EP1320661A1 - Gas turbine blade - Google Patents

Gas turbine blade

Info

Publication number
EP1320661A1
EP1320661A1 EP01980405A EP01980405A EP1320661A1 EP 1320661 A1 EP1320661 A1 EP 1320661A1 EP 01980405 A EP01980405 A EP 01980405A EP 01980405 A EP01980405 A EP 01980405A EP 1320661 A1 EP1320661 A1 EP 1320661A1
Authority
EP
European Patent Office
Prior art keywords
cooling
blade
gas turbine
insert
airfoil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP01980405A
Other languages
German (de)
French (fr)
Other versions
EP1320661B1 (en
Inventor
Peter Tiemann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to EP01980405A priority Critical patent/EP1320661B1/en
Publication of EP1320661A1 publication Critical patent/EP1320661A1/en
Application granted granted Critical
Publication of EP1320661B1 publication Critical patent/EP1320661B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/18Hollow blades, i.e. blades with cooling or heating channels or cavities; Heating, heat-insulating or cooling means on blades
    • F01D5/187Convection cooling
    • F01D5/188Convection cooling with an insert in the blade cavity to guide the cooling fluid, e.g. forming a separation wall
    • F01D5/189Convection cooling with an insert in the blade cavity to guide the cooling fluid, e.g. forming a separation wall the insert having a tubular cross-section, e.g. airfoil shape
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/20Heat transfer, e.g. cooling
    • F05D2260/201Heat transfer, e.g. cooling by impingement of a fluid

Definitions

  • the invention relates to a gas turbine blade with an airfoil leading edge and an airfoil trailing edge and with an internal cooling structure, comprising a meandering cooling channel with partial sections directed along the airfoil axis for guiding a cooling fluid from the airfoil leading edge to the airfoil trailing edge.
  • No. 5,468,125 discloses a hollow gas turbine blade which can be cooled by cooling air.
  • the cooling air is blown into cooling chambers of the hollow gas turbine blade, which run parallel to the blade axis, where it continuously cools the hot surface of the gas turbine blade from the inside.
  • the incoming cooling air which has not yet been heated, is first led past the leading edge of the gas turbine blade, which is exposed to particularly high temperatures and must therefore be cooled particularly efficiently. after the
  • Cooling air has also cooled the other areas of the blade through the blade, it leaves the blade at the trailing edge of the blade via bores.
  • the object of the invention is to provide a gas turbine blade that uses a cooling fluid to cool the gas turbine blade in a particularly efficient manner.
  • this object is achieved by specifying a gas turbine blade directed along an airfoil with an airfoil leading edge and an airfoil trailing edge and with an internal cooling structure, comprising an aander-shaped cooling duct with partial sections directed along the airfoil axis for guiding a cooling fluid from the airfoil leading edge to the airfoil trailing edge, the rear edge of the airfoil Sections runs along the front edge of the airfoil and an entry area for the Has cooling fluid and an outlet area for the cooling fluid, the first section having an impingement cooling insert which, with its insert front directed towards the front airfoil, runs parallel to the front edge of the airfoil, the impingement cooling insert tapering towards the outlet area.
  • the invention proceeds from the recognition that the airfoil leading edge can always be cooled sufficiently efficiently in a conventional internal cooling a Gasturbinenschau- fei by a meandering cooling channel is not, as the thermally particularly highly loaded outside • the airfoil leading edge has a relatively small surface area on the inside faces the front edge of the airfoil. Purely convective cooling using a
  • Cooling fluid flow in the meandering channel partial area on the leading edge of the airfoil can under certain circumstances be insufficient to sufficiently lower the temperature of the leading edge of the airfoil.
  • the invention is based on the observation that cooling by means of an impact cooling insert is precisely the case with
  • the front edge of the airfoil allows greater heat dissipation due to the higher cooling capacity of the impingement cooling, but the cooling of the airfoil as a whole by the impingement cooling insert is comparatively inefficient, since the cooling fluid absorbs less heat overall.
  • the cooling fluid emerging from the trailing edge after passing through the meandering channel is warmer than that which also emerges from impingement cooling from a trailing blade edge . Cooling fluid.
  • the invention now for the first time combines impingement cooling with meandering channel cooling in such a way that the advantages of these two methods are exploited without being equally exposed to the disadvantages of the respective methods. This is achieved in that the airfoil pre ⁇ - ⁇ ⁇ w) P 1 P »c ⁇ on CD cn o C ⁇ tr PJ P- d 0 03 P- CQ St.
  • the impingement cooling insert is preferably surrounded by air guiding ribs directed transversely to the blade axis, which guide cooling fluid emerging from the impingement cooling insert around the impingement cooling insert in the direction of the rear edge of the airfoil.
  • air guide ribs By means of such air guide ribs, the cooling fluid, after it has impinged on the airfoil wall, is guided along the outer wall of the impingement cooling insert away from the airfoil leading edge and then enters the free part of the first section.
  • the free part of the first section is the part in which the impact cooling insert is not arranged.
  • the air-guiding ribs are further preferably directed in relation to a plane oriented perpendicular to the blade axis in such a way that they additionally direct the cooling fluid in one direction from the inlet region to the outlet region.
  • the cooling fluid entering the free part of the first section therefore already has a flow component in the direction of the main flow in this first section.
  • the flow guidance by means of the air guide ribs thus enables a flow of the cooling fluid through the gas turbine blade that is as vortex-free as possible and therefore particularly favorable in terms of pressure loss.
  • the gas turbine blade is preferably designed as a guide blade which is designed with an inner ring.
  • the inner ring serves to seal a hot gas duct of the gas turbine from a rotor of the gas turbine.
  • An inner ring cooler leads from the impact cooling insert to the inner ring. While in conventional cooling of the gas turbine blade solely by convective cooling of a cooling fluid flowing in a meandering channel, the efficiency of cooling an inner ring of a gas turbine et 10 d ⁇
  • a meandering cooling duct 21 leads through the interior of the gas turbine blade 1.
  • the meandering cooling duct 21 is made up of sections 23, 25, 27 directed along the blade axis 3. These sections 23, 25, 27 are separated from one another by ribs 31.
  • the first subsection 23 runs along the front edge 8 of the airfoil. In the meandering cooling duct 21, the inside of the
  • Blade area 7 arranged turbulators 29, which provide for the generation of turbulence in a cooling fluid flowing through the meandering cooling channel 21, which in turn results in improved heat transfer to the cooling fluid.
  • the first partial section 23 is open to the fastening area 5 and there has an entry area 33 for cooling fluid.
  • the end of the first section 23 adjoining the inner ring 9 forms an outlet region 35 for cooling fluid from the first section 23, which then enters the second section 25.
  • An impact cooling insert 37 is arranged in the first section 23. This impingement cooling insert 37 tapers conically from the inlet region 33 to the outlet region 35, so that three successive intersection surfaces F1, F2, F3 along the blade axis become smaller compared to one another along this direction.
  • the impact cooling insert 37 is oriented so that it runs parallel to the front edge 8 of the airfoil with its insert front. It extends over the entire length of the leading edge 8 of the airfoil.
  • the tapering of the impingement cooling insert 37 frees the first partial section 23 more and more in one direction from the inlet area to the outlet area.
  • the first partial section 23 is thus bisected, so to speak, in half into a half occupied by the impingement cooling insert 37 and a half free from the impingement cooling insert 37.
  • the impingement cooling insert '37 has uniformly distributed impingement cooling holes 43.
  • Air guiding ribs 51 surrounding the impingement cooling insert 37 are arranged on the inside of the airfoil area 7. These air guide ribs 51 extend transversely to the blade axis 3. At the same time, they are inclined with respect to a plane oriented perpendicular to the blade axis 3. The air guide ribs 51 each end before they enter the free part of the first section 23.
  • film cooling openings 53 are provided in the area of the airfoil trailing edge 10 in the airfoil area.
  • the impingement cooling insert 37 opens out in the area of the inner ring 9 at an inner ring cooling duct 55.
  • the gas turbine guide vane 1 When the gas turbine guide vane 1 is used, it is arranged in a gas turbine (not shown) and hot gas flows around it.
  • the high thermal load requires cooling by means of a cooling fluid 61, which is the
  • Gas turbine guide vane 1 is fed via the inlet area 33 of the first section 23. Because the impingement insert 37 to the inlet region 33 completely covers, the cooling fluid '61 is first completely introduced into the impingement cooling insert 37th The cooling fluid 61 emerges from the impingement cooling insert 37 via the impingement cooling bores 43 perpendicular to the wall of the airfoil region 7 and strikes it in a cooling manner. In particular, the leading edge 8 of the airfoil is cooled very effectively by leading-edge impingement cooling bores 45.
  • the cooling fluid 61 emerging from the impingement cooling insert 37 is then, after the impingement cooling has been carried out, conducted via the air guide ribs 51 in the direction of the free part of the first section 23, which is created by the tapering of the impingement cooling insert 37.
  • the cross-sectional area of the impingement cooling insert 37 tapers proportionally to the amount of cooling fluid emerging from the impingement cooling insert 37.
  • the cooling fluid 61 is here P 1 P 1

Abstract

The invention relates to a gas turbine blade (1) having a combined convective cooling effected by a meandering cooling channel (21) and having an impact cooling effected via an impact cooling insert (37). The impact cooling insert (37) is arranged inside a first partial section (23) of the meandering cooling channel (21) extending along the front edge (8) of the blade pan. The impact cooling insert (37) tapers along this first partial section (23).

