EP1320015A2 - Système et procédé permettant la gestion des informations sur la sécurité des éléments sécurisés - Google Patents
Système et procédé permettant la gestion des informations sur la sécurité des éléments sécurisés Download PDFInfo
- Publication number
- EP1320015A2 EP1320015A2 EP02258535A EP02258535A EP1320015A2 EP 1320015 A2 EP1320015 A2 EP 1320015A2 EP 02258535 A EP02258535 A EP 02258535A EP 02258535 A EP02258535 A EP 02258535A EP 1320015 A2 EP1320015 A2 EP 1320015A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- secured
- security information
- access
- key
- file
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L63/00—Network architectures or network communication protocols for network security
- H04L63/04—Network architectures or network communication protocols for network security for providing a confidential data exchange among entities communicating through data packet networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F21/00—Security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
- G06F21/60—Protecting data
- G06F21/62—Protecting access to data via a platform, e.g. using keys or access control rules
- G06F21/6209—Protecting access to data via a platform, e.g. using keys or access control rules to a single file or object, e.g. in a secure envelope, encrypted and accessed using a key, or with access control rules appended to the object itself
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F21/00—Security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
- G06F21/60—Protecting data
- G06F21/62—Protecting access to data via a platform, e.g. using keys or access control rules
- G06F21/6218—Protecting access to data via a platform, e.g. using keys or access control rules to a system of files or objects, e.g. local or distributed file system or database
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F21/00—Security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
- G06F21/60—Protecting data
- G06F21/62—Protecting access to data via a platform, e.g. using keys or access control rules
- G06F21/6218—Protecting access to data via a platform, e.g. using keys or access control rules to a system of files or objects, e.g. local or distributed file system or database
- G06F21/6227—Protecting access to data via a platform, e.g. using keys or access control rules to a system of files or objects, e.g. local or distributed file system or database where protection concerns the structure of data, e.g. records, types, queries
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L63/00—Network architectures or network communication protocols for network security
- H04L63/08—Network architectures or network communication protocols for network security for authentication of entities
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L63/00—Network architectures or network communication protocols for network security
- H04L63/10—Network architectures or network communication protocols for network security for controlling access to devices or network resources
- H04L63/105—Multiple levels of security
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L63/00—Network architectures or network communication protocols for network security
- H04L63/12—Applying verification of the received information
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L67/00—Network arrangements or protocols for supporting network services or applications
- H04L67/01—Protocols
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2221/00—Indexing scheme relating to security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
- G06F2221/21—Indexing scheme relating to G06F21/00 and subgroups addressing additional information or applications relating to security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
- G06F2221/2107—File encryption
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2221/00—Indexing scheme relating to security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
- G06F2221/21—Indexing scheme relating to G06F21/00 and subgroups addressing additional information or applications relating to security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
- G06F2221/2111—Location-sensitive, e.g. geographical location, GPS
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2221/00—Indexing scheme relating to security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
- G06F2221/21—Indexing scheme relating to G06F21/00 and subgroups addressing additional information or applications relating to security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
- G06F2221/2113—Multi-level security, e.g. mandatory access control
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2221/00—Indexing scheme relating to security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
- G06F2221/21—Indexing scheme relating to G06F21/00 and subgroups addressing additional information or applications relating to security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
- G06F2221/2137—Time limited access, e.g. to a computer or data
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2221/00—Indexing scheme relating to security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
- G06F2221/21—Indexing scheme relating to G06F21/00 and subgroups addressing additional information or applications relating to security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
- G06F2221/2141—Access rights, e.g. capability lists, access control lists, access tables, access matrices
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L63/00—Network architectures or network communication protocols for network security
- H04L63/10—Network architectures or network communication protocols for network security for controlling access to devices or network resources
- H04L63/101—Access control lists [ACL]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L63/00—Network architectures or network communication protocols for network security
- H04L63/10—Network architectures or network communication protocols for network security for controlling access to devices or network resources
- H04L63/102—Entity profiles
Definitions
- the present invention relates to security systems for data and, more particularly, to security systems that protect data in an enterprise environment.
- the Internet is the fastest growing telecommunications medium in history. This growth and the easy access it affords have significantly enhanced the opportunity to use advanced information technology for both the public and private sectors. It provides unprecedented opportunities for interaction and data sharing among businesses and individuals. However, the advantages provided by the Internet come with a significantly greater element of risk to the confidentiality and integrity of information.
- the Internet is a widely open, public and international network of interconnected computers and electronic devices. Without proper security means, an unauthorized person or machine may intercept any information travelling across the Internet and even get access to proprietary information stored in computers that interconnect to the Internet, but are otherwise generally inaccessible by the public.
- Cryptography allows people to carry over the confidence found in the physical world to the electronic world, thus allowing people to do business electronically without worries of deceit and deception. Every day hundreds of thousands of people interact electronically, whether it is through e-mail, e-commerce (business conducted over the Internet), ATM machines, or cellular phones. The perpetual increase of information transmitted electronically has lead to an increased reliance on cryptography.
- One of the ongoing efforts in protecting the proprietary information travelling across the Internet is to use one or more cryptographic techniques to secure a private communication session between two communicating computers on the Internet.
- the cryptographic techniques provide a way to transmit information across an unsecure communication channel without disclosing the contents of the information to anyone eavesdropping on the communication channel.
- an encryption process in a cryptographic technique one party can protect the contents of the data in transit from access by an unauthorized third party, yet the intended party can read the data using a corresponding decryption process.
- a firewall is another security measure that protects the resources of a private network from users of other networks.
- many unauthorized accesses to proprietary information occur from the inside, as opposed to from the outside.
- An example of someone gaining unauthorized access from the inside is when restricted or proprietary information is accessed by someone within an organization who is not supposed to do so.
- the invention relates to improved approaches for accessing secured digital assets (e.g., secured items).
- secured digital assets e.g., secured items
- digital assets that have been secured can only be accessed by authenticated users with appropriate access rights or privileges.
- Each secured digital asset is provided with a header portion and a data portion, where the header portion includes a pointer to separately stored security information.
- the separately stored security information is used to determine whether access to associated data portions of secured digital assets is permitted.
- These improved approaches can facilitate the sharing of security information by various secured digital assets and thus reduce the overall storage space for the secured digital assets.
- These improved approaches can also facilitate efficient management of security for the secured digital assets.
- the invention can be implemented in numerous ways, including as a method, system, device, and computer readable medium. Several embodiments of the invention are discussed below.
- one embodiment of the invention includes at least the acts of: obtaining the secured file to be accessed, the secured file having a header portion and a data portion; retrieving a security information pointer from the header portion of the secured file; obtaining security information for the secured file using the security information pointer; and permitting access to the secured file to the extent permitted by the security information.
- one embodiment of the invention includes at least: computer program code for obtaining the secured item to be accessed, the secured item having a header portion and a data portion; computer program code for retrieving a security information pointer from the header portion of the secured item; computer program code for obtaining security information for the secured item using the security information pointer; and computer program code for permitting access to the secured item to the extent permitted by the security information.
- one embodiment of the invention includes at least: a storage device that stores security information for a plurality of different secured items, the pointer serving to locate the security information associated with secured item; a first decryption module that receives the encrypted key from the header portion of the secured item and decrypts the encrypted key to obtain a key; an access analyzer that determines whether the encrypted data portion is permitted to be accessed by a requestor based on the security information; and a second decryption module that decrypts the encrypted data portion using the key to produce an unencrypted data portion that the requestor is able to access, provided the access analyzer determines that the encrypted data portion is permitted to be accessed by a requestor.
- one embodiment of the invention includes at least a header portion and a data portion.
- the header portion contains at least a pointer to separately stored security information and a key.
- At least the key portion of the header portion is encrypted.
- the data portion contains at least encrypted data of the secured file.
- the present invention relates to improved approaches for accessing secured digital assets (e.g., secured items).
- secured digital assets e.g., secured items
- digital assets that have been secured can only be accessed by authenticated users with appropriate access rights or privileges.
- Each secured digital asset is provided with a header portion and a data portion, where the header portion includes a pointer to separately stored security information.
- the separately stored security information is used to determine whether access to associated data portions of secured digital assets is permitted.
- These improved approaches can facilitate the sharing of security information by various secured digital assets and thus reduce the overall storage space for the secured digital assets.
- These improved approaches can also facilitate efficient management of security for the secured digital assets.
- Digital assets may include, but not be limited to, various types of documents, multimedia files, data, executable code, images and text.
- digital assets may also include directories/folders as well as any OS-addressable resources (e.g. a thread to a port, or a device).
- OS-addressable resources e.g. a thread to a port, or a device.
- the present invention is particularly suitable in an inter/intra enterprise environment.
- FIGs. 1A - 6B Embodiments of the present invention are discussed herein with reference to FIGs. 1A - 6B. However, those skilled in the art will readily appreciate that the detailed description given herein with respect to these figures is for explanatory purposes as the invention extends beyond these limited embodiments.
- FIG. 1A shows a basic system configuration in which the present invention may be practised in accordance with one embodiment thereof.
- Documents or files may be created using an authoring tool executed on a client computer 100, which may be a desktop computing device, a laptop computer, or a mobile computing device.
