EP1327766B1 - Verfahren, Computerprogramm und Steuer- und/oder Regelgerät zum Betreiben einer Brennkraftmaschine, sowie Brennkraftmaschine - Google Patents

Verfahren, Computerprogramm und Steuer- und/oder Regelgerät zum Betreiben einer Brennkraftmaschine, sowie Brennkraftmaschine Download PDF

Info

Publication number
EP1327766B1
EP1327766B1 EP20020026217 EP02026217A EP1327766B1 EP 1327766 B1 EP1327766 B1 EP 1327766B1 EP 20020026217 EP20020026217 EP 20020026217 EP 02026217 A EP02026217 A EP 02026217A EP 1327766 B1 EP1327766 B1 EP 1327766B1
Authority
EP
European Patent Office
Prior art keywords
fuel
combustion engine
internal combustion
operating
delivery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP20020026217
Other languages
English (en)
French (fr)
Other versions
EP1327766A3 (de
EP1327766A2 (de
Inventor
Helmut Rembold
Thomas Frenz
Wolfgang Bueser
Uwe Richter
Timm Hollmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP1327766A2 publication Critical patent/EP1327766A2/de
Publication of EP1327766A3 publication Critical patent/EP1327766A3/de
Application granted granted Critical
Publication of EP1327766B1 publication Critical patent/EP1327766B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/3809Common rail control systems
    • F02D41/3836Controlling the fuel pressure
    • F02D41/3845Controlling the fuel pressure by controlling the flow into the common rail, e.g. the amount of fuel pumped
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M59/00Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps
    • F02M59/20Varying fuel delivery in quantity or timing
    • F02M59/36Varying fuel delivery in quantity or timing by variably-timed valves controlling fuel passages to pumping elements or overflow passages
    • F02M59/366Valves being actuated electrically
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/02Fuel-injection apparatus having several injectors fed by a common pumping element, or having several pumping elements feeding a common injector; Fuel-injection apparatus having provisions for cutting-out pumps, pumping elements, or injectors; Fuel-injection apparatus having provisions for variably interconnecting pumping elements and injectors alternatively
    • F02M63/0225Fuel-injection apparatus having a common rail feeding several injectors ; Means for varying pressure in common rails; Pumps feeding common rails
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2250/00Engine control related to specific problems or objectives
    • F02D2250/31Control of the fuel pressure

