EP1316678A2 - Anordnung zur Verminderung des Motorölverbrauches von Gasturbinentriebwerken - Google Patents

Anordnung zur Verminderung des Motorölverbrauches von Gasturbinentriebwerken Download PDF

Info

Publication number
EP1316678A2
EP1316678A2 EP02258137A EP02258137A EP1316678A2 EP 1316678 A2 EP1316678 A2 EP 1316678A2 EP 02258137 A EP02258137 A EP 02258137A EP 02258137 A EP02258137 A EP 02258137A EP 1316678 A2 EP1316678 A2 EP 1316678A2
Authority
EP
European Patent Office
Prior art keywords
vent
sump
eductor
flow
engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP02258137A
Other languages
English (en)
French (fr)
Other versions
EP1316678A3 (de
EP1316678B1 (de
Inventor
Charles Robert Granitz
Mark Eden Zentgraf
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Co
Original Assignee
General Electric Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Electric Co filed Critical General Electric Co
Publication of EP1316678A2 publication Critical patent/EP1316678A2/de
Publication of EP1316678A3 publication Critical patent/EP1316678A3/de
Application granted granted Critical
Publication of EP1316678B1 publication Critical patent/EP1316678B1/de
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/18Lubricating arrangements
    • F01D25/20Lubricating arrangements using lubrication pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/60Fluid transfer
    • F05D2260/601Fluid transfer using an ejector or a jet pump
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft

