EP1315733A2 - Verfahren zur herstellung anellierter tetrahydro-[1h]-triazole - Google Patents

Verfahren zur herstellung anellierter tetrahydro-[1h]-triazole

Info

Publication number
EP1315733A2
EP1315733A2 EP01972023A EP01972023A EP1315733A2 EP 1315733 A2 EP1315733 A2 EP 1315733A2 EP 01972023 A EP01972023 A EP 01972023A EP 01972023 A EP01972023 A EP 01972023A EP 1315733 A2 EP1315733 A2 EP 1315733A2
Authority
EP
European Patent Office
Prior art keywords
alkyl
alkoxy
carbonyl
cyano
halogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP01972023A
Other languages
English (en)
French (fr)
Inventor
Gerhard Hamprecht
Olaf Menke
Robert Reinhard
Michael Puhl
Ingo Sagasser
Cyrill Zagar
Matthias Witschel
Helmut Walter
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF SE
Original Assignee
BASF SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BASF SE filed Critical BASF SE
Publication of EP1315733A2 publication Critical patent/EP1315733A2/de
Withdrawn legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N43/00Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds
    • A01N43/90Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having two or more relevant hetero rings, condensed among themselves or with a common carbocyclic ring system
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C331/00Derivatives of thiocyanic acid or of isothiocyanic acid
    • C07C331/16Isothiocyanates
    • C07C331/28Isothiocyanates having isothiocyanate groups bound to carbon atoms of six-membered aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D273/00Heterocyclic compounds containing rings having nitrogen and oxygen atoms as the only ring hetero atoms, not provided for by groups C07D261/00 - C07D271/00
    • C07D273/02Heterocyclic compounds containing rings having nitrogen and oxygen atoms as the only ring hetero atoms, not provided for by groups C07D261/00 - C07D271/00 having two nitrogen atoms and only one oxygen atom
    • C07D273/04Six-membered rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D275/00Heterocyclic compounds containing 1,2-thiazole or hydrogenated 1,2-thiazole rings
    • C07D275/04Heterocyclic compounds containing 1,2-thiazole or hydrogenated 1,2-thiazole rings condensed with carbocyclic rings or ring systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D413/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms
    • C07D413/02Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings
    • C07D413/12Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D417/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00
    • C07D417/02Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings
    • C07D417/12Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D498/00Heterocyclic compounds containing in the condensed system at least one hetero ring having nitrogen and oxygen atoms as the only ring hetero atoms
    • C07D498/02Heterocyclic compounds containing in the condensed system at least one hetero ring having nitrogen and oxygen atoms as the only ring hetero atoms in which the condensed system contains two hetero rings
    • C07D498/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D513/00Heterocyclic compounds containing in the condensed system at least one hetero ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for in groups C07D463/00, C07D477/00 or C07D499/00 - C07D507/00
    • C07D513/02Heterocyclic compounds containing in the condensed system at least one hetero ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for in groups C07D463/00, C07D477/00 or C07D499/00 - C07D507/00 in which the condensed system contains two hetero rings
    • C07D513/04Ortho-condensed systems

Definitions

  • the present invention relates to a process for the preparation of fused tetrahydro [1 H] triazoles of the formula I.
  • R a hydroxy, C0 2 R 1 , halogen, cyano, C (0) N (R 1 ), the radicals R 1 optionally being different from one another, OR la , Ci-C ö alkyl, C ⁇ -C 6 haloalkyl, C 3 -C 6 alkenyl, C 3 -C 6 alkynyl, COR 1 , S (0) n R 1 with n 0, 1 or 2 or C (0) SR 1 ; wherein
  • R 1 is hydrogen, Ci-Cg-alkyl, C ⁇ -C 6 haloalkyl, C ⁇ -C 3 -alcohol xy-C ⁇ -C 3 alkyl, C 3 -C 6 alkenyl or C 3 -C 6 alkynyl; and
  • n 0, 1, 2 or 3;
  • WO 94/10173 and WO 00/01700 describe a process for the preparation of fused tetrahydro- [lH] -triazoles of the formula b (hereinafter also referred to as triazolinediones), in which a substituted urea of the formula a is used in accordance with scheme 1 Cyclized phosgene or a phosgene substitute such as diphosgene.
  • Ph represents a substituted phenyl ring.
  • X means oxygen or sulfur.
  • the use of phosgene is problematic because of its high toxicity.
  • the present invention was therefore based on the object of providing a process for the preparation of the compounds of the formula I defined at the outset, which does not require phosgene or a phosgene substitute.
  • R represents C (X) OR 2 or C (X) SR 2 , wherein
  • the present invention relates to a process for the preparation of compounds of the formula I defined above, which is characterized in that a compound II is reacted with a base.
  • the organic parts of the molecule mentioned in the definition of R a 'R 1 to R 28 and on phenyl, cycloalkyl and heterocyclyl rings represent collective terms for individual enumeration of the individual group members. All carbon chains, ie all (optionally substituted) alkyl, Alkenyl or alkynyl parts can be straight-chain or branched. halogenated nated substituents preferably carry one to five identical or different halogen atoms.
  • Halogen is fluorine, bromine, chlorine or iodine, in particular fluorine or chlorine.
  • -C-C 4 alkyl for CH 3 , C 2 H 5 , n-propyl, CH (CH 3 ) 2 , n-butyl, CH (CH 3 ) -C 2 H 5 , 2-methylpropyl or C (CH 3 ) 3 , in particular for CH 3 , C 2 H 5 or CH (CH 3 ) 2 ;
  • C ⁇ -C haloalkyl for: a -CC alkyl radical as mentioned above, which is partially or completely substituted by fluorine, chlorine, bromine and / or iodine, that is, for. B. CH 2 F, CHF 2 ,
  • CF 3 CH 2 C1, dichloroethyl, trichloromethyl, chlorofluoromethyl, dichlorofluoromethyl, chlorodifluoroethyl, 2-fluoroethyl, 2-chloroethyl, 2-bromoethyl, 2-iodoethyl, 2 2-difluoroethyl, 2,2,2-tri fluoroethyl, 2-chloro-2-fluoroethyl, 2-chloro-2,2-difluoroethyl, 2,2-dichloro-2-fluoroethyl, 2,2,2-trichloroethyl, C 2 F 5 , 2-fluoropropyl, 3 -Fluoropropyl, 2,2-difluoropropyl, 2,3-difluoropropyl, 2-chloropropyl, 3-chloropropyl, 2,3-dichloropropyl, 2-bromopropyl, 2-
  • Ci-C ö alkyl for: C ⁇ -C-alkyl as mentioned above, and for example n-pentyl, 1-methylbutyl, 2-methylbutyl, 3-methylbutyl, 2,2-dimethylpropyl, 1-ethylpropyl, n-hexyl, 1, 1-dimethylpropyl, 1,2-dimethylpropyl, 1-methylpentyl, 2-methylpentyl, 3-methylpentyl, 4-methylpentyl, 1, 1-dimethylbutyl, 1,2-dimethylbutyl, 1,3-dimethylbutyl, 2,2-dimethylbutyl, 2,3-dimethylbutyl, 3,3-dimethylbutyl, 1-ethylbutyl, 2-ethylbutyl, 1, 1,2-trimethylpropyl, 1,2,2-trimethylpropyl, 1-ethyl-1- methyl propyl or 1-ethyl-2-methyl propyl, in particular for CH 3 , C 2 H 5 ,
  • Ci-C ⁇ -haloalkyl for: -CC 6 -alkyl as mentioned above, which is partially or completely substituted by fluorine, chlorine, bromine and / iodine, for example one of the radicals mentioned under -C-halogeno or for 5 -fluoro-l-pentyl,
  • 5-chloro-1-pentyl 5-bromo-1-pentyl, 5-od-1-pentyl, 5,5,5-trichloro-1-pentyl, undecafluoropentyl, 6-fluoro-1-hexyl, 6- Chlorine- 1-hexyl, 6-bromo-l-hexyl, 6-iodo-l-hexyl, 6, 6,6-trichloro-l-hexyl or dodecafluorhexyl, especially for chloromethyl, fluoromethyl, difluoromethyl, trifluoromethyl, 2-fluoroethyl, 2- Chloroethyl or 2,2,2-trifluoroethyl;
  • Hydroxy-C 1 -C 6 -alkyl for: eg hydroxymethyl, 2-hydroxyeth-1-yl, 2-hydroxyprop-l-yl, 3-hydroxyprop-l-yl, 1-hydroxyprop-2-yl , 2-hydroxy-but-l-yl, 3-hydroxy-but-l-yl, 4-hydroxy-but-l-yl, l-hydroxy-but-2-yl, l-hydroxy-but-3-yl , 2-hydroxy-but-3-yl, l-hydroxy-2-methyl-prop-3-yl, 2-hydroxy-2-methyl-prop-3-yl or 2-hydroxymethyl-prop-2-yl, in particular for 2-hydroxyethyl;
  • Cyano-C ⁇ -C 6 alkyl for: for example cyanomethyl, 1-cyanoeth-l-yl, 2-cyanoeth-l-yl, 1-cyanoprop-l-yl, 2-cyanoprop-l-yl, 3-cyano-prop -1-yl, l-cyanoprop-2-yl, 2-cyanoprop-2-yl, 1-cyanobut-1-yl, 2-cyanobut-l-yl, 3-cyanobut-l-yl, 4-cyanobut-l -yl, l-cyanobut-2-yl, 2-cyanobut-2-yl r l-cyanobut-3-yl, 2-cyano-but-3-yl, l-cyano-2-methyl-prop-3-yl , 2-cyano-2-methyl-prop-3-yl, 3-cyano-2-methyl-prop-3-yl or 2-cyanomethyl-prop-2-yl, in particular for cyanomethyl or 2-cyanoethyl;
  • Phenyl-C 6 -C 6 alkyl for: for example benzyl, 1-phenylethyl, 2-phenylethyl, 1-phenylprop-l-yl, 2-phenylprop-l-yl, 3-phenylprop-1-yl, 1-phenylbut -l-yl, 2-phenylbut-l-yl, 3-phenylbut-l-yl, 4-phenylbut-l-yl, l-phenylbut-2-yl, 2-phenylbut-2-yl, 3-phenylbut-2 -yl, 4-phenylbut-2-yl, l- (phenylmethyl) -eth-1-yl, l- (phenylmethyl) -l- (methyl) -eth-l-yl or l- (phenylmethyl) prop -l-yl f in particular for benzyl or 2-phenylethyl;
  • Phenyl- (-CC 6 -alkyl) carbonyloxy for: e.g. benzylcarbonyloxy, 1-phenylethylcarbonyloxy, 2-phenylethylcarbonyloxy, 1-phenylprop-1-ylcarbonyloxy, 2-phenylprop-l-ylcarbonyloxy, 3-phenylprop-1- ylcarbonyloxy, 1-phenylbut-l-ylcarbonyloxy, 2-phenylbut-1-ylcarbonyloxy, 3-phenylbut-l-ylcarbonyloxy, 4-phenylbut-1-ylcarbonyloxy, l-phenylbut-2-ylcarbonyloxy, 2-phenyl- but-2-ylcarbonyloxy, 3-phenylbut-2-ylcarbonyloxy, 4-phenyl-but-2-ylcarbonyloxy, 1- (phenylmethy1) -eth-1-ylcarbonyloxy, 1- (phenylmethyl) -l-
