JP3801344B2 - Gas turbine cooling vane - Google Patents

Gas turbine cooling vane Download PDF

Info

Publication number
JP3801344B2
JP3801344B2 JP07918198A JP7918198A JP3801344B2 JP 3801344 B2 JP3801344 B2 JP 3801344B2 JP 07918198 A JP07918198 A JP 07918198A JP 7918198 A JP7918198 A JP 7918198A JP 3801344 B2 JP3801344 B2 JP 3801344B2
Authority
JP
Japan
Prior art keywords
cooling
row
passage
blade
cooling passage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP07918198A
Other languages
Japanese (ja)
Other versions
JPH11280407A (en
Inventor
達男 石黒
康司 渡辺
淳一郎 正田
康意 富田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP07918198A priority Critical patent/JP3801344B2/en
Priority to EP99105483A priority patent/EP0945595A3/en
Priority to CA002381474A priority patent/CA2381474C/en
Priority to CA002381484A priority patent/CA2381484C/en
Priority to US09/272,559 priority patent/US6290462B1/en
Priority to CA002266140A priority patent/CA2266140C/en
Publication of JPH11280407A publication Critical patent/JPH11280407A/en
Application granted granted Critical
Publication of JP3801344B2 publication Critical patent/JP3801344B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Turbine Rotor Nozzle Sealing (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、静翼の外周側から内周側にシール空気を供給するシール空気の供給通路を設けたガスタービン冷却静翼に関するものである。
【0002】
【従来の技術】
従来のこの種ガスタービン冷却静翼について、図3及び図4に基づいてその概要を説明する。
【0003】
図3及び図4は、それぞれ異なる従来例を示すが、これらは共にシール空気の供給経路が明瞭になる様に断面表示とし、かつそれぞれ(a)に静翼の縦断面を、また、(b)にその横断面を示している。
【0004】
ガスタービンの実機はその容量によって段落の数は決まるが、例えば4段落構成のものにあっては第2段、第3段及び第4段静翼はそれぞれその前後に動翼が配置されており、各静翼は各動翼及びこれを支持するロータディスクに挟まれた構造になっているので、製作、組み立て等の都合上ここに形成される静翼内側の各部隙間には、主流高温ガスが流れ込まないことが重要となる。
【0005】
この対策として通常、圧縮機からの抽気空気を静翼の外周側から静翼内部を通して、静翼内周側のキャビティ部にシール空気として供給し、このキャビティ部の圧力を主流高温ガス通路より高くすることによって、主流高温ガスの進入を防ぐ構造が採用されている。
【0006】
前記シール空気の供給構造の従来のものの一例は、図3に示す様にシールチューブ4を用いてシール空気を供給する構造であり、同シールチューブ4は翼外周側から翼部5内部の前縁に設けた第1列目冷却通路Aを翼部5の内表面から離れた位置で貫通して翼外周側を翼内周側のキャビティ部に連通しており、このシールチューブ4を通ってシール空気3が導かれる構造である。
【0007】
なおここで、2は静翼を冷却すべく供給された冷却媒体で、翼部5内部の第1列目冷却通路Aから第2列目冷却通路B、第3列目冷却通路Cを経て、翼後縁から主流高温ガス中に放出される。
【0008】
また図4に示す従来の他の例のものは、前記図3に示した例のようにシールチューブを採用したものではなく、同シールチューブを省略し、代わりに翼冷却を兼ねて直接第1列目冷却通路Aにシール空気3を供給する様に構成されれいる。
【0009】
【発明が解決しようとする課題】
前記した従来の第1例のものにあっては、シール空気3を案内するために翼部5の内表面から離れた位置に配置した専用のシールチューブ4を用いているので、この方式においてはシール空気3が直接翼部5の内表面と接触することが無く、同シール空気3は熱交換が行われない状態でシール空気として供給できる利点があるが、反面、シールチューブ4を用いることが部品点数の増加と、加工工数の増加をまねくという欠点を併せ持っていた。
【0010】
また、前記した従来の第2例のものにあっては、シールチューブ4を採用しない構造のものであるために、部品点数、加工工数は低減できると言うものの、シール空気3の供給経路が熱負荷の高い前縁であるために翼冷却の為の熱交換量が多く、シール空気温度が高くなりすぎるという問題があった。
【0011】
本発明は従来のものにおけるこれらの問題点を解消し、シール空気の熱交換量を抑えて低い温度に維持したまま、部品点数、加工工数も増加せずにシール空気を案内し、供給し得る様にしたガスタービン冷却静翼を提供することを課題とするものである。
【0012】
【課題を解決するための手段】
本発明は前記した課題を解決すべくなされたもので、静翼内部に半径方向に延びる複数の冷却通路を形成し、その一部を静翼外周側から内周側のキャビティにシール空気を供給するシール空気の供給通路としたガスタービン冷却静翼において、上流側から第1列目の冷却通路は内周側、外周側を共に蓋をし、第2列目の冷却通路との隔壁に設けた複数の連通孔により同第2列目の冷却通路と連通して同第1列目の冷却通路で翼面を冷却すると共に翼表面に貫通する複数のフィルム冷却孔により主流ガス通路に連通して翼外表面をフィルム冷却し、第2列目の冷却通路を内周側のキャビティに連通してシール空気の供給通路としたガスタービン冷却静翼を提供するものである。
【0013】
すなわち本発明によれば、静翼外周側から供給されたシール空気は、第2列目の冷却通路を選定されているので、熱負荷は低く、シール空気の熱交換量が少ないので、シール空気としての適温を維持することができる。
【0014】
また、第1列目の冷却通路には、第2列目の冷却通路のシール空気の一部が分かれて複数の連通孔を経て流入し、この空気はシール空気から第1列目の冷却通路で翼面を冷却する冷却空気に変わり、第1列目の冷却通路に対応する翼前端部を冷却した後複数のフィルム冷却孔を経て流出し、翼外表面でフィルム冷却を行うので、シールチューブ等の部品点数を増やさずとも、内周側のキャビティへの好適なシール空気の確保と、翼前端部の適切な冷却を維持することができる。
【0017】
【発明の実施の形態】
本発明の実施の一形態について図1及び図2に基づいて説明する。
なお前記した従来のものと同一の部分については図面中に同一の符号を付して示し、重複する説明は出来るだけ省略して本実施の形態に固有の点について重点的に説明する。
【0018】
本実施の形態は、前記従来の技術中第2例に示したものにおける翼冷却を兼ねたシール空気3を、翼前縁に設けた第1列目冷却通路Aではなくより熱負荷の低い第2列目冷却通路Bへ導入し、同第2列目冷却通路Bを冷却すると共にその一部を分けて前記第1列目冷却通路Aに供給し、残部をシール空気として内側キャビティ10へ導入するものである。
【0019】
すなわち図1、図2に明示するように、翼前縁に設けた第1列目冷却通路Aと第2列目冷却通路Bとを隔てる冷却通路壁11には、連通孔6が複数個あけられており、また、第1列目冷却通路Aの翼部5背側と腹側にはフィルム冷却孔7がこれも複数個設けられている。
【0020】
さらにこの第1列目冷却通路Aの内側シュラウド8および外側シュラウド9は閉塞された構造となっており、また、第3列目以降の冷却通路(第3列目冷却通路C、第4列目冷却通路Dおよび第5列目冷却通路E)については前記従来のものと同一構造である。
【0021】
この様に構成された本実施の形態において、シール機能と翼冷却機能を兼ね備えた冷却媒体1が外側シュラウド9側から第2列目冷却通路Bへ供給され、通路内翼面を冷却した後、一部の冷却媒体1はシール空気3として内側キャビティ10へと導入される。
【0022】
残りは連通孔6を通って第1列目冷却通路Aへと供給され、冷却空気として翼面を冷却した後フィルム冷却孔7から翼外表面をフィルム冷却するため主流高温ガス中に噴出される。
【0023】