Definitions

  • the invention reduces losses of lubricating oil in a gas turbine engine due to leakage through (1) seals in an oil sump at low power and (2) a vent system of the sump at high power.
  • Figure 1 is a simplified schematic of a known sump system in a gas turbine engine. Items 3 represent a common oil-wetted chamber, called the bearing sump chamber or cavity, and items 6 represent a second, different common chamber, called the sump pressurization chamber.
  • Oil 9 is delivered by a nozzle 12 to a bearing 15 for lubrication and cooling. After usage by the bearing 15, the oil is gravity-drained to the bottom of in the sump chamber 3, and then evacuated by a scavenge system (not shown), as indicated by arrow 18. The scavenged oil is cooled, filtered, returned in oil stream 9.
  • incoming air represented by dashed arrow 30, pressurizes the pressurization chamber 6.
  • This air is driven through the seals 24 by the positive pressure differential across the seals, as indicated by dashed arrows 33.
  • This pressurization air velocity serves to keep splashing oil out of the seals 24 in the sump chamber 3, and to reduce its migration into the pressurization chamber 6.
  • the pressurization air now present within the sump chamber 3, then exits through a sump vent 36, as indicated by dashed arrow 39, after passing through an air/oil separator (not shown).
  • pressure in the sump chamber is artificially reduced during engine idle, to increase the positive pressure differential across the seals, to thereby increase airflow velocity across the seals.
  • flow exiting the sump chamber is artificially inhibited during high-power operation, to reduce flow through a constriction 85 in Figure 2, which is located at the exit of the sump chamber.
  • the Inventors have observed two problems in the system of Figure 1, when used in a relatively large gas turbine engine, of the 90,000 pound thrust class.
  • One problem is that, at idle speeds, the pressure differential between the sump pressurization cavity 6 and the sump chamber 3 is too small to provide sufficient airflow velocity across seals 24. Thus, oil leakage across seals 24 can occur: oil leaks across the seals 24 in the direction opposite to dashed arrows 33.
  • a second problem is that, at high-power operation, significant oil is lost through the vent 36. It is suspected that this latter loss arises because of a combination of factors.
  • One factor is that the seals 24 are of larger diameter than previous seals of their type, thus presenting a larger cross-sectional area which must be sealed. This larger cross-sectional area provides greater flow into sump 3, thus providing greater flow through vent 36.
  • a second factor is that the larger seals 24 have a larger clearance. That is, the distance corresponding to distance 37 in Figure 1 is larger. Larger clearances generally imply larger leakage.
  • a third factor is that the pressure differential across the seals 24 may be larger than in previous cases.
  • a fourth factor is an increased temperature of the region of the seal 24.
  • one form of the invention mitigates both (1) leakage across the seals 24 at idle and (2) leakage through the vent 36 at high power.
  • the invention does so by (1) artificially increasing the pressure differential between chambers 3 and 6 during idle operation, with chamber 3 being evacuated to a smaller pressure, and (2) restricting flow through vent 36 during high-power operation.
  • FIG 2 illustrates one form of the invention, in schematic form.
  • An eductor 50 also called an air jet ejector, creates a lower pressure in sump chamber 3 than would otherwise prevail.
  • the eductor 50 is powered by a jet 53 of air delivered by a nozzle 55.
  • the nozzle 55 receives pressurized air from a compressor bleed (not shown in Figure 2, but shown in Figure 4 and discussed later).
  • Eductors in general are known in the art. Their operation can be understood by the following two principles, which may actually be two different statements of a single more fundamental principle.
  • the eductor 50 entrains air present in region 58 into the jet 53, thereby removing the entrained air from region 58. The removal causes additional air to flow from the sump chamber 3, through the sump vent 36, to replace the removed air.
  • the jet 53 generates a low static pressure in region 58, based on Bernoulli's Law, which causes air to flow from the sump chamber 3 through sump vent 36.
  • the eductor 50 by removing air from the sump chamber 3, creates a lower-than-normal pressure in the sump chamber 3, thereby increasing the pressure differential from the second chamber 6 to the sump chamber 3. This increased differential will increase airflow velocity across seals 24, thereby more effectively preventing oil from entering seals 24 and thus leaking from the sump chamber 3.
  • a gauge-type pressure sensor 60 measures the pressure differential. When the differential falls below a specific threshold, the sensor 60 opens a valve 63, which initiates the jet 53, and brings the eductor 50 into operation. When the differential rises above a floor, the sensor 60 closes the valve 63, thereby terminating operation of the eductor 50.
  • the threshold and the floor may be the same, thus providing a simple setpoint type of operation. Alternately, they may be different, in which case a type of hysteresis or dead band would be introduced.