  • Phenyl-Ci-Cg-alkylsulfonyloxy for: e.g. benzylsulfonyloxy, 1-phenylethylsulfonyloxy, 2-phenylethylsulfonyloxy, 1-phenylprop-1-ylsulfonyloxy, 2-phenylprop-l-ylsulfonyloxy, 3-phenylprop-1-ylsulfonyloxy, 1- Phenylbut-l-ylsulfonyloxy, 2-phenyl- but-1-ylsulfonyloxy, 3-phenylbut-l-ylsulfonyloxy, 4-phenyl-but-1-ylsulfonyloxy, l-phenylbut-2-ylsulfonyloxy, 2-phenylbut-2-ylsulfonyloxy, 3-phenylbut-2-ylsulfonyloxy, 4-phenyl-but
  • (-CC 6 -alkyl) carbonyl for: CO-CH 3 , CO-CH 5 ,, n-propylcarbonyl, i-methylethylcarbonyl, n-butylcarbonyl, 1-methylpropylcarbonyl, 2-methylpropylcarbonyl, 1,1-dimethylethylcarbonyl, n-Pentylcarbonyl, 1-Methylbutylcarbon 1, 2-Methylbutylcarbonyl, 3-Methylbutylcarbony1, 1, 1-Dimethylprop lcarbony1, 1, 2-Dimethylpropylcarbony1, 2, 2-Di ethylpropylcarbony1, 1-Ethylpropylcarbony1, n-Hexylcarbonyl, 1-Methylpentyl - carbonyl, 2-methylpentylcarbony1, 3-methylpentylcarbonyl, 4-methylpentylcarbonyl, 1, 1-dimethylbutylcarbony1, 1,2-di
  • (Ci-C ⁇ -haloalkyl) carbonyl for: a (Ci-Cg-Alkyljcarbonylrest as mentioned above, which is partially or completely substituted by fluorine, chlorine, bromine and / or iodine, for example chloroacetyl, dichloroacetyl, trichloroacetyl, fluoroacetyl, Difluoroacetyl, trifluoroacetyl, chlorofluoroacetyl, dichlorofluoroacetyl, chlorodifluoroacetyl, 2-fluoroethylcarbonyl, 2-chloroethylcarbonyl, 2-bromoethylcarbonyl, 2-iodoethylcarbonyl, 2,2-difluoroethylcarbonyl, 2,2,2-trifluoroethylcarbonyl, 2-chloro 2-fluoroethylcarbonyl, 2-chloro-2,2-
  • (Ci-C ö alkyl) carbonyloxy for: acetyloxy, ethylcarbonyloxy, n-propylcarbonyloxy, 1-methylethylcarbonyloxy, n-butylcarbonyloxy, 1-methylpropylcarbonyloxy, 2-methylpropylcarbonyloxy, 1, 1-dimethylethylcarbonyloxy, n-pentylcarbonyloxy , 1-methylbutylcarbonyloxy, 2-methylbutylcarbonyloxy, 3-methylbutylcarbonyloxy, 1, 1-dimethylpropylcarbonyloxy, 1, 2-dimethylpropylcarbonyloxy, 2, 2-dimethylpropylcarbonyloxy, 1-ethylpropylcarbonyloxy, n-hexylcarbonyloxy, 1-methylpentyl-methyl-pentylcarbonyloxy, 3-methylpentylcarbonyloxy, 4-methylpentylcarbonyloxy, 1, 1-dimethylbut
  • (Ci-C ß -haloalkyl) carbonyloxy for: a (Ci-C ⁇ - alkyl) carbonyloxy radical as mentioned above which is partially or completely substituted by fluorine, chlorine, bromine and / or iodine, for example chloroacetyloxy, dichloroacetyloxy , Trichloroacetyloxy, fluoroacetyloxy, difluoroacetyloxy, tri-fluoroacetyloxy, chlorofluoroacetyloxy, dichlorofluoroacetyloxy, chlorodifluoroacetyloxy, 2-fluoroethylcarbonyloxy, 2-chloroethylcarbonyloxy, 2-bromoethylcarbonyloxy, 2-iodoethoxycarbonyloxyoxy, 2, 2-carbonyloxyoxy, 2, , 2-chloro-2-fluoroethylcarbonyloxy, 2-chloro-2, 2-
  • (-CC 6 -haloalkyl) carbonylthio for: a (-C 6 -alkyl) - carbonylthio radical as mentioned above, which is partially or completely substituted by fluorine, chlorine, bromine and / or iodine, for example chloroacetythio, dichloroacetyethio , Trichloroacetylthio, fluoroacetyIthio, difluoroacetyIthio, trifluoroacetyIthio, chlorofluoroacetylthio, dichlorofluoroacetylthio, chlorodifluoroacetylthio, 2-fluoroethylcarbonyIthio, 2-chloroethylcarbonyIthio, 2-bromoethylcarbonyIthio, 2-ethyl-2-yl-ethylthio-2-thio, 2-chloro-carbonyIthio-2-thio, 2-chloro
  • (Ci-C ß- alkyl) carbamoyloxy for: methylcarbamoyloxy, ethyl carbamoyloxy, n-propyl carbamoyloxy, 1-methyl ethyl carbamoyloxy, n-butyl carbamoyloxy, 1-methyl propyl carbamoyloxy, 2-methyl propyl carbamoyloxy, 1, 1-dimethyl, 1, 1-dimethyl -Methylbutylcarbamoyloxy, 2-methylbutylcarbamoyloxy, 3-methylbutylcarbamoyloxy, 1, 1-dimethylpropyIcarbamoyloxy, 1,2-dimethylpropyIcarbamoyloxy, 2, 2-dimethylpropy1-carbamoyloxy, methyl-hexamyloxyloxyloxyloxyloxyloxyloxyloxyloxyloxyloxyloxyloxyloxyloxyloxyloxyloxyloxy
  • (Ci-C ö -haloalkyl) carbamoyloxy for: a (-C 6 alkyl) - carbamoyloxy radical as mentioned above, which is partially or completely substituted by fluorine, chlorine, bromine and / or iodine, for example chloromethyIcarbamoyloxy, dichloro - methyIcarbamoyloxy, Trichlormethylcarbamo loxy, fluoromethyl carbamoyloxy, DifluormethyIcarbamoyloxy, amoyloxy Trifluormethylcarb-, Chlorfluormethylcarbamoyloxy, Dichlorfluormethyl- carbamoyloxy, Chlordifluormethylcarbamoyloxy, carbamoyloxy 2-fluoroethyl, 2-ChlorethyIcarbamoyloxy, 2-BromethyIcarbamoyloxy, 2-Iodethylcarbamoyloxy
  • - Cx-Ce alkoxy for: e.g. 0CH 3 , 0C 2 H 5 , OCH 2 -C 2 H 5 , 0CH (CH 3 ) 2 , n-butoxy, OCH (CH 3 ) -C 2 H 5 , 0CH 2 - CH (CH 3 ) 2 / 0C (CH 3 ) 3 , n-pentoxy, 1-methylbutoxy, 2-methylbutoxy, 3-methylbutoxy, 1, 1-dimethylpropoxy, 1,2-dimethylpropoxy, 2,2-dimethylpropoxy, 1-ethyl-propoxy, n-hexoxy, 1-methylpentoxy, 2-methylpentoxy, 3-methylpentoxy, 4-methylpentoxy, 1, 1-dimethylbutoxy,
  • -C -Halogenalkoxy for: a -C -C-alkoxy radical as mentioned above, which is partially or completely substituted by fluorine, chlorine, bromine and / or iodine, e.g. Chloromethoxy, dichloromethoxy, trichloromethoxy, fluoromethoxy, difluoromethoxy, trifluoromethoxy, chlorofluoromethoxy, dichlorofluoromethoxy, chlorodifluoromethoxy, 2-fluoroethoxy, 2-chloroethoxy, 2-bromoethoxy, 2-iodoethoxy, 2,2-difluoroethoxy, 2,2-difluoroethoxy Trifluoroethoxy, 2-chloro-2-fluoroethoxy, 2-chloro-2,2-difluoroethoxy, 2,2-di-chloro-2-fluoroethoxy, 2,2,2-trichloroethoxy, pentafluoroe
  • Ci-C ⁇ -haloalkoxy for: a -C-C 6 alkoxy radical as mentioned above, which is partially or completely substituted by fluorine, chlorine, bromine and / or iodine, for example one of the radicals mentioned under -C-C haloalkoxy or for 5-fluoro-1-pentoxy, 5-chloro-1-pentoxy, 5-bromo-1-pentoxy, 5-iodo-1-pentoxy, 5,5,5-trichloro-1-pentoxy, undecafluoropentoxy, 6 -Fluoro-l-hexoxy, 6-chloro-l-hexoxy, 6-bromo-l-hexoxy, 6-iodine-l-hexoxy, 6,6, 6-trichloro-l-hexoxy or dodecafluorohexoxy, in particular for chloromethoxy, fluoromethoxy, difluoromethoxy, trifluoromethoxy, 2-fluoroethoxy, 2-chlor
  • Hydroxy-Ci-Ce-alkoxy for: e.g. OCH 2 -OH, OCH (CH 3 ) -OH, OCH 2 -CH 2 -OH, OCH (C 2 H 5 ) -OH, OCH 2 -CH (CH 3 ) - OH, 3-hydroxy-prop-1-yloxy, 1-hydroxybut-l-yloxy, 2-hydroxybut-l-yloxy, 3-hydroxybut-l-yloxy, 4-hydroxybut-l-yloxy, 1-hydroxy-but- 2-yloxy, 2-hydroxybut-2-yloxy, 3-hydroxybut-2-yloxy, 4-hydroxybut-2-yloxy, l- (CH 2 -OH) -eth-l-yloxy, l- (CH 2 -OH ) - l- (CH 3 ) -eth-l-yloxy or l- (CH 2 -OH) -prop-l-yloxy, in particular for OCH 2 -OH or OCH 2 -CH 2
  • Cyano-C ⁇ -C 6 alkoxy for: for example OCH 2 -CN, OCH (CH 3 ) -CN, OCH 2 -CH 2 -CN, 0CH (C 2 H 5 ) -0H, OCH 2 -CH (CH 3 ) -CN, 3-cyanoprop-l-yl-oxy, 1-cyanobut-l-loxy, 2-cyanobut-l-yloxy, 3-cyanobut-l-yl-oxy, 4-cyanobut-l-yloxy, l-cyanobut -2-yloxy, 2-cyanobut-2-yloxy, 3-cyanobut-2-yloxy, 4-cyanobut-2-yloxy, l- (CH 2 -CN) -eth-1-yloxy, l- (CH 2 -CN) -l- (CH 3 ) -eth-l-yloxy or l- (CH 2 -CN) -prop-1-yloxy, in particular for OCH 2 -CN or O
  • Phenyl-Ci-C ⁇ -alkoxy for: e.g. Benzyloxy, 1-phen lethoxy, 2-phenylethoxy, 1-phenylprop-1-yloxy, 2-phenylprop-l-yloxy, 3-phenylprop-1-yloxy, 1-phenylbut-l-yloxy, 2-phenylbut-l-yl oxy, 3-phenylbut-l-yloxy, 4-phenylbut-l-yloxy, 1-phenylbut-2-yloxy, 2-phenylbut-2-yloxy, 3-phenylbut-2-yloxy,
  • Heterocyclyl -CC 6 alkoxy for: eg heterocyclylmethoxy, l- (heterocyclyl) ethoxy, 2- (heterocyclyl) ethoxy, l- (heterocyclicl) prop-l-yloxy, 2- (heterocyclyl) prop-l-yloxy , 3- (heterocyclicl) prop-l-yloxy, l- (heterocyclyl) but ⁇ l-yloxy, 2- (heterocyclicl) but-l-yloxy, 3- (heterocyclyl) but-l-yloxy, 4 - (Heterocyclic) but-l-yloxy, l- (heterocyclyl) but-2-yloxy, 2- (heterocyclic) but-2-yloxy, 3- (heterocyclyl) but-2-yloxy, 4- ( Heterocycl 1) but-2-yloxy, 1- (heterocyclyl
  • Phenyl-C ⁇ -C 6 alkylthio for: e.g. benzylthio, 1-phenylethylthio, 2-phenylethylthio, 1-phenylprop-l-ylthio, 2-phenylprop-1-ylthio, 3-phenylprop-l-ylthio, 1 -Phenylbut-l-ylthio, 2-phenylbut-l-ithio, 3-phenylbut-l-ithio, 4-phenylbut-l-ylthio, l-phenylbut-2-ylthio, 2-phenylbut-2-ylthio, 3-phenyl - but-2-ylthio, 4-phenylbut-2-ylthio, l- (phenylmethyl) -eth-l- yIthio, 1- (phenylmethyl) -l- (methyl) -eth-l-yIthio or l- (phenylmethyl) prop-l-y
  • (-C 6 -alkoxy) carbonyl for: for example CO-OCH 3 , CO-OC 2 Hs,
  • (Ci-C ö -alkoxy) carbonyloxy for: methoxycarbonyloxy, ethoxycarbonyloxy, n-propoxycarbonyloxy, 1-methylethoxycarbonyloxy, n-butoxycarbonyloxy, 1-methylpropoxycarbonyloxy, 2-meth-propoxycarbonyloxy, 1, 1-dimethylethoxycarbonyloxy, n-pentoxy - carbonyloxy, 1-methylbutoxycarbonyloxy, 2-meth lbutoxycarbonyloxy, 3-methylbutoxycarbonyloxy, 2, 2-dimethylpropox - carbonyloxy, 1-ethylpropoxycarbonyloxy, n-hexoxycarbonyloxy, 1, 1-dimethylpropoxycarbonyloxy, 1, 2-dimethylpropoxycarbonyloxy Methylpentoxycarbonyloxy, 2-methylpentoxycarbonyloxy, 3-methylpentoxycarbonyloxy, 4-methylpentoxycarbonyloxy, 1, 1-dimethylbutoxycarbony
  • C ⁇ -C 6 -Alkylthio for: SCH 3 , SC 2 H 5 , SCH 2 -C 2 H 5 , SCH (CH 3 ), n-ButyIthio, 1-MethylpropyIthio, 2-MethylpropyIthio, SC (CH 3 ) 3 , n -Pentylthio, 1-methylbutylthio, 2-methylbutyIthio, 3-methylbutylthio, 2,2-dimethylpropyIthio, 1-ethylpropyIthio, n-hexylthio, 1, 1-dimethylpropyIthio, 1,2-dimethylpropyIthio, 1-methylpentyIthio, 2 , 3-MethylpentyIthio,
  • Ci-C ⁇ -haloalkyIthio for: Ci-C ⁇ -Alk Ithio as mentioned above, which is partially or completely substituted by fluorine, chlorine, bromine and / or iodine, e.g. for SCHF 2 , SCF 3 , chlorodifluoromethylthio, bromodifluoromethylthio, 2- Fluoroethylthio, 2-chloroethylthio, 2-bromoethylthio, 2-iodoethylthio, 2,2-difluoroethylthio, 2, 2, 2-trifluoroethylthio, 2,2,2-trichloroethylthio, 2-chloro-2-fluoroethylthio, 2- Chloro-2,2-di-fluoroethylthio, 2,2-dichloro-2-fluoroethylthio, SC 2 F 5 , 2-fluoropropylthio, 3-flu