Description

Beschreibungdescription
GasturbinenschaufelGas turbine blade
Die Erfindung betrifft .eine Gasturbinenschaufel mit einer Schaufelblattvorderkante und einer Schaufelblatthinterkante und mit einer inneren Kühlstruktur, umfassend einen meander- förmigen Kühlkanal mit entlang der Schaufelachse gerichteten Teilabschnitten zur Führung eines Kühlfluides von der Schau- felblattvorderkante zur Schaufelblatthinterkante.The invention relates to a gas turbine blade with an airfoil leading edge and an airfoil trailing edge and with an internal cooling structure, comprising a meandering cooling channel with partial sections directed along the airfoil axis for guiding a cooling fluid from the airfoil leading edge to the airfoil trailing edge.
In der US 5,468,125 ist eine hohle, mittels Kühlluft kühlbare Gasturbinenschaufel offenbart. Die Kühlluft wird in parallel zur Schaufelachse verlaufende Kühlkammern der hohlen Gastur- binenschaufel eingeblasen, wo sie die Kammern durchlaufend von innen die heiße Oberfläche der Gasturbinenschaufel kühlt. Die eintretende, noch nicht aufgeheizte Kühlluft wird zunächst an der Eintrittskante der Gasturbinenschaufel vorbeigeführt, die besonders hohen Temperaturen ausgesetzt ist und daher besonders effizient gekühlt werden muß. Nachdem dieNo. 5,468,125 discloses a hollow gas turbine blade which can be cooled by cooling air. The cooling air is blown into cooling chambers of the hollow gas turbine blade, which run parallel to the blade axis, where it continuously cools the hot surface of the gas turbine blade from the inside. The incoming cooling air, which has not yet been heated, is first led past the leading edge of the gas turbine blade, which is exposed to particularly high temperatures and must therefore be cooled particularly efficiently. after the
Kühlluft auch die anderen Bereiche der Schaufel kühlend durch die Schaufel durchgeführt wurde, verläßt sie diese an der Abströmkante der Schaufel über Bohrungen.Cooling air has also cooled the other areas of the blade through the blade, it leaves the blade at the trailing edge of the blade via bores.
Aufgabe der Erfindung ist die Angabe einer Gasturbinenschaufel, die besonders effizient ein Kühlfluid zur Kühlung der Gasturbinenschaufel ausnutzt.The object of the invention is to provide a gas turbine blade that uses a cooling fluid to cool the gas turbine blade in a particularly efficient manner.
Erfindungsgemäß wird diese Aufgabe gelöst durch Angabe' einer entlang einer Schaufelachse gerichteten Gasturbinenschaufel mit einer Schaufelblattvorderkante und einer Schaufelblatthinterkante und mit einer inneren Kühlstruktur, umfassend einen äanderförmigen Kühlkanal mit entlang der Schaufelachse gerichteten Teilabschnitten zur Führung eines Kühlfluides von der Schaufelblattvorderkante zur Schaufelblatthinterkante, wobei ein erster der Teilabschnitte entlang der Schaufelblattvorderkante verläuft und einen Eintrittsbereich für das Kühlfluid und einen Austrittsbereich für das Kühlfluid aufweist, wobei der der erste Teilabschnitt einen Prallkühlein- -satz aufweist, der mit seiner zur Schaufelblattvorderkante gerichteten Einsatzvorderseite parallel zur Schaufelblattvor- derkante verläuft, wobei sich der Prallkühleinsatz zum Austrittsbereich hin verjüngt.According to the invention, this object is achieved by specifying a gas turbine blade directed along an airfoil with an airfoil leading edge and an airfoil trailing edge and with an internal cooling structure, comprising an aander-shaped cooling duct with partial sections directed along the airfoil axis for guiding a cooling fluid from the airfoil leading edge to the airfoil trailing edge, the rear edge of the airfoil Sections runs along the front edge of the airfoil and an entry area for the Has cooling fluid and an outlet area for the cooling fluid, the first section having an impingement cooling insert which, with its insert front directed towards the front airfoil, runs parallel to the front edge of the airfoil, the impingement cooling insert tapering towards the outlet area.
Die Erfindung geht dabei von der Erkenntnis aus, daß bei einer konventionellen inneren Kühlung einer Gasturbinenschau- fei durch einen meanderförmigen Kühlkanal die Schaufelblattvorderkante nicht immer ausreichend effizient gekühlt werden kann, da der thermisch besonders hoch belasteten Außenseite der Schaufelblattvorderkante eine vergleichsweise geringe Oberfläche an der Innenseite der Schaufelblattvorderkante ge- genübersteht. Eine rein konvektive Kühlung mittels einesThe invention proceeds from the recognition that the airfoil leading edge can always be cooled sufficiently efficiently in a conventional internal cooling a Gasturbinenschau- fei by a meandering cooling channel is not, as the thermally particularly highly loaded outside the airfoil leading edge has a relatively small surface area on the inside faces the front edge of the airfoil. Purely convective cooling using a
Kühlfluidstromes im Meanderkanalteilbereich an der Schaufelblattvorderkante kann unter Umständen unzureichend sein, um die Temperatur der Schaufelblattvorderkante ausreichend zu senken. Andererseits geht die Erfindung von der Beobachtung aus, daß eine Kühlung alleine mittels eines Prallkühleinsatzes zwar gerade bei derCooling fluid flow in the meandering channel partial area on the leading edge of the airfoil can under certain circumstances be insufficient to sufficiently lower the temperature of the leading edge of the airfoil. On the other hand, the invention is based on the observation that cooling by means of an impact cooling insert is precisely the case with
Schaufelblattvorderkante durch die höhere Kühlleistung der Prallkühlung einen größeren Wärmeabtrag ermöglicht, die Kühlung des • Schaufelblattes insgesamt durch den Prallkühleinsatz aber vergleichsweise ineffizient' ist, da das Kühlfluid insgesamt weniger Wärme aufnimmt. Bei einer. durch Kühlluft gekühlten Gasturbinenschaufel mit einer Meanderküh- lung ist beispielsweise das nach Durchlaufen des Meanderka nals aus der -Hinterkante austretende Kühlfluid wärmer als das nach einer Prallkühlung ebenfalls aus einer Schaufelhinterkante austretende .Kühlfluid.The front edge of the airfoil allows greater heat dissipation due to the higher cooling capacity of the impingement cooling, but the cooling of the airfoil as a whole by the impingement cooling insert is comparatively inefficient, since the cooling fluid absorbs less heat overall. At a. gas turbine blade with meandering cooled by cooling air, for example, the cooling fluid emerging from the trailing edge after passing through the meandering channel is warmer than that which also emerges from impingement cooling from a trailing blade edge . Cooling fluid.