  • the preceding mode of operation is used at engine idle speeds.
  • the eductor 50 remains inactive, because the pressure differential is above the floor described above.
  • excess airflow through the sump vent 36 is believed to cause undesirable oil consumption, as by entraining oil in the airflow passing through the vent 36.
  • the mixing throat of eductor 50 is designed to provide an exit path restriction to the air exiting the sump vent 36.
  • Eductor 50 is designed to present a flow-limiting restriction, represented by constriction 85. This restriction limits the amount of airflow passed by the eductor 50 during high-power operation, when valve 63 is closed.
  • one form of the invention can be viewed as providing two mirror-image types of operation.
  • the pressure within the sump chamber 3 is artificially reduced. That is, ordinarily, the pressure in that chamber 3 would be about 0.10 psig, pounds per square inch gauge.
  • the invention reduces the pressure to about negative 0.5 psig, a negative value. The reduction is accomplished by the active withdrawal of air, caused by the eductor 50. This lowering increases the air flowing across seals 24, from the pressurization chamber 6 to the sump chamber 3.
  • the invention artificially restricts flow through vent 36, because of the constriction 85. This constriction will cause an increase in the pressure within sump chamber 3, over that which would occur if the constriction 85 were absent.
  • the pressure within the sump chamber 3 would be about 3.0 psig.
  • the invention increases that pressure, by restricting flow through the eductor 50, which has been added to the exit of sump vent 36.
  • One embodiment of the invention was adapted to a pre-existing engine, which was designed with vents 36 of a relatively low cross section. Because of the low cross section, the relatively high percentage of 85 as just stated was required. Nevertheless, an engine can be re-designed so that the cross-section of vent 36 is larger. In such a case, the required pressure differential can be attained with a lower mass flow than 85, including a flow in the range of 70 percent, or less.
  • FIG. 3 is a flow chart illustrating processes undertaken by one form of the invention.
  • Block 100 indicates that an eductor is maintained in association with a vent from an oil sump in a gas turbine engine.
  • Eductor 50 in Figure 2 provides an example of one such eductor.
  • Block 105 in Figure 3 indicates that eductor supply pressure is sensed, and block 110 indicates that, when pressure falls below a minimum, airflow through vent 36 is increased, by opening valve 63, thereby driving the eductor 50 into operation.
  • Block 115 indicates that, at high-power operation, such as cruise operation in an aircraft, the airflow through the vent is restricted below the amount which would ordinarily occur.
  • Block 110 is inoperative at this time: valve 63 is closed and the eductor 50 is turned off.
  • the discussion above focuses on pressure: the pressure sensor 60 in Figure 2 is used to turn the eductor 50 on and off.
  • the eductor 50 when in operation, lowers pressure at region 58.
  • the pressure differential indicated by sensor 60 provides a measure of amount of airflow across seals 24. Lowering pressure at region 58 serves to increase that airflow.
  • blocks 105 and 110 in Figure 3 can be characterized as maintaining airflow leaking into the sump chamber 3 through seals 24 at a predetermined minimum level.
  • Figure 1 illustrates normal flow through vent 36.
  • the invention artificially alters that flow at high-power, or cruise, operation, by means of constriction 85.
  • the flow is artificially reduced.
  • vent 36 in Figure 1 creates a normal pressure in sump 3 at idle.
  • the invention artificially reduces that pressure by means of eductor 50, thereby increasing the leakage across seals 24.
  • Figure 4 illustrates one form of the invention.
  • a generic gas turbine engine 200 is mounted in a nacelle 205 of an aircraft 210.
  • Block 215 represents the apparatus represented in Figure 2.
  • a compressor bleed 220 in Figure 4 delivers pressurized air to the valve 60 in Figure 2 which drives eductor 50 of Figure 2, not separately shown in Figure 4.
  • the invention measures a parameter from which flow through the vent 36 can be computed. That is, by the continuity principle, all, or nearly all, of the flow across seals 24 in Figure 2 must exit through the vent 36. Measuring the pressure differential across the seals 24, which indicates the amount of the flow across seals 24, allows one to also estimate the amount of flow through the vent 36.
  • the invention determines whether the flow across the seals, unassisted by the eductor 50, would lie above a required minimum. If not, the invention activates the eductor 50 to maintain the flow above the minimum. Conversely, if the measured parameter indicates that the unassisted flow would fall above a certain value, the invention de-activates the eductor 50, because it is not needed.
EP02258137A 2001-11-29 2002-11-27 Anordnung zur Verminderung des Motorölverbrauches von Gasturbinentriebwerken Expired - Fee Related EP1316678B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/998,432 US20030097872A1 (en) 2001-11-29 2001-11-29 System for reducing oil consumption in gas turbine engines
US998432 2001-11-29