Definitions

  • the invention relates firstly to a method for operating an internal combustion engine in which a fuel pump is driven by an output shaft of the internal combustion engine and the fuel is conveyed by the fuel pump into a fuel manifold, from which it passes through at least one fuel injection device in at least one combustion chamber, and wherein the amount of fuel delivered into the fuel rail from the fuel pump is adjusted by a valve means which can connect and disconnect a pressure side of the fuel pump at least temporarily with a low pressure region.
  • Such a method is known from DE 195 39 885 A1 known.
  • a first, electrically driven fuel pump delivers the fuel from a fuel reservoir via a fuel connection to a second, mechanically driven by the internal combustion engine fuel pump.
  • the second fuel pump in turn promotes the fuel via a fuel rail ("rail") to several Fuel injection valves.
  • the number of fuel injection valves is equal to the number of cylinders of the internal combustion engine.
  • the fuel supply system is constructed so that the fuel injectors inject the fuel directly into the combustion chambers of the internal combustion engine.
  • the second fuel pump Since the second fuel pump is mechanically coupled to an output shaft of the internal combustion engine, the second fuel pump operates in proportion to the rotational speed of the output shaft of the internal combustion engine. This speed of the output shaft can be very different, depending on the current operating condition of the internal combustion engine.
  • the output shaft can be, for example, a crankshaft or a camshaft of the internal combustion engine.
  • an electromagnetic pressure switching valve is provided. With this, a pressure side of the second fuel pump can be connected to a low-pressure side of the second fuel pump. In another switching position of the pressure switching valve, this connection is interrupted. When the connection between the high-pressure side and the low-pressure side is opened, the second fuel pump circulates the fuel from its high-pressure side to the low-pressure side. A promotion in the fuel rail does not take place.
  • the mass control valve may only be closed during a delivery stroke of the fuel pump for a very short period of time. Due to the inertia of the valve element and the minimum required for the degradation of the magnetic field period, the valve element does not open at any speed. Very small flow rates can therefore be realized only with comparatively large valve seats.
  • the present invention has the object of developing a method of the type mentioned above so that on the one hand robust components can be used, which have a long life, and on the other hand, the adjustment of the funded by the fuel pump in the fuel rail fuel amount is as large as possible.
  • the amount of fuel that is injected as accurately as possible should be nachgealtert, and the pressure in the fuel rail should be as accurate as possible.
  • a piston pump is used with at least one pumping chamber, that a plurality of operating areas 1, ..., n of the internal combustion engine is provided, and that at least temporarily in a first operating range the internal combustion engine, the delivery chamber during each c1-th delivery stroke and an n-th operating range of the internal combustion engine during each cn-th delivery stroke is separated by the valve means for a certain duration of the low pressure region, where: c1, ..., cn are different.
  • a piston pump as a fuel pump has the advantage that very high pressures in the fuel rail with low wear of the fuel pump can be achieved. It builds a piston pump very easy and is therefore inexpensive. This applies in particular to the use of a 1-cylinder piston pump.
  • a piston pump operates discontinuously, i. it is only during a delivery stroke of the fuel pump fuel can be pressed into the fuel rail. If the maximum amount of fuel to be funded by the fuel pump, the valve device remains closed during the entire delivery stroke. The fuel delivery volume is thus completely pressed into the fuel rail. If a smaller amount of fuel to be conveyed into the fuel rail, the valve device is opened during a delivery stroke. As soon as the valve device is opened, the remaining delivery volume is no longer conveyed into the fuel collecting line but into the low-pressure region.
  • the problem is the promotion of small and very small amounts of fuel in the fuel rail.
  • Such a very small amount of promotion is desirable, for example, when the internal combustion engine and the fuel pump coupled with it rotate at high speed, but the internal combustion engine is operated only with low load and thus only little fuel from the fuel rail passes into the combustion chambers. In this case, in a delivery stroke of the fuel pump only a very small amount of fuel should be nachgeschreibt in the fuel rail.
  • the valve device is not actuated at every delivery stroke, but only at every cn-th delivery stroke. In this way, the period during which the valve device is closed may be longer than in the case where the valve device is closed during each delivery stroke. At the same time, however, the promotion of very small quantities by the fuel pump is possible in a thus operated internal combustion engine. This is possible only through "software-technical" measures.
  • a less frequent control of the valve device is selected when the representation of the desired delivery rate is no longer possible due to the system-related limits of the valve device. These systemic limits are reached when a safe closing of the valve device is no longer guaranteed due to the short time available. However, the activation of the valve device must still take place so frequently that the maximum permissible pressure pulsations on the one hand in the low-pressure region and on the other hand in the fuel collecting line are not exceeded.
  • the operating ranges of the internal combustion engine are defined at least by a rotational speed range of a crankshaft of the internal combustion engine and by a range of fuel mass to be introduced into a combustion chamber during injection from the fuel injector or by a range of fuel pressure prevailing in the fuel rail.
  • the invention also relates to a computer program suitable for carrying out the above method when executed on a computer. It is particularly preferred if the computer program is stored on a memory, in particular on a flash memory.
  • the invention relates to a control and / or regulating device for operating an internal combustion engine.
  • a control and regulating device is preferred if a computer program of the above type is stored on it.
  • Part of the invention is also an internal combustion engine, with a fuel pump, which is driven by an output shaft of the internal combustion engine, with a fuel rail, in which promotes the fuel pump, with a fuel injector, which is connected to the fuel rail, with a Combustion chamber, in which the fuel injection device injects the fuel, and with a valve device which can connect a pressure side of the fuel pump with a low-pressure region and separated from this.
  • the fuel pump comprises a piston pump with at least one delivery chamber
  • the internal combustion engine comprises a control and / or regulating device which has a plurality of operating regions 1, ...
  • n of the internal combustion engine of the internal combustion engine recognizes and which controls the valve device so that at least temporarily in a first operating range of the internal combustion engine, the pumping chamber at every c1-th delivery stroke and in an nth Operating range of the internal combustion engine at each cn-th delivery stroke is separated by the valve device for a certain period of time from the low pressure region, where: c1, ..., cn are different.
  • an internal combustion engine carries the overall reference numeral 10. It comprises a fuel tank 12, from which an electrically driven fuel pump 14 conveys the fuel into a low-pressure fuel line 16. This leads to a high-pressure fuel pump 18. Via a high-pressure fuel line 20, the fuel continues to a fuel manifold 22. In this fuel of high pressure can be stored. To the fuel rail 22 a plurality of fuel injectors 24 are connected. These inject the Fuel directly into combustion chambers 26 a. By the combustion of the fuel in the combustion chambers 26, a crankshaft 28 is rotated. About a in Fig. 1 only symbolically shown mechanical coupling 30, the high-pressure fuel pump 18 is driven by the crankshaft 28.
  • the high-pressure fuel pump 18 is a 1-cylinder piston pump.
  • a piston 34 is set in a reciprocating motion by a drive cam 32 arranged on a shaft 33.
  • the piston 34 is guided in a housing 36. It limits a delivery chamber 38.
  • the delivery chamber 38 can be connected to the low-pressure fuel line 16.
  • the inlet valve 40 is designed as a spring-loaded check valve.
  • the delivery chamber 38 can be connected to the high-pressure fuel line 20.
  • the outlet valve 42 is also a spring-loaded check valve.
  • the delivery chamber 38 can also be connected to the low-pressure fuel line 16 via a quantity control valve 44.
  • the quantity control valve 44 is a 2/2-way valve. In the open rest position, it is acted upon by a spring 46 (in an embodiment not shown, the opening of the quantity control valve is also only on the pressure in the delivery chamber). In the closed switching position, it is brought by an electromagnetic actuator 48. This comprises a magnet armature 52 which is connected to a valve element 50 and which is surrounded by a magnet coil 54.
  • the magnetic coil 54 is energized by an amplifier, not shown.
  • the final stage in turn is controlled by a control and regulating device 56.
  • the control and regulating device 56 receives signals from a rotational speed sensor 58 which determines the rotational speed of the crankshaft 28 of the internal combustion engine 10 taps.
  • the control and regulating unit 56 is connected on the input side to a pressure sensor 60, which detects the pressure prevailing in the fuel collecting line 22 and sends corresponding signals to the control and regulating device 56.
  • the piston 34 moves downwards, so that fuel flows via the inlet valve 40 into the delivery chamber 38. After reaching bottom dead center, the piston 34 moves upward again (FIG. 3).
  • the solenoid 54 of the quantity control valve 44 is energized so that it closes at the latest with the reaching of the bottom dead center of the piston 34. Also, the inlet valve 40 closes.
  • the opening pressure of the outlet valve 42 in the delivery chamber 38 is exceeded, this opens.
  • the fuel can thus be pressed into the fuel rail 22.
  • the energization of the solenoid coil 54 of the quantity control valve 44 is terminated so that it switches back to its open rest position. This is shown in Fig. 4.
  • the fuel can thus escape from the delivery chamber 38 via the open quantity control valve 44 into the low-pressure fuel line 16. Accordingly, the exhaust valve 42 closes.
  • the maximum amount of fuel that can be conveyed during a delivery stroke of the piston 34 is substantially independent of the rotational speed of the crankshaft 28 and the related thereto Duration of a delivery stroke. However, the absolute duration of a delivery stroke decreases inversely proportional to the speed of the crankshaft 28. If, for example, only one-third of the maximum possible flow rate during a delivery of the fuel pump 18 are promoted, this means that the quantity control valve 44 approximately in about one-third of Hubs of the piston 34 must open ("approximately" because the delivery rate is not proportional to the delivery stroke and the driving time of the quantity control valve).
  • the period which elapses from the bottom dead center of the piston 34 in which the quantity control valve 44 closes at the latest to the required opening timing of the quantity control valve 44 is shorter at a high speed than at a low speed, assuming an equal amount of fuel to be delivered.
  • the pumping chamber 38 is activated during the entire operating range in which the internal combustion engine 10 operates each ci-th delivery stroke for a certain duration by the quantity control valve 44 separated from the low-pressure fuel line.
  • parameters are stored, are defined by the two operating ranges of the internal combustion engine 10. These parameters are on the one hand to a speed nmot of the crankshaft 28 of the internal combustion engine 10, on the other hand to the from the fuel injector 24 during an injection to be injected fuel mass m and finally to the current prevailing in the fuel rail 22 fuel pressure pr.
  • the two operating regions have the reference numerals 62 and 64.
  • the solenoid 54 is shortly before the beginning of each delivery stroke for a energized for a specific period of time. This is shown in FIGS. 7 and 8. This ensures that the quantity control valve 44 is actually closed at the beginning of the delivery stroke.
  • a conveying stroke carries the reference character 66 in FIG. 7, the corresponding current pulses in FIG. 8 the reference symbols 68. This means that the delivery chamber 38 is separated from the low-pressure fuel line 16 during each delivery stroke 66 for a certain duration, ie at each Delivery stroke 66 takes place a promotion of fuel.
  • the energization of the quantity control valve 44 may possibly be terminated immediately before the start of a delivery stroke 66. With suitable temporal positioning takes place, inter alia, due to the inertia, a delayed opening immediately after the start of the delivery. Such a shift of the drive end of the quantity control valve 44 allows a reduction of the rest magnetism built up by the current supply, which is present after switching off the quantity control valve 44.
  • the solenoid 54 In the operating range 64, however, ie at medium to high speed nmot, at medium to low fuel mass m to be injected and at medium to low fuel pressure pr in the fuel rail 22, is the solenoid 54, however, energized only every third delivery stroke 66. This is shown in FIGS. 9 and 10.
  • the quantity control valve 44 In the intermediate two delivery strokes 66, the quantity control valve 44 remains in this operating region 64 of the internal combustion engine 10 in its open rest position. A promotion of fuel through the high pressure fuel pump 18 does not take place at these two delivery strokes 66. In this way, it is possible to promote only a very small amount of fuel from the high-pressure fuel pump 18 per unit time, even at high speed nmot, without the minimum possible closing time of the quantity control valve 44 is exceeded.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fuel-Injection Apparatus (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Description