Die Erfindung kombiniert nun erstmals eine Prallkühlung mit einer Meanderkanalkühlung dergestalt, daß die Vorteile dieser beiden Verfahren ausgenutzt werden, ohne dabei in gleichem Maße den Nachteilen der jeweiligen Verfahren ausgesetzt zu sein. Dies wird dadurch erreicht, daß die Schaufelblattvor- <-υ ω w ) P1 P» cπ o n CD cn o Cπ tr PJ P- d 0 03 P- CQ HlThe invention now for the first time combines impingement cooling with meandering channel cooling in such a way that the advantages of these two methods are exploited without being equally exposed to the disadvantages of the respective methods. This is achieved in that the airfoil pre <-υ ω w) P 1 P »cπ on CD cn o Cπ tr PJ P- d 0 03 P- CQ St.
— ^ — α co φ co P1 CQ co T. PS1 co φ α vP P.- ^ - α co φ co P 1 CQ co T. PS 1 co φ α vP P.
Φ φ Φ Φ J P- P1 d rt P- Ω d Ω Ω P : O P φ Φ φΦ φ Φ Φ J P- P 1 d rt P- Ω d Ω Ω P: OP φ Φ φ
P d P P tr Ω d P P d tr ' d tr tr J tr 03 P PS1 P tr hd vQ ω Φ P- ?. !θ CÖ XI W CO CO Φ Φ tr P- Ω O: φ d vQ d d P- P- rt Pi d: P 1 P d PP tr Ω d PP d tr ' d tr tr J tr 03 P PS 1 P tr hd vQ ω Φ P-?. ! θ CÖ XI W CO CO Φ Φ tr P- Ω O: φ d vQ dd P- P- rt Pi d: P 1
Φ P d ω P- d: Φ d φ P- O LO o et P- P- rt D. tr 3 P P- P- H- P1 d ) P O: tr JΦ P d ω P- d: Φ d φ P- O LO o et P- P- rt D. tr 3 P P- P- H- P 1 d ) PO: tr J
03 PJ 3 d tr tr P φ <! tr d P Ω tr PJ: Ω . φ et Φ rt rt PS1 d G- φ P P" d o P* vQ DJ φ P1 P o H" CO N tr PJ d tr PJ P- f P- d ps1 et d rt rt d vQ Ω 3 rt rt d H P l-S Hi ω co P Hl rt d PJ d P- tr Ω o PJ P- o co rt Φ φ tr Ps1 P- Φ03 PJ 3 d tr tr P φ <! tr d P Ω tr PJ: Ω. φ et Φ rt rt PS 1 d G- φ PP "do P * vQ DJ φ P 1 P o H" CO N tr PJ d tr PJ P- f P- d ps 1 et d rt rt d vQ Ω 3 rt rt d HP lS Hi ω co P Hl rt d PJ d P- tr Ω o PJ P- o co rt Φ φ tr Ps 1 P- Φ
P- ? TS Hi H- Ω Ω N P1 P sQ d Hi P- Φ tr d ω Φ d Q ω P1 p P- et vQ s;P-? TS Hi H- Ω Ω NP 1 P sQ d Hi P- Φ tr d ω Φ d Q ω P 1 p P- et vQ s;
Φ : P ΪO P- d tr r d d O: CQ Pi φ P- Φ P <! d <i Q ) • φ φ (0 Φ P- 3Φ: P ΪO P- d tr rdd O: CQ Pi φ P- Φ P <! d <i Q ) • φ φ (0 Φ P- 3
P t o P- P- Φ P- PJ d lΩ. P- 3 s: Φ P-1 Ω P CQ Φ P- φ rt d tr P- PS1 03 d P P- φ P1 XI 3 o 0, d P- rt Q' φ tr J φ PS1 d « PS1 P vp H P- d C: V0 P- rt φ o tr < 3 Hi rt φ P- tr <! Ui d P- et P d: et O: 3 03 03 tr φ Ω W "«.P to P- P- Φ P- PJ d lΩ. P- 3 s: Φ P- 1 Ω P CQ Φ P- φ rt d tr P- PS 1 03 d P P- φ P 1 XI 3 o 0, d P- rt Q 'φ tr J φ PS 1 d « PS 1 P vp H P- d C: V0 P- rt φ o tr <3 Hi rt φ P- tr <! Ui d P- et P d: et O: 3 03 03 tr φ Ω W "«.
P- P- P d et Φ φ Φ rt <l P- P ω P" o PS1 o Hi d P- o tr P- 3 PJ P- ω tr d: tr φ d rt d d P d P" Q Φ d φ φ PJ P O: tr φ <! tr <! φ Φ φ . tr rt rt J tr O d co P- rt- d Ps1 -Q J Hl P P- rt vP d PJ 0- P Hi Φ d P P P- N 3 Φ trP- P- P d et Φ φ Φ rt <l P- P ω P "o PS 1 o Hi d P- o tr P- 3 PJ P- ω tr d: tr φ d rt dd P d P" Q Φ d φ φ PJ PO: tr φ <! tr <! φ Φ φ. tr rt rt J tr O d co P- rt- d Ps 1 -QJ Hl P P- rt vP d PJ 0- P Hi Φ d PP P- N 3 Φ tr
PJ o Φ ιp H Φ Ω P1 l_J. Ω tr rt φ d d P- vP P1 d α o d -S rt P) Ps1 P ΦPJ o Φ ιp H Φ Ω P 1 l_J. Ω tr rt φ dd P- vP P 1 d α od -S rt P ) Ps 1 P Φ
< rt ts P φ • tr fu: - : Φ tr Φ PJ CO Φ Hi Φ Φ P- d φ CD rt <! P- .T tr PJ P o N PJ co 13 P- co Ω d d • 0- d φ d Φ d: Ps1 Φ P- 5. d rt φ N O P Φ d J<rt ts P φ • tr fu: -: Φ tr Φ PJ CO Φ Hi Φ Φ P- d φ CD rt <! P- .T tr PJ P o N PJ co 13 P- co Ω dd • 0- d φ d Φ d: Ps 1 Φ P- 5 . d rt φ NOP Φ d J
P P" O PJ d σ φ tr -Q tr tr tr d= P- d= P d d 3 P- W P- J tr P. et p) d^ P φ P- Φ rt T. tc Ω φ Φ -S σ Φ tr z φ tr ?. θ: 3 • Ω P1 Φ d:PP "O PJ d σ φ tr -Q tr tr tr d = P- d = P dd 3 P- W P- J tr P. et p ) d ^ P φ P- Φ rt T. tc Ω φ Φ -S σ Φ tr z φ tr?. θ: 3 • Ω P 1 Φ d:
Φ d Φ P- 0- P Φ PJ P P- ? d d φ P1 CQ Hi P1 Φ CQ P1 : 3 & tr s CQ P trΦ d Φ P- 0- P Φ PJ P P-? dd φ P 1 CQ Hi P 1 Φ CQ P 1 : 3 & tr s CQ P tr
P- ω d Φ d d Ό CQ PJ φ rt s: P- PJ o pj: rt P- d tr d Φ H- cn PJ J P1 rt et P- d < Hl P P- P1 P PJ CO rt rt d tr rt d P1 d P- d d d P φ P1 p P- P1 Φ vQ Φ o Ω M α P- d φ Φ rt P- P- Φ tr vQ Hl (P P1 co rt Φ Hi J P- d Φ φ PJ P- P- P P- P Φ iQ ffi P φ H co J rt P P- Φ P-1 d P rr α Ό tf ? d Φ P- d o ω l_I- Φ o d= P P d Φ O P Ps1 P- Φ P 3 d P tr .P P- Ω P1 P1 vp OP- ω d Φ dd Ό CQ PJ φ rt s: P- PJ o pj: rt P- d tr d Φ H- cn PJ JP 1 rt et P- d <Hl P P- P 1 P PJ CO rt rt d tr rt d P 1 d P- ddd P φ P 1 p P- P 1 Φ vQ Φ o Ω M α P- d φ Φ rt P- P- Φ tr vQ Hl ( PP 1 co rt Φ Hi J P- d Φ φ PJ P- P- P P- P Φ iQ ffi P φ H co J rt P P- Φ P- 1 d P rr α Ό tf? D Φ P- do ω l_I- Φ od = PP d Φ OP Ps 1 P- Φ P 3 d P tr .P P- Ω P 1 P 1 vp O
PJ Φ sQ tr N φ d: 3 P P- tr Ω PJ •*. P ω Φ φ d • • P- P- P- ω P- rt tr tr Φ φ P- rtPJ Φ sQ tr N φ d: 3 P P- tr Ω PJ • *. P ω Φ φ d • • P- P- P- ω P- rt tr tr Φ φ P- rt
£p ts Φ d P- d rt Φ tr !χl d .*. P- P- P rt Ω Ω rt rt N P1 CQ 3 d£ p ts Φ d P- d rt Φ tr! Χl d. *. P- P- P rt Ω Ω rt rt NP 1 CQ 3 d
P- P- P P d vP Kl P- P φ P O N d φ ≤ rt I σ rt Φ tr tr et CQ Φ PJ φ d ωP- P- P P d vP Kl P- P φ P O N d φ ≤ rt I σ rt Φ tr tr et CQ Φ PJ φ d ω
0. φ Φ φ d P o P- -S J rt • tr P p- d Φ P- Φ co rt t co tr P- rt N rt Φ Q0. φ Φ φ d P o P- -S J rt • tr P p- d Φ P- Φ co rt t co tr P- rt N rt Φ Q
P- 3 H -3 cn P d PJ d T> d P- P" P PS1 P ≤. P P- Φ P1 d P- σ Φ rt rt d N P φ φ o iQ 1 PJ P CQ P P" Φ Cö 3 J P 1 φ Ω P1 ω <.- d -rt Φ P P- <! P rt co P- ω p- tr IO P1 PJ PJ PS1 rt • • PJ d d P- tr J d: o vP rt P Φ vp O rt d w c- n ω P> d α Ϊ P1 rt : Φ EP rt d et tr tr P- d Φ P- P CΛ P- Φ P o tr tr φ d Φ φ : N N N tr d Φ d Φ ι φ s: CQ P Φ vp P- Ω Ω 03 d ΩP- 3 H -3 cn P d PJ d T> d P- P "P PS 1 P ≤. P P- Φ P 1 d P- σ Φ rt rt d NP φ φ o iQ 1 PJ P CQ PP" Φ Cö 3 JP 1 φ Ω P 1 ω <.- d -rt Φ P P- <! P rt co P- ω p- tr IO P 1 PJ PJ PS 1 rt • • PJ dd P- tr J d: o vP rt P Φ vp O rt dw c- n ω P> d α Ϊ P 1 rt: Φ EP rt d et tr tr P- d Φ P- P CΛ P- Φ P o tr tr φ d Φ φ: NNN tr d Φ d Φ ι φ s: CQ P Φ vp P- Ω Ω 03 d Ω
--f P" PJ Hl P co tr d ?V d P" α P- PJ CO CQ P- Ω P- co φ Φ Φ Ω tr Φ Φ tr rt tr--f P "PJ Hl P co tr d? V d P" α P- PJ CO CQ P- Ω P- co φ Φ Φ Ω tr Φ Φ tr rt tr
PJ d CD- Φ co P1 d: sQ d Φ φ d tr N <J rt P tr v P- CQ tr tr P P PJ- • Pl d d Hi P P- o T3 φ Φ tr Φ P): p- O φ 9 d o iQ α d Φ P- d r+ I—l- s1 d φ αPJ d CD- Φ co P 1 d: sQ d Φ φ d tr N <J rt P tr v P- CQ tr tr PP PJ- • Pl dd Hi P P- o T3 φ Φ tr Φ P ) : p- O φ 9 do iQ α d Φ P- d r + I — l- s 1 d φ α
Hi Hi Φ Hi PJ t P P- p- P1 Ω d Φ p- Φ p- 3 φ P- Φ : P) H, σ p- ΦHi Hi Φ Hi PJ t P P- p- P 1 Ω d Φ p- Φ p- 3 φ P- Φ: P ) H, σ p- Φ
Φ r+ P1 o o d PJ d d φ Φ tr CQ ?. ^ d <J P> tr P- rt fl P 3 PJ Φ 03 d d Φ Φ P" d t-1 3 PJ tr P- P1 CQ Φ P- P- CO J : P- φ Φ Φ PJ rt Ω Φ P1 03 vP rt P1 P Oi tr Φ o VQ co et P1 PJ P d rt rt et tr P' Hi P d Q Φ tr P TJ Φ co rt Φ tr tr T)Φ r + P 1 ood PJ dd φ Φ tr CQ?. ^ d <JP > tr P- rt fl P 3 PJ Φ 03 dd Φ Φ P "d t- 1 3 PJ tr P- P 1 CQ Φ P- P- CO J: P- φ Φ Φ PJ rt Ω Φ P 1 03 vP rt P 1 P Oi tr Φ o VQ co et P 1 PJ P d rt rt et tr P 'Hi P d Q Φ tr P TJ Φ co rt Φ tr tr T)
H d tr φ φ et I rt CQ Φ N P1 3 d= N 3 J co P P O φ P • >v CQ PH d tr φ φ et I rt CQ Φ NP 1 3 d = N 3 J co PPO φ P •> v CQ P