- client computer 100 may be a desktop computing device, a laptop computer, or a mobile computing device.
- Exemplary authoring tools may include application programs such as Microsoft Office (e.g., Microsoft Word, Microsoft PowerPoint, and Microsoft Excel), Adobe FrameMaker and Adobe Photoshop.
- the client computer 100 is loaded with a client module that is a linked and compiled, or interpreted, version of one embodiment of the present invention and is capable of communicating with a server 104 or 106 over a data network (e.g., the Internet or a local area network).
- the client computer 100 is coupled to the server 104 through a private link.
- a document or file created by an authoring tool can be secured by the client module.
- the client module when executed, is configured to ensure that a secured document is secured at all times in a store (e.g., a hard disk or other data repository).
- the secured documents can only be accessed by users with proper access privileges.
- an access privilege or access privileges for a user may include, but not be limited to, a viewing permit, a copying permit, a printing permit, an editing permit, a transferring permit, an uploading/downloading permit, and a location permit.
- a created document is caused to go through an encryption process that is preferably transparent to a user.
- the created document is encrypted or decrypted under the authoring application so that the user is not aware of the process.
- a key (referred to herein as a user key) can be used to retrieve a file key to decrypt an encrypted document.
- the user key is associated with an access privilege for the user or a group of users. For a given secured document, only a user with a proper access privilege can access the secured document.
- a secured document may be uploaded via the network 110 from the computer 100 to a computing or storage device 102 that may serve as a central repository.
- the network 110 can provide a private link between the computer 100 and the computing or storage device 102.
- Such link may be provided by an internal network in an enterprise or a secured communication protocol (e.g., VPN and HTTPS) over a public network (e.g., the Internet).
- a secured communication protocol e.g., VPN and HTTPS
- public network e.g., the Internet
- such link may be simply provided by a TCP/IP link.
- secured documents on the computer 100 may be remotely accessed.
- the computer 100 and the computing or storage device 102 are inseparable, in which case the computing or storage device 102 may be a local store to retain secured documents or receive secured network resources (e.g., dynamic Web contents, results of a database query, or a live multimedia feed).
- secured documents or secured sources are actually located, a user, with proper access privilege, can access the secured documents or sources from the computer 100 or the computing or storage device 102 using an application (e.g., Internet Explorer, Microsoft Word or Acrobat Reader).
- the server 104 also referred to as a local server, is a computing device coupled between a network 108 and the network 110. According to one embodiment, the server 104 executes a local version of a server module. The local version is a localized server module configured to service a group of designated users or client computers, or a location.
- Another server 106 also referred to as a central server, is a computing device coupled to the network 108.
- the server 106 executes the server module and provides centralized access control (AC) management for an entire organization or business. Accordingly, respective local modules in local servers, in coordination with the central server, form a distributed mechanism to provide distributed AC management. Such distributed access control management ensures the dependability, reliability and scalability of centralized AC management undertaken by the central server for an entire enterprise or a business location.
- AC centralized access control
- FIG. 1B shows internal construction blocks of a computing device 118 in which one embodiment of the present invention may be implemented and executed.
- the computing device 118 may correspond to a client device (e.g., computer 100, computing or storage device 102 in FIG. 1A) or a server device (e.g., server 104, 106 in FIG. 1A).
- the computing device 118 includes a central processing unit (CPU) 122 interfaced to a data bus 120 and a device interface 124.
- CPU 122 executes instructions to process data and perhaps manage all devices and interfaces coupled to data bus 120 for synchronized operations.
- the instructions being executed can, for example, pertain to drivers, operating system, utilities or applications.
- a device interface 124 may be coupled to an external device, such as the computing device 102 of FIG. 1A; hence, the secured documents therefrom can be received into memory 132 or storage 136 through data bus 120. Also interfaced to data bus 120 is a display interface 126, a network interface 128, a printer interface 130 and a floppy disk drive interface 138. Generally, a client module, a local module or a server module of an executable version of one embodiment of the present invention can be stored to storage 136 through floppy disk drive interface 138, network interface 128, device interface 124 or other interfaces coupled to data bus 120. Execution of such module by CPU 122 can cause the computing device 118 to perform as desired in the present invention. In one embodiment, the device interface 124 provides an interface for communicating with a capturing device 125 (e.g., a fingerprint sensor, a smart card reader or a voice recorder) to facilitate the authentication of a user of the computing device 118.
- a capturing device 125 e.g., a
- Main memory 132 such as random access memory (RAM) is also interfaced to data bus 120 to provide CPU 122 with instructions and access to memory storage 136 for data and other instructions.
- RAM random access memory
- CPU 122 when executing stored application program instructions, such as for document securing or document accessing, CPU 122 is caused to manipulate the data to achieve results contemplated by the program instructions.
- ROM Read-Only Memory
- BIOS basic input/output operation system
- the computing or storage device 102 is capable of storing secured items (e.g., secured files) in the main memory 132 or the storage 136.
- the main memory 132 provides non-persistent (i.e., volatile) storage for the secured items and the storage 136 provides persistent (i.e., nonvolatile) storage for the secured items.
- the computing or storage device 102 or more particularly, the main memory 132 and/or the storage 136, can act as a storage device for the secured items.
- FIG. 2A a block diagram of securing a created document 200 is shown according to one embodiment of the invention.
- the document 200 is created with an application or authoring tool and upon an activation of a "Save,” “Save As” or “Close” command or automatic saving invoked by an operating system, the application itself or another application, the created document 200 is caused to undergo a securing process 201.
- the securing process 201 starts with an encryption process 202, namely, the document 200 that has been created or is being written into a store is encrypted by a cipher with a file key. In other words, the encrypted document could not be opened without the file key (i.e., a cipher key).
- a set of access rules 204 for the document 200 is received and associated with a header 206.
- the access rules 204 determine or regulate who and/or how the document 200, once secured, can be accessed.
- the access rules 204 also determine or regulate when or where the document 200 can be accessed.
- a header is a file structure, small in size and includes, or perhaps links to, security information about a resultant secured document.
- the security information can be entirely included in a header or pointed to by a pointer that is included in the header.
- the access rules 204, as part of the security information are included in the header 206.
- the access rules 204 are separately stored from the document 200 but referenced by one or more pointers or links therein.
- the pointers in the header 206 can point to different versions of security information providing different access control depending on user's access privilege.
- the security information or the header 206 further includes a file key. Some or all of the header 206 can then be encrypted by a cipher with a user key associated with an authorized user to an encrypted header 210.
- the encrypted header 210 is attached to the encrypted document 212 to generate a secured document 208.
- a cipher may be implemented based on one of many encryption/decryption schemes. Examples of such schemes may include, but not be limited to, Data Encryption Standard algorithm (DES), Blowfish block cipher and Twofish cipher. Therefore, the operations of the present invention are not limited to a choice of those commonly-used encryption/decryption schemes. Any encryption/decryption scheme that is effective and reliable may be used. Hence, the details of encryption/decryption schemes are not further discussed herein so as to avoid obscuring aspects of the present invention.
- DES Data Encryption Standard algorithm
- Blowfish block cipher Twofish cipher
- a secured document may be configured differently than noted above without departing from the principles of the present invention.
- a secured document may include a header with a plurality of encrypted headers, each can be accessible only by one designated user or a group users.
- a header in a secured document may include more than one set of security information or pointers thereto, each set being for one designated user or a group of users while a single file key can be used by all.
- Some or all of the access rules may be viewed or updated by users who can access the secured document.
- the encryption process and its counter process, decryption are implemented in a filter or a software module that is activated when a secured document or item is involved.
- the software module can be configured to control access to some digital assets (e.g., a port or a device) that may not be encrypted. However, an access to a secured port or device can trigger the software module to operate to control access thereto.
- a user needs a user key or keys to decrypt the encrypted security information or at least a portion of the header first.
- the key or keys are associated with a user's login to a local server or a central server.
- Appropriate access privileges associated with the user are validated if the user has been authenticated or previously registered with the server and properly logged in.
- the access rules for the secured document determine whether the contents of the document shall be revealed to the user.
- the access rules are present in a markup language, such as HTML, SGML and XML.
- the markup language is Extensible Access Control Markup Language (XACML) that is essentially an XML specification for expressing policies for information access.
- XACML can address fine-grained control of authorized activities, the effect of characteristics of the access requestor, the protocol over which the request is made, authorization based on classes of activities, and content introspection (i.e., authorization based on both the requestor and attribute values within the target where the values of the attributes may not be known to the policy writer).
- XACML can suggest a policy authorization model to guide implementers of the authorization mechanism.
- a document is encrypted with a cipher (e.g., a symmetric or asymmetric encryption scheme).
- Encryption is the transformation of data into a form that is impossible to read without appropriate knowledge (e.g., a key). Its purpose is to ensure privacy by keeping information hidden from anyone to whom it is not intended, even those who have access to other encrypted data.
- Decryption is the reverse of encryption. Encryption and decryption generally require the use of some secret information, referred to as a key. For some encryption mechanisms, the same key is used for both encryption and decryption; for other mechanisms, the keys used for encryption and decryption are different.
- the key or keys may be the same or different keys for encryption and decryption and are preferably included in the security information contained in or pointed to by the header and, once obtained, can be used to decrypt the encrypted document.