Publications (3)

Publication Number Publication Date
EP1316678A2 true EP1316678A2 (de) 2003-06-04
EP1316678A3 EP1316678A3 (de) 2009-10-07
EP1316678B1 EP1316678B1 (de) 2012-08-15

Family

ID=25545197

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02258137A Expired - Fee Related EP1316678B1 (de) 2001-11-29 2002-11-27 Anordnung zur Verminderung des Motorölverbrauches von Gasturbinentriebwerken

Country Status (4)

Country Link
US (3) US20030097872A1 (de)
EP (1) EP1316678B1 (de)
JP (1) JP4288404B2 (de)
CN (1) CN100353035C (de)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2067963A2 (de) * 2007-12-07 2009-06-10 Rolls-Royce Deutschland Ltd & Co KG Lagerkammerdrucksystem
EP1520961A3 (de) * 2003-10-03 2010-11-03 General Electric Company Methode zur Überwachung der Schmierölabfuhr bei Gasturbinen
EP1820944A3 (de) * 2006-02-21 2010-12-15 General Electric Company Supercore-Sammelbehälterentlüftungsdruckregelung
FR2979136A1 (fr) * 2011-08-16 2013-02-22 Snecma Dispositif d'activation d'une vanne passive d'ejecteur pour pressurisation d'une enceinte de turboreacteur d'aeronef
RU2480600C1 (ru) * 2011-12-26 2013-04-27 Открытое акционерное общество "Научно-производственное объединение "Сатурн" (ОАО "НПО "Сатурн") Маслосистема энергетической газотурбинной установки
EP2336503A3 (de) * 2009-12-21 2013-12-04 Rolls-Royce Deutschland Ltd & Co KG Anordnung zum Abblasen von aus dem Schmierölentlüftungssystem eines Gasturbinentriebwerks abegetrennter Entlüftungsluft
WO2013130157A3 (en) * 2011-12-20 2013-12-12 General Electric Company Adaptive eductor system
FR3016661A1 (fr) * 2014-01-23 2015-07-24 Snecma Enceinte de palier d'une turbomachine
EP2535529A3 (de) * 2011-06-13 2017-06-07 Rolls-Royce plc Lagerkammervorrichtung
EP2615260A3 (de) * 2012-01-10 2017-11-01 Rolls-Royce plc Lagerkammerdichtungen für Gasturbinenmotor
EP3318728A1 (de) * 2016-11-04 2018-05-09 United Technologies Corporation Lagergehäuse mit variablem volumen
EP3388636A1 (de) * 2017-04-11 2018-10-17 United Technologies Corporation Belüftete pufferluftversorgung für zwischenwellendichtungen
US11248534B2 (en) 2017-03-30 2022-02-15 General Electric Company System and method for engine eductor powered by alternate managed air system