なお、第3列目冷却通路Cへ供給される冷却媒体2は、冷却空気として従来のものと同様にサーペンタイン状に曲折した第4列目冷却通路D、第5列目冷却通路Eと順次翼面を冷却したのち後縁から主流高温ガス中へと噴出される。
【0024】
この様にして本実施の形態によれば、シール空気は前縁の熱負荷の低い第2列目冷却通路Bへ供給したこと、その一部を冷却通路壁11の連通孔6を経て第1列目冷却通路Aへ供給した後翼外表面のフィルム冷却に供するため、同フィルム冷却を受ける第2列目冷却通路Bに対応する翼面は温度降下し、第2列目冷却通路Bの熱負荷を更に低下せしめるので、ここでのシール空気の温度上昇は一層確実に抑えられる。
【0025】
これにより、第2列目冷却通路Bを経て内側キャビティ10に供給されるシール空気の温度上昇が十分に抑えられるので、シールチューブを用いる必要もなく、部品点数、加工工数の増加を抑えられる。
【0026】
なお、第2列目冷却通路Bにおいてシール空気として内側キャビティ10へ供給する流量と第1列目冷却通路A側へ供給する流量との割合を調整したい時は、内側キャビティ10側の冷却通路出口に絞りを設けてもよい。
【0027】
なおまた、本実施の形態においては、シール空気3は第2列目冷却通路Bを経て内側キャビティ10へ供給するものについて説明したが、同シール空気3の供給は第2列目冷却通路Bに限られるものではなく、第2列目冷却通路Bより後列の第3列目冷却通路C以降を選定してもよい。
【0028】
この様な変更をした場合にあっては、第3列目冷却通路C以降の通路が第2列目冷却通路Bより更に熱負荷が小さいことにより、シール空気はより好適な低温を維持して内側キャビティ10に好適なシール空気を確保するこができる。
【0029】
以上、本発明を図示の実施の形態について説明したが、本発明はかかる実施の形態に限定されず、本発明の範囲内でその具体的構造に種々の変更を加えてよいことはいうまでもない。
【0030】
【発明の効果】
以上本発明によれば、静翼内部に半径方向に延びる複数の冷却通路を形成し、その一部を静翼外周側から内周側のキャビティにシール空気を供給するシール空気の供給通路としたガスタービン冷却静翼において、上流側から第1列目の冷却通路は内周側、外周側を共に蓋をし、第2列目の冷却通路との隔壁に設けた複数の連通孔により同第2列目の冷却通路と連通して同第1列目の冷却通路で翼面を冷却すると共に翼表面に貫通する複数のフィルム冷却孔により主流ガス通路に連通して翼外表面をフィルム冷却し、第2列目の冷却通路を内周側のキャビティに連通してシール空気の供給通路としてガスタービン冷却静翼を構成しているので、静翼外周側から供給されたシール空気は、熱負荷が低く、シール空気の熱交換量が少ない第2列目の冷却通路を選定されたことにより、シール空気としての適温を維持することができ、また、第1列目の冷却通路には、第2列目の冷却通路のシール空気の一部が分かれて複数の連通孔を経て流入し、この空気はシール空気から第1列目の冷却通路で翼面を冷却する冷却空気に変わり、第1列目の冷却通路に対応する翼前端部を冷却した後複数のフィルム冷却孔を経て流出し、翼外表面でフィルム冷却を行うので、これにより第1列目の冷却通路の冷却機能を確保すると共に、前記第2列目の冷却通路の熱負荷を更に低下させてシールチューブ等の部品点数を増やさずとも、内周側のキャビティへの好適なシール空気の確保と、翼前端部の適切な冷却を維持するガスタービン冷却静翼を得ることができたものである。
【図面の簡単な説明】
【図1】本発明の実施の一形態に係るガスタービン冷却静翼の概要を示す斜視断面図である。
【図2】図1のガスタービン冷却静翼の概略断面を示し、(a)は縦断面図、(b)は(a)のII−II断面図である。
【図3】従来のガスタービン冷却静翼の一例の概略断面を示し、(a)は縦断面図、(b)は(a)の III−III 断面図である。
【図4】従来のガスタービン冷却静翼の他の例の概略断面を示し、(a)は縦断面図、(b)は(a)のIV−IV断面図である。
【符号の説明】
1 冷却媒体
2 冷却媒体
3 シール空気
4 シールチューブ
5 翼部
6 連通孔
7 フィルム冷却孔
8 内側シュラウド
9 外側シュラウド
10 内側キャビティ
11 冷却通路壁
A 第1列目冷却通路
B 第2列目冷却通路
C 第3列目冷却通路
D 第4列目冷却通路
E 第5列目冷却通路
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a gas turbine cooling stationary blade provided with a sealing air supply passage for supplying sealing air from the outer peripheral side to the inner peripheral side of the stationary blade.
[0002]
[Prior art]
An outline of this conventional gas turbine cooled stationary blade will be described with reference to FIGS. 3 and 4.
[0003]
FIGS. 3 and 4 show different conventional examples, both of which are shown in cross section so that the supply path of the sealing air becomes clear, and (a) is a longitudinal section of the stationary blade, and (b) ) Shows the cross section.
[0004]
The actual number of gas turbines is determined by the capacity. For example, in the case of a four-stage configuration, the second stage, the third stage, and the fourth stage stationary blades have moving blades arranged at the front and rear, respectively. Since the stator blades are sandwiched between the rotor blades and the rotor disk that supports them, the mainstream high-temperature gas flows into the gaps inside the stator blades formed here for convenience of production, assembly, etc. It is important that there is no.
[0005]
As a countermeasure, normally, the bleed air from the compressor is supplied from the outer periphery of the stationary blade to the cavity on the inner periphery of the stationary blade through the inside of the stationary blade, and the pressure in this cavity is higher than that of the mainstream high-temperature gas passage Thus, a structure that prevents the mainstream hot gas from entering is adopted.
[0006]
An example of a conventional seal air supply structure is a structure in which seal air is supplied using a seal tube 4 as shown in FIG. 3, and the seal tube 4 is a leading edge inside the blade portion 5 from the outer peripheral side of the blade. The first row cooling passage A provided in the blade is penetrated at a position away from the inner surface of the blade portion 5, and the blade outer peripheral side is communicated with the cavity portion on the blade inner peripheral side. In this structure, air 3 is guided.
[0007]
