EP1319894B1 - Procédé d'incinération de déchets et dispositif pour traiter le gaz d'échappement provenant de ce procédé - Google Patents

Procédé d'incinération de déchets et dispositif pour traiter le gaz d'échappement provenant de ce procédé Download PDF

Info

Publication number
EP1319894B1
EP1319894B1 EP20020026518 EP02026518A EP1319894B1 EP 1319894 B1 EP1319894 B1 EP 1319894B1 EP 20020026518 EP20020026518 EP 20020026518 EP 02026518 A EP02026518 A EP 02026518A EP 1319894 B1 EP1319894 B1 EP 1319894B1
Authority
EP
European Patent Office
Prior art keywords
exhaust gases
chamber
dwell
temperature
dwell chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP20020026518
Other languages
German (de)
English (en)
Other versions
EP1319894A3 (fr
EP1319894A2 (fr
Inventor
Fritz Dr.-Ing. Schoppe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of EP1319894A2 publication Critical patent/EP1319894A2/fr
Publication of EP1319894A3 publication Critical patent/EP1319894A3/fr
Application granted granted Critical
Publication of EP1319894B1 publication Critical patent/EP1319894B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J15/00Arrangements of devices for treating smoke or fumes
    • F23J15/003Arrangements of devices for treating smoke or fumes for supplying chemicals to fumes, e.g. using injection devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/08Incineration of waste; Incinerator constructions; Details, accessories or control therefor having supplementary heating
    • F23G5/14Incineration of waste; Incinerator constructions; Details, accessories or control therefor having supplementary heating including secondary combustion
    • F23G5/16Incineration of waste; Incinerator constructions; Details, accessories or control therefor having supplementary heating including secondary combustion in a separate combustion chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G7/00Incinerators or other apparatus for consuming industrial waste, e.g. chemicals
    • F23G7/10Incinerators or other apparatus for consuming industrial waste, e.g. chemicals of field or garden waste or biomasses
    • F23G7/105Incinerators or other apparatus for consuming industrial waste, e.g. chemicals of field or garden waste or biomasses of wood waste
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J15/00Arrangements of devices for treating smoke or fumes
    • F23J15/006Layout of treatment plant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J2215/00Preventing emissions
    • F23J2215/10Nitrogen; Compounds thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J2217/00Intercepting solids
    • F23J2217/10Intercepting solids by filters