- the key itself is guarded by the access rules. If a user requesting the document has the proper access privileges that can be granted by the access rules, the key will be retrieved to proceed with the decryption of the encrypted document.
- At least a portion of the header itself can be encrypted with a cipher.
- the cipher for the header may or may not be identical to the one used for the document.
- the key (referred to as a user key) to decrypt the encrypted header can, for example, be stored in a local store of a terminal device and activated only when the user associated with it is authenticated. As a result, only an authorized user can access the secured document.
- the two portions i.e., the header (possibly encrypted) and the encrypted document
- the encrypted portions can be error-checked by an error-checking portion, such as using a cyclical redundancy check to ensure that no errors have been incurred to the encrypted portion(s) or the secured document.
- FIG. 2B is a block diagram of a secured item access system 240 according to one embodiment of the invention.
- the secured item access system 240 operates to process a secured item 242 on behalf of a requestor to either permit or deny access to its contents.
- the secured item 242 is, for example, a secured file, such as a secured document.
- the secured item 242 includes a header portion 244 and an encrypted data portion 246.
- the header portion 244 includes at least a pointer 248.
- the pointer 248 from the header portion 244 is supplied to a storage device 250.
- the pointer 248 is used to locate security information 252 stored in the storage device 250.
- the security information 252 is not encrypted; however, in another embodiment, the security information 252 could be further secured by encryption.
- the pointer 248 is used to retrieve the security information 252 from the storage device 250.
- the header portion 244 also includes at least an encrypted file key 254.
- the encrypted file key 254 is encrypted in this embodiment to secure the file key.
- the encrypted file key 254 is supplied to a first decryption module 256.
- the first decryption module 256 also receives a user key.
- the user key is a private key
- the user key is a public key.
- the first decryption module 256 operates to decrypt the encrypted file key 254 using the user key and thus produces an unencrypted file key 258.
- the security information 252 typically includes at least access rules for access to the encrypted data portion 246 of the secured item 242.
- the security information 252 is supplied to an access rules analyzer 260.
- the access rules analyzer 260 also receives user privileges associated with the requestor.
- the access rules analyzer 260 examines the user privileges and the security information 252, namely, the access rules contained therein, to determine whether the requestor has sufficient privileges to gain access to the encrypted data portion 246 of the secured item 242.
- the access rules analyzer 260 outputs an access decision to an access controller 262.
- the access controller 262 receives the access decision and the file key 258.
- the access controller 262 determines that the access decision does not permit the requestor to gain access to the encrypted data portion 246 of the secured item 242, then access to the encrypted data portion 246 for the secured item 242 is denied.
- the file key 258 is supplied to a second decryption module 262.
- the encrypted data portion 246 of the secured item 242 i.e., the data of the secured item 242
- the second decryption module 264 then operates to decrypt the encrypted data portion 246 using the file key 258 to produce an unencrypted data portion 266.
- the unencrypted data portion 266 is then made available to the requestor, thereby permitting the requestor to gain access to the data associated with the secured item 242.
- the header portion of a secured item is able to be reduced in size due to the use of a pointer. More particularly, the pointer in the header portion points to separately stored security information. Since the size of the pointer is substantially smaller than the size of the security information pointed to, the overall size of the secured item is reduced.
- the pointer is structured in a fixed number of bits so that the size of the pointer is constant.
- security information is able to be shared across different documents, thus reducing the storage burdens for storage of secured items. Changes or modifications to security rules or other security information can be more easily made because changes to the secured items themselves are not necessary. That is, changes to security information stored to a storage device are performed without alterations to the corresponding secured items.
- one feature of the invention is that through use of pointers to security information (stored at a storage device separately from the secured files) different secured files are able to share the same stored security information or parts thereof.
- multiple secured files can utilize identical pointers such that they all share the same security information stored on a local storage device. Consequently, managing the security provided to the secured files is at least in part dependent upon the security information.
- managing the security provided to the secured files is at least in part dependent upon the security information.
- FIG. 2C is a diagram of a representative data structure 280 for a secured file.
- the secured file can be the secured item 242 illustrated in FIG. 2B.
- the data structure 280 includes a header (or header portion) 282 and an encrypted data portion 284.
- the header 282 includes a flag bit 286, at least one pointer 288, and an encrypted file key 290.
- the flag bit 286 indicates whether or not the data structure pertains to a file that is secured.
- the at least one pointer 288 points to a remote data structure 292 stored in a storage device.
- the storage device is typically a local storage device.
- the data structure 280 and the remote data structure 292 are typically stored on a common machine (e.g., desktop or portable computer).
- the data structure 292 stores security information 294.
- the data structure 292 storing the security information 294 can vary depending upon implementation. However, as shown in FIG. 2C, the data structure 292 for the security information 294 includes a user identifier (ID) 296-1, rules (access rules) 296-2 and other 296-3.
- the other 296-3 is additional space for other information to be stored within the security information 294. For example, the other information 296-3 may be used to include other information facilitating secure access to the secured file, such as version number or author identifier.
- the encrypted file key 290 is normally itself decrypted and then used to decrypt the encrypted data portion 214 so as to access the content or data of the secured file.
- FIG. 3 is a flow diagram of secured document access processing 300 according to one embodiment of the invention.
- the secured document access processing 300 is typically performed by a computer.
- the computer can be a local computer or a remote computer. Further, the computer can also be considered both a local and a remote computer that operate in a client-server fashion.
- the secured document access processing 300 can be invoked when a requestor selects a document to be accessed.
- the document is a particular type of file (for example, design.doc). Therefore, more generally, the requestor selects a file in a folder or among other files to be accessed.
- the secured document access processing 300 is invoked. Initially, the selected document to be accessed is obtained 302. Typically, the selected document will have a header portion and a data portion. Next, a security information pointer is retrieved 304 from the header portion of the selected document.
- the header portion of the selected document includes at least the security information pointer that points to an address location where the corresponding security information is located. Next, the security information for the selected document is obtained 306 using the security information pointer.
- a decision 308 determines whether the security information permits the requested access.
- the security information may or may not be encrypted so that it remains secure while stored on the local storage. If the security information is encrypted, the security information would be decrypted (e.g., through use of a user key) to gain access to the security information.
- the security information contains, among other things, access rules. These access rules are used by the decision 308 in determining whether the requested access is permitted. Namely, the access rules are compared to privileges associated with the requestor for the selected document. When the decision 308 determines that the security information (namely the access rules) does not permit the requested access, then an access denied message is provided 310 to the requestor.
- the data portion of the selected document is decrypted 312.
- the header portion also includes a file key.
- the file key is itself normally encrypted and can be decrypted with a user key.
- the file key can be used to decrypt the encrypted data portion of the selected document.
- the security information is stored to a storage device and located through use of a pointer that is provided with a header portion of a secured file (document).
- the manner in which the security information is stored within the storage device can vary depending upon implementation.
- the pointer directly points to a storage location (i.e., memory location) within the storage device.
- Stored at the storage location designated by the pointer is the security information.
- the security information 294 pointed to by the pointer 288 shown in FIG. 2C can be located in this manner.
- FIG. 4A illustrates a data organization 400 according to one embodiment of the invention.
- the secured file 402 includes a header portion 404 and a data portion 406.
- the header portion 404 includes at least a pointer 408 that points to a security information table 410.
- the security information table 410 can then, in turn, include a pointer to a rules table 412 that can store access rules.
- the security information table 410 is encrypted by one or more keys in a key table 414.
- the tables 410, 412 and 414 of the data organization 400 can be provided within a database.
- FIG. 4B illustrates exemplary tables for the security information table 410, the rules table 412, and the key table 414 illustrated in FIG. 4A.
- the security information table 410 is a main table that is addressed through use of a memory address maintained by an operating system.
- the pointer 408 points to one of the rows, namely, memory addresses (e.g., operating system addresses), of the security information table 410.
- the rows of the security information table 410 in turn can point to other tables or include data therein.
- the columns of the security information table 410 include an operating system address, a policy identifier column and an owning group identifier column.
- the operating system address column can serve as an index to the security information table 410.
- the policy identifier column of the security information table 410 includes pointers to particular rows in the rule table 412.
- the rules within the rules table 412 can be provided within a variety of different formats.
- the rules table 412 shown in FIG. 4B provides the rules expressed in a markup language format (such as eXtensible Markup Language (XML)).
- the owning group identifier column of the security information table 410 includes pointers pertaining to group identifiers. These pointers pertaining to the group identifiers point to rows within the key table 414. As shown in FIG. 4B, each row within the key table 414 can store a public key and a private key. In other words, each of the group identifiers is associated with a pair of public and private keys.
- one or both of the public and private keys may be encrypted or readily used to encrypt or decrypt the security information table 410.
- only an authenticated user in a user group identified by one of the group identifiers can retrieve one of the keys to access the secured file 402.
- FIG. 5 is a block diagram of a file security management system 500 according to one embodiment of the invention.
- the file security management system 500 includes a security information manager 502 and a database 504.
- An administrator 506 interacts with the security information manager 502 typically through a graphical user interface (GUI). In this manner, the administrator 506 is able to store, modify or delete information in the database 504. By altering the security information stored in the database 504, the administrator is able to manage the nature of the security provided to associated files or documents.