PJ vQ co d co d: N ιΩ J rt α. Hl ? P P- P CQ d rt P> ω P 03 03 ) P Ω PJ r+ Φ φ • Ps1 Hl tr Φ rr • J PJ ; Ω J J rt Pi Φ P1 rt α 03 rt P- d rt J tr H r PJ PJ r3 N CQ Φ d tr P- tr P" d tr P Φ d P- Φ P- rt Φ Ω P rt P d HPJ vQ co d co d: N ιΩ J rt α. Hl? P P- P CQ d rt P> ω P 03 03 ) P Ω PJ r + Φ φ • Ps 1 Hl tr Φ rr • JP J ; Ω JJ rt Pi Φ P 1 rt α 03 rt P- d rt J tr H r PJ PJ r3 N CQ Φ d tr P- tr P "d tr P Φ d P- Φ P- rt Φ Ω P rt P d H
<! t 0J M d P-: φ d Φ P- P- P- et CQ P1 O: P1 ? d φ Φ d tr Ω <l P1 P- o SD d P- d Ω P- cn CQ P- uq P. d Φ Φ ? sQ Hi 3 H3 d= d tr O Ps1 rt d=<! t 0J M d P-: φ d Φ P- P- P- and CQ P 1 O: P 1 ? d φ Φ d tr Ω <l P 1 P- o SD d P- d Ω P- cn CQ P- uq P. d Φ Φ? sQ Hi 3 H3 d = d tr O Ps 1 rt d =
P et 03 d tr d r+ CQ d Φ iQ • d d d= Φ P1 φ s: Φ tr I > P? PJ P d: rt l-rP et 03 d tr d r + CQ d Φ iQ • ddd = Φ P 1 φ s: Φ tr I> P? PJ P d: rt lr
Φ L_l. φ co P Φ CQ φ ιp Q • ϊr d d d P- p- M Φ P i Φ tr Φ P- tr HΦ L_l. φ co P Φ CQ φ ιp Q • ϊr d d d P- p- M Φ P i Φ tr Φ P- tr H
Φ tu Φ J φ d CQ J ω PJ .P1 d P- 0. P d P- rt Φ P- Φ P- Φ P1 φΦ tu Φ J φ d CQ J ω PJ .P 1 d P- 0. P d P- rt Φ P- Φ P- Φ P 1 φ
P tr fD <J CD rt rt Φ 3 PJ α CQ o- d rt φ α U d P- P" P d P Φ Φ P-P tr fD <J CD rt rt Φ 3 PJ α CQ o- d rt φ α U d P- P "P d P Φ Φ P-
Ps1 Φ 3 Φ d d N φ Φ P- rt 3 d rt Φ d N tr vQ PJ PJ φ PS1 P- ω dPs 1 Φ 3 Φ dd N φ Φ P- rt 3 d rt Φ d N tr vQ PJ PJ φ PS 1 P- ω d
PJ P P PJ et φ d d d Φ rt P d P1 vQ rt tr ^ CO co tr Φ PJ tr PJ d CQ d Ω O P- rt φ Φ Ω P tr ^ P- d: o Ω N 1 P σ 1 Φ d d CQ 3 PJ r+ P- d= tr fu "^ φ P1 P d tr tr co P- d tr P- tr d 1 P P rt J Φ rtPJ PP PJ et φ ddd Φ rt P d P 1 vQ rt tr ^ CO co tr Φ PJ tr PJ d CQ d Ω O P- rt φ Φ Ω P tr ^ P- d: o Ω N 1 P σ 1 Φ dd CQ 3 PJ r + P- d = tr fu " ^ φ P 1 P d tr tr co P- d tr P- tr d 1 PP rt J Φ rt
Φ d d d P P- rt 3 o 1 P-1 PJ d t J Φ et J NΦ ddd P P- rt 3 o 1 P- 1 PJ dt J Φ et JN
03 1 d PJ 1 1 tr 1 d p- d: d 1 d d d rt tr P1 1 Φ rt 1 1 03 1 d PJ 1 1 tr 1 d p- d: d 1 ddd rt tr P 1 1 Φ rt 1 1
überall gleichmäßig mit Prallkühlluft versorgt wird. Dies bedeutet eine besonders homogene Kühlung.everywhere is supplied with impingement cooling air. This means a particularly homogeneous cooling.
c) Der Prallkühleinsatz ist bevorzugt von quer zur Schau- felachse gerichteten Luftleitrippen umgeben, die aus dem Prallkühleinsatz austretendes Kühlfluid um den Prallkühleinsatz herum in Richtung auf die Schaufelblatthinterkante leiten. Durch solche Luftleitrippen wird also das Kühlfluid, nachdem es prallkühlend auf die Schaufelblatt- wand aufgetroffen ist, entlang der Außenwand des Prallkühleinsatzes von der Schaufelblattvorderkante weggeleitet und tritt anschließend in den freien Teil des ersten Teilabschnittes ein. Der freie Teil des ersten Teilabschnittes ist jener Teil, in dem der Prallkühleinsatz nicht angeordnet ist. Weiter bevorzugt sind die Luftleitrippen so gegenüber einer senkrecht zur Schaufelachse orientierten Ebene gerichtet, daß sie das Kühlfluid zusätzlich in eine Richtung vom Eintrittsbereich zum Austrittsbereich leiten. Das in den freien Teil des ersten Teilabschnittes eintretende Kühlfluid hat somit bereits eine Strömungskomponente in Richtung der HauptStrömung in diesem ersten Teilabschnitt. Die Strömungsführung mittels der Luftleitrippen ermöglichst somit eine möglichst wirbelfreie und damit hinsichtlich eines Druckverlustes be- sonders günstige Strömung des Kühlfluides durch die Gasturbinenschaufel .c) The impingement cooling insert is preferably surrounded by air guiding ribs directed transversely to the blade axis, which guide cooling fluid emerging from the impingement cooling insert around the impingement cooling insert in the direction of the rear edge of the airfoil. By means of such air guide ribs, the cooling fluid, after it has impinged on the airfoil wall, is guided along the outer wall of the impingement cooling insert away from the airfoil leading edge and then enters the free part of the first section. The free part of the first section is the part in which the impact cooling insert is not arranged. The air-guiding ribs are further preferably directed in relation to a plane oriented perpendicular to the blade axis in such a way that they additionally direct the cooling fluid in one direction from the inlet region to the outlet region. The cooling fluid entering the free part of the first section therefore already has a flow component in the direction of the main flow in this first section. The flow guidance by means of the air guide ribs thus enables a flow of the cooling fluid through the gas turbine blade that is as vortex-free as possible and therefore particularly favorable in terms of pressure loss.
d) Vorzugsweise ist die Gasturbinenschaufel als eine Leitschaufel ausgeführt, die mit einem Innenring ausgebildet ist. Der Innenring dient bei einer Verwendung der Leitschaufel in einer Gasturbine dazu, einen Heißgaskanal der Gasturbine gegenüber einem Rotor der Gasturbine abzudichten. Vom Prallkühleinsatz führt ein Innenringkühl anal zum Innenring. Während bei einer konventionellen Kühlung der Gasturbinenschaufel allein durch konvektive Kühlung eines in einem Meanderkanal strömenden Kühlfluides die Effizienz der Kühlung eines Innenrings einer Gasturbinen- et 10 d φd) The gas turbine blade is preferably designed as a guide blade which is designed with an inner ring. When the guide vane is used in a gas turbine, the inner ring serves to seal a hot gas duct of the gas turbine from a rotor of the gas turbine. An inner ring cooler leads from the impact cooling insert to the inner ring. While in conventional cooling of the gas turbine blade solely by convective cooling of a cooling fluid flowing in a meandering channel, the efficiency of cooling an inner ring of a gas turbine et 10 d φ
P <Q σ φP <Q σ φ
P- d d dP- d d d
Φ trΦ tr
ΦΦ
PJ P dPJ P d
Hi ΦHi Φ
• P- d α Φ• P- d α Φ
P- 3P- 3
ΦΦ
Φ o tr J ΦΦ o tr J Φ
01 d et H) d PJ01 d et H) d PJ
P P1 tr p-PP 1 tr p-
P- 03 dP- 03 d
Φ d d P-Φ d d P-
CQ ΩCQ Ω
Ω tr tr et J dΩ tr tr et J d
Pi PJPi PJ
Φ PΦ P
1010
ΦΦ
P1 Q rtP 1 Q rt
P- Φ co P1 et H rt tr Φ o d trP- Φ co P 1 et H rt tr Φ od tr
H 5öH 5ö
O ) rt d OO ) rt d O
CQ P vpCQ P vp
CD αCD α
Pi Φ : P trPi Φ: P tr
P cn et P cn et
Ein inneres Kühlsystem der Gasturbinenschaufel 1 wird im folgenden näher erläutert:An internal cooling system of the gas turbine blade 1 is explained in more detail below:
Durch das Innere der Gasturbinenschaufel 1 führt ein meander- för iger Kühlkanal 21. Der meanderför ige Kühlkanal 21 ist aus entlang der Schaufelachse 3 gerichteten Teilabschnitten 23, 25, 27 ausgebaut. Diese Teilabschnitte 23, 25, 27 sind voneinander durch Rippen 31 getrennt. Der erste Teilabschnitt 23 verläuft entlang der Schaufelblattvorderkante 8. In dem meanderförmigen Kühlkanal 21 sind an der Innenseite derA meandering cooling duct 21 leads through the interior of the gas turbine blade 1. The meandering cooling duct 21 is made up of sections 23, 25, 27 directed along the blade axis 3. These sections 23, 25, 27 are separated from one another by ribs 31. The first subsection 23 runs along the front edge 8 of the airfoil. In the meandering cooling duct 21, the inside of the