Definitions

  • auxiliary device which may be, for example, an activated carbon filter, a gas scrubber or a catalyst system.
  • Examples may include: in DE 4027040, EP 0952396, EP 0823266 or EP 1081434.
  • the invention has for its object to provide a method and a device with which in the combustion of waste, especially wood waste, which can be met by the legal requirements specified limits without additional components of the type mentioned, such as activated carbon filter, gas scrubber and Catalyst systems, must be used.
  • the combustion is carried out according to certain parameters.
  • the first process step is characterized in that the O 2 content in the exhaust gas is less than 4%, preferably between 2.5% and 3%. Due to the always slightly fluctuating composition of the combustible waste, especially wood waste, there is a corresponding fluctuation of the O 2 content in the exhaust gas, even with the most careful control of air supply, but the 02 content in the exhaust gas should always be below 4%.
  • this almost stoichiometric combustion of the fuel is followed by effective hot gas dedusting. This can also be done later In any case, it must be carried out before reaching an exhaust gas temperature of about 500 ° C. If dedusting takes place immediately after incineration, it is referred to here as a second method step.
  • the resulting hot gases of the nearly stoichiometric combustion at a temperature which is between about 1100 ° C and 1200 ° C introduced into the waste heat boiler, and dwell there as intended in a separate high-temperature residence for a predetermined period of time there to achieve the thermal decomposition of chlorinated hydrocarbons (dioxin, furan, etc.) resulting from the incineration of polluted waste.
  • chlorinated hydrocarbons dioxin, furan, etc.
  • the residence time is predetermined according to the invention as a function of the temperature of the hot gases by the following table: Temperature (° C) Residence time (s) 1000 2.00 1100 0.60 1200 0.10 1300 0.02 1400 0.01 wherein for a temperature which is between the indicated temperature values, the Dwell time is to be interpolated.
  • the residence time begins in known manner from the fluid mechanics with successful turbulent mixing of the hot gases.
  • the fourth process step is followed by a cooling of the decomposed hot gases to a temperature between 900 ° C and 1050 ° C.
  • a temperature between 900 ° C and 1000 ° C is preferred.
  • the hot gases prior to the injection of said substances, in a known manner equalized in terms of temperature and speed in order to make optimal use of the injected material.
  • the sixth process step is followed by the injection and the mixing of the injected material with the hot gases, a second residence time in a space required for this, wherein the time required for the denitration reaction of at least 0.5 s, preferably 0.6 s is provided , It is advantageous if the walls of this dwell are carried out in a thermally insulated form, so that during the residence of the exhaust gases, a drop in the temperature is prevented below the specified limits. After denitrification, the hot gases still have a temperature of 900 ° C to 950 ° C.
  • a superheater may be provided approximately in the form of a tube bundle behind the last-mentioned dwell. In this cool the hot gases to a temperature of 850 ° C to 950 ° C and enter with this temperature in the last boiler train (seventh process step).
  • condensation nuclei can be for the formation of secondary furans and dioxins.
  • the temperature range of about 500 ° C to about 250 ° C is traversed quickly, because this greatly restricted, if not prevented, the formation of secondary furans and dioxins.
  • smoke tube bundles are advantageously used, which are flowed through with mass flow densities of the hot gases of at least 3 kg / h ⁇ cm 2 , preferably 5-7 kg / h ⁇ cm 2 , wherein above the hot gas flow rate in kg / h and the flow cross-section in cm 2 is indicated ,
  • the 17th BlmSchV requires limit values for the dust contained, which can only be achieved with exhaust gas filters, preferably fabric filters.
  • exhaust gas filters preferably fabric filters.
  • Such filters have a significantly different function when carrying out the method according to the invention than in previous boiler systems. Namely, the almost stoichiometric combustion in the first process step is possible only with sufficient freedom of strands of the hot gases, that is, with turbulent mixing of the reactants. If this mixing in the temperature level of the first process step, ie at temperatures of up to 1400 ° C or above, is carried out, also chlorine and fluorine are quantitatively converted into HCI and HF and can by an injection of Ca (OH) 2 in the cooled hot gases before the fabric filter where the Ca (OH) 2 forms the essential part of the filter cake.
  • the cleaning intervals of the fabric filters are no longer 20-40 minutes, as hitherto usual, but 1-3 days.
  • the Ca (OH) 2 in the filter cake is optimally utilized in these 1 to 3 days and does not have to be partially recirculated, as is usual today. As a result, in turn investment and operating costs are saved, which represents a further advantage of the invention.
  • a firing cone 1 according to DE 198 17 122 A1 is shown schematically as a grate firing system. This is based on the embodiment, because it allows compared to previous grate or fluidized bed furnaces the lowest excess air and thus the highest combustion temperatures without slag problems occur.
  • the fuel cone 1 is dimensioned in the present case for a power of 8 MW. It is constructed of grate bars and slowly rotates about an inclined axis. The fuel in it, for example waste wood, is thereby circulated. In the case of the burning of B2 wood, about 35% of the combustion air is supplied as an underwind, which is blown in the fuel cone under the fuel.
  • a conical secondary combustion chamber 2 connects. It is supplied to the remaining 65% of the combustion air as an upper wind in which it is injected at the upper end of smaller diameter of the afterburner 2 tangentially into this at a speed of 70 - 80 m / s.