Here, 2 is a cooling medium supplied to cool the stationary blades, from the first row cooling passage A inside the blade portion 5 through the second row cooling passage B and the third row cooling passage C, Released from the blade trailing edge into the mainstream hot gas.
[0008]
Further, the other conventional example shown in FIG. 4 does not employ a seal tube as in the example shown in FIG. 3, but omits the seal tube, and instead directly serves as the blade cooling. The seal air 3 is supplied to the row cooling passage A.
[0009]
[Problems to be solved by the invention]
In the above-described conventional first example, the dedicated seal tube 4 disposed at a position away from the inner surface of the wing part 5 is used to guide the seal air 3, so in this system, The sealing air 3 does not directly contact the inner surface of the wing part 5 and the sealing air 3 has an advantage that it can be supplied as sealing air without heat exchange. However, on the other hand, the sealing tube 4 is used. It had the disadvantage of increasing the number of parts and increasing the number of processing steps.
[0010]
Further, in the conventional second example described above, since the seal tube 4 is not employed, the number of parts and the number of processing steps can be reduced, but the supply path of the seal air 3 is heated. Since the leading edge has a high load, there is a problem that the amount of heat exchange for cooling the blade is large and the seal air temperature becomes too high.
[0011]
The present invention eliminates these problems in the prior art, and can guide and supply sealing air without increasing the number of parts and processing steps while maintaining a low temperature by suppressing the heat exchange amount of the sealing air. It is an object of the present invention to provide a gas turbine cooled stationary blade.
[0012]
[Means for Solving the Problems]
The present invention has been made to solve the above-described problems. A plurality of cooling passages extending in the radial direction are formed inside the stationary blade, and a part of the cooling passage is supplied to the cavity on the inner circumferential side from the outer circumferential side of the stationary blade. In the gas turbine cooling stationary blade used as the supply passage for the sealing air to be sealed, the cooling passage in the first row from the upstream side covers both the inner peripheral side and the outer peripheral side, and is provided in the partition wall with the cooling passage in the second row communicating with the main gas passage by a plurality of film cooling holes through the airfoil surface with a plurality of the blade surface by passage with cooling passages in communication with the same second row in the cooling passage of the first column for cooling the Thus, the outer surface of the blade is film-cooled, and a cooling turbine blade for cooling a gas turbine is provided in which the cooling passage in the second row communicates with the cavity on the inner peripheral side and serves as a supply passage for seal air.
[0013]
That is, according to the present invention, since the sealing air supplied from the outer peripheral side of the stationary blade is selected in the cooling passage of the second row, the heat load is low and the heat exchange amount of the sealing air is small. The proper temperature can be maintained.
[0014]
In addition, a part of the sealing air of the second row cooling passage is divided into the first row cooling passage and flows through the plurality of communication holes, and this air flows from the sealing air to the first row cooling passage. The cooling air is used to cool the blade surface, and the blade front end corresponding to the cooling passage in the first row is cooled and then flows out through a plurality of film cooling holes to cool the film on the outer surface of the blade. Even without increasing the number of parts such as, it is possible to secure suitable sealing air to the inner peripheral cavity and maintain proper cooling of the blade front end.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