- the database 504 includes the security information arranged in a plurality of tables.
- the tables include a security information table 508, a rules table 510 and a key table 512.
- the administrator 506 can provide new keys for the key table 512, such as to rotate keys for security reasons.
- the administrator 506 might interact with the security information manager to store new access rules (or policies) to the rules table 510.
- the separate and distributed storage of the security information and the user of pointers provides an efficient data arrangement that allows security information to be efficiently stored, modified and shared.
- a secured item e.g., secured file
- pointer to separately stored security information
- moving the location of the secured item requires adjustment to the pointers, particularly when the movement is to another storage device.
- the secured item and its security information are not readily portable relative to one another as an association to the security information must be maintained. Processing discussed below is able to provide temporary portability for the movement of the secured item.
- FIGs. 6A and 6B are flow diagrams of secured file portability processing 600 according to one embodiment of the invention.
- the secured file portability processing 600 pertains to processing carried out on a secured file when such file is being moved from its present storage device to a different storage device. Typically, these different storage devices are associated with different computers.
- the processing shown in FIG. 6A is typically performed by the computer initially storing the secured file, and the processing shown in FIG. 6B is typically performed by a different computer.
- the secured file portability processing 600 begins with a decision 602 that determines whether a request to move a secured file to a different storage device has been received. When the decision 602 determines that such a request has not yet been received, the secured file portability processing 600 awaits such a request. Once the decision 602 determines that a request to move a secured file to a different storage device has been received, the secured file portability processing 600 begins its processing. Initially, a security information pointer is retrieved 604 from a header portion of the secured file. Security information for the secured file is then obtained 606 using the security information pointer. Typically, the security information is not encrypted at this point. Hence, the security information is encrypted. The security information can be encrypted using a key (e.g., public key). Next, the security information pointer in the header is replaced 608 with the encrypted security information.
- a key e.g., public key
- the secured file is portable and can thus be moved 610 to the different storage device. Once moved, the secured file can be stored to the different storage device in its portable format or additional processing as provided in FIG. 6B can be performed to store the secured file in a more efficient and manageable format.
- the encrypted security information is initially retrieved 612 from the header of the secured file.
- the encrypted security information is then decrypted 613.
- the security information is stored 614 to the different storage device.
- the different machine that is performing the processing shown in FIG. 6B has the security information stored therein.
- a pointer to the stored location of the security information is generated 616.
- the encrypted security information in the header is replaced 618 with the pointer.
- the secured file has been altered such that it includes the pointer and not the encrypted security information. Consequently, the secured file is now more efficiently stored and more manageable. Following the operation 618, the secured file portability processing 600 is complete and ends.
- the invention is preferably implemented by software, but can also be implemented in hardware or a combination of hardware and software.
- the invention can also be embodied as computer readable code on a computer readable medium.
- the computer readable medium is any data storage device that can store data which can thereafter be read by a computer system. Examples of the computer readable medium include read-only memory, random-access memory, CD-ROMs, DVDs, magnetic tape, optical data storage devices, and carrier waves.
- the computer readable medium can also be distributed over network-coupled computer systems so that the computer readable code is stored and executed in a distributed fashion.
- One advantage of the invention is that access rules or criteria are able to be stored separate from the corresponding secured items.
- Another advantage of the invention is that security information to be used with secured items is able to be readily altered by a security administrator.
- Still another advantage of the invention is that centralized, dynamic security management is facilitated.
- Yet another advantage of the invention is that the security approaches of the invention are useful for not only files but also non-file resources, even non-encryptable resources such as pipes/streams, ports and devices.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Security & Cryptography (AREA)
- General Engineering & Computer Science (AREA)
- Computer Hardware Design (AREA)
- Theoretical Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Computing Systems (AREA)
- Health & Medical Sciences (AREA)
- Software Systems (AREA)
- Physics & Mathematics (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Bioethics (AREA)
- Databases & Information Systems (AREA)
- Storage Device Security (AREA)
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US33963401P | 2001-12-12 | 2001-12-12 | |
US339634P | 2001-12-12 | ||
US75194 | 2002-02-12 | ||
US10/075,194 US8065713B1 (en) | 2001-12-12 | 2002-02-12 | System and method for providing multi-location access management to secured items |
US10/132,712 US20030110169A1 (en) | 2001-12-12 | 2002-04-26 | System and method for providing manageability to security information for secured items |
US132712 | 2002-04-26 |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1320015A2 true EP1320015A2 (fr) | 2003-06-18 |
EP1320015A3 EP1320015A3 (fr) | 2005-04-27 |
Family
ID=27372624
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP02258535A Withdrawn EP1320015A3 (fr) | 2001-12-12 | 2002-12-11 | Système et procédé permettant la gestion des informations sur la sécurité des éléments sécurisés |
Country Status (3)
Country | Link |
---|---|
US (1) | US7562232B2 (fr) |
EP (1) | EP1320015A3 (fr) |
JP (1) | JP2003223353A (fr) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005041532A1 (fr) * | 2003-10-15 | 2005-05-06 | Cisco Technology, Inc. | Attribution d'un nom a des cles de groupe 802.11 pour permettre le support de multiples diffusions et de domaines multidesinations |
WO2007036862A2 (fr) * | 2005-09-30 | 2007-04-05 | Koninklijke Philips Electronics N.V. | Gestion securisee de contenus appartenant a plusieurs personnes |
WO2009083970A2 (fr) | 2007-12-27 | 2009-07-09 | Safend Ltd. | Système et procédé destinés à stocker des informations de façon sécurisée |
Families Citing this family (65)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050210263A1 (en) * | 2001-04-25 | 2005-09-22 | Levas Robert G | Electronic form routing and data capture system and method |
US7921450B1 (en) | 2001-12-12 | 2011-04-05 | Klimenty Vainstein | Security system using indirect key generation from access rules and methods therefor |
US7783765B2 (en) | 2001-12-12 | 2010-08-24 | Hildebrand Hal S | System and method for providing distributed access control to secured documents |
US7921288B1 (en) | 2001-12-12 | 2011-04-05 | Hildebrand Hal S | System and method for providing different levels of key security for controlling access to secured items |
US7260555B2 (en) | 2001-12-12 | 2007-08-21 | Guardian Data Storage, Llc | Method and architecture for providing pervasive security to digital assets |
US7565683B1 (en) | 2001-12-12 | 2009-07-21 | Weiqing Huang | Method and system for implementing changes to security policies in a distributed security system |
US8006280B1 (en) | 2001-12-12 | 2011-08-23 | Hildebrand Hal S | Security system for generating keys from access rules in a decentralized manner and methods therefor |
US7930756B1 (en) | 2001-12-12 | 2011-04-19 | Crocker Steven Toye | Multi-level cryptographic transformations for securing digital assets |
US10360545B2 (en) | 2001-12-12 | 2019-07-23 | Guardian Data Storage, Llc | Method and apparatus for accessing secured electronic data off-line |
US7178033B1 (en) | 2001-12-12 | 2007-02-13 | Pss Systems, Inc. | Method and apparatus for securing digital assets |
US7921284B1 (en) | 2001-12-12 | 2011-04-05 | Gary Mark Kinghorn | Method and system for protecting electronic data in enterprise environment |
US10033700B2 (en) | 2001-12-12 | 2018-07-24 | Intellectual Ventures I Llc | Dynamic evaluation of access rights |