  • the upper wind causes the gases within the Nachbrennhunt in rotation. This causes faster burnout and a spin on the dust particles contained in the fuel gases.
  • the spin-on is so effective that the upwardly at the upper diameter of the afterburner chamber 2 exiting hot gas is optically clear and sufficiently dust-free for the present case.
  • the afterburner chamber 2 is followed by a mixing chamber 3.
  • a strong negative pressure prevails, which generates an axial back flow of the gases in the mixing chamber 3 and thus in her an additional turbulent mixing, which detects the entire flow cross-section, except a wall-near boundary layer ,
  • annular constriction 4 is formed, which reduces the flow cross-section of the hot gases from a free diameter of 1400 mm in the example to a free diameter of 1050 mm in the example. Namely, a toroidal stall is generated at this ring-like constriction 4, which effectively adds the gases contained in the boundary layer to the other gases.
  • the now completely blended hot gases which may have a temperature of up to 1400 ° C, linger sufficiently long to thermally decompose organic substances such as dioxins, furans, CO, etc.
  • a first pipe 6 connects.
  • the hot gases are cooled to the temperature required for denitration by means of urea from 900 ° C to 1050 ° C.
  • the first pipe 6 is preferably designed as a flue pipe with trumpet-like inlets to avoid stalls and backflow. This will be discussed later.
  • the length of the tubes of the first pipe train 6 depends on the firing capacity of the combustion furnace 1 and afterburner chamber 2 existing incinerator. With decreasing firing capacity these tubes can be made shorter. If the firing capacity is sufficiently low or if the calorific value of the fuel is low, such as that of very damp wood, the first pipe run 6 can also be completely dispensed with.
  • High-temperature residence space 5 and first pipe 6 are located in a boiler drum 15 which, when it is used to generate steam, is filled with water up to a level above high-temperature residence space 5 and first pipe 6, as indicated by a dashed level line, for the production of hot water but can be completely filled with water. Wasserzulauf- and water or vapor extraction lines are not shown for clarity.
  • the first pipe 6 opens into a homogenization chamber 7, whose output is again constricted, thus enabling the requirement for the trouble-free injection of urea or ammonia water to reduce the NO x content of the exhaust gases.
  • the supply of these additives takes place by means of a nozzle 8.
  • the homogenization chamber 7 is adjoined by a second residence space 9, which is designed for a residence time of 0.6 s.
  • the second residence space 9 is bricked to ensure sufficient thermal insulation, so that during the residence time of the For the denitrification necessary temperature level is not fallen below and to avoid that urea or ammonia water drops come into contact with metallic boiler components and can cause their corrosion.
  • the second dwell 9 is connected downstream with a superheater 10, the case, depending on boiler design, be present or may be absent, for example, depending on whether wet steam or superheated steam to be generated. This is then followed by a homogenization chamber 11, which ensures that all hot gases that enter the subsequent second tube 12 have the same temperature.
  • the equalization space 11 has, as shown in FIG. 2 as a cross section along the line A-A of FIG. 1, an approximately semicircular cross-section and is provided with a heat-insulating lining and is connected downstream with the already mentioned second pipe 12.
  • This has tube bundle of tubes of different diameters, the inlet, as already in the tubes of the first tube 6, each trumpet-shaped.
  • the first section of the second pipe train has a total of 45 parallel pipes having an inside diameter of about 81 mm in the example, with the inlet diameter at the beginning of the trumpet-like extension being about 128.5 mm.
  • the detail in the region X is shown in FIG. 4.
  • the second section of the second tube 12 in the example shown also consists of 45 tubes, but with an inner diameter of about 68 mm, which narrows from an inlet diameter of about 108 mm starting.
  • the corresponding inlet region of this second section of the second pipe train is shown as a detail Y in Fig. 5.
  • Fig. 1 The two aforementioned sections of the second pipe train are shown in Fig. 1, wherein the downstream end of the first portion are connected to the stomaufissertigen end of the second portion via a deflection chamber 13 with each other. It can be seen from the cross-section shown in Fig. 3 along the line BB of Fig. 1, that the plurality of parallel flowed through each tube are arranged close to each other such that the trumpet-like flared edges at the inlet-side pipe ends adjacent to each other, while between them there is enough room for the flushing of the pipes with boiler water following the cylindrical pipe sections.
  • the downstream end of the second section of the second tubing is connected by a connecting tube 14 to a third section of the second tubing consisting of 200 parallel tubes having an inside diameter of about 40 mm each, starting from an entry diameter of about 64 mm constrict trumpet-like, as shown in Fig. 6 detail Z shows.
  • the stomabrace end of the third portion of the second tube 12 may be connected to a conventional filter system (not shown).
  • the trumpet-like tube inlets shown in the detail drawings of FIGS. 4-6 are intended to avoid stalling. This is important in order that the critical temperature range from the exhaust gases be traversed rapidly, in about 0.1 seconds, to hinder the regeneration of secondary furans and dioxins, which is slow and therefore takes time. If, in fact, stalls are generated, turbulence occurs, in which portions of the exhaust gases remain for a sufficiently long time to produce such secondary furans and dioxins.