An embodiment of the present invention will be described with reference to FIGS.
Note that the same parts as those of the above-described conventional one are denoted by the same reference numerals in the drawings, and redundant description will be omitted as much as possible, and points unique to the present embodiment will be mainly described.
[0018]
In the present embodiment, the sealing air 3 that also serves as blade cooling in the second example of the prior art is not the first row cooling passage A provided at the blade leading edge but the heat load that is lower. It is introduced into the second row cooling passage B, the second row cooling passage B is cooled and a part thereof is divided and supplied to the first row cooling passage A, and the remaining portion is introduced into the inner cavity 10 as seal air. To do.
[0019]
That is, as clearly shown in FIGS. 1 and 2, a plurality of communication holes 6 are formed in the cooling passage wall 11 separating the first row cooling passage A and the second row cooling passage B provided at the blade leading edge. In addition, a plurality of film cooling holes 7 are also provided on the back side and the abdomen side of the wing portion 5 of the first row cooling passage A.
[0020]
Further, the inner shroud 8 and the outer shroud 9 of the first row cooling passage A are closed, and the cooling passages after the third row (third row cooling passage C, fourth row cooling). The cooling passage D and the fifth row cooling passage E) have the same structure as the conventional one.
[0021]
In the present embodiment configured as described above, after the cooling medium 1 having both the sealing function and the blade cooling function is supplied from the outer shroud 9 side to the second row cooling passage B, the blade surface in the passage is cooled, A part of the cooling medium 1 is introduced into the inner cavity 10 as sealing air 3.
[0022]
The rest is supplied to the first row cooling passage A through the communication hole 6, and after cooling the blade surface as cooling air, it is ejected from the film cooling hole 7 into the mainstream high-temperature gas to cool the blade outer surface. .
[0023]
Note that the cooling medium 2 supplied to the third row cooling passage C is the fourth row cooling passage D, the fifth row cooling passage E and the blades sequentially bent as a serpentine as cooling air in the same manner as the conventional one. After cooling the surface, it is ejected from the trailing edge into the mainstream hot gas.
[0024]
In this way, according to the present embodiment, the seal air is supplied to the second row cooling passage B at the leading edge where the heat load is low, and a part of the sealing air passes through the communication hole 6 of the cooling passage wall 11 to be the first. In order to provide film cooling on the outer surface of the rear blades supplied to the row cooling passage A, the blade surface corresponding to the second row cooling passage B receiving the film cooling drops in temperature, and the heat of the second row cooling passage B Since the load is further reduced, the temperature rise of the sealing air here can be more reliably suppressed.
[0025]
Thereby, since the temperature rise of the seal air supplied to the inner cavity 10 through the second row cooling passage B is sufficiently suppressed, it is not necessary to use a seal tube, and the increase in the number of parts and the number of processing steps can be suppressed.
[0026]
When adjusting the ratio between the flow rate supplied to the inner cavity 10 as seal air in the second row cooling passage B and the flow rate supplied to the first row cooling passage A side, the cooling passage outlet on the inner cavity 10 side is adjusted. A diaphragm may be provided.
[0027]
In the present embodiment, the seal air 3 is supplied to the inner cavity 10 via the second row cooling passage B. However, the supply of the seal air 3 is supplied to the second row cooling passage B. The second row cooling passage B and the third row cooling passage C after the second row cooling passage B may be selected.