Schaufelblattbereiches 7 Turbulatoren 29 angeordnet, die zur Erzeugung von Turbulenz in einem durch den meanderförmigen Kühlkanal 21 strömende Kühlfluid sorgen, was wiederum eine verbesserte Wärmeübertragung auf das Kühlfluid zur Folge hat. Der erste Teilabschitt 23 ist zum Befestigungsbereich 5 hin geöffnet und weist dort einen Eintrittsbereich 33 für Kühlfluid auf. Das an den Innenring 9 angrenzende Ende des ersten Teilabschnittes 23 bildet einen Austrittsbereich 35 für Kühlfluid aus dem ersten Teilabschnitt 23, welches anschließend in den zweiten Teilabschnitt 25 eintritt. In dem ersten Teilabschnitt 23 ist ein Prallkühleinsatz 37 angeordnet. Dieser Prallkühleinsatz 37 läuft sich verjüngend vom Eintrittsbereich 33 zum Austrittsbereich 35 hin konisch zu, so daß drei entlang der Schaufelachse drei aufeinander folgende uer- schnittsflächen Fl, F2, F3 im Vergleich zueinander entlang dieser Richtung kleiner werden. Der Prallkühleinsatz 37 ist dabei so orientiert, daß er mit seiner Einsatzvorderseite parallel zur Schaufelblattvorderkante 8 verläuft. Dabei erstreckt er sich über die gesamte Länge der Schaufelblattvor- derkante 8. Durch die Verjüngung des Prallkühleinsatzes 37 wird in einer Richtung vom Eintrittsbereich zum Austrittsbereich der erste Teilabschitt 23 immer mehr freigegeben. Durch einen linearschrägen Verlauf einer der Einsatzvorderseite 39 gegenüberliegenden Einsatzrückseite 41 des Prallkühleinsatzes 37 wird somit der erste Teilabschnitt 23 gewissermaßen schräg halbiert in eine von dem Prallkühleinsatz 37 belegte Hälfte und eine vom Prallkühleinsatz 37 freie Hälfte. Der Prallkühleinsatz' 37 weist gleichmäßig verteilt Prallkühlbohrungen 43 auf. Auf der Innenseite des Schaufelblattbereiches 7 sind dem Prallkühleinsatz 37 umgebende Luftleitrippen 51 angeordnet. Diese Luftleitrippen 51 erstrecken sich quer zur Schaufelachse 3. Gleichzeitig sind sie gegenüber einer senkrecht zur Schaufelachse 3 orientierten Ebene geneigt. Die Luftleitrippen 51 enden jeweils, bevor sie in den freien Teil des ersten Teilabschnittes 23 eintreten.Blade area 7 arranged turbulators 29, which provide for the generation of turbulence in a cooling fluid flowing through the meandering cooling channel 21, which in turn results in improved heat transfer to the cooling fluid. The first partial section 23 is open to the fastening area 5 and there has an entry area 33 for cooling fluid. The end of the first section 23 adjoining the inner ring 9 forms an outlet region 35 for cooling fluid from the first section 23, which then enters the second section 25. An impact cooling insert 37 is arranged in the first section 23. This impingement cooling insert 37 tapers conically from the inlet region 33 to the outlet region 35, so that three successive intersection surfaces F1, F2, F3 along the blade axis become smaller compared to one another along this direction. The impact cooling insert 37 is oriented so that it runs parallel to the front edge 8 of the airfoil with its insert front. It extends over the entire length of the leading edge 8 of the airfoil. The tapering of the impingement cooling insert 37 frees the first partial section 23 more and more in one direction from the inlet area to the outlet area. By means of a linearly oblique course of an insert rear side 41 of the impingement cooling insert 37 opposite the insert front side 39, the first partial section 23 is thus bisected, so to speak, in half into a half occupied by the impingement cooling insert 37 and a half free from the impingement cooling insert 37. The impingement cooling insert '37 has uniformly distributed impingement cooling holes 43. Air guiding ribs 51 surrounding the impingement cooling insert 37 are arranged on the inside of the airfoil area 7. These air guide ribs 51 extend transversely to the blade axis 3. At the same time, they are inclined with respect to a plane oriented perpendicular to the blade axis 3. The air guide ribs 51 each end before they enter the free part of the first section 23.
Im Bereich der Schaufelblatthinterkante 10 sind im Schaufelblattbereich 7 Filmkühlöffnungen 53 vorgesehen.7 film cooling openings 53 are provided in the area of the airfoil trailing edge 10 in the airfoil area.
Der Prallkühleinsatz 37 mündet im Bereich des Innenrings 9 an einem Innenringkühlkanal 55.The impingement cooling insert 37 opens out in the area of the inner ring 9 at an inner ring cooling duct 55.
Im Einsatz der Gasturbinenleitschaufel 1 ist diese in einer nicht dargestellten Gasturbine angeordnet und wird von heißem Gas umströmt. Die hohe thermische Belastung erfordert eine Kühlung mittels eines Kühlfluides 61, welches derWhen the gas turbine guide vane 1 is used, it is arranged in a gas turbine (not shown) and hot gas flows around it. The high thermal load requires cooling by means of a cooling fluid 61, which is the
Gasturbinenleitschaufel 1 über den Eintrittsbereich 33 des ersten Teilabschnittes 23 zugeleitet wird. Da der Prallkühleinsatz 37 den Eintrittsbereich 33 völlig überdeckt, wird das Kühlfluid '61 zunächst vollständig in den Prallkühleinsatz 37 eingeleitet. Aus dem Prallkühleinsatz 37 tritt das Kühlfluid 61 über die Prallkühlbohrungen 43 senkrecht zur Wand des Schaufelblattbereich 7 aus und trifft auf diese kühlend auf. Insbesondere die Schaufelblattvorderkante 8 wird durch Vorderkantenprall- kühlbohrungen 45 hierdurch sehr wirkungsvoll gekühlt . Das aus dem Prallkühleinsatz 37 ausgetretende Kühlfluid 61 wird nach erfolgter Prallkühlung sodann über die Luftleitrippen 51 in Richtung auf den freien Teil des ersten Teilabschnittes 23 geleitet, der durch die Verjüngung des Prallkühleinsatzes 37 entsteht. Die Querschnittsfläche des Prallkühleinsatzes 37 verjüngt sich dabei proportional zur aus dem Prallkühleinsatz 37 austretenden Kühlfluidmenge. Das Kühlfluid 61 ist hier P1 P1 Gas turbine guide vane 1 is fed via the inlet area 33 of the first section 23. Because the impingement insert 37 to the inlet region 33 completely covers, the cooling fluid '61 is first completely introduced into the impingement cooling insert 37th The cooling fluid 61 emerges from the impingement cooling insert 37 via the impingement cooling bores 43 perpendicular to the wall of the airfoil region 7 and strikes it in a cooling manner. In particular, the leading edge 8 of the airfoil is cooled very effectively by leading-edge impingement cooling bores 45. The cooling fluid 61 emerging from the impingement cooling insert 37 is then, after the impingement cooling has been carried out, conducted via the air guide ribs 51 in the direction of the free part of the first section 23, which is created by the tapering of the impingement cooling insert 37. The cross-sectional area of the impingement cooling insert 37 tapers proportionally to the amount of cooling fluid emerging from the impingement cooling insert 37. The cooling fluid 61 is here P 1 P 1
Cπ o cπ rtCπ o cπ rt
Φ dΦ d
Z p-Z p-
PP
0_0_

