 2007-09-27 2013-12-10 Schott Corporation Lightweight transparent armor window
US9321692B2 (en) * 2008-08-06 2016-04-26 Honeywell International Inc. Rapid synthesis of silicon carbide-carbon composites
FR2983192B1 (fr) * 2011-11-25 2014-05-23 Commissariat Energie Atomique Procede pour revetir une piece d'un revetement de protection contre l'oxydation par une technique de depot chimique en phase vapeur, et revetement et piece
FR3002952B1 (fr) * 2013-03-08 2015-10-30 Commissariat Energie Atomique Procede de preparation d'un revetement multicouche de ceramiques carbures sur, et eventuellement dans, une piece en un materiau carbone, par une technique d'infiltration reactive a l'etat fondu rmi.
CN104312223B (zh) * 2014-10-09 2016-05-18 新昌县大市聚镇洪聚机械厂 一种航空刹车盘的保护层的制备方法
CN104448957A (zh) * 2014-10-30 2015-03-25 苏州莱特复合材料有限公司 一种基于SiC粉末的C/C刹车片的保护层的制备方法
US10087101B2 (en) 2015-03-27 2018-10-02 Goodrich Corporation Formulations for oxidation protection of composite articles
US10302163B2 (en) 2015-05-13 2019-05-28 Honeywell International Inc. Carbon-carbon composite component with antioxidant coating
US9944526B2 (en) 2015-05-13 2018-04-17 Honeywell International Inc. Carbon fiber preforms
US10131113B2 (en) 2015-05-13 2018-11-20 Honeywell International Inc. Multilayered carbon-carbon composite
US10035305B2 (en) 2015-06-30 2018-07-31 Honeywell International Inc. Method of making carbon fiber preforms
US10022890B2 (en) 2015-09-15 2018-07-17 Honeywell International Inc. In situ carbonization of a resin to form a carbon-carbon composite
EP3159325B1 (fr) 2015-10-22 2020-07-08 Rolls-Royce High Temperature Composites Inc Réduction des impuretés dans des composites à matrice céramique
US10300631B2 (en) 2015-11-30 2019-05-28 Honeywell International Inc. Carbon fiber preforms
US10377675B2 (en) 2016-05-31 2019-08-13 Goodrich Corporation High temperature oxidation protection for composites
US10465285B2 (en) 2016-05-31 2019-11-05 Goodrich Corporation High temperature oxidation protection for composites
US10508206B2 (en) 2016-06-27 2019-12-17 Goodrich Corporation High temperature oxidation protection for composites
US10767059B2 (en) 2016-08-11 2020-09-08 Goodrich Corporation High temperature oxidation protection for composites
US10526253B2 (en) 2016-12-15 2020-01-07 Goodrich Corporation High temperature oxidation protection for composites
FR3063500B1 (fr) * 2017-03-02 2021-04-23 Safran Ceram Procede de fabrication d'une piece revetue
US11053168B2 (en) 2018-03-20 2021-07-06 Goodrich Corporation Systems and methods for carbon structures incorporating silicon carbide
US11046619B2 (en) 2018-08-13 2021-06-29 Goodrich Corporation High temperature oxidation protection for composites
US11634213B2 (en) 2018-11-14 2023-04-25 Goodrich Corporation High temperature oxidation protection for composites
US12024476B2 (en) 2020-02-21 2024-07-02 Honeywell International Inc. Carbon-carbon composite including antioxidant coating
US20220250996A1 (en) 2021-02-05 2022-08-11 Honeywell International Inc. High temperature coatings
US20220348513A1 (en) 2021-04-21 2022-11-03 Honeywell International Inc. Contact joule heating for sintering high temperature coatings
US11866377B2 (en) 2021-04-21 2024-01-09 Honeywell International Inc. High temperature interfaces for ceramic composites
US20220348511A1 (en) 2021-04-21 2022-11-03 Honeywell International Inc. Non-contact radiative heating for sintering high temperature coatings
US20220388917A1 (en) * 2021-06-03 2022-12-08 Honeywell International Inc. High temperature metal carbide coatings
US20240051885A1 (en) * 2022-08-10 2024-02-15 Honeywell International Inc. Hybrid high and low temperature coating