[0028]
When such a change is made, the passage after the third row cooling passage C has a smaller thermal load than the second row cooling passage B, so that the sealing air maintains a more suitable low temperature. Sealing air suitable for the inner cavity 10 can be secured.
[0029]
Although the present invention has been described with reference to the illustrated embodiment, the present invention is not limited to this embodiment, and it goes without saying that various modifications may be made to the specific structure within the scope of the present invention. Absent.
[0030]
【The invention's effect】
As described above, according to the present invention, a plurality of cooling passages extending in the radial direction are formed inside the stationary blade, and a part of the cooling passages serves as a sealing air supply passage for supplying sealing air from the outer peripheral side of the stationary blade to the cavity on the inner peripheral side. In the gas turbine cooling vane, the cooling passage in the first row from the upstream side is covered by both the inner peripheral side and the outer peripheral side, and the same is provided by a plurality of communication holes provided in the partition wall with the cooling passage in the second row. the wing skin surface film cooling communicates with the main gas passage by a plurality of film cooling holes through the airfoil surfaces together with cooling passages in communication with the second column to cool the blade surface in the cooling passages of the first column the second column of the cooling passage communicates with the inner periphery of the cavity constitutes the gas turbine cooling stationary blade as a supply passage for sealing air Tei Runode, sealing air supplied from the stationary blade outer peripheral side, the heat load 2nd row with low heat exchange amount of seal air By being selected却通path, it is possible to maintain the appropriate temperature as sealing air, also, the cooling passage of the first row, a part of the sealing air in the second row of cooling passages is known more flows through the communication hole, the air is changed to cool air to cool the blade surface in the cooling passages in the first row from the sealing air, a plurality cools the blade front end portion corresponding to the cooling passage of the first row The film flows out through the film cooling holes and cools the film on the outer surface of the blade , thereby ensuring the cooling function of the cooling passage in the first row and further reducing the thermal load of the cooling passage in the second row. It was possible to obtain a gas turbine cooling stationary blade that secures suitable sealing air to the inner cavity and maintains proper cooling of the blade front end without increasing the number of parts such as seal tubes. It is.
[Brief description of the drawings]
FIG. 1 is a perspective sectional view showing an outline of a gas turbine cooling stationary blade according to an embodiment of the present invention.
2 shows a schematic cross section of the gas turbine cooling stationary blade of FIG. 1, wherein (a) is a longitudinal sectional view, and (b) is a II-II sectional view of (a).
FIG. 3 shows a schematic cross section of an example of a conventional gas turbine cooling stationary blade, wherein (a) is a longitudinal sectional view and (b) is a sectional view taken along line III-III of (a).
4A and 4B are schematic cross-sectional views of another example of a conventional gas turbine cooled stationary blade, wherein FIG. 4A is a vertical cross-sectional view, and FIG. 4B is a cross-sectional view taken along line IV-IV in FIG.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Cooling medium 2 Cooling medium 3 Sealing air 4 Sealing tube 5 Wing | blade part 6 Communication hole 7 Film cooling hole 8 Inner shroud 9 Outer shroud 10 Inner cavity 11 Cooling passage wall A 1st row cooling passage B 2nd row cooling passage C 3rd row cooling passage D 4th row cooling passage E 5th row cooling passage