Claims

Patentansprüche claims
1. Entlang einer Schaufelachse (3) gerichtete Gasturbinenschaufel (1) mit einer Schaufelblattvorderkante (8) und einer Schaufelblatthinterkante (10) und mit einer inneren Kühlstruktur, umfassend einen meanderförmigen Kühlkanal (21) mit entlang der Schaufelachse (3) gerichteten Teilabschnitten (23,25,27) zur Führung eines Kühlfluides (61) von der Schaufelblattvorderkante (8) zur Schaufelblatthinterkante (10), wobei ein erster der Teilabschnitte (23,25,27) entlang der1. A gas turbine blade (1) directed along a blade axis (3) with a blade edge (8) and a blade edge (10) and with an internal cooling structure, comprising a meandering cooling duct (21) with sections (23) directed along the blade axis (3) 25, 27) for guiding a cooling fluid (61) from the airfoil leading edge (8) to the airfoil trailing edge (10), a first of the partial sections (23, 25, 27) along the
Schaufelblattvorderkante (8) verläuft und einen Eintrittsbereich (33) für das Kühlfluid (61) und einen Austrittsbereich (35) für das Kühlfluid (61) aufweist, d a d u r c h g e k e n n z e i c h n e t, daß der erste Teilabschnitt (23) einen Prallkühleinsatz (37) aufweist, der mit seiner zur Schaufelblattvorderkante (8) gerichteten Einsatzvorderseite (39) parallel zur Schaufelblattvorderkante (8) verläuft, wobei sich der Prallkühleinsatz (37) zum Austrittsbereich (35) in verjüngt.Blade front edge (8) extends and has an inlet region (33) for the cooling fluid (61) and an outlet region (35) for the cooling fluid (61), characterized in that the first section (23) has an impact cooling insert (37) with it the insert front face (39) directed towards the front airfoil (8) runs parallel to the front airfoil edge (8), the impingement cooling insert (37) tapering toward the outlet region (35).
2. Gasturbinenschaufel (1) nach Anspruch 1, bei der der Prallkühleinsatz (37) den gesamten Eintrittsbereich (33) überdeckt.2. Gas turbine blade (1) according to claim 1, wherein the impact cooling insert (37) covers the entire inlet area (33).
3. Gasturbinenschaufel (1) nach Anspruch 1, bei der sich der Prallkühleinsatz (37) in seiner Querschnittsfläche (F1,F2,F3) proportional zu einer gemessen entlang der Schaufelachse (3) aus dem Prallkühleinsatz (37) austretenden Kühlfluidmenge verjüngt.3. Gas turbine blade (1) according to claim 1, in which the impingement cooling insert (37) tapers in its cross-sectional area (F1, F2, F3) in proportion to a quantity of cooling fluid emerging from the impingement cooling insert (37) measured along the blade axis (3).
4. Gasturbinenschaufel (1) nach Anspruch 1, bei der der Prallkühleinsatz (37) von quer zur Schaufelachse (3) gerichteten Luftleitrippen (51) umgeben ist, die aus -dem Prallkühleinsatz (37) austretendes Kühlfluid (61) um den Prallkühlein- satz (37) herum in Richtung auf die Schaufelblatthinterkante (10) leiten. 4. The gas turbine blade (1) according to claim 1, wherein the impact cooling insert (37) is surrounded by air guide ribs (51) directed transversely to the blade axis (3), the cooling fluid (61) emerging from the impact cooling insert (37) around the impact cooling insert (37) around towards the trailing edge of the airfoil (10).
5. Gasturbinenschaufel (1) nach Anspruch 4, bei der die Luftleitrippen (51) so gegenüber einer senkrecht zur Schaufelachse (3) orientierten Ebene gerichtet sind, dass sie das Kühlfluid (61) zusätzlich in einer Richtung vom Eihtrittsbe- reich (33) zum Austrittsbereich (35) leiten.5. The gas turbine blade (1) according to claim 4, in which the air guide ribs (51) are directed relative to a plane oriented perpendicularly to the blade axis (3) in such a way that they additionally move the cooling fluid (61) in a direction from the inlet area (33) to Guide the exit area (35).
6. Gasturbinenschaufel (1) nach Anspruch 1, die als Leitschaufel mit einem Innenring (9) ausgebildet ist, wobei der Innenring (9) bei Einbau der Leitschaufel in eine Gasturbine einen Heißgaskanal der Gasturbine gegenüber einem Rotor der Gasturbine abdichtet und wobei ein Innenringkühlkanal (55) vom Prallkühleinsatz (37) zum Innenring (9) führt. 6. The gas turbine blade (1) according to claim 1, which is designed as a guide blade with an inner ring (9), the inner ring (9) sealing a hot gas duct of the gas turbine against a rotor of the gas turbine when the guide blade is installed in a gas turbine, and wherein an inner ring cooling duct ( 55) leads from the impact cooling insert (37) to the inner ring (9).
EP01980405A 2000-09-26 2001-09-18 Gas turbine blade Expired - Lifetime EP1320661B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP01980405A EP1320661B1 (en) 2000-09-26 2001-09-18 Gas turbine blade