    Stand der Technik
  • Die Erfindung betrifft zunächst ein Verfahren zum Betreiben einer Brennkraftmaschine, bei dem eine Kraftstoffpumpe von einer Abtriebswelle der Brennkraftmaschine angetrieben und der Kraftstoff von der Kraftstoffpumpe in eine Kraftstoff-Sammelleitung gefördert wird, von der er über mindestens eine Kraftstoff-Einspritzvorrichtung in mindestens einen Brennraum gelangt, und bei dem die Menge des von der Kraftstoffpumpe in die Kraftstoff-Sammelleitung geförderten Kraftstoffs durch eine Ventileinrichtung eingestellt wird, welche eine Druckseite der Kraftstoffpumpe wenigstens zeitweise mit einem Niederdruckbereich verbinden und von diesem trennen kann.
  • Ein derartiges Verfahren ist aus der DE 195 39 885 A1 bekannt. In dieser ist eine Kraftstoffversorgungsanlage für eine Brennkraftmaschine mit Benzin-Direkteinspritzung beschrieben. Eine erste, elektrisch angetriebene Kraftstoffpumpe fördert den Kraftstoff aus einem Kraftstoff-Vorratsbehälter über eine Kraftstoffverbindung zu einer zweiten, von der Brennkraftmaschine mechanisch angetriebenen Kraftstoffpumpe. Die zweite Kraftstoffpumpe ihrerseits fördert den Kraftstoff über eine Kraftstoff-Sammelleitung ("Rail") zu mehreren Kraftstoff-Einspritzventilen. Die Anzahl der Kraftstoff-Einspritzventile ist gleich der Anzahl der Zylinder der Brennkraftmaschine. Die Kraftstoffversorgungsanlage ist so gebaut, dass die Kraftstoff-Einspritzventile den Kraftstoff direkt in die Brennräume der Brennkraftmaschine einspritzen.
  • Da die zweite Kraftstoffpumpe mechanisch mit einer Abtriebswelle der Brennkraftmaschine gekoppelt ist, arbeitet die zweite Kraftstoffpumpe proportional zur Drehzahl der Abtriebswelle der Brennkraftmaschine. Diese Drehzahl der Abtriebswelle kann, je nach augenblicklicher Betriebsbedingung der Brennkraftmaschine, sehr unterschiedlich sein. Bei der Abtriebswelle kann es sich beispielsweise um eine Kurbelwelle oder um eine Nockenwelle der Brennkraftmaschine handeln.
  • Um die von der zweiten Kraftstoffpumpe in die Kraftstoff-Sammelleitung geförderte Kraftstoffmenge unabhängig von der Drehzahl der Brennkraftmaschine einstellen zu können, ist ein elektromagnetisches Druckschaltventil vorgesehen. Mit diesem kann eine Druckseite der zweiten Kraftstoffpumpe mit einer Niederdruckseite der zweiten Kraftstoffpumpe verbunden werden. In einer anderen Schaltstellung des Druckschaltventils ist diese Verbindung unterbrochen. Ist die Verbindung zwischen der Hochdruckseite und der Niederdruckseite geöffnet, wälzt die zweite Kraftstoffpumpe den Kraftstoff von ihrer Hochdruckseite auf die Niederdruckseite. Eine Förderung in die Kraftstoff-Sammelleitung findet also nicht statt.
  • Um eine kleine Kraftstoffmenge zu fördern, darf das Mengensteuerventil während eines Förderhubs der Kraftstoffpumpe nur während eines sehr kurzen Zeitraums geschlossen sein. Aufgrund der Massenträgheit des Ventilelements und des für den Abbau des Magnetfelds minimal erforderlichen Zeitraums öffnet das Ventilelement nicht beliebig schnell. Sehr kleine Fördermengen können daher nur mit vergleichsweise großen Ventilsitzen realisiert werden.
  • Diese erfordern aber einen entsprechend groß dimensionierten Magnetkreis, der wiederum relativ träge ist.
  • Ein weiteres Verfahren ist aus der US-6237573 bekannt.
  • Die vorliegende Erfindung hat die Aufgabe, ein Verfahren der eingangs genannten Art so weiterzubilden, dass einerseits robuste Komponenten verwendet werden können, welche eine lange Lebensdauer aufweisen, und dass andererseits der Einstellbereich der von der Kraftstoffpumpe in die Kraftstoff-Sammelleitung geförderten Kraftstoffmenge möglichst groß ist. Außerdem soll möglichst exakt jene Kraftstoffmenge nachgefördert werden können, die eingespritzt wird, und der Druck in der Kraftstoff-Sammelleitung soll möglichst exakt eingestellt werden können.
  • Diese Aufgabe wird bei einem Verfahren der eingangs genannten Art dadurch gelöst, dass als Kraftstoffpumpe eine Kolbenpumpe mit mindestens einem Förderraum verwendet wird, dass eine Mehrzahl von Betriebsbereichen 1, ..., n der Brennkraftmaschine vorgesehen ist, und dass wenigstens zeitweise in einem ersten Betriebsbereich der Brennkraftmaschine der Förderraum während jedes c1-ten Förderhubs und in einem n-ten Betriebsbereich der Brennkraftmaschine während jedes cn-ten Förderhubs durch die Ventileinrichtung für eine bestimmte Dauer vom Niederdruckbereich getrennt wird, wobei gilt: c1, ..., cn sind unterschiedlich.
  • Vorteile der Erfindung
  • Die Verwendung einer Kolbenpumpe als Kraftstoffpumpe hat den Vorteil, dass sehr hohe Drücke in der Kraftstoff-Sammelleitung bei gleichzeitig geringem Verschleiß der Kraftstoffpumpe erzielbar sind. Dabei baut eine Kolbenpumpe sehr einfach und ist daher preiswert. Dies gilt insbesondere für die Verwendung einer 1-Zylinder-Kolbenpumpe.
  • Trotz des Einsatzes einer Kolbenpumpe können mit dem erfindungsgemäßen Verfahren je nach Anforderung sehr große, aber auch kleine und kleinste Kraftstoffmengen zur Kraftstoff-Sammelleitung hin gefördert werden. Ein Überdruck-Rücklauf von der Kraftstoff-Sammelleitung kann somit relativ klein dimensioniert werden, und die für den Antrieb der Kraftstoffpumpe erforderliche Energie ist dann, wenn nur wenig Kraftstoff in die Kraftstoff-Sammelleitung gefördert werden soll, nur relativ gering. Dem liegt folgender Gedanke zugrunde:
  • Eine Kolbenpumpe arbeitet diskontinuierlich, d.h. es kann nur während eines Förderhubs der Kraftstoffpumpe Kraftstoff in die Kraftstoff-Sammelleitung gepresst werden. Soll die maximale Kraftstoffmenge von der Kraftstoffpumpe gefördert werden, bleibt die Ventileinrichtung während des gesamten Förderhubs geschlossen. Das Kraftstoff-Fördervolumen wird somit vollständig in die Kraftstoff-Sammelleitung gepresst. Soll eine geringere Menge an Kraftstoff in die Kraftstoff-Sammelleitung gefördert werden, wird während eines Förderhubs die Ventileinrichtung geöffnet. Sobald die Ventileinrichtung geöffnet ist, wird das verbleibende Fördervolumen nicht mehr in die Kraftstoff-Sammelleitung, sondern in den Niederdruckbereich gefördert.