Family Cites Families (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3553010A (en) 1967-07-26 1971-01-05 Sigri Elektrographit Gmbh Carbon or graphite formed body
US3650357A (en) 1969-05-08 1972-03-21 Goodyear Tire & Rubber Disc brake with homogeneous brake stack
US3897582A (en) 1970-08-21 1975-07-29 Atlantic Res Corp Braking elements
NL7400271A (nl) 1973-04-24 1974-10-28 Gen Electric Werkwijze voor het bereiden van een met silicium samengesteld voorwerp, alsmede aldus bereid voorwerp
GB1455768A (en) 1974-09-09 1976-11-17 Secr Defence Anti-oxidation coatings
US3966029A (en) 1974-11-29 1976-06-29 Spain Raymond G Two piece brake disc
US4214651A (en) 1978-11-06 1980-07-29 The Bendix Corporation Friction disc for an aircraft brake
US4294788A (en) 1979-12-05 1981-10-13 General Electric Company Method of making a shaped silicon carbide-silicon matrix composite and articles made thereby
US4404154A (en) * 1979-12-07 1983-09-13 Arons Richard M Method for preparing corrosion-resistant ceramic shapes
US4700823A (en) 1980-03-28 1987-10-20 Eaton Corporation Clutch with pyrolytic carbon friction material
US4487799A (en) 1982-06-24 1984-12-11 United Technologies Corporation Pyrolytic graphite pretreatment for carbon-carbon composites
US4613522A (en) 1982-09-29 1986-09-23 Avco Corporation Oxidation resistant carbon-carbon composites
US4668579A (en) 1984-02-01 1987-05-26 The United States Of America As Represented By The Secretary Of The Air Force Interstitially protected oxidation resistant carbon-carbon composite
JPS61218841A (ja) 1985-03-26 1986-09-29 Nissan Motor Co Ltd デイスクブレ−キ用ロ−タ
US4671997A (en) 1985-04-08 1987-06-09 United Technologies Corporation Gas turbine composite parts
US4837073A (en) * 1987-03-30 1989-06-06 Allied-Signal Inc. Barrier coating and penetrant providing oxidation protection for carbon-carbon materials
US5225283A (en) 1987-04-24 1993-07-06 Allied-Signal Inc. Coating for protecting a carbon-carbon composite from oxidative degradation
US4815572A (en) 1987-07-24 1989-03-28 Parker-Hannifin Corporation Brake system with improved brake material
JPS6430152A (en) 1987-07-24 1989-02-01 Meitec Corp Rotary groove type anode x-ray generator
US5756160A (en) 1988-03-28 1998-05-26 Hughes Aircraft Surface protection for carbon composite materials
JPH01320152A (ja) * 1988-06-21 1989-12-26 Kawasaki Steel Corp 炭素繊維強化炭素材料
DE69128080T2 (de) 1990-05-18 1998-02-26 Hitco Technologies Inc., Gardena, Calif. Werkstoffe für cdv-verfahren
JPH0813713B2 (ja) 1990-10-11 1996-02-14 東芝セラミックス株式会社 SiC被覆C/C複合材
US5283109A (en) 1991-04-15 1994-02-01 Ultramet High temperature resistant structure
US5083650A (en) 1991-05-24 1992-01-28 Minnesota Mining And Manufacturing Company Friction material having heat-resistant paper support bearing resin-bonded carbon particles
DE4136880C2 (de) * 1991-11-09 1994-02-17 Sintec Keramik Gmbh Verfahren zur Herstellung eines oxidationsbeständigen Bauteils auf CFC-Basis und dessen Anwendung
US5525372A (en) 1992-09-08 1996-06-11 The United States Of America As Represented By The Secretary Of The Army Method of manufacturing hybrid fiber-reinforced composite nozzle material
JPH0826302B2 (ja) 1992-10-19 1996-03-13 ジュシクホエサ エルリム エンジニアリング 非石綿成形磨擦材用組成物及び非石綿成形磨擦材の製造方法
JPH08157273A (ja) * 1994-12-01 1996-06-18 Tonen Corp 一方向性炭素繊維強化炭素複合材料及びその製造方法
FR2741063B1 (fr) * 1995-11-14 1998-02-13 Europ Propulsion Procede pour l'introduction dans des substrats poreux d'une composition en fusion a base de silicium
US5962103A (en) 1997-01-13 1999-10-05 General Electric Company Silicon carbide-silicon composite having improved oxidation resistance and method of making
US5952100A (en) 1997-05-21 1999-09-14 General Electric Company Silicon-doped boron nitride coated fibers in silicon melt infiltrated composites
US6455159B1 (en) 2000-02-18 2002-09-24 Honeywell International Inc. Oxidation protection for carbon/carbon composites and graphites