  • -C-C 6 alkylsulfinyl for: S0-CH 3 , S0-C 2 H 5 , n-propylsulfinyl, 1-methylethylsulfinyl, n-butylsulfinyl, 1-methylpropylsulfinyl, 2-methylpropylsulfinyl, 1, 1-dimethylethylsulfinyl, n- Pentylsulfinyl, 1-methylbutylsulfinyl, 2-meth lbutylsulfinyl, 3-methylbutylsulfinyl, 1, 1-dimethylpropylsulfinyl, 1, 2-dimethylpropylsulfinyl, 2, 2-dimethylpropylsulfinyl, 1-ethylpropylsulfinyl, n-hexylsulfinyl, 1-hexylsulfinyl, 1-hexyl
  • Ci-C ⁇ -alkylsulfonyl for: S0 2 -CH 3 , S0 2 -C 2 H 5 , n-propylsulfonyl, S0 2 -CH (CH 3 ) 2 , n-butylsulfonyl, 1-methylpropylsulfonyl, 2-methylpropylsulfonyl, S0 2 - C (CH 3 ) 3 , n-pentylsulfonyl, 1-methylbutylsulfonyl, 2-methylbutylsulfonyl, 3-methylbutylsulfonyl, 1, 1-dimethylpropylsulfonyl, 1,2-dimethylpropy1sulfonyl, 2, 2-dimethylpropylsulfonyl, 1-ethylsulfonyl, n-ethylsulfonyl , 1-Methylpentylsulfonyl, 2-Met
  • C ⁇ -C 6 alkylsulfonyloxy for: 0-S0-CH 3 , 0-S0 2 -C 2 H 5 , n-propylsulfonyloxy, 0-S0 2 -CH (CH) 2 , n-butylsulfonyloxy, 1-methyl propylsulfonyloxy, 2-methylpropylsulfonyloxy, 0-SO-C (CH 3 ) 3 , n-pentylsulfonyloxy, 1-methylbutylsulfonyloxy, 2-methylbut-1-sulfonyloxy, 3-methylbutylsulfonyloxy, 1, 1-dimethylpropylsulfonyloxy, 1,2 2,2-dimethyl-propylsulfonyloxy, 1-ethylpropylsulfonyloxy, n-hexylsulfonyloxy, 1-methylpentylsulfonyloxy, 2-
  • Ci-C ⁇ -haloalkylsulfonyloxy for: -CC 6 -alkylsulfonyloxy as mentioned above, which is partially or completely substituted by fluorine, chlorine, bromine and / or iodine, for example ClCH 2 -S0 2 -0-, CH (Cl) 2 -S0 2 -0-, C (Cl) 3 -S0 2 -0-, FCH-S0 2 -0-, CHF 2 -S0 2 -0-, CF 3 -S0 2 -0-, chlorofluoromethyl-S0 2 -0-, dichlorofluoromethyl-S0 2 -0-, chlorodifluoromethyl-S0 2 -0-, 1-fluoroethyl-S0 2 -0-, 2-fluoroethyl-S0 2 -0-, 2-chloroethyl-S0 2 -0 -, 2-bromoethyl-S0 2 -
  • (Ci-C ⁇ -alkyl) aminocarbonyl for: (-C-alkyl) aminocarbonyl as mentioned above and, for example, n-pentylaminocarbonyl, 1-methylbutylaminocarbony1, 2-methylbutylaminocarbony1, 3-methylbuty1aminocarbonyl, 2, 2-dimethylpropylaminocarbonony1, 1-ethylproylyl -Hexylaminocarbonyl, 1, 1-dimethylpropylaminocarbony1, 1,2-dimethylpropylaminocarbony1, 1-methylpentylaminocarbonyl, 2-methylpentylaminocarbonyl, 3-methylpentylaminocarbonyl, 4-methylpentylaminocarbonyl, 1, 1-dimethylbutylaminocarbonyl, 1,2-dimethylbutyl, 1,2-dimethylbutyl, 1,2-dimethylbutyl 2, 2-dimethylbutylaminocarbonyl, 2, 3-dimethylbutylamin
  • Di (-C 6 alkyl) aminocarbonyl for: for example N, N-dimethylaminocarbonyl, N, N-diethylaminocarbonyl, N, N-dipropylaminocarbonyl,
  • N-butyl-N-methylaminocarbonyl N-methyl-N- (1-methylpropy1) aminocarbonyl, N-methyl-N- (2-methylpropy1) aminocarbonyl, N- (1, 1-dimethylethyl) -N-methylaminocarbonyl, N -Ethyl-N-propylaminocarbonyl, N-ethyl-N- (1-methylethyl) aminocarbonyl, N-butyl-N-ethylaminocarbonyl, N-ethyl-N- (1-methylpropy1) - aminocarbonyl, N-ethyl-N- (2nd -methylpropy1) aminocarbonyl, N-ethyl-N- (1, 1-dimethylethyl) aminocarbonyl, N- (1-methyl-ethyl) -N-propylaminocarbonyl, N-butyl-N-propylaminocarbonyl, N- (1-methylpropy1) - N
  • (-CC 6 -alkyl) iminooxycarbonyl for: methyliminooxycarbonyl, ethyliminooxycarbonyl, n-propyliminooxycarbonyl, 1-methylethyliminooxycarbonyl, n-butyliminooxycarbonyl, 1-methylpropyliminooxycarbonyl, 2-methylpropyliminooxycarbonyl, 1, 1-dimethyliminooxyylyl, 1-1-dimethyloxycarbonyl -Methylbutyliminooxycarbonyl, 2-methylbutyliminooxycarbonyl, 3-methylbutyliminooxycarbonyl, 1, 1-dimethylpropyliminooxycarbonyl, 1,2-dimethylpropyliminooxycarbonyl, 2,2-dimethylpropyliminooxycarbonyl, 1-ethylpropyliminooxycarbonyl, n-hexylimoxyoxyyl, 2-hexyliminooxyylyl -Meth
  • Ci-C ⁇ - alkylidene aminoxy for: 1-propylidene aminoxy, 2-propylidene aminoxy, 1-butylidene aminoxy, 2-butylidene aminoxy or 2-hexylidene aminoxy, especially for butylidene aminoxy or 2-propylidene aminoxy;
  • Ci-C ö alkyliminooxy for: methyliminooxy, ethyliminooxy, n-propyliminooxy, 1-methylethyliminooxy, n-butyliminooxy, 1-methylpropyliminooxy, 2-methylpropyliminooxy, n-pentyliminooxy, n-hexyliminooxy, 1-methylpentyliminooxy, 2-methyl pentyliminooxy, 3-methylpentyliminooxy or 4-methylpenty1-iminooxy, especially for methyliminooxy, ethyliminooxy or 1-methylethyliminooxy;
  • -CC 6 alkoxy- (-C 6 alkyl) aminocarbonyl for: (Ci-C ö alkyl) - aminocarbonyl such as CO-NH-CH 3 , CO-NH-C 2 H 5 , CO-NH-CH 2 -C 2 H 5 , CO-NH-CH (CH 3 ) 2 , CO-NH- (CH 2 ) 3 -CH 3 , CO-NH-CH (CH 3 ) -C 2 H 5 , CO-NH- CH 2 -CH (CH 3 ) 2 , CO-NH-C (CH 3 ) 3 , CO-NH- (CH 2 ) 4 -CH 3 , 1-methylbutylaminocarbonyl, 2-methylbutylaminocarbonyl, 3-methylbutylaminocarbonyl, 2,2-dimethylpropylaminocarbonyl, 1-ethyl-propylaminocarbonyl, n-hexylaminocarbonyl, 1,1-dimethylpropylaminocarbony
  • -C-Cg-Alkoxyamino -CC -C 6 alkyl for: for example CH 2 -NH-OCH 3 , CH 2 -NH-OC 2 H 5 , CH 2 -NH-OCH 2 -C 2 H 5 , CH 2 -NH -OCH (CH 3 ) 2 , CH 2 -NH-OCH 2 -CH 2 -C 2 H 5 , CH 2 -NH-0CH (CH 3 ) -C 2 H 5 , CH 2 -NH-OCH 2 -CH ( CH 3 ) 2 , CH 2 -NH-OC (CH 3 ) 3 , CH 2 -NH-OCH 2 - (CH 2 ) 3 -CH 3 , (1-methylbutoxyamino) methy1, (2-methylbutoxyamino) methy1, (3rd -Methylbutoxyamino) methy1, (2, 2-dimethylpropoxyamino) me- thyl, (l-eth
  • C 1 -C 6 -alkoxy-C 6 -C 6 -alkylamino-C 6 -C 6 -alkyl for: C 1 -C 6 -alkylamino-C 6 -C 6 -alkyl such as CH 2 -NH-CH 3 , CH 2 -NH -C 2 H 5 , CH 2 -NH-CH 2 -C 2 H 5 , CH 2 -NH-CH (CH 3 ) 2 , CH 2 -NH- (CH 2 ) 3 -CH 3 , CH 2 -NH- CH (CH 3 ) -C 2 H 5 , CH 2 -NH-CH 2 -CH (CH 3 ) 2 , CH 2 -NH-C (CH 3 ) 3 , CH 2 -NH- (CH 2 ) 4 -CH 3 ,
  • Ci-C ö alkyloximino such as methoxyimino, ethoxyimino, 1-propoxyimino, 2-propoxyimino, 1-methylethoxyimino, n-butoxyimino, sec.-butoxyimino, tert-butoxyimino, 1-methyl-1-propoxyimino, 2-methyl-1-prop-oxyimino, l-methyl-2-propoxyimino, 2-methyl-2-propoxyimino, n-pentoxyimino, 2-pentoxyimino, 3-pentoxyimino , 4-pentoxyimino, 1-methyl-1-butoxyimino, 2-methyl-1-butoxyimino, 3-methyl-1-butoxyimino, l-methyl-2-butoxyimino, 2-methyl-2-butoxyimino, 3-methyl -2-butoxyimino, 1-methyl-3-butoxy
  • 3-hexoxyimino 4-hexoxyimino, 5-hexoxyimino, 1-methyl-1-pentoxyimino, 2-methyl-1-pentoxyimino, 3-methyl-1-pentoximino, 4-methyl-1-pentoxyimino, 1-methyl -2-pentoxyimino, 2-methyl- 2-pentoxyimino, 3-methyl-2-pentoxyimino, 4-methyl-2-pentoxyimino, 1-methyl-3-pentoxyimino, 2-methyl-3-pentoxyimino,
  • Di (-C 6 alkoxy) -C 6 alkyl for: for example 2,2-dimethoxyethyl or 2,2-diethoxyethyl;
  • C 1 -C 6 -alkoxy-C 6 -C 6 -alkoxy for: Ci-Cg-alkoxy substituted by Cx-C ⁇ - alkoxy as mentioned above, for example for OCH 2 -OCH 3 , OCH 2 -OC 2 H 5 , n -Propoxymethoxy, OCH 2 -OCH (CH 3 ) 2 , n-butoxymethoxy, (1-methylpropoxy) methoxy, (2-methyl-propoxy) methoxy, OCH 2 -OC (CH 3 ) 3 , 2- (methoxy) ethoxy, 2- (ethoxy) ethoxy, 2- (n-propoxy) ethoxy, 2- (l-methylethoxy) ethoxy, 2- (n-butoxy) ethoxy, 2- (1-methylpropoxy) ethoxy, 2- (2- Methylpropoxy) ethoxy, 2- (1, 1-dimethylethoxy) ethoxy, 2- (methoxy) prop
  • (-C-C 6 -alkoxy) carbonyl-C ⁇ -C 6 -alkoxy for: Ci-C ⁇ -alkoxy substituted by (C; ⁇ _-C 6 -alkoxy) carbonyl as mentioned above, for example for OCH 2 -CO- OCH 3 , OCH 2 -CO-OC 2 H 5 , OCH 2 -CO-OCH-C 2 H 5 , OCH 2 -CO-OCH (CH 3 ) 2 , n-butoxycarbonyl-methoxy, l- (methoxycarbonyl) ethoxy, 2- (methoxycarbonyl) ethoxy, 2- (ethoxycarbonyl) ethoxy, 2- (n-propoxycarbonyl) ethoxy, 2- (n-butoxycarbonyl) ethoxy, 3- (methoxycarbonyl) propoxy, 3- (ethoxy- carbonyl) propoxy, 3- (n-propoxycarbonyl) propoxy, 3- (n-but
  • (-C-C 6 -alkoxy) carbonyl-C ⁇ -C 6 -alkyl for: C (-C 6 -alkoxy) - carbonyl substituted with C wie-C 6 -alkyl as mentioned above, for example for methoxycarbonylmethyl, ethoxycarbonylmethyl, 1- ( Methoxycarbonyl) ethyl, 2- (methoxycarbonyl) ethyl, 2- (ethoxycarbonyl) ethyl, 3- (methoxycarbonyl) propyl, 4- (methoxycarbonyl) butyl, 5- (methoxycarbonyl) pentyl or 6- (methoxycarbonyl) hexyl;
  • (-C-C 6 -alkoxy) carbonyl-C ⁇ -C 6 -alkylsulfonyl for: Ci-C ⁇ -alkylsulfonyl substituted by (Ci-C ö -alkoxy) carbonyl as mentioned above, for example for methoxycarbonylmethylsulfonyl, ethoxycarbonylmethylsulfonyl, 1- (Methoxycarbonyl) ethylsulfonyl, 2- (methoxycarbonyl) ethylsulfonyl, 2- (ethoxycarbonyl) ethylsulfonyl, 3- (methoxycarbonyl) propylsulfonyl, 4- (methoxycarbonyl) butylsulfonyl, 5- (methoxycarbonyl) pentylsulfonyl or 6- (methoxycarbonyl) hexylsulfonyl;
  • C 1 -C 6 -alkylthio-C 1 -C 6 -alkyl for: C Ci-C 6 -alkyl substituted by C 1 -C 6 -alkylthio as mentioned above, that is to say, for example, for CH 2 -SCH 3 , CH 2 -SC 2 H 5 , CH 2 -SCH 2 -C 2 H 5 , CH 2 -SCH (CH 3 ) 2 , n-butylthiomethyl, CH 2 -SCH (CH 3 ) -C 2 H 5 , CH 2 -SCH 2 -CH (CH 3 ) 2 , CH 2 -SC (CH 3 ) 3 , 2- (SCH 3 ) ethyl, 2- (SC 2 H 5 ) ethyl, 2- (SCH 2 -C 2 H 5 ) ethyl, 2- [SCH (CH 3 ) 2 ] ethyl, 2- (n-butylthio) ethyl, 2- [SCH (CH 3 )
  • C 1 -C 6 -alkylthio-C 1 -C 6 -alkoxy for: C 1 -C 6 -alkylthio substituted as above C 1 -C 6 -alkoxy, for example for OCH 2 -SCH 3 , OCH 2 -SC 2 H 5 , OCH 2 -SCH 2 -C 2 H 5 , OCH 2 -SCH (CH 3 ) 2 , n-butylthiomethoxy, OCH 2 -SCH (CH 3 ) -C 2 H 5 , OCH 2 -SCH 2 -CH (CH 3 ) 2 , OCH 2 -SC (CH 3 ) 3 , 2- (SCH 3 ) ethoxy, 2- (SC 2 H 5 ) ethoxy, 2- (SCH 2 -C 2 H 5 ) - ethoxy, 2- [SCH (CH 3 )] ethoxy, 2- (n-butylthio) ethoxy,