  • Problematisch ist die Förderung von Klein- und Kleinstmengen von Kraftstoff in die Kraftstoff-Sammelleitung. Eine derartige Kleinstmengenförderung ist beispielsweise dann wünschenswert, wenn die Brennkraftmaschine und die mit ihr gekoppelte Kraftstoffpumpe mit hoher Drehzahl drehen, die Brennkraftmaschine jedoch nur mit geringer Last betrieben wird und somit nur wenig Kraftstoff aus der Kraftstoff-Sammelleitung in die Brennräume gelangt. In diesem Fall sollte bei einem Förderhub der Kraftstoffpumpe nur eine äußerst geringe Kraftstoffmenge in die Kraftstoff-Sammelleitung nachgefördert werden.
  • Dies wird erfindungsgemäß folgendermaßen realisiert:
  • Wird die Brennkraftmaschine in einem Betriebsbereich betrieben, in dem die Kraftstoffpumpe nur eine geringe Kraftstoffmenge fördern soll, und liegt eine relativ gesehen hohe Drehzahl der Brennkraftmaschine vor, wird die Ventileinrichtung nicht bei jedem Förderhub, sondern nur bei jedem cn-ten Förderhub angesteuert. Auf diese Weise kann der Zeitraum, während dem die Ventileinrichtung geschlossen ist, länger sein als in jenem Fall, in dem die Ventileinrichtung während eines jeden Förderhubs geschlossen wird. Gleichzeitig ist jedoch auch die Förderung von Kleinstmengen durch die Kraftstoffpumpe bei einer solchermaßen betriebenen Brennkraftmaschine möglich. Dies ist allein durch "softwaretechnische" Maßnahmen möglich.
  • Eine weniger häufige Ansteuerung der Ventileinrichtung wird gewählt, wenn die Darstellung der gewünschten Fördermenge aufgrund der systembedingten Grenzen der Ventileinrichtung nicht mehr möglich ist. Diese systembedingten Grenzen sind dann erreicht, wenn ein sicheres Schließen der Ventileinrichtung aufgrund der nur kurzen zur Verfügung stehenden Zeit nicht mehr gewährleistet ist. Die Ansteuerung der Ventileinrichtung muss aber noch so häufig erfolgen, dass die maximal zulässigen Druckpulsationen einerseits im Niederdruckbereich und andererseits in der Kraftstoff-Sammelleitung nicht überschritten werden.
  • Grundsätzlich gilt, dass ci (i = 1 bis n) jede natürliche Zahl einschließlich 0 annehmen kann. Bei ci = 0 bleibt das Mengensteuerventil immer geöffnet, es findet also überhaupt keine Förderung statt. Bei ci = 1 findet bei jedem Förderhub eine Förderung statt. Bei ci > 1 wird gefördert, jedoch nicht bei jedem Förderhub.
  • Vorteilhafte Weiterbildungen der Erfindung sind in Unteransprüchen angegeben.
  • Zunächst wird vorgeschlagen, dass zwei Betriebsbereiche der Brennkraftmaschine vorgesehen sind und dass in dem ersten Betriebsbereich der Brennkraftmaschine der Förderraum bei jedem Förderhub und in dem zweiten Betriebsbereich der Brennkraftmaschine der Förderraum bei jedem dritten Förderhub durch die Ventileinrichtung vom Niederdruckbereich getrennt wird. Der Vorteil dieser Weiterbildung liegt zum einen in der einfachen softwaretechnischen Realisierbarkeit, da nur zwei Betriebsbereiche berücksichtigt werden müssen. Zum anderen sind mit einer Ansteuerung der Ventileinrichtung nur bei jedem dritten Förderhub auch solche Kleinst-Fördermengen der Kraftstoffpumpe darstellbar, wie sie insbesondere bei hohen Drehzahlen und geringer Last einer Brennkraftmaschine gewünscht werden.
  • Besonders bevorzugt ist ein solches Verfahren, bei dem zwei benachbarte Betriebsbereiche sich so überlappen, dass ein Hysteresebereich gebildet wird. Hierdurch wird vermieden, dass bei einem Betrieb der Brennkraftmaschine im Grenzbereich zwischen zwei benachbarten Betriebsbereichen eine ständige Umschaltung von einer Ansteuerart der Ventileinrichtung in eine andere Ansteuerart erfolgt.
  • Ferner wird vorgeschlagen, dass die Betriebsbereiche der Brennkraftmaschine mindestens durch einen Drehzahlbereich einer Kurbelwelle der Brennkraftmaschine und durch einen Bereich einer bei einer Einspritzung von der Kraftstoff-Einspritzvorrichtung in einen Brennraum einzubringenden Kraftstoffmasse oder durch einen Bereich eines in der Kraftstoff-Sammelleitung herrschenden Kraftstoffdrucks definiert sind. Mit diesen Parametern und den bekannten Systemeigenschaften der Kraftstoffpumpe lassen sich leicht jene Bereiche festlegen, in denen die Ansteuerung der Ventileinrichtung beispielsweise bei jedem Förderhub bzw. bei jedem dritten Förderhub erfolgen soll.
  • Die Erfindung betrifft auch ein Computerprogramm, welches zur Durchführung des obigen Verfahrens geeignet ist, wenn es auf einem Computer ausgeführt wird. Dabei wird besonders bevorzugt, wenn das Computerprogramm auf einem Speicher, insbesondere auf einem Flash-Memory, abgespeichert ist.
  • Ferner betrifft die Erfindung ein Steuer- und/oder Regelgerät zum Betreiben einer Brennkraftmaschine. Bei einem solchen Steuer- und Regelgerät wird bevorzugt, wenn auf ihm ein Computerprogramm der obigen Art abgespeichert ist.
  • Teil der Erfindung ist auch eine Brennkraftmaschine, mit einer Kraftstoffpumpe, welche von einer Abtriebswelle der Brennkraftmaschine angetrieben wird, mit einer Kraftstoff-Sammelleitung, in die die Kraftstoffpumpe fördert, mit einer Kraftstoff-Einspritzvorrichtung, welche an die Kraftstoff-Sammelleitung angeschlossen ist, mit einem Brennraum, in den die Kraftstoff-Einspritzvorrichtung den Kraftstoff einspritzt, und mit einer Ventileinrichtung, welche eine Druckseite der Kraftstoffpumpe mit einem Niederdruckbereich verbinden und von diesem trennen kann.
  • Auch eine solche Brennkraftmaschine ist aus der
    DE 195 39 885 A1 bekannt. Damit eine solche Brennkraftmaschine möglichst robust baut und preiswert hergestellt werden kann, wird vorgeschlagen, dass die Kraftstoffpumpe eine Kolbenpumpe mit mindestens einem Förderraum umfasst, und dass die Brennkraftmaschine ein Steuer- und/oder Regelgerät umfasst, welches eine Mehrzahl von Betriebsbereichen 1, ..., n der Brennkraftmaschine der Brennkraftmaschine erkennt und welches die Ventileinrichtung so ansteuert, dass wenigstens zeitweise in einem ersten Betriebsbereich der Brennkraftmaschine der Förderraum bei jedem c1-ten Förderhub und in einem n-ten Betriebsbereich der Brennkraftmaschine bei jedem cn-ten Förderhub durch die Ventileinrichtung für eine bestimmte Zeitdauer vom Niederdruckbereich getrennt wird, wobei gilt: c1, ..., cn sind unterschiedlich.