Claims (1)

静翼内部に半径方向に延びる複数の冷却通路を形成し、その一部を静翼外周側から内周側のキャビティにシール空気を供給するシール空気の供給通路としたガスタービン冷却静翼において、上流側から第1列目の冷却通路は内周側、外周側を共に蓋をし、第2列目の冷却通路との隔壁に設けた複数の連通孔により同第2列目の冷却通路と連通して同第1列目の冷却通路で翼面を冷却すると共に翼表面に貫通する複数のフィルム冷却孔により主流ガス通路に連通して翼外表面をフィルム冷却し、第2列目の冷却通路を内周側のキャビティに連通してシール空気の供給通路としたことを特徴とするガスタービン冷却静翼。In the gas turbine cooling stationary blade, a plurality of cooling passages extending in the radial direction are formed inside the stationary blade, and a part of the cooling passage is used as a sealing air supply passage for supplying sealing air from the stationary blade outer peripheral side to the inner peripheral cavity. The cooling passage of the first row from the upstream side covers both the inner peripheral side and the outer peripheral side, and a plurality of communication holes provided in the partition wall with the cooling passage of the second row The blade surface is cooled by the cooling passage in the first row in the same manner, and the outer surface of the blade is cooled by the plurality of film cooling holes penetrating the blade surface to the mainstream gas passage to cool the second row. A gas turbine cooling stationary blade characterized in that a passage is communicated with a cavity on an inner peripheral side to serve as a supply passage for sealing air.
JP07918198A 1998-03-26 1998-03-26 Gas turbine cooling vane Expired - Lifetime JP3801344B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP07918198A JP3801344B2 (en) 1998-03-26 1998-03-26 Gas turbine cooling vane
EP99105483A EP0945595A3 (en) 1998-03-26 1999-03-17 Gas turbine cooled blade
CA002381474A CA2381474C (en) 1998-03-26 1999-03-19 Gas turbine cooled blade
CA002381484A CA2381484C (en) 1998-03-26 1999-03-19 Gas turbine cooled blade
US09/272,559 US6290462B1 (en) 1998-03-26 1999-03-19 Gas turbine cooled blade
CA002266140A CA2266140C (en) 1998-03-26 1999-03-19 Gas turbine cooled blade