Families Citing this family (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7174997B2 (en) 2003-07-03 2007-02-13 United Technologies Corporation Failure tolerant passive lubrication system
JP4773804B2 (ja) * 2005-11-17 2011-09-14 三菱重工業株式会社 ガスタービン
US20080121021A1 (en) * 2006-11-27 2008-05-29 Lufthansa Technik Ag Process and apparatus for inspection of an aircraft jet engine for oil leaks
FR2929325B1 (fr) * 2008-03-26 2012-09-28 Snecma Dispositif et procede d'equilibrage de pression dans une enceinte palier de turboreacteur
GB0816562D0 (en) * 2008-09-11 2008-10-15 Rolls Royce Plc Lubricant scavenge arrangement
US8401760B2 (en) * 2009-07-07 2013-03-19 Honeywell International Inc. Gas turbine engine oil consumption monitoring system and method
EP2383440A1 (de) * 2010-04-28 2011-11-02 Siemens Aktiengesellschaft Turbine mit Luftabdichtungsventilsystem
EP2431574A1 (de) * 2010-09-20 2012-03-21 Siemens Aktiengesellschaft Gasturbine und Verfahren zum Betrieb der Gasturbine
FR2965299B1 (fr) * 2010-09-23 2012-10-05 Snecma Systeme de pressurisation des enceintes de paliers des turbomachines par de l'air preleve dans la manche d'entree.
GB2495092B (en) * 2011-09-28 2014-01-01 Rolls Royce Plc Sealing arrangement
US10287914B2 (en) 2012-01-31 2019-05-14 United Technologies Corporation Gas turbine engine with high speed low pressure turbine section and bearing support features
US20150345426A1 (en) 2012-01-31 2015-12-03 United Technologies Corporation Geared turbofan gas turbine engine architecture
US20150192070A1 (en) * 2012-01-31 2015-07-09 United Technologies Corporation Geared turbofan gas turbine engine architecture
US8935913B2 (en) 2012-01-31 2015-01-20 United Technologies Corporation Geared turbofan gas turbine engine architecture
US8887487B2 (en) 2012-01-31 2014-11-18 United Technologies Corporation Geared turbofan gas turbine engine architecture
US9222417B2 (en) 2012-01-31 2015-12-29 United Technologies Corporation Geared turbofan gas turbine engine architecture
US10125693B2 (en) 2012-04-02 2018-11-13 United Technologies Corporation Geared turbofan engine with power density range
US9353647B2 (en) 2012-04-27 2016-05-31 General Electric Company Wide discourager tooth
US9567908B2 (en) * 2012-04-27 2017-02-14 General Electric Company Mitigating vortex pumping effect upstream of oil seal
GB201303636D0 (en) * 2013-03-01 2013-04-17 Rolls Royce Plc Chamber fluid removal system
EP2789806B1 (de) * 2013-04-10 2017-06-14 Nuovo Pignone S.r.l. Verfahren und System zur Vorbeugung von Schmierölaustritt in Gasturbinen
BR112016002022A2 (pt) * 2013-08-16 2017-08-01 Gen Electric spoiler de turbilhão de fluxo
RU2535796C1 (ru) * 2013-11-14 2014-12-20 Открытое акционерное общество "Уфимское моторостроительное производственное объединение" ОАО УМПО Маслосистема авиационного газотурбинного двигателя
RU2535518C1 (ru) * 2013-12-03 2014-12-10 Открытое акционерное общество "Уфимское моторостроительное производственное объединение" ОАО УМПО Маслосистема энергетической газотурбинной установки
FR3020658B1 (fr) * 2014-04-30 2020-05-15 Safran Aircraft Engines Capot de recuperation d'huile de lubrification pour un equipement de turbomachine
US20150322861A1 (en) * 2014-05-12 2015-11-12 General Electric Company Enhanced Turbine Cooling System Using a Blend of Compressor Bleed Air and Ambient Air
GB201412869D0 (en) * 2014-07-21 2014-09-03 Rolls Royce Plc Pressure controlled chamber
US9677424B2 (en) 2015-06-24 2017-06-13 General Electric Company Gas turbine engine
RU2619441C1 (ru) * 2015-12-14 2017-05-15 Общество с ограниченной ответственностью "Газпром трансгаз Сургут" Способ стабилизации давления масла в системе смазки газоперекачивающего агрегата
RU2619440C1 (ru) * 2015-12-14 2017-05-15 Общество с ограниченной ответственностью "Газпром трансгаз Сургут" Устройство стабилизации давления масла в системе смазки газоперекачивающего агрегата
US10550724B2 (en) * 2016-10-11 2020-02-04 General Electric Company System and method for the pressurization of a sump of a gas turbine engine
JP6862292B2 (ja) * 2017-06-19 2021-04-21 川崎重工業株式会社 ガスタービンエンジン
EP3450722B1 (de) 2017-08-31 2024-02-14 General Electric Company Luftversorgungssystem für ein gasturbinentriebwerk
RU2698995C1 (ru) * 2019-03-11 2019-09-02 Федеральное государственное бюджетное образовательное учреждение высшего образования "Казанский государственный аграрный университет" (ФГБОУ ВО Казанский ГАУ) Индивидуальная система смазки подшипникового узла турбокомпрессора двигателя внутреннего сгорания
US11274599B2 (en) 2019-03-27 2022-03-15 Pratt & Whitney Canada Corp. Air system switching system to allow aero-engines to operate in standby mode
US11391219B2 (en) 2019-04-18 2022-07-19 Pratt & Whitney Canada Corp. Health monitor for air switching system
US11859563B2 (en) 2019-05-31 2024-01-02 Pratt & Whitney Canada Corp. Air system of multi-engine aircraft
US11274611B2 (en) 2019-05-31 2022-03-15 Pratt & Whitney Canada Corp. Control logic for gas turbine engine fuel economy
US11326525B2 (en) 2019-10-11 2022-05-10 Pratt & Whitney Canada Corp. Aircraft bleed air systems and methods
US11293375B2 (en) * 2020-02-12 2022-04-05 General Electric Company Variable area ejector
US11187185B1 (en) * 2021-04-05 2021-11-30 Cummins Inc. Waste heat recovery lube oil management
US11525399B1 (en) * 2021-06-17 2022-12-13 Pratt & Whitney Canada Corp. Oil system with flow restrictor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1429690A (fr) 1965-03-31 1966-02-25 Rolls Royce Ensemble de palier