  • C ⁇ -C 6 alkylthio (C ⁇ -C6 alkyl) carbonyl viewed by C ß -alkylthio as mentioned above, preferably SCH 3 or SC 2 Hs, substituted (Ci-C ⁇ -alkyl) carbonyl, for example for methylthiomethylcarbonyl, ethylthiomethylcarbonyl, l- (methylthio) ethylcarbonyl, 2- (methylthio) ethylcarbonyl, 3- (methylthio) propylcarbonyl, 4- (methylthio) butylcarbonyl, 5 (ethylthio) pentylcarbonyl or 6 - (Methylthio) hexylcarbonyl, especially for CO-CH 2 -SCH 3 or CO-CH (CH 3 ) -SCH 3 ;
  • DifCi-Cg-alkylJamino-Ci-Ce-alkoxy by di- (-C-C 6 -alkyl) - amino such as N (CH 3 ) 2 , N (C 2 H 5 ) 2 , N, N-dipropylamino, N, N-di- (1-methylethyl) amino, N, N-dibutlamino, N, N-di- (1-methylpropy1) amino, N, N-di- (2-methylpropyl) amino, N [C (CH 3 ) 3 ] 2 , N-ethyl-N-methylamino, N-methyl-N-propylamino, N-methyl-N- (1-methylethyl) amino, N-butyl-N-methylamino, N-methyl-methyl-
  • C 3 -C 6 alkenyl for: for example prop-2-en-l-yl, n-buten-4-yl, l-methyl-prop-2-en-l-yl, 2-methyl-prop-2- en-l-yl, 2-butene-1-ylf n-penten-3-yl, n-penten-4-yl, l-methyl-but-2-en-l-yl, 2-methyl-but-2 -en-l-yl, 3-methyl-but-2-en-l-yl, 1-methyl-but-3-en-l-yl, 2-methyl-but-3-en-l-yl, 3 methyl-but-3-en Ul tt
  • C 2 -C 6 alkenyloxy for: ethenyloxy or one of the radicals mentioned under C 3 -C 6 alkenyloxy, in particular for ethenyloxy or prop-2-en-l-yloxy;
  • haloalkenyloxy for: C 3 -C 6 alkenyloxy as mentioned above, which is partially or completely substituted by fluorine, chlorine and / or bromine, for example 2-chloroallyloxy, 3-chloroallyloxy, 2,3- Dichlorallyloxy, 3,3-dichloroallyloxy, 2,3,3-trichlorallyloxy, 2,3-dichlorobut-2-enyloxy, 2-bromo-allyloxy, 3-bromoallyloxy, 2,3-dibromoallyloxy, 3,3-dibromo-allyloxy, 2,3,3-tribromoallyloxy or 2,3-dibromobut-2-enyloxy, especially for 2-chloroallyloxy or 3,3-dichlorallyloxy;
  • Phenyl-C 3 -C 6 -alkenyloxy for: eg 3-phenyl-allyloxy, 4-phenyl-but-2-enyloxy, 4-phenyl-but-3-enyloxy or 5-phenyl-pent-4-enyloxy, preferably 3 -Phenylallyloxy or 4-phenyl-but-2-enyloxy, especially for 3-phenylallyloxy;
  • Heterocyclyl-C 3 -C 6 -alkenyloxy for: eg 3-heterocyclyl-allyl-oxy, 4-heterocyclyl-but-2-enyloxy, 4-heterocyclyl-but-3-enyloxy or 5-heterocyclyl-pent-4-enyloxy, preferably 3-heterocyclyl-allyloxy or 4-heterocyclyl-but-2-enyloxy, in particular for 3-heterocyclyl-allyloxy;
  • Prop-2-en-l-ylthio 1-methylethenylthio, n-buten-1-ylthio, n-buten-2-ylthio, n-buten-3-ylthio, 1-methyl-prop-l-en-l- yl thio, 2-methyl-prop-l-en-l-ylthio, l-methyl-prop-2-en-l-yl-thio, 2-methyl-prop-2-en-l-ylthio, n-pentene 1-ylthio, n-penten-2-ylthio, n-penten-3-ylthio, n-penten-4-ylthio, 1-methyl-but-l-en-l-ylthio, 2-methyl-but-l- en-l-ylthio, 3-methyl-but-l-en-l-ylthio, l-methyl-but-2-en-l-ylthio, 2-methyl-but-2-en-1-yIthio, 3- Me
  • C 3 -C 6 alkynyl for: prop-1-in-l-yl, prop-2-in-l-yl, n-but-1-in-l-yl, n-but-l-in-3 -yl, n-but-l-in-4-yl, n-but-2-in-l-yl, n-pent-1-in-l-yl, n-pent-l-in-3-yl , n-pent-1-in-4-yl, n-pent-1-in-5-yl, n-pent-2-in-1-yl, n-pent-2-in-4-yl, n Pent-2-in-5-yl, 3-methyl-but-l-in-3-yl, 3-methyl-but-l-in-4-yl, n-hex-1-in-l-yl , n-hex-1-in-3-yl, n-hex-1-in-4-yl, n-hex-1-in
  • C 2 -C 6 alkynyl for: ethynyl or one of the radicals mentioned under C 3 -C 6 alkynyl, in particular for ethynyl or prop-2-yn-1-yl;
  • C 3 -C 6 alkynyloxy for: prop-1-in-l-yloxy, prop-2-in-l-yloxy, n-but-1-in-l-yloxy, n-but-l-in-3 -yloxy, n-but-l-in-4-yloxy, n-but-2-in-l-yloxy, n-pent-1-in-l-yloxy, n-pent-l-in-3-yloxy , n-pent-1-in-4-yloxy, n-pent-1-in-5-yloxy, n-pent-2-in-1-yl-oxy, n-pent-2-in-4-yloxy , n-Pent-2-in-5-yloxy, 3-methyl-but-l-in-3-yloxy, 3-methyl-but-l-in-4-yloxy, n-hex-1-in-l -yl-oxy, n-hex-1-in-3-yloxy
  • C 2 -C 6 alkynyloxy for: ethynyloxy or one of the radicals mentioned under c 3 _c 6 -alkynyloxy, in particular for ethynyloxy or prop-2-yn-l-yloxy;
  • Phenyl-C 3 -C 6 -alkynyloxy for: e.g. 3-phenylprop-2-in-l-yloxy, 4-phenylbut-2-in-l-yloxy, 3-phenylbut-3-in-2-yloxy, 5- Phenylpent-3-in-1-yloxy or 6-phenylhex-4-in-1-yloxy, especially for 3-phenylprop-2-in-1-yloxy or 3-phenylbut-3-in-2-yloxy;
  • Heterocyclyl-CC 6 -alkynyloxy for: e.g. 3- (heterocyclyl) prop-2-yn-l-yloxy, 4- (heterocyclyl) but-2-yn-l-yloxy, 3- (heterocyclyl) but-3- in-2-yloxy, 5- (heterocyclyl) pent-3-in-l-yloxy or 6- (heterocyclyl) hex-4-in-l-yloxy, especially for
  • C 3 -C 6 alkynylthio for: prop-1-in-l-ylthio, prop-2-in-l-ylthio, n-but-1-in-l-ylthio, n-but-l-in-3 -ylthio, n-but-1-in-4-ylthio, n-but-2-in-1-ylthio, n-pent-1-in-1-ylthio, n-pent-1-in-3-ylthio , n-pent-1-in-4-ylthio, n-pent-1-in-5-ylthio, n-pent-2-in-1-ylthio, n-pent-2-in-4-ylthio, n Pent-2-in-5-ylthio, 3-methyl-but-l-in-3-ylthio, 3-methylbut-l-in-4-ylthio, n-hex-1-in-l-ylthio, n -Hex
  • C 2 -C 6 alkynylthio for: ethynylthio or one of the radicals mentioned under C 3 -C 6 -alkynylthio, in particular for ethynylthio or prop-2-ynthio;
  • (C 3 -C 6 alkenyloxy) carbonyl for: prop-l-en-1-yloxycarbonyl, prop-2-en-l-yloxycarbonyl, 1-methylethenyloxycarbonyl, n-buten-1-yloxycarbonyl, n-buten-2- yloxycarbonyl, n-butene-3-yloxycarbonyl, 1-methyl-prop-l-en-l-yloxycarbonyl, 2-methyl-prop-1-en-l-yloxycarbonyl, l-methyl-prop-2-en-l- yloxycarbonyl, 2-methyl-prop-2-en-l-yloxycarbonyl, n-pentene-1-yloxycarbonyl, n-pentene-2-yloxycarbonyl, n-pentene-3-yloxycarbonyl, n-pentene-4- yloxycarbonyl, 1-methyl-but-l-en-l-yloxycarbonyl, 2-
  • 2-ethyl-but-3-en-l-yloxycarbonyl 1, 1, 2-trimethyl-prop-2-en-l-yloxycarbonyl, l-ethyl-l-methyl-prop-2-en-l-yloxycarbonyl, 1-ethyl-2-methyl-prop-1-en-1-yloxycarbonyl or 1-ethyl-2-methyl-prop-2-en-1-yloxycarbonyl, especially for prop-2-en-1-yloxycarbonyl;
  • (C 3 -C 6 alkenyloxy) carbonyl -CC 6 alkyl for: by (C 3 -C 6 alkenyloxy) carbonyl as mentioned above, preferably prop-2-en-1-yl-oxycarbonyl, substituted ci- Cg-alkyl, for example prop-2-en-1-yl-oxycarbonyl-methyl;
  • (C 2 -C 6 alkenyl) carbonyloxy for: ethenylcarbonyloxy, prop-1-en-l-ylcarbonyloxy, prop-2-en-l-ylcarbonyloxy, 1-methyl-ethenylcarbonyloxy, n-buten-1-ylcarbonyloxy, n- Buten-2-ylcarbonyloxy, n-buten-3-ylcarbonyloxy, 1-methyl-prop-l-en-1-ylcarbonyloxy, 2-methyl-prop-1-en-1-ylcarbonyloxy, 1-methyl-prop- 2-en-1-ylcarbonyloxy, 2-methyl-prop-2-en-1-y1-carbonyloxy, n-penten-1-ylcarbonyloxy, n-penten-2-ylcarbonyl-oxy, n-penten-3-ylcarbonyloxy , n-penten-4-ylcarbonyloxy, 1-methyl-but-l-en-l-ylcarbonyloxy,
  • (C 2 -Cg alkenyl) carbonylthio for: ethenylcarbonyIthio, prop-1-en-l-ylcarbonylthio, prop-2-en-l-ylcarbonyIthio, 1-methylethenylcarbonylthio, n-buten-1-ylcarbonylthio, n-butene -2-yl-carbonylthio, n-buten-3-ylcarbonyIthio, 1-methyl-prop-l-en-l-ylcarbonyIthio, 2-methyl-prop-1-en-1-ylcarbonylthio, 1-methyl-prop-2 -en-1-ylcarbonyIthio, 2-methyl-prop-2-en-1-y1-carbonylthio, n-penten-1-ylcarbonylthio, n-penten-2-yl-carbonylthio, n-penten-3-ylcarbonyIthio, n -Penten-4-yl-carbony
  • (C 2 -C 6 alkynyl) carbonyloxy for: ethynylcarbonyloxy, prop-1-in-1-ylcarbonyloxy, prop-2-in-1-ylcarbonyloxy, n-but-1-in-1-ylcarbonyloxy, n-but- l-in-3-ylcarbonyloxy, n-but-l-in-4-ylcarbonyloxy, n-but-2-in-l-ylcarbonyloxy, n-pent-1-in-1-ylcarbonyloxy, n-pent-l- in-3-ylcarbonyloxy, n-pent-l-in-4-ylcarbonyloxy, n-pent-l-in-5-ylcarbonyloxy, n-pent-2-in-l-ylcarbonyloxy, n-pent-2-in-ylcarbonyloxy, n-pent-2-in-yl- 4-ylcarbonyloxy, n-p
  • C 3 -Cg alkynylsulfonyloxy for: prop-1-in-l-ylsulfonyloxy, prop-2-in-l-ylsulfonyloxy, n-but-1-in-l-ylsulfonyloxy, n-but-l-in-3- ylsulfonyloxy, n-but-l-in-4-ylsulfonyloxy, n-but-2-in-l-ylsulfonyloxy, n-pent-1-in-l-ylsulfonyloxy, n-pent-l-in-3-ylsulfonyloxy, n-pent-l-in-4-ylsulfonyloxy, n-pent-l-in-5-ylsulfonyloxy, n-pent-2-in-1-ylsulfonyloxy, n-pent-2-in-4-ylsulf
  • (C 2 -C 6 alkynyl) carbonylthio for: ethynylcarbonyIthio, prop-1-in-l-ylcarbonylthio, prop-2-in-l-ylcarbonyIthio, n-but-1-in-1-ylcarbonyIthio, n-but- l-in-3-ylcarbonyIthio, n-but-l-in-4-ylcarbonyIthio, n-but-2-in-l-ylcarbonyIthio, n-pent-1-in-l-ylcarbonylthio, n-pent-l- in-3-ylcarbonyIthio, n-pent-1-in-4-ylcarbonylthio, n-pent-1-in-5-ylcarbonylthio, n-pent-2-in-1-ylcarbonylthio, n-pent-2-in-4-ylcarbonylthio, n-pent-2-in-5
  • Cs-Cg-alkenyloxy-Ci-Cg-alkyl for: by C 3 -Cg-alkenyloxy as mentioned above, preferably allyloxy, 2-methyl-prop-2-en-l-yloxy, but-l-en-3- yloxy, but-l-en-4-yloxy or but-2-en-l-yloxy substituted C 1 -C 6 -alkyl, for example for allyloxymethyl, 2-allyloxyethyl or but-l-en-4-yloxymethyl;
  • CC 6 -alkynyloxy-C ⁇ -Cg-alkyl for: by C 3 -Cg-alkynyloxy as mentioned above, preferably propargyloxy, but-l-in-3-yl-oxy, but-l-in-4-yloxy or but- 2-in-l-yloxy, substituted -CC 6 alkyl, for example for propargyloxymethyl or 2-propargyloxyethyl;
  • C 3 -C 6 cycloalkyl for: cyclopropyl, cyclobutyl, cyclopentyl or cyclohexyl;
  • cycloalkyloxy for: cyclopropyloxy, cyclobutyloxy, cyclopentyloxy or cyclohexyloxy;
  • C 3 -C 6 cycloalkyIthio for: cyclopropyIthio, CyclobutyIthio, CyclopentyIthio or CyclohexyIthio;
  • C 3 -C 6 cycloalkylcarbonyloxy for: cyclopropylcarbonyloxy, cyclobutylcarbonyloxy, cyclopentylcarbonyloxy or cyclohexylcarbonyloxy
  • C 3 -Cg cycloalkylsulfonyloxy for: cyclopropylsulfonyloxy, cyclobutylsulfonyloxy, cyclopentylsulfonyloxy or cyclohexylsulfonyloxy
  • cyclopent-1-enyloxy for: cyclopent-1-enyloxy, cyclopent-2-enyloxy, cyclopent-3-enyloxy, cyclohex-1-enyloxy, cyclohex-2-enyloxy, cyclohex-3-enyloxy, cyclohept- 1-enyloxy, cyclohept-2-enyloxy, cyclohept-3-enyloxy or cyclohept-4-enyloxy.
  • 3- to 7-membered azaheterocycles which in addition to carbon ring members may also contain an oxygen or sulfur atom as a ring member, are e.g.