  • Bei einer solchen Brennkraftmaschine ist es ferner vorteilhaft, wenn sie ein Steuer- und/oder Regelgerät der obigen Art umfasst.
  • Zeichnung
  • Nachfolgend wird ein besonders bevorzugtes Ausführungsbeispiel der Erfindung unter Bezugnahme auf die beiliegende Zeichnung im Detail erläutert. In der Zeichnung zeigen:
  • Fig. 1:
    eine Prinzipdarstellung einer Brennkraftmaschine mit einer Kraftstoffpumpe und einem Mengensteuerventil;
    Fig. 2:
    eine detailliertere Darstellung der Kraftstoffpumpe und des Mengensteuerventils von Fig. 1 während eines Saughubes;
    Fig. 3:
    eine Darstellung ähnlich Fig. 2 zu Beginn eines Förderhubes;
    Fig. 4:
    eine Darstellung ähnlich Fig. 2 gegen Ende eines Förderhubes;
    Fig. 5:
    ein Diagramm, in dem zwei Betriebsbereiche der Brennkraftmaschine von Fig. 1 abhängig von dem von der Kraftstoffpumpe zu fördernden Kraftstoff-Mengenstrom und von der Drehzahl einer Kurbelwelle der Brennkraftmaschine dargestellt sind;
    Fig. 6:
    ein Diagramm, in dem die Betriebsbereiche der Brennkraftmaschine von Fig. 1 abhängig von einem Druck in einer Kraftstoff -Sammelleitung und der Drehzahl einer Kurbelwelle der Brennkraftmaschine dargestellt sind.
    Fig. 7:
    ein Diagramm, in dem der Hub eines Kolbens der Kraftstoffpumpe von Fig. 1 über der Zeit im ersten Betriebsbereich der Brennkraftmaschine dargestellt ist;
    Fig. 8:
    ein Diagramm, in dem der Steuerstrom des Mengensteuerventils von Fig. 1 in dem ersten Betriebsbereich der Brennkraftmaschine dargestellt ist;
    Fig. 9:
    ein Diagramm ähnlich Fig. 7, in dem der Hub eines Kolbens der Kraftstoffpumpe von Fig. 1 über der Zeit im zweiten Betriebsbereich der Brennkraftmaschine dargestellt ist; und
    Fig. 10:
    ein Diagramm ähnlich Fig. 8, in dem die Bestromung des Mengensteuerventils von Fig. 1 in dem zweiten Betriebsbereich der Brennkraftmaschine dargestellt ist.
    Beschreibung des Ausführungsbeispieles
  • In Fig. 1 trägt eine Brennkraftmaschine insgesamt das Bezugszeichen 10. Sie umfasst einen Kraftstoffbehälter 12, aus dem eine elektrisch angetriebene Kraftstoffpumpe 14 den Kraftstoff in eine Niederdruck-Kraftstoffleitung 16 fördert. Diese führt zu einer Hochdruck-Kraftstoffpumpe 18. Über eine Hochdruck-Kraftstoffleitung 20 gelangt der Kraftstoff weiter zu einer Kraftstoff-Sammelleitung 22. In dieser ist der Kraftstoff unter hohem Druck speicherbar. An die Kraftstoff-Sammelleitung 22 sind mehrere Kraftstoff-Einspritzvorrichtungen 24 angeschlossen.Diese spritzen den Kraftstoff direkt in Brennräume 26 ein. Durch die Verbrennung des Kraftstoffs in den Brennräumen 26 wird eine Kurbelwelle 28 in Drehung versetzt. Über eine in Fig. 1 nur symbolisch dargestellte mechanische Kopplung 30 wird die Hochdruck-Kraftstoffpumpe 18 von der Kurbelwelle 28 angetrieben.
  • Wie insbesondere aus den Fig. 2 - 4 ersichtlich ist, handelt es sich bei der Hochdruck-Kraftstoffpumpe 18 um eine 1-Zylinder-Kolbenpumpe. Bei dieser wird von einem auf einer Welle 33 angeordneten Antriebsnocken 32 ein Kolben 34 in eine Hin- und Herbewegung versetzt. Der Kolben 34 ist in einem Gehäuse 36 geführt. Er begrenzt einen Förderraum 38. Über ein Einlassventil 40 kann der Förderraum 38 mit der Niederdruck-Kraftstoffleitung 16 verbunden werden. Das Einlassventil 40 ist als federbelastetes Rückschlagventil ausgebildet. Über ein Auslassventil 42 kann der Förderraum 38 mit der Hochdruck-Kraftstoffleitung 20 verbunden werden. Auch beim Auslassventil 42 handelt es sich um ein federbelastetes Rückschlagventil.
  • Der Förderraum 38 kann ferner über ein Mengensteuerventil 44 mit der Niederdruck-Kraftstoffleitung 16 verbunden werden. Beim Mengensteuerventil 44 handelt es sich um ein 2/2-Schaltventil. In die geöffnete Ruhestellung wird es von einer Feder 46 beaufschlagt (in einem nicht dargestellten Ausführungsbeispiel erfolgt die Öffnung des Mengensteuerventils auch nur über den Druck im Förderraum). In die geschlossene Schaltstellung wird es von einer elektromagnetischen Betätigungseinrichtung 48 gebracht. Diese umfasst einen mit einem Ventilelement 50 verbundenen Magnetanker 52, welcher von einer Magnetspule 54 umgeben ist.
  • Die Magnetspule 54 wird von einer nicht dargestellten Endstufe bestromt. Die Endstufe wiederum wird von einem Steuer- und Regelgerät 56 angesteuert. Das Steuer- und Regelgerät 56 erhält Signale von einem Drehzahlsensor 58, welcher die Drehzahl der Kurbelwelle 28 der Brennkraftmaschine 10 abgreift. Ferner ist das Steuer- und Regelgerät 56 eingangsseitig mit einem Drucksensor 60 verbunden, welcher den in der Kraftstoff-Sammelleitung 22 herrschenden Druck erfasst und entsprechende Signale an das Steuer- und Regelgerät 56 leitet.
  • Das Grundprinzip der Einstellung der von der Hochdruck-Kraftstoffpumpe 18 geförderten Kraftstoffmenge wird nun unter Bezugnahme auf die Fig. 2 - 4 erläutert:
  • Während des in Fig. 2 dargestellten Saughubs bewegt sich der Kolben 34 nach unten, so dass Kraftstoff über das Einlassventil 40 in den Förderraum 38 strömt. Nach dem Erreichen des unteren Totpunkts bewegt sich der Kolben 34 wieder nach oben (Fig. 3). Während des Saughubs des Kolbens 34 wird die Magnetspule 54 des Mengensteuerventils 44 bestromt, so dass dieses spätestens mit dem Erreichen des unteren Totpunkts des Kolbens 34 schließt. Auch das Einlassventil 40 schließt.
  • Wenn während des Förderhubs des Kolbens 34 der öffnungsdruck des Auslassventils 42 im Förderraum 38 überschritten wird, öffnet dieses. Der Kraftstoff kann so in die Kraftstoff-Sammelleitung 22 gepresst werden. Soll während eines Förderhubs des Kolbens 34 die Förderung von Kraftstoff in die Kraftstoff-Sammelleitung 22 beendet werden, wird die Bestromung der Magnetspule 54 des Mengensteuerventils 44 beendet, so dass dieses wieder in seine geöffnete Ruhestellung schaltet. Dies ist in Fig. 4 dargestellt. Der Kraftstoff kann somit aus dem Förderraum 38 über das geöffnete Mengensteuerventil 44 in die Niederdruck-Kraftstoffleitung 16 entweichen. Entsprechend schließt auch das Auslassventil 42.