Family Cites Families (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE378896C (de) * 1920-05-27 1923-08-07 Bbc Brown Boveri & Cie Verfahren zur Beseitigung des OEldunstes aus Lagern durch Absaugung
US1728268A (en) * 1927-06-03 1929-09-17 Westinghouse Electric & Mfg Co Bearing housing
US2571166A (en) * 1948-11-18 1951-10-16 Westinghouse Electric Corp Power plant lubrication system
US3033335A (en) * 1957-04-24 1962-05-08 Gen Motors Corp Transmission
US3077736A (en) * 1959-03-04 1963-02-19 Olin Mathieson Gas generating device
US3053268A (en) * 1959-04-23 1962-09-11 Culligan Inc Time control and metering system
GB942842A (en) * 1961-05-10 1963-11-27 Rolls Royce Gas turbine engine
GB1013139A (en) * 1964-09-04 1965-12-15 Rolls Royce Gas turbine engine
US3527054A (en) * 1969-01-23 1970-09-08 Gen Electric Pressurization of lubrication sumps in gas turbine engines
US3722624A (en) * 1971-06-07 1973-03-27 Gen Electric Bearing seal and oil tank ventilation system
US4050237A (en) * 1974-03-11 1977-09-27 Pall Corporation Demister assembly for removing liquids from gases
US3906717A (en) * 1974-03-21 1975-09-23 Gen Motors Corp Turbine engine oil sump emission control
US4153141A (en) * 1977-06-20 1979-05-08 General Electric Company Auxiliary oil supply system
US4262775A (en) * 1979-05-07 1981-04-21 Ingersoll-Rand Company Oil supply means for a machine
US4345527A (en) * 1980-07-14 1982-08-24 Marchand William C Solid fuel particle and air fuel control device
GB2119858B (en) * 1982-05-13 1985-05-30 United Technologies Corp Means for controlling air scavenge pressure in the bearing compartment of gas turbines
US4433539A (en) * 1982-05-13 1984-02-28 United Technologies Corporation Means for controlling air scavenge pressure in the bearing compartment of gas turbines
DE3242366C2 (de) * 1982-11-16 1985-02-07 MTU Motoren- und Turbinen-Union München GmbH, 8000 München Ölversorgungseinrichtung für beliebigen Flugsituationen aussetzbare Gasturbinentriebwerke
GB2135740B (en) * 1983-02-11 1986-02-12 Rolls Royce Gas turbine engine lubrication systems
US5050375A (en) * 1985-12-26 1991-09-24 Dipac Associates Pressurized wet combustion at increased temperature
US4911267A (en) * 1987-08-31 1990-03-27 Yohwa Trading Co., Ltd. Oiler with drippage preventing device
US5046306A (en) * 1990-07-23 1991-09-10 General Motors Corporation Secondary oil system
US5284012A (en) * 1991-05-16 1994-02-08 General Electric Company Nacelle cooling and ventilation system
GB9306890D0 (en) * 1993-04-01 1993-06-02 Bmw Rolls Royce Gmbh A gas turbine engine with bearing chambers and barrier air chambers
US5649850A (en) * 1994-12-01 1997-07-22 Corcon Industrial Painting Mobile platform recovery system for bridge maintenance
US6213080B1 (en) * 1996-02-28 2001-04-10 Cummins Engine Company, Inc. Electronically controlled continuous lubricating oil replacement system
US6067489A (en) * 1997-06-04 2000-05-23 Detroit Diesel Corporation Method for engine control
US6330790B1 (en) * 1999-10-27 2001-12-18 Alliedsignal, Inc. Oil sump buffer seal
US6470666B1 (en) * 2001-04-30 2002-10-29 General Electric Company Methods and systems for preventing gas turbine engine lube oil leakage
US6550253B2 (en) * 2001-09-12 2003-04-22 General Electric Company Apparatus and methods for controlling flow in turbomachinery
US6701715B2 (en) * 2002-05-02 2004-03-09 Honeywell International, Inc. Variable geometry ejector for a bleed air system using integral ejector exit pressure feedback
US6799112B1 (en) * 2003-10-03 2004-09-28 General Electric Company Methods and apparatus for operating gas turbine engines
US7536864B2 (en) * 2005-12-07 2009-05-26 General Electric Company Variable motive nozzle ejector for use with turbine engines
US7861536B2 (en) * 2006-03-27 2011-01-04 Pratt & Whitney Canada Corp. Ejector controlled twin air source gas turbine pressurizing air system
US8240153B2 (en) * 2008-05-14 2012-08-14 General Electric Company Method and system for controlling a set point for extracting air from a compressor to provide turbine cooling air in a gas turbine