  • saturated heterocycles which can contain a carbonyl or thiocarbonyl ring member are: oxiranyl, thiiranyl, aziridin-1-yl, aziridin-2-yl, diaziridin-1-yl, diaziridin-3-yl, 0xetan-2- yl r oxetan-3-yl, thietan-2-yl, thietan-3-yl, azetidin-1-yl, azetidin-2-yl, azetidin-3-yl, tetrahydrofuran-2-yl, tetrahydrofuran-3- yl, tetrahydrothiophene-2-yl, tetrahydrothiophene-3-yl, pyrrolidin-1-yl, pyrrolidin-2-yl, pyrrolidin-3-yl, l, 3-dioxolan-2-yl, pyr
  • unsaturated heterocycles which can contain a carbonyl or thiocarbonyl ring member are: dihydrofuran-2-yl, l, 2-oxazolin-3-yl, l, 2-oxazolin-5-yl, 1, 3-oxazolin 2-yl;
  • the 5- and 6-membered ones are preferred, e.g. Furyl such as 2-furyl and 3-furyl, thienyl such as 2-thienyl and 3-thienyl, pyrrolyl such as 2-pyrrolyl and 3-pyrrolyl, isoxazolyl such as 3-isoxazolyl, 4-isoxazolyl and 5-isoxazolyl, isothiazolyl such as 3-isothiazolyl, 4-isothiazolyl and 5-isothiazolyl, pyrazolyl such as 3-pyrazolyl, 4-pyrazolyl and 5-pyrazolyl, oxazolyl such as 2-oxazolyl, 4-0xazolyl and 5-0xazolyl, thiazolyl such as 2-thiazolyl, 4-thiazolyl and 5-thiazolyl, Imidazolyl such as 2-imidazolyl and 4-imidazolyl, oxadiazolyl such as l, 2,4-0
  • the radical Q is, for example, one of indole, benzimidazole, benzopyrazole, benzoxazole, benzisoxazole, benzothiophene, benzothiazole, benzoisothiazole, benzothiadiazole, benzoisothiadiazole, benzoxazolidinone, benzoxazolidinione, benzoxazolidinione lidinthion, benzoquinoline, l, 2,3,4-tetrahydrobenzo-l, 4-oxazin-3-one, l, 2,3,4-tetrahydrobenzo-l, 4-thiazin-3-one, 1,2, 3,4-tetrahydrobenzoquinoline, 1,2,3, 4-tetrahydrobenzoquinolin-2-one, ben- zopyridazin, 1,2,3,4-tetrahydrobenzopyridazin or 1, 2,3,4-tetrahydr
  • Suitable substituents for Cx-Ce-alkyl in R la are, for example: COOH, CN, Ci-C ⁇ alkoxy, C ⁇ -C 6 alkoxycarbonyl, C ⁇ -Cg-AkyIthio, C ⁇ -C 6 alkylsulfinyl, C ⁇ -C 6 - Alkylsulfonyl, C 3 -C 6 cycloalkyl, C 3 -C 6 alkenyloxy, C 3 -Cg alkenyloxycarbonyl, C 3 -Cg alkynyloxy, C 3 -C 6 alkynyloxycarbonyl, C 3 -C 6 cycloalkoxy, C 3 -C 6 -CycloalkyIthio, -C-C 6 -haloalkoxy, C 3 -Cg-haloalkenyloxy, C 3 -Cg-haloalkynyloxy, C 3 -Cg-cycloalkyIthio, C
  • Suitable substituents for C 3 -Cg-alkenyl and C 3 -Cg-alkynyl in R la are, for example: COOH, Cx-Cg-alkoxy, Cj-Cg-alkoxycarbonyl, C ⁇ -C 6 -alkylthio, C ⁇ -C 6 -alkylsulfinyl, C ⁇ -C 6 -alkylsulfonyl, C 3 -C 6 -cycloalkyl, C 3 -C 6 -cycloalkoxy, Ci-Cg-haloalkoxy, and C 3 -C 6 -halogenocycloalkyl as well as phenyl, benzyl, phenoxy and benzyloxy, where benzene rings of the last 4 groups in turn may be substituted with halogen, -CC alkyl or -CC 4 haloalkyl.
  • R a is of secondary importance for the process according to the invention.
  • R a is preferably C0 2 R 1 , halogen, cyano, 0R la and in particular halogen or C 1 -C 3 -alkyl.
  • R 1 and R la have the meanings mentioned above.
  • R 1 stands for: hydrogen and -CC 3 alkyl.
  • R la stands for: alkyl, C ⁇ -C 3, C 3 -C 6 cycloalkyl, C 3 -C 6 alkenyl, C 3 -C 6 alkynyl, C ⁇ -C 3 haloalkyl, C ⁇ -C 3 -Alkoxycar - Bonyl -CC 3 -alkyl, cyano -CC 3 -alkyl, benzyl, which can be substituted with halogen, -CC alkyl or trifluoromethyl, or phenyl, which with halogen, C ! -C 4 alkyl, trifluoromethyl or -CC alkoxy can be substituted.
  • R are C (0) 0R 2 and C (S) 0R 2 .
  • R 2 has the meanings mentioned to-front, and is preferably C ⁇ -C 6 alkyl, C 3 -C 6 alkenyl or C 3 -C 6 alkynyl, which are unsubstituted or may be substituted.
  • C ⁇ -C 6 alkyl, C 3 -C 6 alkenyl, and C 3 -CG-alkynyl in R 2 exist in principle no restrictions. In principle, all substituents here come into consideration as substituents for C ⁇ -C 6 alkyl, C 3 -C 6 -alkenyl or C 3 -C 6 alkynyl in R la above.
  • R 2 stands for: Ci-Cg-alkyl, C 3 -Cg-cycloalkyl, C 2 -Cg -alkenyl, C 3 -Cg-alkynyl, Ci-Cg-haloalkyl, -C-Cg-alkoxy-C ⁇ -Cg -alkyl, -C-C 6 -alkoxycarbonyl-C ⁇ -Cg-alkyl, C 3 -Cg-alkenyloxy-C ⁇ -Cg-alkyl, C 3 -C 6 -alkynyloxy-C ⁇ -C 6 -alkyl, cyano-Ci-Cg- alkyl, phenyl or benzyl, wherein phenyl and benzyl may each be mono- to pentasubstituted by halogen, C ⁇ -C 4 -alkyl, C 4 haloalkyl, C ⁇ -C 4 -alkoxy, C 4 nalkoxy
  • R represents -C 4 alkyloxycarbonyl or -C 4 alkyloxythiocarbonyl.
  • Z or Z 1 are preferably oxygen or sulfur.
  • n is preferably 0 or 1. In a particularly preferred embodiment of the invention, n has the value 0.
  • T is a chemical bond or oxygen
  • U is a chemical bond, C 1 -C 4 alkylene, 0, S, SO or S0 2 ;
  • R 3 is hydrogen or halogen
  • R 5 hydroxy, mercapto, cyano, nitro, halogen, Ci-C ⁇ -alkyl, C 2 -C 6 alkenyl, C 2 -Cg alkynyl, C ⁇ -C 6 haloalkyl, Ci-Cg-alkoxy- (Ci-Cg -alkyl) carbonyl, Ci-Cg-AlkyIthio- (Ci-Cg-alkyl) carbonyl, (Ci-Cg-alkyl) -iminooxycarbonyl, C ⁇ -Cg-Alko- xy-Ci-Cg-alkyl, C -C 6 -Alkoxyamino -CC 6 -alkyl, -CC 6 -alko-xy -CC-Cg-alkylamino -CC-Cg-alkyl, -C-C 3 alkoxy-C 3 -C 6 -alkenyl, C 3 -C 6 -hal
  • Ci-Cg-alkyl Ci-Cg-haloalkyl, hydroxy-C ⁇ -C 4 alkyl
  • each cycloalkyl and heterocyclyl ring may contain a carbonyl or thiocarbonyl ring member and where each cycloalkyl and heterocyclyl ring may be unsubstituted or one may carry two, three or four substituents Removing selected from cyano, nitro, amino, hydroxy, halogen, C 1 -C 4 -AI- alkyl, C ⁇ -C4-haloalkyl, C ⁇ -C cyanoalkyl, C ⁇ -C - Hydroxyalkyl, -C-C 4 -aminoalkyl, C ⁇ -C 4 -alkoxy, C ⁇ -C 4 -haloalkoxy, C 1 -C 4 -AI- kyIthio, C ⁇ -C -halogenalkyIthio, C ⁇ -C -alkylsulfinyl, C ⁇ -C 4
  • R 6 also for hydrogen, hydroxy, cyano, mercapto, amino
  • R 7 has the meanings given for R 6 ;
  • R 8 are hydrogen, C 3 -alkyl, C 3 haloalkyl or halogen
  • R 9 are hydrogen, C 3 -alkyl, C 3 haloalkyl
  • R 10 is hydrogen, -CC 6 -alkyl, Ci-Cg-haloalkyl, C 3 -C 6 -cycloalkyl, C 3 -C 6 -alkenyl, C 3 -Cg-alkynyl, hydroxy-Ci-Cg-alkyl,
  • R 11 is hydrogen, Ci-Cg-alkyl, C 3 -Cg-cycloalkyl, C 3 -C 6 -alkenyl,
  • R 11 has the meanings given for R 11 , with the exception of hydrogen;
  • R 12 is hydrogen, hydroxy, Ci-Cg-alkyl, C 3 -C 6 cycloalkyl, C 3 -C 6 -cycloalkylaminocarbonyl, Ci-Cg-alkylaminocarbonyl, Ci-Cg-alkoxy, (-C-Cg-alkoxy) carbonyl -C ⁇ -Cg-alkoxy, C 3 -Cg-alkenyl or C 3 -Cg-alkenyloxy;
  • R 13 is hydrogen, halogen, Ci-Cg-alkyl, Ci-Cg-haloalkyl,
  • R 14 is hydrogen, cyano, Ci-Cg-alkyl, Ci-Cg-haloalkyl, C 2 -C 6 -alkenyl, C 2 -Cg-alkynyl, C 3 -C 6 -cycloalkyl, C ⁇ -C 6 -alkoxy- -C-C 6 alkyl or (Ci-Cg-alkoxy) carbonyl;
  • R 15 is hydrogen, hydroxy, Ci-Cg-alkyl, C 3 -C 6 alkenyl, C 3 -Cg alkynyl, C 3 -C 6 cycloalkyl, Ci-Cg-haloalkyl, C ⁇ -C 6 -alko- xy-Ci-Cg-alkyl, Ci-Cg-alkoxy, C 3 -Cg-alkenyloxy, C 3 -Cg-alkynyloxy, C 3 -C 6 -cycloalkoxy, C 5 -C 7 -cycloalkenyloxy, Ci-Cg- Halogenalkoxy, C 3 -Cg-haloalkenyloxy, hydroxy-Ci-Cg-alkoxy, cyano-Ci-Cg-alkoxy, C 3 -Cg-cycloalkyl-C ⁇ -C 6 alkoxy, Ci-Cg-Alko- xy-Ci-Cg -alkoxy
  • Phenyl-Ci-Cg-alkoxy, phenyl- (Ci-Cg-alkyl), phenyl-C 3 -Cg-alkenyloxy or phenyl-C 3 -Cg-alkynyloxy, with one or two methylene groups of the carbon chains in the last four groups mentioned can be replaced by -0-, -S-, or -N (Ci-Cg-alkyl) - and where phenyl rings in the four last-mentioned groups can be unsubstituted or in turn can carry one to three substituents, selected from cyano, nitro, Halogen, Ci-Cg-alkyl, Ci-Cg-haloalkyl, C 2 -Cg-alkenyl, Ci-Cg-alkoxy and (Ci-Cg-alkoxy) carbonyl;
  • R 16 , R 17 independently of one another Ci-Cg-alkyl, Ci-Cg-haloalkyl,
  • C 3 -C 6 alkenyl, C 3 -Cg-alkynyl, Ci-Cg-alkoxy-Ci-Cg-alkyl mean or together for a saturated or unsaturated, 2- to
  • R 18 is hydrogen, cyano, halogen, Ci-Cg-alkyl, Ci-Cg-haloalkyl, Ci-Cg-alkoxy, (Ci-Cg-alkyl) carbonyl or (Ci-Cg-alkoxy) carbonyl;
  • R 19 is hydrogen, OR 28 , SR 28 , Ci-Cg-alkyl, which can also carry one or two Ci-Cg-alkoxy substituents, C 2 -Cg-alkenyl, C 2 -C 6 -alkynyl, Ci-Cg-haloalkyl, C 3 -Cg cycloalkyl, Ci-Cg-alkylthio-Ci-Cg-alkyl, Ci-Cg-alkyliminooxy, -N (R 24 ) R 25 or phenyl, which may be unsubstituted or carry one to three substituents, in each case selected from the group consisting of cyano, nitro, halogen, Ci-Cg-alkyl, C 2 -C 6 alkenyl, Ci-Cg-haloalkyl, Ci-Cg-alkoxy and (Ci-Cg-alkoxy) carbonyl;
  • R 20 is hydrogen, cyano, halogen, Ci-Cg-alkyl, C 3 -C 6 -alkenyl, C 3 -C 6 -alkynyl, Ci-Cg-alkoxy-Ci-Cg-alkyl, (Ci-Cg-alkyl) carbonyl , (Ci-Cg-alkoxy) carbonyl, -N (R 24 ) R 25 or phenyl, which in turn can carry one to three substituents, selected from cyano, nitro, halogen, Ci-Cg-alkyl, Ci-Cg-haloalkyl , C 3 -Cg alkenyl, Ci-Cg-alkoxy and (-C-Cg-alkoxy) carbonyl;
  • R 21 is hydrogen, cyano, halogen, Ci-Cg-alkyl, Ci-Cg-alkoxy,
  • Ci-Cg-haloalkyl (Ci-Cg-alkyl) carbonyl or (Ci-Cg-alkoxy) carbonyl;
  • R 22 is hydrogen, cyano, Ci-Cg-alkyl or (Ci-Cg-alkoxy) carbonyl;
  • R 23 , R 28 independently of one another are hydrogen, Ci-Cg-alkyl, Ci-Cg-haloalkyl, C 2 -Cg-alkenyl or C 2 -Cg-alkynyl, the latter 4 groups each carrying one or two of the following radicals can: cyano, halogen, hydroxy, hydroxycarbonyl, Ci-Cg-alkoxy, Ci-Cg-alkylthio, (Ci-Cg-alkyl) carbonyl, (Ci-Cg-alkoxy) carbonyl, (Ci-Cg-alkyl) carbonyloxy, ( C 3 -Cg -alkenyloxy) carbonyl; (Ci-Cg-haloalkyl) carbonyl, (Ci-Cg-alkoxy) carbonyl, Ci-Cg-alkylaminocarbonyl, di (Ci-Cg-alkyl) aminocarbonyl, C ⁇ -Cg-alkyloximino-C ⁇
  • R 24 , R 25 , R 26 , R 27 independently of one another hydrogen, Ci-Cg-alkyl, C 3 -Cg-alkenyl, C 2 -Cg-alkynyl, C 3 -Cg-cycloalkyl, Ci-Cg-haloalkyl, Ci Cg-alkoxy-Ci-Cg-alkyl, (Ci-Cg-alkyl) carbonyl, (Ci-Cg-alkoxy) carbonyl, (C ⁇ -Cg-alkoxy) carbonyl-C ⁇ -Cg-alkyl,
  • (-C-C 6 -alkoxy) carbonyl-C 2 -Cg-alkenyl in which the alkenyl chain can additionally carry one to three halogen and / or cyano radicals, Ci-Cg-alkylsulfonyl, (-C-Cg-alkoxy) carbonyl- C ⁇ -Cg-alkyl-sulfonyl, phenyl or phenylsulfonyl, where the phenyl rings of the latter two radicals may be unsubstituted or in turn may carry one to three substituents, each selected from cyano, nitro, halogen, Ci-Cg-alkyl, Ci-Cg-haloalkyl , C 3 -Cg alkenyl, Ci-Cg-alkoxy and (Ci-Cg-alkoxy) carbonyl; or
  • R 30 is hydrogen, Ci-Cg-alkyl, C 3 -C 8 -cycloalkyl, CH 2 0 -CC-Cg-alkyl, CH 2 0-C 2 -C 4 -alkenyl, CH 2 0-C 2 -C 4 - alkynyl, CH 2 CH 2 0-C ⁇ -C 4 alkyl, CH 2 CH 2 0-C 2 -C 4 alkenyl, CH 2 CH 2 0-C 2 -C 4 alkynyl, (C ⁇ -C 6 -Al koxy) carbonyl, (C 3 -C 4 -alkenyloxy) carbonyl, (C 3 -C 4 -alkynyloxy) carbonyl, (C 3 -Cg-cycloalkyloxy) carbonyl,
  • each alkyl radical of the abovementioned radicals can be unsubstituted or can carry one, two or three substituents which are selected independently of one another from halogen, cyano, nitro, C 1 -C 4 -alkoxy and C 1 -C 4 -alkylthio and each cycloalkyl radical of the abovementioned radicals can be unsubstituted, or can carry one, two or three substituents which are selected independently of one another from halogen, cyano, nitro, C 1 -C 4 -alkyl, C 1 -C 4 alkoxy and C 1 -C 4 alkylIthio.