US7380120B1 (en) | 2001-12-12 | 2008-05-27 | Guardian Data Storage, Llc | Secured data format for access control |
US8065713B1 (en) | 2001-12-12 | 2011-11-22 | Klimenty Vainstein | System and method for providing multi-location access management to secured items |
USRE41546E1 (en) | 2001-12-12 | 2010-08-17 | Klimenty Vainstein | Method and system for managing security tiers |
US20030110169A1 (en) * | 2001-12-12 | 2003-06-12 | Secretseal Inc. | System and method for providing manageability to security information for secured items |
US7681034B1 (en) | 2001-12-12 | 2010-03-16 | Chang-Ping Lee | Method and apparatus for securing electronic data |
US20030140031A1 (en) | 2001-12-18 | 2003-07-24 | Shawn Thomas | Method and system for improved help desk response |
US7950066B1 (en) | 2001-12-21 | 2011-05-24 | Guardian Data Storage, Llc | Method and system for restricting use of a clipboard application |
JP2003204326A (ja) * | 2002-01-09 | 2003-07-18 | Nec Corp | 通信システムと暗号処理機能付きlan制御装置、及び通信制御プログラム |
US8176334B2 (en) | 2002-09-30 | 2012-05-08 | Guardian Data Storage, Llc | Document security system that permits external users to gain access to secured files |
US8613102B2 (en) | 2004-03-30 | 2013-12-17 | Intellectual Ventures I Llc | Method and system for providing document retention using cryptography |
US8375113B2 (en) * | 2002-07-11 | 2013-02-12 | Oracle International Corporation | Employing wrapper profiles |
US7512810B1 (en) | 2002-09-11 | 2009-03-31 | Guardian Data Storage Llc | Method and system for protecting encrypted files transmitted over a network |
US7836310B1 (en) | 2002-11-01 | 2010-11-16 | Yevgeniy Gutnik | Security system that uses indirect password-based encryption |
US7904720B2 (en) * | 2002-11-06 | 2011-03-08 | Palo Alto Research Center Incorporated | System and method for providing secure resource management |
US7890990B1 (en) | 2002-12-20 | 2011-02-15 | Klimenty Vainstein | Security system with staging capabilities |
US8707034B1 (en) | 2003-05-30 | 2014-04-22 | Intellectual Ventures I Llc | Method and system for using remote headers to secure electronic files |
US8127366B2 (en) | 2003-09-30 | 2012-02-28 | Guardian Data Storage, Llc | Method and apparatus for transitioning between states of security policies used to secure electronic documents |
US7703140B2 (en) | 2003-09-30 | 2010-04-20 | Guardian Data Storage, Llc | Method and system for securing digital assets using process-driven security policies |
WO2005094226A2 (fr) | 2004-03-04 | 2005-10-13 | United States Postal Service | Systeme et procede pour la gestion et la distribution centralisees d'information a des utilisateurs distants |
US7562216B2 (en) * | 2004-06-28 | 2009-07-14 | Symantec Operating Corporation | System and method for applying a file system security model to a query system |
US7707427B1 (en) | 2004-07-19 | 2010-04-27 | Michael Frederick Kenrich | Multi-level file digests |
US7171532B2 (en) * | 2004-08-30 | 2007-01-30 | Hitachi, Ltd. | Method and system for data lifecycle management in an external storage linkage environment |
JP4717464B2 (ja) * | 2005-02-18 | 2011-07-06 | キヤノン株式会社 | 情報処理装置、情報処理方法及びプログラム |
WO2007007805A1 (fr) * | 2005-07-14 | 2007-01-18 | Matsushita Electric Industrial Co., Ltd. | Méthode de vérification, programme de vérification, support d’enregistrement, processeur d’information et circuit intégré |
CN101305375A (zh) * | 2005-09-12 | 2008-11-12 | 沙盒技术有限公司 | 用于控制电子信息的分发的系统和方法 |
US20070113288A1 (en) * | 2005-11-17 | 2007-05-17 | Steven Blumenau | Systems and Methods for Digital Asset Policy Reconciliation |
US8055682B1 (en) * | 2006-06-30 | 2011-11-08 | At&T Intellectual Property Ii, L.P. | Security information repository system and method thereof |
US9147271B2 (en) | 2006-09-08 | 2015-09-29 | Microsoft Technology Licensing, Llc | Graphical representation of aggregated data |
US8234706B2 (en) | 2006-09-08 | 2012-07-31 | Microsoft Corporation | Enabling access to aggregated software security information |
US20080147667A1 (en) * | 2006-12-15 | 2008-06-19 | Samsung Electronics Co., Ltd. | Data management apparatus and data management method thereof |
US8161069B1 (en) * | 2007-02-01 | 2012-04-17 | Eighty-Three Degrees, Inc. | Content sharing using metadata |
JP4780010B2 (ja) * | 2007-03-23 | 2011-09-28 | 日本電気株式会社 | データ管理システム及び方法並びにプログラム |
US8341733B2 (en) * | 2007-06-20 | 2012-12-25 | International Business Machines Corporation | Creating secured file views in a software partition |
US8250651B2 (en) * | 2007-06-28 | 2012-08-21 | Microsoft Corporation | Identifying attributes of aggregated data |
US8302197B2 (en) * | 2007-06-28 | 2012-10-30 | Microsoft Corporation | Identifying data associated with security issue attributes |
US20090063544A1 (en) * | 2007-09-05 | 2009-03-05 | Jameson Brett W | Managing Mobile Classroom Data |
US8990583B1 (en) * | 2007-09-20 | 2015-03-24 | United Services Automobile Association (Usaa) | Forensic investigation tool |
US20090208015A1 (en) * | 2008-02-15 | 2009-08-20 | Microsoft Corporation | Offline consumption of protected information |
US9240883B2 (en) * | 2008-09-04 | 2016-01-19 | Intel Corporation | Multi-key cryptography for encrypting file system acceleration |
TWI425803B (zh) * | 2008-09-12 | 2014-02-01 | Chi Mei Comm Systems Inc | 手機短信保密系統及方法 |
US8392967B2 (en) * | 2009-11-26 | 2013-03-05 | Kyocera Document Solutions Inc. | Image forming system, image forming apparatus, and method for creating, maintaining, and applying authorization information |
US20110197144A1 (en) * | 2010-01-06 | 2011-08-11 | Terry Coatta | Method And System Of Providing A Viewing Experience With Respect To A Document Having Read-only Content |
US8856530B2 (en) | 2011-09-21 | 2014-10-07 | Onyx Privacy, Inc. | Data storage incorporating cryptographically enhanced data protection |
US9792451B2 (en) * | 2011-12-09 | 2017-10-17 | Echarge2 Corporation | System and methods for using cipher objects to protect data |
US9628296B2 (en) | 2011-12-28 | 2017-04-18 | Evernote Corporation | Fast mobile mail with context indicators |
US9712324B2 (en) | 2013-03-19 | 2017-07-18 | Forcepoint Federal Llc | Methods and apparatuses for reducing or eliminating unauthorized access to tethered data |
US9697372B2 (en) * | 2013-03-19 | 2017-07-04 | Raytheon Company | Methods and apparatuses for securing tethered data |
US20140337985A1 (en) * | 2013-05-08 | 2014-11-13 | Jorge Enrique Muyshondt | Security in Digital Manufacturing Systems |
US10372935B1 (en) * | 2015-11-13 | 2019-08-06 | Google Llc | Selectively encrypting commit log entries |
CA3071965C (fr) * | 2017-08-10 | 2024-01-16 | Shardsecure, Inc. | Procede de securisation de donnees utilisant une fragmentation microshard |
WO2020036650A2 (fr) * | 2018-04-25 | 2020-02-20 | The Regents Of The University Of California | Codage de données compact par clés pour une exposition publique telle qu'un stockage en nuage |
US11630920B2 (en) * | 2018-06-29 | 2023-04-18 | Intel Corporation | Memory tagging for side-channel defense, memory safety, and sandboxing |
US10838915B2 (en) * | 2018-09-06 | 2020-11-17 | International Business Machines Corporation | Data-centric approach to analysis |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5684987A (en) * | 1993-12-24 | 1997-11-04 | Canon Kabushiki Kaisha | Management system of multimedia |
US5892900A (en) * | 1996-08-30 | 1999-04-06 | Intertrust Technologies Corp. | Systems and methods for secure transaction management and electronic rights protection |
US6141754A (en) * | 1997-11-28 | 2000-10-31 | International Business Machines Corporation | Integrated method and system for controlling information access and distribution |
WO2001063387A2 (fr) * | 2000-02-22 | 2001-08-30 | Visualgold.Com, Inc. | Systeme de reseau de distribution de services securisee et procede correspondant |
US20010021926A1 (en) * | 1996-01-11 | 2001-09-13 | Paul B. Schneck | System for controlling access and distribution of digital property |
Family Cites Families (165)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4203166A (en) | 1977-12-05 | 1980-05-13 | International Business Machines Corporation | Cryptographic file security for multiple domain networks |
US4799258A (en) | 1984-02-13 | 1989-01-17 | National Research Development Corporation | Apparatus and methods for granting access to computers |
US4972472A (en) | 1985-03-15 | 1990-11-20 | Tandem Computers Incorporated | Method and apparatus for changing the master key in a cryptographic system |
JPH0818473B2 (ja) | 1985-07-31 | 1996-02-28 | トッパン・ムーア株式会社 | 機密水準を設定できるicカード |
US4757533A (en) | 1985-09-11 | 1988-07-12 | Computer Security Corporation | Security system for microcomputers |
US4827508A (en) | 1986-10-14 | 1989-05-02 | Personal Library Software, Inc. | Database usage metering and protection system and method |
US4796220A (en) | 1986-12-15 | 1989-01-03 | Pride Software Development Corp. | Method of controlling the copying of software |
GB8704920D0 (en) | 1987-03-03 | 1987-04-08 | Hewlett Packard Co | Secure messaging system |