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1429690A (fr) 1965-03-31 1966-02-25 Rolls Royce Ensemble de palier

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1520961A3 (de) * 2003-10-03 2010-11-03 General Electric Company Methode zur Überwachung der Schmierölabfuhr bei Gasturbinen
EP1820944A3 (de) * 2006-02-21 2010-12-15 General Electric Company Supercore-Sammelbehälterentlüftungsdruckregelung
EP2067963A2 (de) * 2007-12-07 2009-06-10 Rolls-Royce Deutschland Ltd & Co KG Lagerkammerdrucksystem
EP2067963A3 (de) * 2007-12-07 2011-08-03 Rolls-Royce Deutschland Ltd & Co KG Lagerkammerdrucksystem
US8235647B2 (en) 2007-12-07 2012-08-07 Rolls-Royce Deutschland Ltd & Co Kg Bearing-chamber pressure system
US8640436B2 (en) 2009-12-21 2014-02-04 Rolls-Royce Deutschland Ltd & Co Kg Arrangement for the discharge of exhaust air separated from the lubricating oil de-aeration system of a gas-turbine engine
EP2336503A3 (de) * 2009-12-21 2013-12-04 Rolls-Royce Deutschland Ltd & Co KG Anordnung zum Abblasen von aus dem Schmierölentlüftungssystem eines Gasturbinentriebwerks abegetrennter Entlüftungsluft
EP2535529A3 (de) * 2011-06-13 2017-06-07 Rolls-Royce plc Lagerkammervorrichtung
FR2979136A1 (fr) * 2011-08-16 2013-02-22 Snecma Dispositif d'activation d'une vanne passive d'ejecteur pour pressurisation d'une enceinte de turboreacteur d'aeronef
US9212757B2 (en) 2011-08-16 2015-12-15 Snecma Device for activating a passive ejector valve for pressurising a turbojet engine chamber for an aircraft
WO2013130157A3 (en) * 2011-12-20 2013-12-12 General Electric Company Adaptive eductor system
US8956106B2 (en) 2011-12-20 2015-02-17 General Electric Company Adaptive eductor system
RU2480600C1 (ru) * 2011-12-26 2013-04-27 Открытое акционерное общество "Научно-производственное объединение "Сатурн" (ОАО "НПО "Сатурн") Маслосистема энергетической газотурбинной установки
US10138812B2 (en) 2012-01-10 2018-11-27 Rolls-Royce Plc Gas turbine engine bearing chamber seals
EP2615260A3 (de) * 2012-01-10 2017-11-01 Rolls-Royce plc Lagerkammerdichtungen für Gasturbinenmotor
WO2015110744A1 (fr) * 2014-01-23 2015-07-30 Snecma Enceinte de palier d'une turbomachine
CN105899763A (zh) * 2014-01-23 2016-08-24 斯奈克玛 涡轮机轴承壳
FR3016661A1 (fr) * 2014-01-23 2015-07-24 Snecma Enceinte de palier d'une turbomachine
CN105899763B (zh) * 2014-01-23 2019-03-15 斯奈克玛 涡轮机轴承壳
RU2685749C2 (ru) * 2014-01-23 2019-04-23 Сафран Эркрафт Энджинз Камера опорного подшипника газотурбинного двигателя
US10502081B2 (en) 2014-01-23 2019-12-10 Safran Aircraft Engines Turbomachine bearing housing
EP3318728A1 (de) * 2016-11-04 2018-05-09 United Technologies Corporation Lagergehäuse mit variablem volumen
US10520035B2 (en) 2016-11-04 2019-12-31 United Technologies Corporation Variable volume bearing compartment
US11248534B2 (en) 2017-03-30 2022-02-15 General Electric Company System and method for engine eductor powered by alternate managed air system
EP3388636A1 (de) * 2017-04-11 2018-10-17 United Technologies Corporation Belüftete pufferluftversorgung für zwischenwellendichtungen