  • Die maximal während eines Förderhubs des Kolbens 34 förderbare Kraftstoffmenge ist im Wesentlichen unabhängig von der Drehzahl der Kurbelwelle 28 und der damit zusammenhängenden Dauer eines Förderhubes. Allerdings sinkt die absolute Dauer eines Förderhubes umgekehrt proportional mit der Drehzahl der Kurbelwelle 28. Soll nun beispielsweise nur ein Drittel der maximal möglichen Fördermenge während eines Förderhubes von der Kraftstoffpumpe 18 gefördert werden, bedeutet dies, dass das Mengensteuerventil 44 näherungsweise in etwa nach einem Drittel des Hubs des Kolbens 34 öffnen muss ("näherungsweise" deshalb, weil die Fördermenge nicht proportional zum Förderhub und zur Ansteuerdauer des Mengensteuerventils ist). Der Zeitraum, welcher vom unteren Totpunkt des Kolbens 34, in dem das Mengensteuerventil 44 spätestens schließt, bis zu dem erforderlichen Öffnungszeitpunkt des Mengensteuerventils 44 verstreicht, ist, bei einer angenommenen gleichen zu fördernden Kraftstoffmenge, bei hoher Drehzahl kürzer als bei geringer Drehzahl.
  • Um bei der in Fig. 1 dargestellten Brennkraftmaschine 10 im gesamten Drehzahlbereich der Kurbelwelle 28 große Kraftstoffmengen ebenso wie Klein- und Kleinstkraftstoffmengen von der Hochdruck-Kraftstoffpumpe 18 fördern zu können, wird abhängig vom Betriebsbereich, in dem die Brennkraftmaschine 10 arbeitet, der Förderraum 38 während jedes ci-ten Förderhubs für eine bestimmte Dauer durch das Mengensteuerventil 44 von der Niederdruck-Kraftstoffleitung getrennt. Dabei gilt im vorliegenden Ausführungsbeispiel in einem ersten Betriebsbereich der Brennkraftmaschine 10 ci = 1 (Förderung bei jedem Förderhub) und in einem zweiten Betriebsbereich der Brennkraftmaschine 10 ci = 3 (Förderung bei jedem dritten Förderhub). Dies wird nun anhand der Figuren 5 bis 10 erläutert:
  • In einem Speicher im Steuer- und Regelgerät 56 sind Parameter abgelegt, durch die zwei Betriebsbereiche der Brennkraftmaschine 10 definiert werden. Bei diesen Parametern handelt es sich zum einen um eine Drehzahl nmot der Kurbelwelle 28 der Brennkraftmaschine 10, zum anderen um die von der Kraftstoff-Einspritzvorrichtung 24 bei einer Einspritzung einzuspritzende Kraftstoffmasse m und schließlich noch um den aktuellen in der Kraftstoff-Sammelleitung 22 herrschenden Kraftstoffdruck pr. In den Fig. 5 und 6 tragen die beiden Betriebsbereiche die Bezugszeichen 62 und 64.
  • Im Betriebsbereich 62, bei also insgesamt eher niedriger und mittlerer Drehzahl nmot und bei einer mittleren bis hohen einzuspritzenden Kraftstoffmasse m bzw. bei einem mittleren bis hohen Druck pr in der Kraftstoff-Sammelleitung 22, wird die Magnetspule 54 kurz vor Beginn eines jeden Förderhubs für einen bestimmten Zeitraum bestromt. Dies ist in den Figuren 7 und 8 dargestellt. Hierdurch wird gewährleistet, dass das Mengensteuerventil 44 zu Beginn des Förderhubs auch wirklich geschlossen ist. Ein Förderhub trägt in Fig. 7 das Bezugszeichen 66, die entsprechenden Stromimpulse in Fig. 8 die Bezugszeichen 68. Dies bedeutet, dass der Förderraum 38 während eines jeden Förderhubs 66 für eine bestimmte Dauer von der Niederdruck-Kraftstoffleitung 16 getrennt ist, also bei jedem Förderhub 66 eine Förderung von Kraftstoff stattfindet.
  • Dabei sei darauf hingewiesen, dass die Bestromung des Mengensteuerventils 44 ggf. bereits unmittelbar vor Beginn eines Förderhubs 66 auch wieder beendet werden kann. Bei geeigneter zeitlicher Positionierung erfolgt dennoch, unter anderem aufgrund der Massenträgheit, ein verzögertes Öffnen unmittelbar nach Beginn des Förderhubs. Eine solche Verschiebung des Ansteuerendes des Mengensteuerventils 44 ermöglicht einen Abbau des durch die Bestromung aufgebauten Restmagnetismus, der nach dem Abschalten des Mengensteuerventils 44 vorliegt.
  • Im Betriebsbereich 64 dagegen, also bei mittlerer bis hoher Drehzahl nmot, bei mittlerer bis geringer einzuspritzender Kraftstoffmasse m und bei mittleren bis geringen Kraftstoffdrücken pr in der Kraftstoff-Sammelleitung 22, wird die Magnetspule 54 dagegen nur bei jedem dritten Förderhub 66 bestromt. Dies ist in den Fig. 9 und 10 dargestellt. Bei den dazwischen liegenden beiden Förderhüben 66 verbleibt das Mengensteuerventil 44 in diesem Betriebsbereich 64 der Brennkraftmaschine 10 in seiner geöffneten Ruhestellung. Eine Förderung von Kraftstoff durch die Hochdruck-Kraftstoffpumpe 18 findet bei diesen beiden Förderhüben 66 also nicht statt. Auf diese Weise ist es möglich, auch bei hoher Drehzahl nmot nur eine sehr kleine Kraftstoffmenge von der Hochdruck-Kraftstoffpumpe 18 pro Zeiteinheit zu fördern, ohne dass die minimal mögliche Schließzeit des Mengensteuerventils 44 unterschritten wird.
  • Um zu verhindern, dass bei einem Betrieb der Brennkraftmaschine 10 im Grenzbereich zwischen den beiden Betriebsbereichen 62 und 64 ständig zwischen der in Fig. 8 dargestellten Bestromung 68 der Magnetspule 54 bei jedem Förderhub 66 und der in Fig. 10 dargestellten Bestromung 68 der Magnetspule 54 nur bei jedem dritten Förderhub 66 hin- und hergeschaltet wird, sind die Betriebsbereiche 62 und 64 im Steuer- und Regelgerät 56 so abgelegt, dass sie sich überlappen. Hierdurch wird ein Hysteresebereich 70 geschaffen. Eine Umschaltung der Ansteuerung des Mengensteuerventils 44 von der in Fig. 8 dargestellten Ansteuerung auf die in Fig. 10 dargestellte Ansteuerung erfolgt erst, wenn der Betriebsbereich 62 verlassen wird (Pfeil 72 in den Fig. 5 und 6). Ein Umschalten von der in Fig. 10 dargestellten Ansteuerung auf die in Fig. 8 dargestellte Ansteuerung des Mengensteuerventils 44 erfolgt wiederum erst dann, wenn der Betriebsbereich 64 verlassen wird (Pfeil 74 in den Fig. 5 und 6).
  • Es sei an dieser Stelle darauf hingewiesen, dass die Realisierung auch kleinster Fördermengen bei hohen Drehzahlen nmot der Brennkraftmaschine 10 ausschließlich durch eine entsprechende Software-Programmierung des Steuer- und Regelgeräts 56 ermöglicht wird. Ob die Brennkraftmaschine 10 aktuell im Betriebsbereich 62 oder im Betriebsbereich 64 arbeitet, wird durch einen Vergleich der vom Drehzahlsensor 58 und vom Drucksensor 60 bereitgestellten Signale sowie der im Steuer- und Regelgerät 56 abhängig von der gewünschten Last ermittelten einzuspritzenden Kraftstoffmenge mit den im Steuer- und Regelgerät 56 abgespeicherten Parameterbereichen bestimmt.