Also Published As

Publication number Publication date
WO2002044106A3 (fr) 2003-04-03
US6756121B2 (en) 2004-06-29
DE60106291D1 (de) 2004-11-11
US6555173B1 (en) 2003-04-29
JP2004521054A (ja) 2004-07-15
WO2002044106A2 (fr) 2002-06-06
US20030143436A1 (en) 2003-07-31
ES2228972T3 (es) 2005-04-16
DE60106291T2 (de) 2006-02-23
ATE278647T1 (de) 2004-10-15
EP1332121A2 (fr) 2003-08-06

Similar Documents

Publication Publication Date Title
EP1332121B1 (fr) Couche d'infiltration metallique regulee par une barriere de carbone pour protection amelioree contre l'oxydation
JP4241042B2 (ja) 炭素/炭素複合または黒鉛摩擦材料の改善された酸化保護
EP1255713B1 (fr) Protection anti-oxydation amelioree pour composites carbone/carbone et graphites
CA2616155C (fr) Protection anti-oxydation de pieces en un materiau composite contenant du carbone
JP4331683B2 (ja) カーボン−カーボン摩擦材用高温酸化防止剤
EP1768939B1 (fr) Systeme antioxydant destine a des materiaux de frein carbone-carbone a resistance amelioree a l'exposition a l'humidite
US20100266770A1 (en) Oxidation inhibition of carbon-carbon composites
EP3653593A1 (fr) Protection contre l'oxydation à haute température pour des composites
EP0606851A1 (fr) L'inhibition de l'oxydation catalysé des composites carbone-carbone
EP0677499B1 (fr) Inhibition de l'oxydation catalysé des composites carbone-carbone
KR101095201B1 (ko) 탄소함유 복합재 부품의 항산화 보호 및 이와 같이 보호된부품
CN118076572A (zh) 用于保护碳/碳复合材料部件免于氧化的方法
KR20070019794A (ko) 습기 노출에 대한 강화된 저항성을 가진 카본-카본브레이크 물질들에 관한 항산화 시스템

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20030509

AK Designated contracting states

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

17Q First examination report despatched

Effective date: 20031010

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20041006

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20041006

Ref country code: CH

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20041006

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20041006

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20041006

Ref country code: LI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20041006

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20041006

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20041006

Ref country code: BE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20041006

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041106

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041108

REF Corresponds to:

Ref document number: 60106291

Country of ref document: DE

Date of ref document: 20041111

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050106

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050106

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2228972

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

ET Fr: translation filed
REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

26N No opposition filed

Effective date: 20050707

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050306

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20081125

Year of fee payment: 8

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20110330

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20101022

Year of fee payment: 10

Ref country code: IT

Payment date: 20101119

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110317

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091107

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20111103

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20111130

Year of fee payment: 11

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20121106

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20130731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121106

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 60106291

Country of ref document: DE

Effective date: 20130601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121106

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121130

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230525