Also Published As

Publication number Publication date
US20070180830A1 (en) 2007-08-09
EP1316678A3 (de) 2009-10-07
JP2003184510A (ja) 2003-07-03
JP4288404B2 (ja) 2009-07-01
US20090288384A1 (en) 2009-11-26
US20030097872A1 (en) 2003-05-29
CN100353035C (zh) 2007-12-05
US7584619B2 (en) 2009-09-08
CN1421594A (zh) 2003-06-04
EP1316678B1 (de) 2012-08-15

Similar Documents

Publication Publication Date Title
EP1316678B1 (de) Anordnung zur Verminderung des Motorölverbrauches von Gasturbinentriebwerken
US6470666B1 (en) Methods and systems for preventing gas turbine engine lube oil leakage
JP5080823B2 (ja) スーパーコア油だめ通気圧力制御方法および装置
EP2789806B1 (de) Verfahren und System zur Vorbeugung von Schmierölaustritt in Gasturbinen
EP2522812A1 (de) Verfahren zur Zuleitung eines Fluids zu einer Dichtung in einer Turbomaschine
US20030099538A1 (en) Method and device for minimizing oil consumption in a gas turbine engine
US10502141B2 (en) Apparatus and method for controlling a pressure differential across a seal of a bearing chamber
CA2859775C (en) Adaptive eductor system
CN210829503U (zh) 减少燃气轮机滑油泄漏的空气增压系统
US11319836B2 (en) Lubricant drain conduit for gas turbine engine
CN214464564U (zh) 一种涡桨发动机润滑和通气系统
US9097180B2 (en) Apparatus and method for reducing oil mist ingestion in a heavy duty gas turbine engine
US9625101B2 (en) Pressure controlled chamber
CN116163840A (zh) 一种避免封严压差较低时轴承腔漏油的方法及试验方法
CN116163839A (zh) 一种轴承腔通风结构及降低轴承腔通风管流通阻力的结构
UA82524C2 (uk) Спосіб суфлірування масляних порожнин опор ротора газотурбінного двигуна і пристрій для його реалізації

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

17P Request for examination filed

Effective date: 20100407

AKX Designation fees paid

Designated state(s): DE FR GB

17Q First examination report despatched

Effective date: 20100707

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 60243506

Country of ref document: DE

Effective date: 20121011

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20130516

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 60243506

Country of ref document: DE

Effective date: 20130516

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20151127

Year of fee payment: 14

Ref country code: DE

Payment date: 20151127

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20151117

Year of fee payment: 14

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 60243506

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20161127

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20170731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170601

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161127