Claims (9)

  1. Verfahren zum Betreiben einer Brennkraftmaschine (10), bei dem eine Kraftstoffpumpe (18) von einer Abtriebswelle (28) der Brennkraftmaschine (10) angetrieben und der Kraftstoff von der Kraftstoffpumpe (18) in eine Kraftstoff-Sammelleitung (22) gefördert wird, von der er über mindestens eine Kraftstoff-Einspritzvorrichtung (24) in mindestens einen Brennraum (26) gelangt, und bei dem die Menge (m) des von der Kraftstoffpumpe (18) in die Kraftstoff-Sammelleitung (22) geförderten Kraftstoffs durch eine Ventileinrichtung (44) eingestellt wird, welche eine Druckseite (38) der Kraftstoffpumpe (18) wenigstens zeitweise mit einem Niederdruckbereich (16) verbinden und von diesem trennen kann, dadurch gekennzeichnet, dass als Kraftstoffpumpe eine Kolbenpumpe (18) mit mindestens einem Förderraum (38) verwendet wird, dass eine Mehrzahl von Betriebsbereichen 1, ..., n (62, 64) der Brennkraftmaschine (10) vorgesehen ist, und dass wenigstens zeitweise in einem ersten Betriebsbereich (62) der Brennkraftmaschine (10) der Förderraum (38) während jedes cl-ten Förderhubs (66) und in einem n-ten Betriebsbereich (64) der Brennkraftmaschine (10) während jedes cn-ten Förderhubs (66) durch die Ventileinrichtung (44) für eine bestimmte Dauer vom Niederdruckbereich (16) getrennt wird, wobei gilt: c1, ..., cn sind unterschiedlich.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass zwei Betriebsbereiche (62, 64) der Brennkraftmaschine (10) vorgesehen sind und dass in dem ersten Betriebsbereich (62) der Brennkraftmaschine (10) der Förderraum (38) bei jedem Förderhub (66) und in dem zweiten Betriebsbereich (64) der Brennkraftmaschine (10) der Förderraum (38) bei jedem dritten Förderhub (66) durch die Ventileinrichtung (44) vom Niederdruckbereich (16) getrennt wird.
  3. Verfahren nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, dass zwei benachbarte Betriebsbereiche (62, 64) sich so überlappen, dass ein Hysteresebereich (70) gebildet wird.
  4. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Betriebsbereiche (62, 64) der Brennkraftmaschine (10) mindestens durch einen Drehzahlbereich (nmot) einer Kurbelwelle (28) der Brennkraftmaschine (10) und durch einen Bereich einer bei einer Einspritzung von der Kraftstoff-Einspritzvorrichtung (24) in einen Brennraum (26) einzubringenden Kraftstoffmasse (m) oder durch einen Bereich eines in der Kraftstoff-Sammelleitung (22) herrschenden Kraftstoffdrucks (pr) definiert sind.
  5. Computerprogramm, dadurch gekennzeichnet, dass es ein Verfahren nach einem der vorhergehenden Ansprüche durchführt, wenn es auf einem Computer ausgeführt wird.
  6. Computerprogramm nach Anspruch 5, dadurch gekennzeichnet, dass es auf einem Speicher, insbesondere auf einem Flash-Memory, abgespeichert ist.
  7. Steuer- und/oder Regelgerät (56) zum Betreiben einer Brennkraftmaschine (10), dadurch gekennzeichnet, dass es einen Speicher umfasst, auf dem ein Computerprogramm nach einem der Ansprüche 5 oder 6 abgespeichert ist.
  8. Brennkraftmaschine (10), mit einer Kraftstoffpumpe (18), welche von einer Abtriebswelle (28) der Brennkraftmaschine (10) angetrieben wird, mit einer Kraftstoff-Sammelleitung (22), in die die Kraftstoffpumpe (18) fördert, mit einer Kraftstoff-Einspritzvorrichtung (24), welche an die Kraftstoff-Sammelleitung (22) angeschlossen ist, mit einem Brennraum (26), in den die Kraftstoff-Einspritzvorrichtung (24) den Kraftstoff einspritzt, und mit einer Ventileinrichtung (44), welche eine Druckseite (34) der Kraftstoffpumpe (18) mit einem Niederdruckbereich (16) verbinden und von diesem trennen kann, dadurch gekennzeichnet, dass die Kraftstoffpumpe eine Kolbenpumpe (18) mit mindestens einem Förderraum (38) umfasst, und dass die Brennkraftmaschine (10) ein Steuer- und/oder Regelgerät (56) umfasst, welches eine Mehrzahl von Betriebsbereichen 1, ..., n (62, 64) der Brennkraftmaschine (10) erkennt und welches die Ventileinrichtung (44) so ansteuert, dass wenigstens zeitweise in einem ersten Betriebsbereich (62) der Brennkraftmaschine (10) der Förderraum (34) bei jedem c1-ten Förderhub (66) und in einem n-ten Betriebsbereich (64) der Brennkraftmaschine (10) bei jedem cn-ten Förderhub (68) durch die Ventileinrichtung (44) für eine bestimmte Zeitdauer vom Niederdruckbereich (16) getrennt wird, wobei gilt: c1, ..., cn sind unterschiedlich.
  9. Brennkraftmaschine (10) nach Anspruch 8, dadurch gekennzeichnet, dass sie ein Steuer- und/oder Regelgerät (56) nach Anspruch 7 umfasst.
EP20020026217 2002-01-14 2002-11-26 Verfahren, Computerprogramm und Steuer- und/oder Regelgerät zum Betreiben einer Brennkraftmaschine, sowie Brennkraftmaschine Expired - Lifetime EP1327766B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10200987 2002-01-14
DE2002100987 DE10200987A1 (de) 2002-01-14 2002-01-14 Verfahren, Computerprogramm und Steuer- und/oder Regelgerät zum Betreiben einer Brennkraftmaschine, sowie Brennkraftmaschine