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
EP00120926 2000-09-26
EP00120926A EP1191189A1 (en) 2000-09-26 2000-09-26 Gas turbine blades
EP01980405A EP1320661B1 (en) 2000-09-26 2001-09-18 Gas turbine blade
PCT/EP2001/010789 WO2002027146A1 (en) 2000-09-26 2001-09-18 Gas turbine blade

Publications (2)

Publication Number Publication Date
EP1320661A1 true EP1320661A1 (en) 2003-06-25
EP1320661B1 EP1320661B1 (en) 2008-01-30

Family

ID=8169949

Family Applications (2)

Application Number Title Priority Date Filing Date
EP00120926A Withdrawn EP1191189A1 (en) 2000-09-26 2000-09-26 Gas turbine blades
EP01980405A Expired - Lifetime EP1320661B1 (en) 2000-09-26 2001-09-18 Gas turbine blade

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP00120926A Withdrawn EP1191189A1 (en) 2000-09-26 2000-09-26 Gas turbine blades

Country Status (5)

Country Link
US (1) US6874988B2 (en)
EP (2) EP1191189A1 (en)
JP (1) JP4669202B2 (en)
DE (1) DE50113551D1 (en)
WO (1) WO2002027146A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109441557A (en) * 2018-12-27 2019-03-08 哈尔滨广瀚动力技术发展有限公司 A kind of high-pressure turbine guide vane of the marine gas turbine with cooling structure

Families Citing this family (57)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1413714B1 (en) * 2002-10-22 2013-05-29 Siemens Aktiengesellschaft Guide vane for a turbine
GB2395232B (en) * 2002-11-12 2006-01-25 Rolls Royce Plc Turbine components
US6969230B2 (en) * 2002-12-17 2005-11-29 General Electric Company Venturi outlet turbine airfoil
US7008185B2 (en) * 2003-02-27 2006-03-07 General Electric Company Gas turbine engine turbine nozzle bifurcated impingement baffle
US6884036B2 (en) 2003-04-15 2005-04-26 General Electric Company Complementary cooled turbine nozzle
FR2858829B1 (en) 2003-08-12 2008-03-14 Snecma Moteurs AUBE COOLING OF GAS TURBINE ENGINE
US7090461B2 (en) * 2003-10-30 2006-08-15 Siemens Westinghouse Power Corporation Gas turbine vane with integral cooling flow control system
US7150601B2 (en) * 2004-12-23 2006-12-19 United Technologies Corporation Turbine airfoil cooling passageway
US7131816B2 (en) * 2005-02-04 2006-11-07 Pratt & Whitney Canada Corp. Airfoil locator rib and method of positioning an insert in an airfoil
FR2893080B1 (en) * 2005-11-07 2012-12-28 Snecma COOLING ARRANGEMENT OF A DAWN OF A TURBINE, A TURBINE BLADE COMPRISING IT, TURBINE AND AIRCRAFT ENGINE WHICH ARE EQUIPPED
FR2899271B1 (en) * 2006-03-29 2008-05-30 Snecma Sa DUSTBOARD AND COOLING SHIELD ASSEMBLY, TURBOMACHINE DISPENSER COMPRISING THE ASSEMBLY, TURBOMACHINE, METHOD OF ASSEMBLING AND REPAIRING THE ASSEMBLY
GB2443638B (en) 2006-11-09 2008-11-26 Rolls Royce Plc An air-cooled aerofoil
EP1921269A1 (en) * 2006-11-09 2008-05-14 Siemens Aktiengesellschaft Turbine blade
US7775769B1 (en) 2007-05-24 2010-08-17 Florida Turbine Technologies, Inc. Turbine airfoil fillet region cooling
FR2919897B1 (en) * 2007-08-08 2014-08-22 Snecma TURBINE DISPENSER SECTOR
US8197210B1 (en) * 2007-09-07 2012-06-12 Florida Turbine Technologies, Inc. Turbine vane with leading edge insert
FR2921937B1 (en) * 2007-10-03 2009-12-04 Snecma METHOD FOR STEAM PHASE ALUMINIZATION OF A TURBOMACHINE METAL PIECE
US8043057B1 (en) * 2007-12-21 2011-10-25 Florida Turbine Technologies, Inc. Air cooled turbine airfoil
US7946801B2 (en) * 2007-12-27 2011-05-24 General Electric Company Multi-source gas turbine cooling
US20090220331A1 (en) * 2008-02-29 2009-09-03 General Electric Company Turbine nozzle with integral impingement blanket
US8172504B2 (en) * 2008-03-25 2012-05-08 General Electric Company Hybrid impingement cooled airfoil
UA104146C2 (en) * 2008-07-31 2014-01-10 Фармаиссеншиа Корп. POLYMER CONJUGATES OF AN INTERFERON-β MOIETY, AN ERYTHROPOIETIN MOIETY, OR A GROWTH HORMONE MOIETY
US20100054915A1 (en) * 2008-08-28 2010-03-04 United Technologies Corporation Airfoil insert
EP2256297B8 (en) * 2009-05-19 2012-10-03 Alstom Technology Ltd Gas turbine vane with improved cooling
US8142153B1 (en) * 2009-06-22 2012-03-27 Florida Turbine Technologies, Inc Turbine vane with dirt separator
EP2333240B1 (en) * 2009-12-03 2013-02-13 Alstom Technology Ltd Two-part turbine blade with improved cooling and vibrational characteristics
US8628294B1 (en) * 2011-05-19 2014-01-14 Florida Turbine Technologies, Inc. Turbine stator vane with purge air channel
EP2540969A1 (en) * 2011-06-27 2013-01-02 Siemens Aktiengesellschaft Impingement cooling of turbine blades or vanes
US9145780B2 (en) * 2011-12-15 2015-09-29 United Technologies Corporation Gas turbine engine airfoil cooling circuit
JP5948436B2 (en) * 2011-12-29 2016-07-06 ゼネラル・エレクトリック・カンパニイ Blade cooling circuit
RU2486039C1 (en) * 2012-04-19 2013-06-27 Общество с ограниченной ответственностью "ТУРБОКОН" (ООО "ТУРБОКОН") Method of soldering nozzle vanes with gas turbine engine cooling openings and protective paste to this end
US9670785B2 (en) * 2012-04-19 2017-06-06 General Electric Company Cooling assembly for a gas turbine system
US9845691B2 (en) 2012-04-27 2017-12-19 General Electric Company Turbine nozzle outer band and airfoil cooling apparatus
US9995150B2 (en) * 2012-10-23 2018-06-12 Siemens Aktiengesellschaft Cooling configuration for a gas turbine engine airfoil
WO2015030926A1 (en) * 2013-08-30 2015-03-05 United Technologies Corporation Baffle for gas turbine engine vane
US8864438B1 (en) * 2013-12-05 2014-10-21 Siemens Energy, Inc. Flow control insert in cooling passage for turbine vane
EP3140516B1 (en) * 2014-05-08 2018-09-26 Siemens Aktiengesellschaft Turbine assembly and corresponding method of operation
US10119404B2 (en) * 2014-10-15 2018-11-06 Honeywell International Inc. Gas turbine engines with improved leading edge airfoil cooling
FR3037829B1 (en) * 2015-06-29 2017-07-21 Snecma CORE FOR MOLDING A DAWN WITH OVERLAPPED CAVITIES AND COMPRISING A DEDUSISHING HOLE THROUGH A CAVITY PARTLY
US10422233B2 (en) 2015-12-07 2019-09-24 United Technologies Corporation Baffle insert for a gas turbine engine component and component with baffle insert
US10337334B2 (en) 2015-12-07 2019-07-02 United Technologies Corporation Gas turbine engine component with a baffle insert
US10280841B2 (en) 2015-12-07 2019-05-07 United Technologies Corporation Baffle insert for a gas turbine engine component and method of cooling
US10577947B2 (en) * 2015-12-07 2020-03-03 United Technologies Corporation Baffle insert for a gas turbine engine component
US10443407B2 (en) * 2016-02-15 2019-10-15 General Electric Company Accelerator insert for a gas turbine engine airfoil
EP3236010A1 (en) * 2016-04-21 2017-10-25 Siemens Aktiengesellschaft Stator vane having a junction tubing
DE102016216858A1 (en) * 2016-09-06 2018-03-08 Rolls-Royce Deutschland Ltd & Co Kg Blade for a turbomachine and method for assembling a blade for a turbomachine
US10669861B2 (en) * 2017-02-15 2020-06-02 Raytheon Technologies Corporation Airfoil cooling structure
US10577943B2 (en) * 2017-05-11 2020-03-03 General Electric Company Turbine engine airfoil insert
US10815806B2 (en) * 2017-06-05 2020-10-27 General Electric Company Engine component with insert
US10570751B2 (en) 2017-11-22 2020-02-25 General Electric Company Turbine engine airfoil assembly
KR102048863B1 (en) * 2018-04-17 2019-11-26 두산중공업 주식회사 Turbine vane having insert supports
US10787913B2 (en) 2018-11-01 2020-09-29 United Technologies Corporation Airfoil cooling circuit
CN110925027A (en) * 2019-11-29 2020-03-27 大连理工大学 Turbine blade trailing edge tapered inclined exhaust split structure
US11525397B2 (en) 2020-09-01 2022-12-13 General Electric Company Gas turbine component with ejection circuit for removing debris from cooling air supply
CN114320483A (en) * 2021-12-27 2022-04-12 北京航空航天大学 Low-pressure driving impact cooling structure
US20230304412A1 (en) * 2022-01-28 2023-09-28 Raytheon Technologies Corporation Vane forward rail for gas turbine engine assembly
CN117489418B (en) * 2023-12-28 2024-03-15 成都中科翼能科技有限公司 Turbine guide vane and cold air guide piece of front cold air cavity thereof