US5220657A (en) | 1987-12-02 | 1993-06-15 | Xerox Corporation | Updating local copy of shared data in a collaborative system |
US5247575A (en) | 1988-08-16 | 1993-09-21 | Sprague Peter J | Information distribution system |
US5144660A (en) | 1988-08-31 | 1992-09-01 | Rose Anthony M | Securing a computer against undesired write operations to or read operations from a mass storage device |
JP3143108B2 (ja) | 1990-03-13 | 2001-03-07 | 株式会社日立製作所 | ファイル暗号化方法およびファイル暗号システム |
US5058164A (en) | 1990-05-03 | 1991-10-15 | National Semiconductor Corp. | Encryption of streams of addressed information to be used for program code protection |
US5052040A (en) | 1990-05-25 | 1991-09-24 | Micronyx, Inc. | Multiple user stored data cryptographic labeling system and method |
US5032979A (en) | 1990-06-22 | 1991-07-16 | International Business Machines Corporation | Distributed security auditing subsystem for an operating system |
US5204897A (en) | 1991-06-28 | 1993-04-20 | Digital Equipment Corporation | Management interface for license management system |
US5276735A (en) | 1992-04-17 | 1994-01-04 | Secure Computing Corporation | Data enclave and trusted path system |
JPH0619771A (ja) | 1992-04-20 | 1994-01-28 | Internatl Business Mach Corp <Ibm> | 異種のクライアントによる共用ファイルのファイル管理機構 |
US5301247A (en) | 1992-07-23 | 1994-04-05 | Crest Industries, Inc. | Method for ensuring secure communications |
US5319705A (en) | 1992-10-21 | 1994-06-07 | International Business Machines Corporation | Method and system for multimedia access control enablement |
US5414852A (en) | 1992-10-30 | 1995-05-09 | International Business Machines Corporation | Method for protecting data in a computer system |
JP2800603B2 (ja) | 1992-12-01 | 1998-09-21 | 三菱電機株式会社 | アイコンを用いた情報処理装置 |
WO1994014119A1 (fr) | 1992-12-07 | 1994-06-23 | Raxco, Incorporated | Appareil et procede de deplacement de fichiers ouverts |
US5299263A (en) | 1993-03-04 | 1994-03-29 | Bell Communications Research, Inc. | Two-way public key authentication and key agreement for low-cost terminals |
US5375169A (en) | 1993-05-28 | 1994-12-20 | Tecsec, Incorporated | Cryptographic key management method and apparatus |
US5404404A (en) | 1993-07-01 | 1995-04-04 | Motorola, Inc. | Method for updating encryption key information in communication units |
US5677953A (en) | 1993-09-14 | 1997-10-14 | Spyrus, Inc. | System and method for access control for portable data storage media |
WO1995008885A1 (fr) | 1993-09-20 | 1995-03-30 | International Business Machines Corporation | Systeme et procede de modification de cle ou de mot-de-passe dans un reseau de communications reparti et protege |
US5870477A (en) | 1993-09-29 | 1999-02-09 | Pumpkin House Incorporated | Enciphering/deciphering device and method, and encryption/decryption communication system |
JP3263878B2 (ja) | 1993-10-06 | 2002-03-11 | 日本電信電話株式会社 | 暗号通信システム |
US5680452A (en) | 1993-10-18 | 1997-10-21 | Tecsec Inc. | Distributed cryptographic object method |
US5369702A (en) | 1993-10-18 | 1994-11-29 | Tecsec Incorporated | Distributed cryptographic object method |
US5999907A (en) | 1993-12-06 | 1999-12-07 | Donner; Irah H. | Intellectual property audit system |
JP2596361B2 (ja) | 1993-12-24 | 1997-04-02 | 日本電気株式会社 | パスワード更新方式 |
US5584023A (en) | 1993-12-27 | 1996-12-10 | Hsu; Mike S. C. | Computer system including a transparent and secure file transform mechanism |
US5835601A (en) | 1994-03-15 | 1998-11-10 | Kabushiki Kaisha Toshiba | File editing system and shared file editing system with file content secrecy, file version management, and asynchronous editing |
FR2718312B1 (fr) | 1994-03-29 | 1996-06-07 | Rola Nevoux | Procédé d'authentification combinée d'un terminal de télécommunication et d'un module d'utilisateur. |
US5495533A (en) | 1994-04-29 | 1996-02-27 | International Business Machines Corporation | Personal key archive |
US5499040A (en) | 1994-06-27 | 1996-03-12 | Radius Inc. | Method and apparatus for display calibration and control |
US5720033A (en) | 1994-06-30 | 1998-02-17 | Lucent Technologies Inc. | Security platform and method using object oriented rules for computer-based systems using UNIX-line operating systems |
US5999711A (en) | 1994-07-18 | 1999-12-07 | Microsoft Corporation | Method and system for providing certificates holding authentication and authorization information for users/machines |
US5557765A (en) | 1994-08-11 | 1996-09-17 | Trusted Information Systems, Inc. | System and method for data recovery |
US5881287A (en) | 1994-08-12 | 1999-03-09 | Mast; Michael B. | Method and apparatus for copy protection of images in a computer system |
US5944794A (en) | 1994-09-30 | 1999-08-31 | Kabushiki Kaisha Toshiba | User identification data management scheme for networking computer systems using wide area network |
US5715403A (en) * | 1994-11-23 | 1998-02-03 | Xerox Corporation | System for controlling the distribution and use of digital works having attached usage rights where the usage rights are defined by a usage rights grammar |
CN1912885B (zh) * | 1995-02-13 | 2010-12-22 | 英特特拉斯特技术公司 | 用于安全交易管理和电子权利保护的系统和方法 |
US5600726A (en) | 1995-04-07 | 1997-02-04 | Gemini Systems, L.L.C. | Method for creating specific purpose rule-based n-bit virtual machines |
US5835592A (en) | 1995-06-01 | 1998-11-10 | Chang; Chung Nan | Secure, swift cryptographic key exchange |
US5671412A (en) | 1995-07-28 | 1997-09-23 | Globetrotter Software, Incorporated | License management system for software applications |
US5813009A (en) | 1995-07-28 | 1998-09-22 | Univirtual Corp. | Computer based records management system method |
US5821933A (en) | 1995-09-14 | 1998-10-13 | International Business Machines Corporation | Visual access to restricted functions represented on a graphical user interface |
US5765152A (en) | 1995-10-13 | 1998-06-09 | Trustees Of Dartmouth College | System and method for managing copyrighted electronic media |
US5787175A (en) | 1995-10-23 | 1998-07-28 | Novell, Inc. | Method and apparatus for collaborative document control |
US6023506A (en) | 1995-10-26 | 2000-02-08 | Hitachi, Ltd. | Data encryption control apparatus and method |
US5732265A (en) | 1995-11-02 | 1998-03-24 | Microsoft Corporation | Storage optimizing encoder and method |
US5729734A (en) | 1995-11-03 | 1998-03-17 | Apple Computer, Inc. | File privilege administration apparatus and methods |
US5751287A (en) | 1995-11-06 | 1998-05-12 | Documagix, Inc. | System for organizing document icons with suggestions, folders, drawers, and cabinets |
US5825876A (en) | 1995-12-04 | 1998-10-20 | Northern Telecom | Time based availability to content of a storage medium |
US5708709A (en) | 1995-12-08 | 1998-01-13 | Sun Microsystems, Inc. | System and method for managing try-and-buy usage of application programs |
US5787169A (en) | 1995-12-28 | 1998-07-28 | International Business Machines Corp. | Method and apparatus for controlling access to encrypted data files in a computer system |
JPH09190236A (ja) | 1996-01-10 | 1997-07-22 | Canon Inc | 情報処理方法及び装置及びシステム |
US5699428A (en) | 1996-01-16 | 1997-12-16 | Symantec Corporation | System for automatic decryption of file data on a per-use basis and automatic re-encryption within context of multi-threaded operating system under which applications run in real-time |
ATE221677T1 (de) * | 1996-02-09 | 2002-08-15 | Digital Privacy Inc | Zugriffssteuerungs/verschlüsselungssystem |
US5862325A (en) | 1996-02-29 | 1999-01-19 | Intermind Corporation | Computer-based communication system and method using metadata defining a control structure |
US5870468A (en) | 1996-03-01 | 1999-02-09 | International Business Machines Corporation | Enhanced data privacy for portable computers |
US6055314A (en) | 1996-03-22 | 2000-04-25 | Microsoft Corporation | System and method for secure purchase and delivery of video content programs |
US5673316A (en) | 1996-03-29 | 1997-09-30 | International Business Machines Corporation | Creation and distribution of cryptographic envelope |
US6085323A (en) | 1996-04-15 | 2000-07-04 | Kabushiki Kaisha Toshiba | Information processing system having function of securely protecting confidential information |
US5970502A (en) | 1996-04-23 | 1999-10-19 | Nortel Networks Corporation | Method and apparatus for synchronizing multiple copies of a database |
US5953419A (en) | 1996-05-06 | 1999-09-14 | Symantec Corporation | Cryptographic file labeling system for supporting secured access by multiple users |
US5857189A (en) | 1996-05-08 | 1999-01-05 | Apple Computer, Inc. | File sharing in a teleconference application |
US5748736A (en) | 1996-06-14 | 1998-05-05 | Mittra; Suvo | System and method for secure group communications via multicast or broadcast |
EP0912954B8 (fr) | 1996-07-22 | 2006-06-14 | Cyva Research Corporation | Outil d'echange et de protection d'informations personnelles |
US5790789A (en) | 1996-08-02 | 1998-08-04 | Suarez; Larry | Method and architecture for the creation, control and deployment of services within a distributed computer environment |