Publications (3)

Publication Number Publication Date
EP1327766A2 EP1327766A2 (de) 2003-07-16
EP1327766A3 EP1327766A3 (de) 2006-02-01
EP1327766B1 true EP1327766B1 (de) 2007-11-21

Family

ID=7712004

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20020026217 Expired - Lifetime EP1327766B1 (de) 2002-01-14 2002-11-26 Verfahren, Computerprogramm und Steuer- und/oder Regelgerät zum Betreiben einer Brennkraftmaschine, sowie Brennkraftmaschine

Country Status (3)

Country Link
EP (1) EP1327766B1 (de)
JP (1) JP4272894B2 (de)
DE (2) DE10200987A1 (de)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE60236558D1 (de) * 2002-06-20 2010-07-08 Hitachi Ltd Steuervorrichtung für Hochdruckkraftstoffpumpe von Verbrennungsmotor
US7299790B2 (en) 2002-06-20 2007-11-27 Hitachi, Ltd. Control device of high-pressure fuel pump of internal combustion engine
DE102004016943B4 (de) * 2004-04-06 2006-06-29 Siemens Ag Verfahren zum Steuern einer Kraftstoffzuführeinrichtung einer Brennkraftmaschine
DE102005014093A1 (de) * 2005-03-29 2006-10-05 Robert Bosch Gmbh Zweipunktregelung einer Hochdruckpumpe für direkteinspritzende Ottomotoren
DE102005031253A1 (de) * 2005-07-05 2007-01-18 Dr.Ing.H.C. F. Porsche Ag Verfahren und Vorrichtung zur Steuerung eines Kraftstoffeinspritzsystems für eine Brennkraftmaschine eines Fahrzeugs
JP4535024B2 (ja) * 2006-04-27 2010-09-01 株式会社デンソー 燃圧制御装置
US8015964B2 (en) 2006-10-26 2011-09-13 David Norman Eddy Selective displacement control of multi-plunger fuel pump
US7406949B2 (en) * 2006-11-06 2008-08-05 Caterpillar Inc. Selective displacement control of multi-plunger fuel pump
US7823566B2 (en) 2008-03-31 2010-11-02 Caterpillar Inc Vibration reducing system using a pump
US8342151B2 (en) 2008-12-18 2013-01-01 GM Global Technology Operations LLC Deactivation of high pressure pump for noise control
DE102011006203B4 (de) * 2011-03-28 2016-05-04 Continental Automotive Gmbh Regelverfahren zum Einstellen eines Drucks in einem Speichereinspritzsystem einer Brennkraftmaschine
DE102012218766A1 (de) * 2012-10-15 2014-04-17 Continental Automotive Gmbh Verfahren und Vorrichtung zum Betreiben einer Hochdruckpumpe
DE102013214083B3 (de) * 2013-07-18 2014-12-24 Continental Automotive Gmbh Verfahren zum Betreiben eines Kraftstoffeinspritzsystems eines Verbrennungsmotors

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19539885A1 (de) * 1995-05-26 1996-11-28 Bosch Gmbh Robert Kraftstoffversorgungsanlage und Verfahren zum Betreiben einer Brennkraftmaschine
DE19731102C2 (de) * 1997-07-19 2003-02-06 Bosch Gmbh Robert System zum Betreiben eines Kraftstoffversorgungssystems für eine Brennkraftmaschine insbesondere eines Kraftfahrzeugs
JPH11200990A (ja) * 1998-01-07 1999-07-27 Unisia Jecs Corp 燃料噴射制御装置
JP3562351B2 (ja) * 1998-11-24 2004-09-08 トヨタ自動車株式会社 内燃機関の燃料ポンプ制御装置
JP2001248517A (ja) * 2000-03-01 2001-09-14 Mitsubishi Electric Corp 可変吐出量燃料供給装置

Also Published As

Publication number Publication date
DE50211248D1 (de) 2008-01-03
JP4272894B2 (ja) 2009-06-03
EP1327766A3 (de) 2006-02-01
JP2003214301A (ja) 2003-07-30
DE10200987A1 (de) 2003-07-31
EP1327766A2 (de) 2003-07-16

Similar Documents

Publication Publication Date Title
DE10064055B4 (de) Steuervorrichtung für Hochdruck-Kraftstoffpumpe und für Motor mit Direkteinspritzung
DE10148218B4 (de) Verfahren zum Betreiben einer Brennkraftmaschine, Computerprogramm, Steuer- und/oder Regelgerät, sowie Kraftstoffsystem für eine Brennkraftmaschine
EP1556609B1 (de) Verfahren zum betreiben eines common-rail-kraftstoffeinspritzsystems für brennkraftmaschinen
EP1283950B1 (de) Verfahren zum bestimmen der position eines kolbens einer 1-zylinder-hochdruckpumpe eines kraftstoffzumesssystems einer direkteinspritzenden brennkraftmaschine
EP0873473A1 (de) Kraftstoffeinspritzsystem
EP1327766B1 (de) Verfahren, Computerprogramm und Steuer- und/oder Regelgerät zum Betreiben einer Brennkraftmaschine, sowie Brennkraftmaschine
DE102007000070B4 (de) Pulsdauerverhältnissteuervorrichtung
DE10139054C1 (de) Verfahren, Computerprogramm, Steuer- und/oder Regelgerät sowie Kraftstoffsystem für eine Brennkraftmaschine, insbesondere mit Direkteinspritzung
DE102005014093A1 (de) Zweipunktregelung einer Hochdruckpumpe für direkteinspritzende Ottomotoren
DE19545162B4 (de) Brennstoffeinspritzvorrichtung mit federvorgespanntem Steuerventil
EP1741912A2 (de) Verfahren und Vorrichtung zur Steuerung eines Kraftstoffeinspritzsystems für eine Brennkraftmaschine eines Fahrzeugs
EP2643582B1 (de) Verfahren zum betreiben eines kraftstoffsystems einer brennkraftmaschine
EP1456531B1 (de) Vorrichtung und verfahren zur regelung des steuerventils einer hochdruckpumpe
EP0960275A1 (de) Hochdruckpumpe zur kraftstoffversorgung bei kraftstoffeinspritzsystemen von brennkraftmaschinen
DE10139055A1 (de) Verfahren, Computerprogramm, Steuer- und/oder Regelgerät sowie Kraftstoffsystem für eine Brennkraftmaschine
EP1306553A2 (de) Kraftstoffpumpe, Kraftstoffsystem, Verfahren zum Betreiben eines Kraftstoffsystems sowie Brennkraftmaschine
DE102017200238A1 (de) Verfahren zum Ermitteln einer Ungleichförderung bei einer Hochdruckpumpe
DE3236828A1 (de) Brennstoffeinspritzvorrichtung
DE3819996A1 (de) Hydraulische steuereinrichtung insbesondere fuer kraftstoffeinspritzanlagen von brennkraftmaschinen
DE60013657T2 (de) Verfahren und Vorrichtung zum Steuern einer Hochdruckpumpe mit variabler Durchflussrate
DE10315318A1 (de) Verfahren zum Betreiben einer Brennkraftmaschine
DE10229395A1 (de) Verdrängermaschine, insbesondere Radialkolbenpumpe in einem Kraftstoffsystem einer Brennkraftmaschine, sowie hydraulisches System
DE10352005A1 (de) Verfahren zum Betreiben einer Brennkraftmaschine
DE10124510B4 (de) Verfahren zum Ansteuern einer magnetventilgesteuerten Kraftstoffpumpe einer Brennkraftmaschine
EP1655480A1 (de) Verfahren zum Betreiben eines Kraftstoffsystems einer Brennkraftmaschine, sowie Kraftstoffsystem

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

RIC1 Information provided on ipc code assigned before grant

Ipc: F02D 41/38 20060101AFI20030418BHEP

Ipc: F02M 63/00 20060101ALI20051214BHEP

Ipc: F02M 59/36 20060101ALI20051214BHEP

17P Request for examination filed

Effective date: 20060801

AKX Designation fees paid

Designated state(s): DE FR IT

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR IT

REF Corresponds to:

Ref document number: 50211248

Country of ref document: DE

Date of ref document: 20080103

Kind code of ref document: P

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20080822

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20101127

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20111125

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20120124

Year of fee payment: 10

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20130731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121126

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50211248

Country of ref document: DE

Effective date: 20130601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121130