Claims (15)

  1. Procédé d'incinération de déchets, en particulier de déchets de bois, et de traitement des gaz de combustion formés lors de l'incinération, comprenant les phases :
    a) combustion quasi-stoechiométrique du combustible précité, de telle sorte que la teneur en O2 des gaz de combustion soit inférieure à 4%,
    b) dépoussiérage des gaz de combustion avant leur refroidissement à 450°C,
    c) envoi des gaz de combustion chauds dans un premier espace de séjour et mélange dans ce dernier, la durée de séjour des gaz de combustion en fonction de leur température étant définie comme suit : Température (°C) Durée de séjour (s) 1.000 2,00 1.100 0,60 1.200 0,10 1.300 0,02 1.400 0,01
    avec interpolation de la durée de séjour pour des valeurs intermédiaires de la température.
    d) refroidissement des gaz de combustion à une température comprise entre 900°C et 1.050°C,
    e) injection d'un agent de désazotation dans les gaz de combustion,
    f) maintien de l'effet de l'agent de désazotation sur les gaz de combustion dans un second espace de séjour pour une durée d'au moins 0,3 s, et
    g) envoi des gaz de combustion au travers d'un parcours de tubes avec une densité de flux massique d'au moins 3 kg/h.cm2.
  2. Procédé suivant la revendication 1, caractérisé en ce que la combustion quasi-stoechiométrique est réalisée de sorte que la teneur en CO2 des gaz de combustion soit comprise entre 2,5% et 3%.
  3. Procédé suivant l'une des revendications 1 et 2, caractérisé en ce que les gaz de combustion sont dépoussiérés avant leur envoi dans le premier espace de séjour.
  4. Procédé suivant l'une des revendications précédentes, caractérisé en ce que l'agent de désazotation utilisé est de l'urée ou de l'ammoniaque.
  5. Procédé suivant l'une des revendications précédentes, caractérisé en ce que la durée de séjour dans le second espace de séjour est d'environ 0,5 s.
  6. Procédé suivant l'une des revendications précédentes, caractérisé en ce qu'on laisse agir l'agent de désazotation pendant environ 0,5 s.
  7. Procédé suivant l'une des revendications précédentes, caractérisé en ce que la densité de flux massique dans le parcours de tubes est comprise entre 5 et 10 kg/h.cm2.
  8. Procédé suivant l'une des revendications précédentes, caractérisé en ce qu'un absorbant pour des composants acides des gaz est ajouté aux gaz de combustion à la suite de la phase e), lequel absorbant est ensuite séparé du flux de gaz de combustion.
  9. Dispositif pour traiter les gaz de combustion d'une incinération de déchets, en particulier de déchets de bois, comprenant :
    a) un premier espace de séjour (5) pour recevoir les gaz de combustion chauds, qui est dimensionné compte tenu du débit volumique effectif des gaz de combustion chauds de sorte, pour une température d'entrée donnée, une durée de séjour définie est obtenue conformément au tableau suivant : Température (°C) Durée de séjour (s) 1.000 2,00 1.100 0,60 1.200 0,10 1.300 0,02 1.400 0,01
    avec interpolation de la durée de séjour pour des valeurs intermédiaires de la température d'entrée,
    b) un premier parcours de tubes (6) se raccordant à l'espace de séjour (5) pour le refroidissement des gaz de combustion à une température comprise entre 900°C et 1.050°C,
    c) un dispositif (8) pour l'injection d'un agent de désazotation dans les gaz de combustion, qui est disposé en aval du premier parcours de tubes (6),
    d) un second espace de séjour (9), qui est disposé en aval du dispositif d'injection (8),
    e) un second parcours de tubes (12) se raccordant au second espace de séjour (9) pour le refroidissement supplémentaire des gaz de combustion, et
    f) un dispositif pour le dépoussiérage des gaz de combustion avant un refroidissement de ces derniers à une température de 450°C.
  10. Dispositif suivant la revendication 9, caractérisé en ce que les parcours de tubes (6, 12) sont réalisés sous forme de faisceaux tubulaires de fumées.
  11. Dispositif suivant l'une des revendications 9 et 10, caractérisé en ce que les parcours de tubes (6, 12) présentent des entrées arrondies en forme de trompette et sont dimensionnés de sorte qu'une densité de flux massique des gaz de combustion d'au moins 3 kg/h.cm2 est obtenue.
  12. Dispositif suivant l'une des revendications 9 à 11, caractérisé en ce que le second espace de séjour (9) est muni de parois calorifuges.
  13. Dispositif suivant l'une des revendications 9 à 12, caractérisé en ce que le second espace de séjour (9) est raccordé sur son côté aval à un surchauffeur (10).
  14. Dispositif suivant l'une des revendications 9 à 13, caractérisé en ce qu'une chambre de post-combustion (2) tronconique est disposée en amont du premier espace de séjour (5), laquelle chambre se rétrécit dans la direction d'écoulement et présente sur son diamètre le plus petit un dispositif d'alimentation en air comburant de la chambre de post-combustion (2) tangentiellement par rapport à cette dernière.
  15. Dispositif suivant la revendication 14, caractérisé en ce qu'un rétrécissement (4) de type diaphragme est disposé dans le parcours d'écoulement des gaz de combustion entre la chambre de post-combustion (2) et le premier espace de séjour (4), rétrécissement sur lequel l'écoulement se décolle en formant un tourbillon similaire à un tore.
EP20020026518 2001-12-11 2002-11-27 Procédé d'incinération de déchets et dispositif pour traiter le gaz d'échappement provenant de ce procédé Expired - Lifetime EP1319894B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10160756 2001-12-11
DE2001160756 DE10160756A1 (de) 2001-12-11 2001-12-11 Verfahren zum Verbrennen von Abfällen und Vorrichtung zum Behandeln der Abgase einer Abfallverbrennung