US5790790A (en) | 1996-10-24 | 1998-08-04 | Tumbleweed Software Corporation | Electronic document delivery system in which notification of said electronic document is sent to a recipient thereof |
US6192407B1 (en) * | 1996-10-24 | 2001-02-20 | Tumbleweed Communications Corp. | Private, trackable URLs for directed document delivery |
US6061790A (en) | 1996-11-20 | 2000-05-09 | Starfish Software, Inc. | Network computer system with remote user data encipher methodology |
US6014730A (en) | 1996-12-26 | 2000-01-11 | Nec Corporation | Dynamic adding system for memory files shared among hosts, dynamic adding method for memory files shared among hosts, and computer-readable medium recording dynamic adding program for memory files shared among hosts |
AU6151598A (en) | 1997-02-11 | 1998-08-26 | Connected Corporation | File comparison for data backup and file synchronization |
US6885747B1 (en) * | 1997-02-13 | 2005-04-26 | Tec.Sec, Inc. | Cryptographic key split combiner |
US5922074A (en) * | 1997-02-28 | 1999-07-13 | Xcert Software, Inc. | Method of and apparatus for providing secure distributed directory services and public key infrastructure |
US6069957A (en) | 1997-03-07 | 2000-05-30 | Lucent Technologies Inc. | Method and apparatus for providing hierarchical key system in restricted-access television system |
US6226745B1 (en) * | 1997-03-21 | 2001-05-01 | Gio Wiederhold | Information sharing system and method with requester dependent sharing and security rules |
US5923754A (en) | 1997-05-02 | 1999-07-13 | Compaq Computer Corporation | Copy protection for recorded media |
US6134658A (en) | 1997-06-09 | 2000-10-17 | Microsoft Corporation | Multi-server location-independent authentication certificate management system |
US6105131A (en) | 1997-06-13 | 2000-08-15 | International Business Machines Corporation | Secure server and method of operation for a distributed information system |
US6272631B1 (en) | 1997-06-30 | 2001-08-07 | Microsoft Corporation | Protected storage of core data secrets |
US6134660A (en) | 1997-06-30 | 2000-10-17 | Telcordia Technologies, Inc. | Method for revoking computer backup files using cryptographic techniques |
US6032216A (en) * | 1997-07-11 | 2000-02-29 | International Business Machines Corporation | Parallel file system with method using tokens for locking modes |
US6192408B1 (en) * | 1997-09-26 | 2001-02-20 | Emc Corporation | Network file server sharing local caches of file access information in data processors assigned to respective file systems |
US5968177A (en) | 1997-10-14 | 1999-10-19 | Entrust Technologies Limited | Method and apparatus for processing administration of a secured community |
US6917962B1 (en) * | 1997-10-22 | 2005-07-12 | Brokercom Inc. | Web-based groupware system |
US5991879A (en) | 1997-10-23 | 1999-11-23 | Bull Hn Information Systems Inc. | Method for gradual deployment of user-access security within a data processing system |
US6134327A (en) | 1997-10-24 | 2000-10-17 | Entrust Technologies Ltd. | Method and apparatus for creating communities of trust in a secure communication system |
US6223285B1 (en) * | 1997-10-24 | 2001-04-24 | Sony Corporation Of Japan | Method and system for transferring information using an encryption mode indicator |
EP1717696A1 (fr) * | 1997-11-14 | 2006-11-02 | Microsoft Corporation | Système opérant sur le serveur et supportant les sessions de serveur client multiple et la reconnexion dynamique des utilisateurs aux sessions préalables |
US6058424A (en) | 1997-11-17 | 2000-05-02 | International Business Machines Corporation | System and method for transferring a session from one application server to another without losing existing resources |
US6098056A (en) | 1997-11-24 | 2000-08-01 | International Business Machines Corporation | System and method for controlling access rights to and security of digital content in a distributed information system, e.g., Internet |
JPH11232226A (ja) * | 1998-02-13 | 1999-08-27 | Nec Corp | 協同作業支援システム及び記録媒体 |
US6088805A (en) | 1998-02-13 | 2000-07-11 | International Business Machines Corporation | Systems, methods and computer program products for authenticating client requests with client certificate information |
US6357010B1 (en) * | 1998-02-17 | 2002-03-12 | Secure Computing Corporation | System and method for controlling access to documents stored on an internal network |
US6069057A (en) * | 1998-05-18 | 2000-05-30 | Powerchip Semiconductor Corp. | Method for fabricating trench-isolation structure |
US6711683B1 (en) * | 1998-05-29 | 2004-03-23 | Texas Instruments Incorporated | Compresses video decompression system with encryption of compressed data stored in video buffer |
US6505300B2 (en) * | 1998-06-12 | 2003-01-07 | Microsoft Corporation | Method and system for secure running of untrusted content |
US6336114B1 (en) * | 1998-09-03 | 2002-01-01 | Westcorp Software Systems, Inc. | System and method for restricting access to a data table within a database |
US6182142B1 (en) * | 1998-07-10 | 2001-01-30 | Encommerce, Inc. | Distributed access management of information resources |
US6226618B1 (en) * | 1998-08-13 | 2001-05-01 | International Business Machines Corporation | Electronic content delivery system |
KR100484209B1 (ko) * | 1998-09-24 | 2005-09-30 | 삼성전자주식회사 | 디지털컨텐트암호화/해독화장치및그방법 |
US6212561B1 (en) * | 1998-10-08 | 2001-04-03 | Cisco Technology, Inc. | Forced sequential access to specified domains in a computer network |
US6038322A (en) | 1998-10-20 | 2000-03-14 | Cisco Technology, Inc. | Group key distribution |
US6519700B1 (en) * | 1998-10-23 | 2003-02-11 | Contentguard Holdings, Inc. | Self-protecting documents |
US6557039B1 (en) * | 1998-11-13 | 2003-04-29 | The Chase Manhattan Bank | System and method for managing information retrievals from distributed archives |
US6356903B1 (en) * | 1998-12-30 | 2002-03-12 | American Management Systems, Inc. | Content management system |
US6289450B1 (en) * | 1999-05-28 | 2001-09-11 | Authentica, Inc. | Information security architecture for encrypting documents for remote access while maintaining access control |
US6393420B1 (en) * | 1999-06-03 | 2002-05-21 | International Business Machines Corporation | Securing Web server source documents and executables |
US6122630A (en) | 1999-06-08 | 2000-09-19 | Iti, Inc. | Bidirectional database replication scheme for controlling ping-ponging |
ATE360937T1 (de) * | 1999-06-10 | 2007-05-15 | Alcatel Internetworking Inc | System und verfahren zur selektiven ldap- datenbank synchronisierung |
US6988199B2 (en) * | 2000-07-07 | 2006-01-17 | Message Secure | Secure and reliable document delivery |
US6687822B1 (en) * | 1999-06-11 | 2004-02-03 | Lucent Technologies Inc | Method and system for providing translation certificates |
US6363480B1 (en) * | 1999-09-14 | 2002-03-26 | Sun Microsystems, Inc. | Ephemeral decryptability |
DE19952527C2 (de) * | 1999-10-30 | 2002-01-17 | Ibrixx Ag Fuer Etransaction Ma | Verfahren und Transaktionsinterface zum gesicherten Datenaustausch zwischen unterscheidbaren Netzen |
JP2001175606A (ja) * | 1999-12-20 | 2001-06-29 | Sony Corp | データ処理装置、データ処理機器およびその方法 |
US7340600B1 (en) * | 2000-01-14 | 2008-03-04 | Hewlett-Packard Development Company, L.P. | Authorization infrastructure based on public key cryptography |
US6952780B2 (en) * | 2000-01-28 | 2005-10-04 | Safecom A/S | System and method for ensuring secure transfer of a document from a client of a network to a printer |
US7251666B2 (en) * | 2000-02-01 | 2007-07-31 | Internet Business Information Group | Signature loop authorizing method and apparatus |
EP1133101A1 (fr) * | 2000-03-07 | 2001-09-12 | BRITISH TELECOMMUNICATIONS public limited company | Distribution de données |
US6842769B1 (en) * | 2000-05-05 | 2005-01-11 | Interland, Inc. | Automatically configured network server |
US7035910B1 (en) * | 2000-06-29 | 2006-04-25 | Microsoft Corporation | System and method for document isolation |
US7194764B2 (en) * | 2000-07-10 | 2007-03-20 | Oracle International Corporation | User authentication |
AU7593601A (en) * | 2000-07-14 | 2002-01-30 | Atabok Inc | Controlling and managing digital assets |
JP4595182B2 (ja) * | 2000-09-07 | 2010-12-08 | ソニー株式会社 | 情報記録装置、情報再生装置、情報記録方法、情報再生方法、および情報記録媒体、並びにプログラム提供媒体 |
JP4269501B2 (ja) * | 2000-09-07 | 2009-05-27 | ソニー株式会社 | 情報記録装置、情報再生装置、情報記録方法、情報再生方法、および情報記録媒体、並びにプログラム提供媒体 |
US6691227B1 (en) * | 2000-09-08 | 2004-02-10 | Reefedge, Inc. | Location-independent packet routing and secure access in a short-range wireless networking environment |
AU2001290848A1 (en) * | 2000-09-14 | 2002-03-26 | Probix, Inc. | System for establishing an audit trail to protect objects distributed over a network |
US7249044B2 (en) * | 2000-10-05 | 2007-07-24 | I2 Technologies Us, Inc. | Fulfillment management system for managing ATP data in a distributed supply chain environment |
US20020050098A1 (en) * | 2000-10-28 | 2002-05-02 | Chan Kwon Kyong | Rotary access locking apparatus |
US6988133B1 (en) * | 2000-10-31 | 2006-01-17 | Cisco Technology, Inc. | Method and apparatus for communicating network quality of service policy information to a plurality of policy enforcement points |