  • Z 1 represents an optionally substituted by R a methylene group and the variables R a , R, W, Q and n have the abovementioned meanings.
  • the reaction of the compounds II with a base according to scheme 3, in which the variables R a , z, Z 1 , W, X, R 2 , n and Q have the meanings mentioned above, is generally carried out at temperatures in the range of 0-150 ° C, preferably 10-100 ° C, particularly preferably 20-60 ° C.
  • the reaction can be carried out under pressure or under pressure, continuously or batchwise.
  • the reaction of II with a base is preferably carried out in a solvent.
  • solvents can be used: e.g. Hydrocarbons such as pentane, hexane, heptane, cyclohexane, aromatics, e.g.
  • chlorinated hydrocarbons such as dichloromethane, 1,1-dichloroethane, 1,2-dichloroethane, 1, 1,2,2 -Tetrachloroethane, 1,1-dichloroethylene, chlorobenzene, 1,2-, 1,3-, 1,4-dichlorobenzene, 1-
  • the oxobases include, for example, inorganic bases such as alkali or alkaline earth hydroxides, alkali and alkaline earth hydrogen carbonates and alkali and alkaline earth carbonates, for example lithium, sodium, potassium, calcium or magnesium hydroxide, hy- drug carbon or carbonate.
  • suitable oxo bases are alkali metal alcoholates, in particular lithium, sodium or potassium, usually alcoholates of Ci-Cg- preferably -C-C 4 alkanols such as sodium or potassium methylate, ethylate, n-butylate or tert. Butylate.
  • Hydride bases are, for example, alkali metal hydrides such as sodium hydride or potassium hydride.
  • Preferred bases are tertiary amines, especially trialkylamines.
  • the molar ratio of compound II to base is preferably 0.9 to 1.4, in particular 0.95 to 1.2 and particularly preferably 0.98 to 1.15.
  • compound II is preferably placed in one of the abovementioned solvents or a solvent mixture
  • the base is preferably added at a temperature in the range from 0 to 50 ° C. and in particular at 10 to 30 ° C.
  • the components are then left to after-react for a further 10 minutes to 48 hours at 20 to 150 ° C., preferably 20 to 100 ° C. and in particular 20 to 60 ° C.
  • the base can also be initially introduced, preferably in one of the abovementioned solvents, or as such, if it is a liquid, then add the compound II and, as above, bring the reaction to an end.
  • the concentration of the starting materials in the solvent is generally in the range from 0.5 to 5 mol / 1, preferably in the range from 0.2 to 2 mol / 1.
  • reaction is worked up in a conventional manner, for example by aqueous extraction, by dialysis and / or by chromatography.
  • the reaction mixture which contains the fused tetrahydro [1 H] triazole compound I is taken up in a water-immiscible solvent, if appropriate after removal of the solvent, and basic or acidic compounds are extracted dilute acid or dilute alkali or with water, optionally drying the organic phase and then removing the solvent, preferably under reduced pressure.
  • the product can be obtained by means of filtration, crystallization or solvent extraction.
  • the fused triazoles of the formula I can contain one or more centers of chirality and are then usually obtained as mixtures of enantiomers or diastereomers. If desired, the mixtures can be separated into the largely pure isomers by the customary methods such as crystallization or chromatography, including on an optically active adsorbate. Pure optically active isomers can also be produced, for example, from corresponding optically active starting materials.
  • the molar ratios in which the starting compounds of the formulas III and IV are reacted with one another in accordance with Scheme 4 are generally 0.9 to 1.4, preferably 0.95 to 1.2, particularly preferably 0.98 to 1.15 for the ratio of III to iso (thio) cyanate IV.
  • the isocyanate IV is preferably added to a mixture of the compound III in one of the abovementioned solvents at 10 to 25 ° C. for 5 to 30 minutes and the mixture is then stirred for a further 0.5 to 24 hours, preferably 1 to 10 hours, to complete the reaction at 20 to 80 ° C.
  • the iso (thio) cyanate IV can be placed in one of the abovementioned solvents, the N-substituted perhydrodiazine of the formula III added and the reaction then completed as described above.
  • the iso (thio) cyanates IV used in Scheme 4 are known or can be prepared analogously to known processes; see e.g. B. Houben-Weyl, "Methods of Organic Chemistry", vol. VIII, p. 120 (1952), vol. IX, p. 875, 869 (1955), EP 304920, EP 238711 and those listed in WO 94/10173 references.
  • isothiocyanates IV can be prepared by reacting an aromatic amine Q-NH 2 , hereinafter also aniline compound IX with phosgene or thiophosgene X according to Scheme 5.
  • Q and W have the meanings given above.
  • the reaction according to scheme 5 is usually carried out in an inert organic solvent.
  • the reaction temperature is usually in the range from 10 to 200 ° C.
  • the reaction time is generally 1 to 20 hours, preferably 2 to 15 hours, particularly preferably 3 to 10 hours.
  • the solvents used for these reactions are hydrocarbons such as pentane, hexane, cyclopentane, cyclohexane, toluene, xylene, chlorinated hydrocarbons such as methylene chloride, chloroform, 1,2-dichloroethane, 1,1,2,2-Te - Trachloroethane, chlorobenzene, 1,2-, 1,3- or 1,4-dichlorobenzene, ethers such as 1,4-dioxane, anisole, glycol ethers such as dimethyl glycol ether, diethyl glycol ether, diethylene glycol dimethyl ether, esters such as ethyl acetate, propyl acetate, methyl isobutyrate, isobutyl acetate , Carboxamides such as DMF, N-methylpyrrolidone
  • a basic reaction auxiliary is often used.
  • basic inorganic compounds come into consideration, e.g. B. use alkali or alkaline earth metal hydroxides or basic hydrogen carbonates or carbonates.
  • the reaction can also be carried out in the presence of an organic base, e.g. B. triethylamine, tri-n-propylamine, N-ethyldiisopropylamine, pyridine, et-, ß-, ⁇ -picoline, 2,4-, 2,6-lutidine, N-methylpyrrolidine, dimethylaniline, N, N-dimethylcyclohexylamine , Quinoline or acridine.
  • organic base e.g. B. triethylamine, tri-n-propylamine, N-ethyldiisopropylamine, pyridine, et-, ß-, ⁇ -picoline, 2,4-, 2,6-lutidine, N-methylpyrrolidine, di
  • the amine is usually placed in an inert solvent and then the thiophosgene is added.
  • the addition is usually carried out within 10 to 60 minutes at a temperature in the range from 10 to 40 ° C., preferably 20 to 30 ° C.
  • the components are left to react at 50 to 180 ° C., preferably 60 to 120 ° C., particularly preferably 70 to 100 ° C.
  • the reaction time is usually in the range of 10 minutes to 15 hours.
  • the reaction can optionally be carried out in the presence of an auxiliary base, e.g. As calcium carbonate can be performed.
  • the amine IX is expediently gassed beforehand with hydrogen chloride at 10 to 40 ° C., preferably 20 to 30 ° C. Then phosgene is usually passed in at 60 to 150 ° C., preferably 70 to 120 ° C., optionally in the presence of activated carbon as a catalyst.
  • diphosgene can also be used.
  • the diphosgene is advantageously added to the mixture of the starting material and one of the abovementioned solvents, with or without the addition of active ingredients, with stirring at 0 to -5 ° C. for 2 to 20 min. coal, DMF or the organic base, can be warmed up to 10 ° C within one hour and then stirred at 10 to 60 ° C for 1 to 12 hours.
  • the molar amount of phosgene or diphosgene is 0.98 to 5, preferably 1 to 3, particularly preferably 1 to 1.3 per mol of starting material.
  • the concentration of the starting materials in the solvent is generally 0.1 to 5 mol / 1, preferably 0.2 to 2 mol / 1.
  • the reaction can be carried out under pressure or under pressure, continuously or batchwise.
  • Suitable aniline compounds IX are described, for example, in WO 01/05775.
  • EP 648 772 describes in general terms the formation of phenyl isothiocyanates which are simultaneously substituted by a free hydroxyl or amino group. Since thiophosgene does not generally differentiate between amino groups or the hydroxyl function, only the reaction of a protected aniline is described in the examples of EP 648 772.
  • R 3 is halogen and Y ′′ is hydroxy or mercapto.
  • R 3 represents halogen and R 30 has the meanings given above for Q-7
  • R 3 is halogen and R 30 has the meanings given above with thiophosgene.
  • the implementation takes place in the manner described above.
  • the compounds IVc are new and are also an object of the invention as interesting precursors for the process according to the invention.
  • R 3 represents halogen, in particular chlorine or fluorine
  • R 30 represents hydrogen, Ci-Cg-alkyl, C 3 -C 8 cycloalkyl, CH0-C ⁇ -C 4 alkyl, CH 2 0-C 3 -C 4- alkenyl, CH 2 0-C 3 -C 4 -alkynyl, CH 2 CH 2 0 -CC-C 4 -alkyl, CH 2 CH 2 0-C 3 -C 4 -alkenyl, CH 2 CH 2 0 -C 3 -C 4 alkynyl, (-C-C 4 - Alkoxy) carbonyl, (C 3 -C 4 -alkenyloxy) carbonyl, (C 3 -C 4 -alkynyloxy) carbonyl, (-C-C 4 -alkoxy) carbonyl -CC-C 2 -alkyl, (C 3 -C -Alkenyloxy) carbonyl -CC-C 2 -alky
  • Each alkyl radical in the radicals mentioned above can be unsubstituted or carry one, two or three, preferably only one, substituents which are selected independently of one another from halogen, cyano and methoxy.
  • Each cycloalkyl radical can be unsubstituted or carry one, two or three substituents which are selected independently of one another from halogen, cyano, methoxy and methyl.
  • R 30 particularly preferably represents one of the following radicals:
  • R 30 Ci-Cg-alkyl, C 3 -C 8 cycloalkyl, CH 2 0 -C -C 4 alkyl, CH 2 0-C 3 -C 4 -A1- kenyl, CH 2 0-C 3 -C 4 -Alkynyl, (-C-C 4 -alkoxy) carbonyl, (C 3 -C 4 -alkenyloxy) carbonyl, (C 3 -C 4 -alkynyloxy) carbonyl, (C 1 -C 4 -AI- koxy) carbonyl- C ⁇ -C 2 alkyl, (C 3 -C 4 alkenyloxy) carbonyl-C ⁇ -C 2 - alkyl, (C 3 -C alkynyloxy) carbonyl-C ⁇ -C 2 -alkyl, C 4 -Alkylsul- fonylamidocarbony1 .
  • Compounds II can also be prepared by the process shown in Scheme 7a or 7b, by reacting a urea derivative Vlla or Vllb with a compound of the formula R 2 -0-C (X) -A or the formula R 2 -SC ( X) -A, in which A represents a leaving group, for example halogen.
  • the reaction is preferably carried out in the presence of a base.
  • n, R 2 , X, R a , Z, Z 1 , w and Q have the meanings mentioned above.
  • the compounds of the formula R 2 -0-C (X) -A are referred to below as the compound Villa and the compound of the formula R 2 -SC (X) -A as the compound VIIIb.
  • urea compounds Vllb used in scheme 7b are known in part from WO 94/10173 and WO 00/01700. Otherwise, the urea compounds of the formulas VIIa and VIIb used in Scheme 7a and in Scheme 7b are known from the earlier appendix PCT / EP 00/05794.
  • the oxazine derivatives of the general formula lilac used as starting compounds according to scheme 4 are prepared in a first reaction step substituted hydrazine of the formula V,
  • R a and n have the meaning given above and Z 1 represents oxygen or sulfur, with a compound of the general formula R 2 -0-C (X) -A or the formula R 2 -SC (X) -A (Villa or VIIIb), in which R 2 and X have the meanings mentioned above, and A represents a nucleophilically displaceable leaving group, in particular a halogen atom and especially chlorine.
  • R 2 and X have the meanings mentioned above
  • A represents a nucleophilically displaceable leaving group, in particular a halogen atom and especially chlorine.
  • Suitable, nucleophilically displaceable leaving groups A are halogen, preferably chlorine or bromine, furthermore C 1 -C 6 -alkoxy such as methoxy, ethoxy, n-propoxy, n-butoxy, C 1 -C 4 -haloalkoxy such as trichloromethoxy, trifluoromethoxy, pentafluoroethoxy, N- bound heterocyclyl such as I idazolyl, Ci-Cg-alkylcarbonyloxy (or Ci-Cg-alkanoate) such as acetate, propionate, n-butyrate, isobutyrate, Divat and capronate, Ci-Cg-haloalkylcarbonyloxy such as mono-, di- and trichloroacetate, Ci-C 6 -alkylsulfonyloxy such as methylsulfonyloxy, Ci-Cg- Haloalkylsulfonyloxy such as trifluor
  • Preferred leaving group A is halogen, in particular chlorine or bromine, and also acetate or trifluoroacetate.