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07918198A JP3801344B2 (en) 1998-03-26 1998-03-26 Gas turbine cooling vane

Publications (2)

Publication Number Publication Date
JPH11280407A JPH11280407A (en) 1999-10-12
JP3801344B2 true JP3801344B2 (en) 2006-07-26

Family

ID=13682818

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07918198A Expired - Lifetime JP3801344B2 (en) 1998-03-26 1998-03-26 Gas turbine cooling vane

Country Status (1)

Country Link
JP (1) JP3801344B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1191189A1 (en) * 2000-09-26 2002-03-27 Siemens Aktiengesellschaft Gas turbine blades
US7007488B2 (en) * 2004-07-06 2006-03-07 General Electric Company Modulated flow turbine nozzle
US9249917B2 (en) * 2013-05-14 2016-02-02 General Electric Company Active sealing member
JP7284737B2 (en) * 2020-08-06 2023-05-31 三菱重工業株式会社 gas turbine vane

Also Published As

Publication number Publication date
JPH11280407A (en) 1999-10-12

Similar Documents

Publication Publication Date Title
JP4513002B2 (en) Cooling system for platform edge of nozzle segment
EP0929734B1 (en) Gas turbine airfoil cooling
US6283708B1 (en) Coolable vane or blade for a turbomachine
US5165847A (en) Tapered enlargement metering inlet channel for a shroud cooling assembly of gas turbine engines
US6017189A (en) Cooling system for turbine blade platforms
JP2668207B2 (en) Aerof oil section of gas turbine engine turbine
EP1921272B1 (en) Air-cooled aerofoil for a gas turbine engine
US8870537B2 (en) Near-wall serpentine cooled turbine airfoil
US6468031B1 (en) Nozzle cavity impingement/area reduction insert
JP3426902B2 (en) Gas turbine cooling vane
JPH02233802A (en) Cooling type turbine blade
JPS6119804B2 (en)
US11035235B2 (en) Turbomachine blade with optimised cooling
GB1289789A (en)
JP4175669B2 (en) Cooling channel structure for cooling the trailing edge of gas turbine blades
JP3494879B2 (en) Gas turbine and gas turbine vane
JPH10238308A (en) Gas turbine stationary blade
JPH10148103A (en) Method for cooling stator
JPH11257003A (en) Impingement cooling device
JP3213107U (en) Collision system for airfoils
JP3801344B2 (en) Gas turbine cooling vane
JP2953842B2 (en) Turbine vane
JP2000186505A (en) Aerofoil
CN110770415B (en) Bucket including improved cooling circuit
JPH09280002A (en) Gas turbine moving blade

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20030408

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060425

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090512

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100512

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100512

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110512

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120512

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130512

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140512

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term