JP3784635B2 (ja) * | 2000-11-10 | 2006-06-14 | 富士通株式会社 | データ運用方法 |
US20020069363A1 (en) * | 2000-12-05 | 2002-06-06 | Winburn Michael Lee | System and method for data recovery and protection |
US7356704B2 (en) * | 2000-12-07 | 2008-04-08 | International Business Machines Corporation | Aggregated authenticated identity apparatus for and method therefor |
US7181017B1 (en) * | 2001-03-23 | 2007-02-20 | David Felsher | System and method for secure three-party communications |
US20030037237A1 (en) * | 2001-04-09 | 2003-02-20 | Jean-Paul Abgrall | Systems and methods for computer device authentication |
EP1436682B1 (fr) * | 2001-06-15 | 2015-09-02 | Link Us All, Llc | Systeme et procede destines a determiner la securite, la confidentialite, et le controle d'acces a des informations utilisees par d'autres |
US20030028610A1 (en) * | 2001-08-03 | 2003-02-06 | Pearson Christopher Joel | Peer-to-peer file sharing system and method using user datagram protocol |
US7729495B2 (en) * | 2001-08-27 | 2010-06-01 | Dphi Acquisitions, Inc. | System and method for detecting unauthorized copying of encrypted data |
US6892201B2 (en) * | 2001-09-05 | 2005-05-10 | International Business Machines Corporation | Apparatus and method for providing access rights information in a portion of a file |
US20050021467A1 (en) * | 2001-09-07 | 2005-01-27 | Robert Franzdonk | Distributed digital rights network (drn), and methods to access operate and implement the same |
US7134041B2 (en) * | 2001-09-20 | 2006-11-07 | Evault, Inc. | Systems and methods for data backup over a network |
AU2002335062B2 (en) * | 2001-10-12 | 2007-07-19 | Digicert, Inc. | Methods and systems for automated authentication, processing and issuance of digital certificates |
US6877136B2 (en) * | 2001-10-26 | 2005-04-05 | United Services Automobile Association (Usaa) | System and method of providing electronic access to one or more documents |
US7171557B2 (en) * | 2001-10-31 | 2007-01-30 | Hewlett-Packard Development Company, L.P. | System for optimized key management with file groups |
US7203317B2 (en) * | 2001-10-31 | 2007-04-10 | Hewlett-Packard Development Company, L.P. | System for enabling lazy-revocation through recursive key generation |
US6865555B2 (en) * | 2001-11-21 | 2005-03-08 | Digeo, Inc. | System and method for providing conditional access to digital content |
US20030101072A1 (en) * | 2001-11-28 | 2003-05-29 | Dick John D. | Document protection system |
US7225256B2 (en) * | 2001-11-30 | 2007-05-29 | Oracle International Corporation | Impersonation in an access system |
US20030110266A1 (en) * | 2001-12-10 | 2003-06-12 | Cysive, Inc. | Apparatus and method of using session state data across sessions |
US7380120B1 (en) * | 2001-12-12 | 2008-05-27 | Guardian Data Storage, Llc | Secured data format for access control |
US7024427B2 (en) * | 2001-12-19 | 2006-04-04 | Emc Corporation | Virtual file system |
US6938042B2 (en) * | 2002-04-03 | 2005-08-30 | Laplink Software Inc. | Peer-to-peer file sharing |
US7219230B2 (en) * | 2002-05-08 | 2007-05-15 | Hewlett-Packard Development Company, L.P. | Optimizing costs associated with managing encrypted data |
US20040022390A1 (en) * | 2002-08-02 | 2004-02-05 | Mcdonald Jeremy D. | System and method for data protection and secure sharing of information over a computer network |
US20040039781A1 (en) * | 2002-08-16 | 2004-02-26 | Lavallee David Anthony | Peer-to-peer content sharing method and system |
US7237024B2 (en) * | 2002-10-15 | 2007-06-26 | Aol Llc | Cross-site timed out authentication management |
US7904720B2 (en) * | 2002-11-06 | 2011-03-08 | Palo Alto Research Center Incorporated | System and method for providing secure resource management |
WO2004109443A2 (fr) * | 2003-06-02 | 2004-12-16 | Liquid Machines, Inc. | Gestion d'objets de donnees dans des contextes dynamiques, distribues et collaboratifs |
-
2002
- 2002-07-25 US US10/206,486 patent/US7562232B2/en not_active Expired - Lifetime
- 2002-12-11 JP JP2002359962A patent/JP2003223353A/ja active Pending
- 2002-12-11 EP EP02258535A patent/EP1320015A3/fr not_active Withdrawn
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5684987A (en) * | 1993-12-24 | 1997-11-04 | Canon Kabushiki Kaisha | Management system of multimedia |
US20010021926A1 (en) * | 1996-01-11 | 2001-09-13 | Paul B. Schneck | System for controlling access and distribution of digital property |
US5892900A (en) * | 1996-08-30 | 1999-04-06 | Intertrust Technologies Corp. | Systems and methods for secure transaction management and electronic rights protection |
US6141754A (en) * | 1997-11-28 | 2000-10-31 | International Business Machines Corporation | Integrated method and system for controlling information access and distribution |
WO2001063387A2 (fr) * | 2000-02-22 | 2001-08-30 | Visualgold.Com, Inc. | Systeme de reseau de distribution de services securisee et procede correspondant |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005041532A1 (fr) * | 2003-10-15 | 2005-05-06 | Cisco Technology, Inc. | Attribution d'un nom a des cles de groupe 802.11 pour permettre le support de multiples diffusions et de domaines multidesinations |
WO2007036862A2 (fr) * | 2005-09-30 | 2007-04-05 | Koninklijke Philips Electronics N.V. | Gestion securisee de contenus appartenant a plusieurs personnes |
WO2007036862A3 (fr) * | 2005-09-30 | 2007-12-13 | Koninkl Philips Electronics Nv | Gestion securisee de contenus appartenant a plusieurs personnes |
WO2009083970A2 (fr) | 2007-12-27 | 2009-07-09 | Safend Ltd. | Système et procédé destinés à stocker des informations de façon sécurisée |
EP2243239A2 (fr) * | 2007-12-27 | 2010-10-27 | Safend Ltd | Système et procédé destinés à stocker des informations de façon sécurisée |
EP2243239A4 (fr) * | 2007-12-27 | 2012-12-19 | Safend Ltd | Système et procédé destinés à stocker des informations de façon sécurisée |
AU2008344947B2 (en) * | 2007-12-27 | 2013-10-17 | Safend Ltd. | System and method for securely storing information |
US9436840B2 (en) | 2007-12-27 | 2016-09-06 | Safend Ltd. | System and method for securely storing information |
Also Published As
Publication number | Publication date |
---|---|
EP1320015A3 (fr) | 2005-04-27 |
US7562232B2 (en) | 2009-07-14 |
US20030120684A1 (en) | 2003-06-26 |
JP2003223353A (ja) | 2003-08-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7562232B2 (en) | System and method for providing manageability to security information for secured items | |
US20030110169A1 (en) | System and method for providing manageability to security information for secured items | |
US7631184B2 (en) | System and method for imposing security on copies of secured items | |
US8127366B2 (en) | Method and apparatus for transitioning between states of security policies used to secure electronic documents | |
US8327138B2 (en) | Method and system for securing digital assets using process-driven security policies | |
USRE47443E1 (en) | Document security system that permits external users to gain access to secured files | |
US9286484B2 (en) | Method and system for providing document retention using cryptography | |
US7512810B1 (en) | Method and system for protecting encrypted files transmitted over a network | |
US20050071657A1 (en) | Method and system for securing digital assets using time-based security criteria | |
US7748045B2 (en) | Method and system for providing cryptographic document retention with off-line access | |
US8006280B1 (en) | Security system for generating keys from access rules in a decentralized manner and methods therefor | |
US6889210B1 (en) | Method and system for managing security tiers | |
US8341406B2 (en) | System and method for providing different levels of key security for controlling access to secured items | |
US7921450B1 (en) | Security system using indirect key generation from access rules and methods therefor | |
US7730543B1 (en) | Method and system for enabling users of a group shared across multiple file security systems to access secured files | |
US7930756B1 (en) | Multi-level cryptographic transformations for securing digital assets | |
USRE41546E1 (en) | Method and system for managing security tiers | |
US20050086531A1 (en) | Method and system for proxy approval of security changes for a file security system | |
US20090100268A1 (en) | Methods and systems for providing access control to secured data | |
US20030154381A1 (en) | Managing file access via a designated place | |
US20110040964A1 (en) | System and method for securing data | |
WO2007008807A2 (fr) | Stockage local securise de fichiers | |
JP2003228519A (ja) | デジタル資産にパーベイシブ・セキュリティを提供する方法及びアーキテクチャ | |
US7836310B1 (en) | Security system that uses indirect password-based encryption | |
US8707034B1 (en) | Method and system for using remote headers to secure electronic files |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL LT LV MK RO SI |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL LT LV MK RO |
|
AKX | Designation fees paid | ||
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20051028 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: 8566 |