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB753224A (en) * 1953-04-13 1956-07-18 Rolls Royce Improvements in or relating to blading for turbines or compressors
US3540810A (en) * 1966-03-17 1970-11-17 Gen Electric Slanted partition for hollow airfoil vane insert
US3715170A (en) * 1970-12-11 1973-02-06 Gen Electric Cooled turbine blade
GB1355558A (en) * 1971-07-02 1974-06-05 Rolls Royce Cooled vane or blade for a gas turbine engine
GB2163218B (en) * 1981-07-07 1986-07-16 Rolls Royce Cooled vane or blade for a gas turbine engine
JPS6043102U (en) * 1983-09-02 1985-03-27 株式会社日立製作所 Cooling structure of gas turbine stator blades
US4798515A (en) * 1986-05-19 1989-01-17 The United States Of America As Represented By The Secretary Of The Air Force Variable nozzle area turbine vane cooling
US4962640A (en) * 1989-02-06 1990-10-16 Westinghouse Electric Corp. Apparatus and method for cooling a gas turbine vane
JP3142850B2 (en) * 1989-03-13 2001-03-07 株式会社東芝 Turbine cooling blades and combined power plants
US5207556A (en) * 1992-04-27 1993-05-04 General Electric Company Airfoil having multi-passage baffle
JPH0693801A (en) * 1992-09-17 1994-04-05 Hitachi Ltd Gas turbine
US5288207A (en) * 1992-11-24 1994-02-22 United Technologies Corporation Internally cooled turbine airfoil
DE69515502T2 (en) * 1994-11-10 2000-08-03 Siemens Westinghouse Power GAS TURBINE BLADE WITH A COOLED PLATFORM
US5468125A (en) 1994-12-20 1995-11-21 Alliedsignal Inc. Turbine blade with improved heat transfer surface
JPH09303106A (en) * 1996-05-16 1997-11-25 Mitsubishi Heavy Ind Ltd Gas turbine cooling blade
JP3801344B2 (en) * 1998-03-26 2006-07-26 三菱重工業株式会社 Gas turbine cooling vane

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO0227146A1 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109441557A (en) * 2018-12-27 2019-03-08 哈尔滨广瀚动力技术发展有限公司 A kind of high-pressure turbine guide vane of the marine gas turbine with cooling structure

Also Published As

Publication number Publication date
JP4669202B2 (en) 2011-04-13
WO2002027146A1 (en) 2002-04-04
US6874988B2 (en) 2005-04-05
EP1191189A1 (en) 2002-03-27
EP1320661B1 (en) 2008-01-30
JP2004510091A (en) 2004-04-02
DE50113551D1 (en) 2008-03-20
US20040022630A1 (en) 2004-02-05

Similar Documents

Publication Publication Date Title
EP1320661A1 (en) Gas turbine blade
EP0899425B1 (en) Gas turbine blade
DE1946535C3 (en) Component for a gas turbine engine
DE69822100T2 (en) turbine blade
DE2320581C2 (en) Gas turbine with air-cooled turbine blades
DE69714960T3 (en) Whirl element construction for cooling channels of a gas turbine rotor blade
DE3345263C2 (en) Cooled turbine blade
EP0902167B1 (en) Cooling device for gas turbine components
DE10001109B4 (en) Cooled shovel for a gas turbine
EP0906494B1 (en) Turbine shaft and process for cooling it
DE102005044183A1 (en) Apparatus and method for cooling turbine blade platforms
DE2042947A1 (en) Blade arrangement with cooling device
DE60021650T2 (en) Cooling channels with Tublenzerzeugern for the exit edges of gas turbine guide vanes
EP0798448A2 (en) System and device to cool a wall which is heated on one side by hot gas
WO2003052240A2 (en) Gas turbine system
DE2404297A1 (en) COOLING SYSTEM FOR IMPACT CONVECTION COOLING
EP2255072A1 (en) Guide vane for a gas turbine and gas turbine comprising such a guide vane
DE1476804A1 (en) Turbine blade with aerofoil profile
DE3711024A1 (en) COOLED SHOVEL FOR A GAS TURBINE ENGINE
DE19821365C2 (en) Cooling a honeycomb seal in the part of a gas turbine charged with hot gas
CH701041A2 (en) A turbine with sidewall cooling plenum.
EP0892149B1 (en) Cooling system for the leading edge of a hollow blade for a gas turbine engine
DE1601563C3 (en) Air-cooled blade
DE2643049A1 (en) SHOVEL WITH COOLED PLATFORM FOR A FLOW MACHINE
WO2006087267A1 (en) Sealing element for use in turbomachinery

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20030213

AK Designated contracting states

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

RBV Designated contracting states (corrected)

Designated state(s): DE FR GB IT

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 50113551

Country of ref document: DE

Date of ref document: 20080320

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20080427

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20081031

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20150909

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20150910

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20150924

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20151120

Year of fee payment: 15

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50113551

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20160918

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20170531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170401

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160930

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160918

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160918