  • the cyclization of the second production step can take place either with formaldehyde or with a compound which releases formaldehyde under acidic conditions, such as paraformaldehyde or 1,3,5-trioxane, in the presence of an acid.
  • the hydrazides obtained in the first production step can also be reacted with formaldehyde to form the Schiff base and the cyclization can then be effected by adding an acid.
  • the reaction of the hydrazinoethanols / thiols V with the compounds Villa or VIIIb is advantageous, in particular, in the presence of a solvent at temperatures in the range from -30 to 100 ° C., preferably -10 to 80 ° C. preferably carried out 0 to 60 ° C.
  • hydrocarbons such as pentane, hexane, cyclopentane, cyclohexane, toluene, xylene and chlorinated hydrocarbons are used as solvents for these reactions such as methylene chloride, chloroform, 1,2-dichloroethane, 1,1,2,2-tetrachloroethane, chlorobenzene, 1,2-, 1,3- or 1,4-dichlorobenzene, ethers such as 1,4-dioxane, anisole , Glycol ethers such as dimethyl glycol ether, diethyl glycol ether, diethylene glycol dimethyl ether, esters such as ethyl acetate, propyl acetate, methyl isobutyrate, isobutyl acetate, carboxylic acid amides such as DMF, N-methylpyrrolidone, nitro hydrocarbons such as nitrobenzene, ureas such as te
  • the molar ratios in which the starting compounds V and Villa or VIIIb are reacted with one another are generally 0.9 to 1.2, preferably 0.95 to 1.1, particularly preferably 0.98 to 1.04 for the ratio from Villa or Vlllb to Hydrazinoethanol / thiol V.
  • the first reaction step is advantageously carried out under neutral conditions. If an acidic reaction product is formed during the reaction, e.g. Hydrogen halide, if A in formula Villa or Vlllb is halogen, is removed by adding basic compounds, e.g. B. alkali or alkaline earth metal hydroxides or bicarbonates or carbonates. However, the reaction can also be carried out in the presence of an organic base, e.g. B.
  • an organic base e.g. B.
  • reaction can also be carried out in an aqueous two-phase system, preferably in the presence of phase transfer catalysts such as quaternary ammonium or phosphonium salts.
  • phase transfer catalysts such as quaternary ammonium or phosphonium salts.
  • the compound Villa or VIIIb is added for 0.25 to 2 hours to a mixture of the hydrazinoethanol / thiols V and the base in one of the abovementioned solvents at 0 to 60 ° C. and the mixture is stirred for a further 0.5 to 16 Hours, preferably 2 to 8 hours to 0 to 60 ° C after.
  • the starting materials V and Villa or VIIIb can be mixed in any order to form a mixture of the phase transfer catalyst in the two phases. Add sen while stirring and then bring the reaction to an end in the temperature range mentioned with the addition of base.
  • the reaction can be carried out continuously or discontinuously under pressure or under pressure.
  • the salts which may have precipitated are separated off, or their separation is completed by adding nonpolar solvents, and the hydrazides are thus enriched, in which case 10.
  • the second reaction step is explained below:
  • the hydrazides are then advantageously reacted under acidic conditions with a formaldehyde solution or paraformaldehyde in one of the abovementioned solvents.
  • 0.9 to 1.2, preferably 0.95 to 1.1, particularly preferably 0.98 to 1.04 molar equivalents of formaldehyde or paraformaldehyde are advantageously used per mol of hydrazide derivative VI.
  • concentration of the starting materials in the solvent is 0.1 to 5 mol / 1, preferably 0.2 to 2 mol / 1.
  • Aromatic sulfonic acids e.g. Benzenesulfonic acid, p-chloro- or p-toluenesulfonic acid, aliphatic sulfonic acid
  • ren such as methanesulfonic acid, trifluoromethanesulfonic acid, ethanesulfonic acid and n-propylsulfonic acid, sulfamic acids such as methylsulfaminic acid, ethylsulfamic acid or isopropylsulfamic acid, aliphatic carboxylic acid such as acetic acid, trifluoroacetic acid, propionic acid, butyric acid or isobutyric acid and inorganic
  • acids such as hydrochloric acid, sulfuric acid, nitric acid or boric acid.
  • An acid such as acetic acid or propionic acid can expediently also be used directly as the reaction medium.
  • the acidic catalyst is expediently used in an amount of 1 to 20 mol%, preferably 3 to 15 mol%, particularly
  • a formaldehyde solution or paraformaldehyde is preferably added to a mixture of hydrazide and the acid catalyst in one of the abovementioned solvents at 0 to 40 100 ° C., advantageously 10 to 80 ° C., particularly preferably 20 to 50 ° C., and stirred for 2 to 60 min to complete the reaction after 10 to 50 hours, preferably 15 to 30 hours at 40 to 50 ° C.
  • the water is expediently removed, for example on a water separator.
  • the acidic catalyst can also be added to a mixture of hydrazide and paraformaldehyde in one of the abovementioned solvents and the reaction can then be brought to an end as described.
  • the reaction can be operated without pressure or under pressure, continuously or batchwise.
  • Oxidation with hydrogen peroxide can be catalyzed by suitable metal compounds, e.g. Transition metal oxides such as vanadium pentoxide, sodium tungstate, potassium dichromate, iron oxide tungstate, sodium tungstate molybdic acid, osmic acid, titanium trichloride, selenium dioxide, phenylene selenic acid, oxovanadinyl-2,4-pentanedionate.
  • the catalysts are generally used in an amount of 0.5 to 10% by weight, based on the substrate, but because of the easy filterability and recovery of the inorganic catalysts, stoichiometric amounts can also be used.
  • solvents for the oxidation with hydrogen peroxide are water, acetonitrile, alcohols such as methanol, ethanol, isopropanol, tert-butanol, chlorinated hydrocarbons such as methylene chloride, 1, 1,2,2-tetrachloroethane or ketones such as acetone or methyl ethyl ketone be used.
  • peracids such as perbenzoic acid, monoperphthalic acid or 3-chloroperbenzoic acid can also be used as oxidizing agents.
  • the reaction with peracids is conveniently carried out in chlorinated hydrocarbons such as methylene chloride or 1,2-dichloroethane.
  • Chlorine and bromine are also very suitable for the oxidation of the thiols to sulfoxides or sulfones.
  • This oxidation is expediently carried out in polar solvents such as water, acetonitrile, dioxane, or in two-phase systems such as aqueous potassium hydrogen carbonate solution / dichloromethane and also acetic acid.
  • polar solvents such as water, acetonitrile, dioxane, or in two-phase systems such as aqueous potassium hydrogen carbonate solution / dichloromethane and also acetic acid.
  • active halogen can also tert.
  • -Butyl hypochlorite, hypochlorous and bromonic acid, their salts, and also N-halogen compounds such as N-bromine and N-chlorosuccinimide or sulfuryl chloride.
  • Photosensitized oxygen transfer is also suitable for the oxidation, organic dyes, for example porphyrins such as tetraphenylporphyrin, chlorophyll, protoporphyrin, xanthene dyes such as rose bengal or phenothiazine dyes such as methylene blue, being usually used as photosensitizers.
  • organic dyes for example porphyrins such as tetraphenylporphyrin, chlorophyll, protoporphyrin, xanthene dyes such as rose bengal or phenothiazine dyes such as methylene blue, being usually used as photosensitizers.
  • inert solvents are hydrocarbons such as pentane, hexane, heptane, cyclohexane, chlorinated hydrocarbons such as methylene chloride, 1,2-dichloroethane, 1, 1,2,2-tetrachloroethane, alcohols such as methanol, ethanol, n-propanol or isopropanol, ketones such as acetone , Methyl ethyl ketone, polar aprotic solvents such as acetonitrile, propionitrile or aromatic hydrocarbons such as benzene, toluene, chlorobenzene or xylene are suitable.
  • oxygen it is also possible to use ozone in the solvents mentioned above, plus ether, 1,4-dioxane or tetrahydrofuran (THF).
  • catalysts are also suitable for oxygen oxidation, e.g. Oxides and sulfides of nickel, copper, aluminum, tungsten, chromium, vanadium, ruthenium, titanium, manganese, molybdenum, magnesium and iron.
  • the molar ratios in which the starting compounds are reacted with one another are generally 0.9 to 1.8, preferably 1.05 to 1.3 for the ratio of tetrahydrothiadiazine to oxidizing agent in the case of oxidation to sulfoxide and generally 1.9 to 3.5, preferably 2.05 to 2.9 in the case of oxidation to the sulfone.
  • the concentration of the starting materials in the solvent is generally 0.1 to 5 mol / 1, preferably 0.2 to 2 mol / 1.
  • the addition and reaction temperature depend on the optimal efficiency of the respective oxidizing agent and the avoidance of side reactions. If photosensitized oxygen is used, the process is generally carried out at from -20 to 80.degree. C., but is generally metal-catalyzed at from 50 to 140.degree. C. and, when using ozone, generally at -78 to 60.degree.
  • Liquid or easily soluble oxidizing agents such as hydrogen superoxide, hypochlorous or bromonic acid, tert-butyl hypochlorite, chlorine or bromine, furthermore N-chloro- or N-bromosuccinimide can, depending on the exothermic nature of the reaction, in shorter time spans from 0.25 to 6 hours be added to the reaction mixture of thiadiazine or sulfoxide to bring the reaction to a conclusion after a further 1 to 60 h.
  • a staggered addition of the liquid or dissolved oxidizing agent is also preferred.
  • work is generally carried out at 0 to 90 ° C, with tert-butylpypochlorite in general at -78 to 30 ° C and with N-halogen compounds in general at 0 to 30 ° C.
  • a reaction temperature of 0 to 40 ° C is recommended.
  • the oxidations can be operated without pressure, under pressure, continuously or batchwise.
  • the end products are generally taken up in purple in a water-immiscible solvent, acidic impurities or oxidizing agents are extracted with dilute alkali metal or water, dried and the solvent is removed under reduced pressure.
  • Vlla or Vllb with phosgene or a phosgene equivalent is advantageously carried out in the presence of one of the abovementioned anhydrous solvents at temperatures in the range from -10 to 120 ° C., preferably 0 to 80 ° C., particularly preferably 10 to 60 ° C.
  • the phosgene is advantageously passed at 10 to 60 ° C. with stirring into a mixture of a 4- (phenylcarbamoyl) tetrahydro-4H-l, 3,4-ox (or thia) diazine and an amount of 0.5 to 5% by weight .-%, based on the starting material, activated carbon as a catalyst in one of the aforementioned anhydrous solvents for 0.5 to 20 hours, preferably 1 to 12 hours.
  • the reaction can additionally be accelerated by a basic amide catalyst, e.g. DMF, which can usually be used in an amount of 0.3 to 10% by weight based on the input material.
  • a basic amide catalyst e.g. DMF
  • Organic bases such as triethylamine, tri-n-propylamine, N, N-dimethylaniline or N, N-dimethylcyclohexylamine can also be used as the basic catalyst.
  • Pyridine can also preferably be used, if appropriate directly as a solvent.
  • diphosgene can also be used.
  • the diphosgene is advantageously added to the mixture of the starting material and one of the abovementioned solvents, with or without the addition of activated carbon, DMF or the organic base, with stirring at 0 to -5 ° C. for 2 to 20 minutes, and the temperature is raised to 10 ° within 1 hour Warm C and then stir at 10 to 60 ° C for 1 to 12 hours.
  • the molar amount of phosgene or diphosgene is 0.98 to 5, preferably 1 to 3, particularly preferably 1 to 1.3 per mol of starting material.
  • the concentration of the starting materials in the solvent is generally 0.1 to 5 mol / 1, preferably 0.2 to 2 mol / 1.
  • the reaction can be carried out under pressure or under pressure, continuously or batchwise.
  • the basic cyclization process according to the invention according to scheme 3 has the advantage over the acidic cyclization processes known from the prior art for the production of fused tetrahydrotriazoles that no phosgene has to be used.
  • Another important advantage of the method according to the invention is that it is possible in this way to produce compounds of the formula I in which Z represents a methylene group which may be substituted by R a and W represents sulfur, and which according to the methods of State of the art, as described in WO 94/10173 and WO 00/01700, in principle cannot be produced and so far have not been able to be produced in other ways, as mentioned in the introduction.
  • compounds I ⁇ R 5 Ci-Cg-alkoxy, Ci-Cg-alkylthio, C 3 -Cg-cycloalkoxy, C 3 -Cg-cycloalkylthio, C 2 -Cg-alkenyloxy, C 2 -Cg-alkenylthio, C 2 -Cg-alkynyloxy, C 2 -Cg -alkynylthio, (Ci-Cg-alkyl) carbonyloxy, (Ci-Cg-alkyl) carbonylthio, (Ci-Cg-alkoxy) carbonyloxy, (C 2 -Cg-alkenyl) carbonyloxy, ( C 2 -C 6 -alkenyl) carbonylthio, (C 2 -C 6 -alkynyl) carbonyloxy, (C 2 -C 6 -alkynyl) carbonylthio or C 1 -C 6 -alkyls
  • G is a nucleophilically displaceable leaving group and R 5 'is a Ci-Cg-alkyl, C 3 -Cg-cycloalkyl, C 2 -C 6 -alkenyl, C 2 -Cg -alkynyl, (Ci- Cg-alkyl) carbonyl, (Ci-Cg-alkoxy) carbonyl, (C 2 -C 6 -alkenyl) carbonyl, (C 2 -C 6 -alkynyl) carbonyl or Ci-Cg-alkylsulfonyl radical, the which can bear the substituents mentioned for R 5 .
  • nucleophilically displaceable leaving groups are halogen, preferably chlorine or bromine, Ci-Cg-alkylcarbonyloxy (or Ci-Cg-alkanoate) such as acetate, propionate, n-butyrate, isobutyrate, dipalate, Ci-Cg-haloalkylcarbonyloxy such as mono- , Di- and trichloroacetate, Ci-Cg-alkylsulfonyloxy such as methylsulfonyloxy, Ci-Cg-haloalkylsulfonyloxy such as trifluoromethylsulfonyloxy, phenylsulfonyloxy, in which the phenyl radical can optionally be substituted one or more times with halogen or Ci-Cg-alkyl, such as phenylsulfonyloxy, p-tolylsulfonyloxy and p-chlorophenylsulfonyloxy.