Publications (3)

Publication Number Publication Date
EP1319894A2 EP1319894A2 (fr) 2003-06-18
EP1319894A3 EP1319894A3 (fr) 2003-11-26
EP1319894B1 true EP1319894B1 (fr) 2007-03-21

Family

ID=7708763

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20020026518 Expired - Lifetime EP1319894B1 (fr) 2001-12-11 2002-11-27 Procédé d'incinération de déchets et dispositif pour traiter le gaz d'échappement provenant de ce procédé

Country Status (2)

Country Link
EP (1) EP1319894B1 (fr)
DE (2) DE10160756A1 (fr)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4027040C1 (en) * 1990-08-27 1991-12-12 L. & C. Steinmueller Gmbh, 5270 Gummersbach, De Non-catalytic removal of nitric oxide from waste gases - by injecting reducing agent into gases via nozzles
EP0823266A1 (fr) * 1994-05-26 1998-02-11 Metallgesellschaft Aktiengesellschaft Procédé et appareil pour l'élimination de coke carbonisé et/ou de poussière de pyrolyse
DE19817122A1 (de) * 1998-04-17 1999-10-21 Kohlenstaubtechnik Dr Schoppe Vorrichtung zum Verbrennen von stückigem Brenngut
CH694305A5 (de) * 1999-08-30 2004-11-15 Von Roll Umwelttechnik Ag Vorrichtung zur Erzeugung einer rotierenden Stroemung.

Also Published As

Publication number Publication date
EP1319894A3 (fr) 2003-11-26
DE50209763D1 (de) 2007-05-03
EP1319894A2 (fr) 2003-06-18
DE10160756A1 (de) 2003-06-18

Similar Documents

Publication Publication Date Title
DE3004186C2 (fr)
DE102006005464B3 (de) Verfahren zur primärseitigen Stickoxidminderung in einem zweistufigen Verbrennungsprozess
DD282503A5 (de) Einrichtung zum thermischen zerlegen von fluiden schadstoffen
EP0819233B1 (fr) Procede et dispositif de traitement thermique de dechets
WO2010049127A1 (fr) Procédé et dispositif pour réduire les émissions de substances polluantes dans des incinérateurs
DE3915992A1 (de) Verfahren zur reduktion von stickstoffoxiden
DD227980A1 (de) Apparat fuer die vergasung von kohlenstaub
DE2908427A1 (de) Verfahren zur verminderung der no tief x -emission
DE3040830C2 (de) Verfahren zur Verminderung der NO↓X↓ -Emission bei der Verbrennung von stickstoffhaltigen Brennstoffen
DE102015004577B3 (de) Anlage zur Herstellung von Zement mit vermindertem Ausstoß von Schadgasen und Verfahren zum Betrieb einer solchen Anlage
WO1993007422A1 (fr) Procede pour la combustion de matieres solides
EP2691701B2 (fr) Procédé d'optimisation de la combustion totale des gaz d'échappement d'une installation de combustion
WO1997004274A1 (fr) Procede d'incineration de materiaux a traiter thermiquement
WO1986006151A1 (fr) Procede et installation d'incineration de dechets
EP1377649B1 (fr) Installation et procede pour produire de l'energie par pyrolyse
EP1319894B1 (fr) Procédé d'incinération de déchets et dispositif pour traiter le gaz d'échappement provenant de ce procédé
WO2001084051A1 (fr) Procede et dispositif pour incinerer des sous-produits organiques
EP2397756B1 (fr) Installation de chauffe pour la combustion de matières solides
DE102004037442B4 (de) Verfahren zur thermischen Behandlung von Abfall in einer thermischen Abfallbehandlungsanlage sowie thermische Abfallbehandlungsanlage
DE102006049506A1 (de) Rauchgas-Äquilibrierung in Müllverbrennungsanlagen
WO1992003211A1 (fr) Procede et dispositif de desulfuration complete a sec de gaz de combustion contenant du so2 et des poussieres
DE60022298T2 (de) Verfahren und Vorrichtung zur Verbesserung der Verbrennung in einer zirkulierenden Wirbelschichtanlage
DE10339133B4 (de) Verfahren zur NOx-Minderung in Feuerräumen und Vorrichtung zur Durchführung des Verfahrens
EP0326817B1 (fr) Installation pour carboniser des déchets
DE3329342C2 (de) Verfahren zur Behandlung von Rauchgasen aus einer Dampferzeugungsanlage

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

17P Request for examination filed

Effective date: 20040507

AKX Designation fees paid

Designated state(s): BE DE ES FR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE DE ES FR

REF Corresponds to:

Ref document number: 50209763

Country of ref document: DE

Date of ref document: 20070503

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070702

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20071227

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20091203

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20091126

Year of fee payment: 8

BERE Be: lapsed

Owner name: SCHOPPE, FRITZ, DR.-ING.

Effective date: 20101130

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20110801

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101130

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20121023

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140603

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50209763

Country of ref document: DE

Effective date: 20140603