  • the solvents used for these reactions are hydrocarbons such as pentane, hexane, cyclopentane, cyclohexane, toluene, xylene and chlorinated hydrocarbons such as methylene chloride, chloroform, 1,2-dichloroethane, 1,1,2,2-Te - Trachloroethane, chlorobenzene, 1,2-, 1,3- or 1,4-dichlorobenzene, ethers such as 1,4-dioxane, anisole, glycol ethers such as dimethyl glycol ether, diethyl glycol ether, diethylene glycol dimethyl ether, esters such as ethyl acetate, propyl acetate, methyl isobutyrate, isobutyl acetate , Carboxamides such as DMF, N-methylpyrrolidone, nitro-hydrocarbons such as nitrobenzene, ureas such as te
  • hydrocarbons such
  • the alkylation is advantageously carried out under neutral conditions. If an acidic reaction product is formed during the reaction, e.g. B. hydrogen halide, if G in formula XI is halogen, this is removed by adding basic compounds, eg. B. alkali or alkaline earth metal hydroxides or hydrogen carbonates or carbonates. However, the reaction can also be carried out in the presence of an organic base, e.g. B.
  • reaction can also be carried out in an aqueous two-phase system, preferably in the presence of phase transfer catalysts such as quaternary ammonium or phosphonium salts.
  • phase transfer catalysts such as quaternary ammonium or phosphonium salts.
  • the reaction conditions described in EP-A 556737 are suitable for the two-phase reaction. Quaternary ammonium or phosphonium salts can be used as phase transfer catalysts.
  • the reaction can be carried out continuously or discontinuously under pressure or under pressure.
  • the salts which may have precipitated are separated off, or their separation is completed by adding non-polar solvents and the triazoles I are thus enriched in the filtrate.
  • the new compounds of the formula Ia can contain one or more centers of chirality and are then present as mixtures of enantiomers or diastereomers.
  • E / Z isomers may also be possible.
  • the invention relates both to the pure enantiomers or diastereomers and to their mixtures.
  • Agriculturally useful salts include, in particular, the salts of those cations or the acid addition salts of those acids whose cations or anions do not adversely affect the herbicidal activity of the compounds Ia.
  • cations in particular the ions of the alkali metals, preferably lithium, sodium and potassium, the alkaline earth metals, preferably calcium, magnesium and barium, and the transition metals, preferably manganese, copper, zinc and iron, as well as the ammonium ion, if desired one to four C ⁇ -C can carry alkyl substituents and / or a phenyl or benzyl substituent, preferably diisopropylammonium, tetramethylammonium, tetrabutylammonium, trimethylbenzylammonium, furthermore phosphonium ions, sulfonium ions, preferably tri (-C-alkyl) sulfonium and preferably sulfoxonium ions Tri (-C 4
  • Anions of useful acid addition salts are primarily chloride, bromide, fluoride, hydrogen sulfate, sulfate, dihydrogen phosphate, hydrogen phosphate, phosphate, nitrate, hydrogen carbonate, carbonate, hexafluorosilicate, hexafluorophosphate, benzoate, and also the anions of C 1 -C 4 alkanoic acids, preferably formate , Acetate, propionate and butyrate. They can be formed by reacting the compounds of the formula Ia with an acid of the corresponding anion, preferably hydrochloric acid, hydrobromic acid, sulfuric acid, phosphoric acid or nitric acid.
  • the variables preferably have the following meanings, each individually or in combination: Q Q-1, Q-2, Q-3, Q-4 or Q-7;
  • X, Y and Y ' are independently O or S;
  • T is a chemical bond or 0;
  • U is a chemical bond, -CC alkylene, 0 or S;
  • R 3 is hydrogen, fluorine or chlorine
  • R 4 is chlorine, trifluoromethyl or cyano
  • R 5 hydroxy, mercapto, cyano, nitro, halogen, Ci-Cg-alkyl, Ci-Cg-haloalkyl, Ci-Cg-alkoxy- (Ci-Cg-alkyl) carbonyl, Ci-Cg-alkylthio- (Ci-Cg- alkyl) carbonyl, (Ci-Cg-alkyl) -iminooxycarbonyl, Ci-Cg-alkoxy-Ci-Cg-alkyl, Ci-Cg-alkoxy-mino-Ci-Cg-alkyl, C ⁇ -Cg-alkoxy-C ⁇ - Cg-alkylamino-C ⁇ -Cg-alkyl,
  • Ci-Cg-alkoxy Ci-Cg-alkylthio, C 3 -Cg-cycloalkoxy
  • Phenyl, phenoxy or phenylsulfonyl the three last-mentioned substituents in turn being able to carry one, two or three substituents, in each case selected from halogen, nitro, cyano, Ci-Cg-alkyl,
  • Ci-Cg-haloalkyl Ci-Cg-alkoxy and (Ci-Cg-alkoxy) carbonyl;
  • R 6 is hydrogen, halogen, cyano, Ci-Cg-alkyl, Ci-Cg-haloalkyl, C 3 -C cycloalkyl, saturated C 3 -C 7 heterocyclyl, which has one or two heteroatoms selected from oxygen and sulfur in the ring, Ci-Cg-alkoxyalkyl, cyano-
  • Ci-Cg-alkyl C0 2 H, Ci-Cg-alkoxycarbonyl and Ci-Cg-alkoxycarbonyl-Ci-Cg-alkyl, C 3 -Cg alkenyl or C 3 -C 6 alkynyl;
  • R 7 is hydrogen, halogen, cyano, Ci-Cg-alkyl, Ci-Cg-halogenoalkyl, C 3 -C 7 cycloalkyl, saturated C 3 -C 7 heterocyclyl, which one or two heteroatoms selected from oxygen and sulfur in Has ring, Ci-Cg-alkoxyalkyl, cyano-Ci-Cg-alkyl, C0 2 H, Ci-Cg-alkoxycarbonyl and Ci-Cg-alkoxycarbonyl-Ci-Cg-alkyl, C 3 -Cg-alkenyl or C 3rd -cg alkynyl;
  • R 8 is hydrogen or -CC 3 alkyl
  • R 9 is hydrogen, -CC 3 alkyl
  • R 10 is hydrogen, Ci-Cg-alkyl, Ci-Cg-haloalkyl, C 3 -C 6 -cycloalkyl, C 3 -Cg-alkenyl, C 3 -Cg-alkynyl, -C-C 6 -alkoxy-xy-Ci -Cg-alkyl, cyano-Ci-Cg-alkyl, (-C-Cg-alkoxy) carbonyl-Ci-Cg-alkyl or phenylalkyl, the phenyl ring being mono- to triple by halogen, cyano, nitro, -C-C 3 alkyl , C ⁇ -C3 alkoxy may be substituted 3 haloalkyl or C ⁇ -C;
  • R 11 is hydrogen, Ci-Cg-alkyl, C 3 -C 6 cycloalkyl, C 3 -C 6 alkenyl, C 3 -C 6 alkynyl, Ci-Cg-
  • Phenyl or benzyl which is unsubstituted or substituted on the phenyl ring once to three times by halogen, cyano, nitro, C ⁇ -C 3 -alkyl, C 3 haloalkyl or C ⁇ -C3 alkoxy may be substituted;
  • R 11 has the meanings given for R 11 , with the exception of hydrogen;
  • R 12 is hydrogen, hydroxy, Ci-Cg-alkyl, C 3 -C 7 cycloalkyl, C 3 -C 6 cycloalkylaminocarbonyl, Ci-Cg-alkylaminocarbonyl, Ci-Cg-alkoxy, (C ⁇ -C 3 -alkoxy) carbonyl- -C-C 3 alkoxy, C 3 -C 6 alkenyl, C 3 -Cg alkenyloxy, C 3 -C 6 alkynyl or C 3 -Cg alkynyloxy;
  • R 13 is hydrogen, halogen, Ci-Cg-alkyl, Ci-Cg-haloalkyl,
  • R 14 is hydrogen, cyano, Ci-Cg-alkyl, Ci-Cg-haloalkyl, C 2 -C 6 -alkenyl, C 2 -Cg-alkynyl, Ci-Cg-alkoxy-Ci-Cg-alkyl or (Ci-Cg- Alkoxy) carbonyl;
  • R 15 is hydrogen, Ci-Cg-alkyl, C 3 -C 6 alkenyl, C 3 -CG alkynyl, C 3 -C 6 cycloalkyl, Ci-Cg-haloalkyl, C ⁇ -C 6 -alcohol xy-Ci Cg-alkyl, Ci-Cg-alkoxy, (-C-Cg-alkoxy) carbonyl-C ⁇ -C 6 alkyl,
  • Phenyl or phenyl- (Ci-Cg-alkyl), which latter two phenyl radicals substituted by halogen, cyano, nitro, C ⁇ -C 3 -alkyl, C 3 haloalkyl, C ⁇ -C3 alkoxy or (C ⁇ -C 3 -Alkoxy) carbonyl may be substituted; R 16 , R 17 independently of one another Ci-Cg-alkyl, Ci-Cg-haloalkyl, C 3 -C 6 alkenyl, C 3 -Cg alkynyl, -C-Cg-alkoxy-C ⁇ -Cg-alkyl, or
  • R 18 is hydrogen, cyano, halogen, Ci-Cg-alkyl, Ci-Cg-haloalkyl or Ci-Cg-alkoxy;
  • R 19 is hydrogen, OR 28 , SR 28 , Ci-Cg-alkyl, which can also carry one or two Ci-Cg-alkoxy substituents, C-Cg-alkenyl, C 2 -Cg-alkynyl, Ci-Cg-haloalkyl or C 3 -cg cycloalkyl;
  • R 20 is hydrogen, cyano, halogen, Ci-Cg-alkyl, C 3 -Cg-alkenyl or C 3 -Cg-alkynyl;
  • R 22 is hydrogen, cyano or Ci-Cg-alkyl
  • R2 3 ; R2 8 independently of one another hydrogen, Ci-Cg-alkyl,
  • R 24 , R 25 , R 26 , R 27 independently of one another are hydrogen
  • Ci-Cg-alkyl C 3 -C 6 alkenyl, C 2 -C 6 alkynyl, C 3 -Cg-cycloalkyl, Ci-Cg-haloalkyl, Ci-Cg-alkoxy-Ci-Cg-alkyl, Ci -Cg-alkylcarbonyl, (Ci-Cg-alkoxy) carbonyl, or
  • R 24 and R 25 and / or R 26 and R 29 together with the respective common nitrogen atom for a saturated or unsaturated 4- to 7-membered azaheterocycle which, if desired, can contain an oxygen atom or an —NH group in addition to carbon ring members;
  • R 10 to R 19 and R 23 to R 25 have the meanings given above, and in particular have the meanings mentioned below:
  • R 13 is hydrogen, Ci-Cg-alkyl, Ci-Cg-alkoxy, C 3 -Cg-alkenyloxy, C 3 -Cg-alkynyloxy, C ⁇ -Cg-alkoxycarbonyl-C ⁇ -Cg-alkyl and C ⁇ -Cg-alkoxycarbonyl-C ⁇ - cg-alkoxy;
  • R 14 is hydrogen, Ci-Cg-alkyl
  • R 16 and R 17 independently of one another Ci-Cg-alkyl
  • R 18 is hydrogen, halogen, Ci-Cg-alkyl
  • R 19 is hydroxy, Ci-Cg-alkoxy, Ci-Cg-AlkyIthio, Ci-Cg-alkoxycarbonyl-Ci-Cg-alkyl;
  • R 23 Ci-Cg-alkyl, C 3 -Cg-haloalkyl, C 3 -C 6 -alkenyl, C 3 -C 6 -alkynyl, C 3 -Cg -alkenyloxy, C 3 -C 6 -alkynyloxy, Ci- Cg-alkoxy-carbonyl-Ci-Cg-alkyl, C 3 -Cg-alkenyloxycarbonyl-C ⁇ -Cg-al- kyl, C 3 -Cg-alkynyloxycarbonyl -CC-C 6 alkyl, Ci-Cg-alkoxyalkyl;
  • R 24 is hydrogen, Ci-Cg-alkyl
  • R 25 is hydrogen, Ci-Cg-alkyl, Ci-Cg-alkoxy, or
  • R 24 and R 25 together form a 6-membered, saturated azaheterocycle which may have one or two non-adjacent oxygen atoms in the ring.
  • R 30 preferably has the meanings given as preferred in the case of the isothiocyanates IVc.
  • R 30 in Q-7 stands for:
  • a special class relates to compounds Ia, in which Q is Q-1, W is sulfur and X is oxygen or sulfur.
  • the variables have the meanings mentioned above, and particularly preferably the following meanings:
  • n has the value 0,
  • R 3 is hydrogen or halogen, in particular fluorine or chlorine
  • R 4 is hydrogen, halogen, in particular fluorine or chlorine or cyano
  • R 13 is hydrogen, Ci-Cg-alkyl, Ci-Cg-alkoxy, Ci-Cg-alkoxycarbonyl-Ci-Cg-alkyl, -C-Cg-alkoxycarbonyl-C ⁇ -Cg-alkoxy and
  • R 14 is hydrogen, Ci-Cg-alkyl
  • R 18 is hydrogen, halogen, Ci-Cg-alkyl
  • R 19 is hydroxy, Ci-Cg-alkoxy, Ci-Cg-AlkyIthio, Ci-Cg-alkoxycarbonyl-Ci-Cg-alkyl;
  • R 23 Ci-Cg-alkyl, C 3 -Cg-haloalkyl, C 3 -C 6 -alkenyl, C 3 -C 6 -alkynyl, Ci-Cg-alkoxycarbonyl-Ci-Cg-alkyl, C 3 -Cg- Alkenyloxy-carbonyl-Ci-Cg-alkyl, C 3 -C 6 -alkynyloxycarbonyl-C ⁇ -Cg-alkyl, Ci-Cg-alkoxyalkyl;
  • R 24 is hydrogen, Ci-Cg-alkyl
  • R 25 is hydrogen, Ci-Cg-alkyl, Ci-Cg-alkoxy, or R 24 and R 25 together form a 6-membered, saturated azaheterocycle which optionally has one or two non-adjacent oxygen atoms in the ring.
  • R 5 has the following meaning:
  • R 5 COOH, -C-C 4 alkoxyiminomethyl, -C -C alkoxy, C 3 -C 6 cycloalkyloxy, C 3 -C 6 alkenyloxy, C 3 -C 6 alkynyloxy, C 3 -Cg- Alkenyloxyiminomethyl, (-C-C 4 -alkoxycarbonyl) -C 2 -Cg-alkenyloxy, C 3 -C 6 -alkynyloxyiminomethyl, 2- [C ⁇ -C 4 -alkoxycarbonyl] -2-chloroethyl, 2- [C ⁇ - C 4 -alkoxycarbonyl] -2-chloroethenyl, -C-C 4 -alkoxy-carbonyl, (Ci-Cg-alkoxycarbonyl) - -CC 4 -alkoxy, (C ⁇ -Cg-alkoxycarbonyl) -C ⁇ -C-C-
  • n has the value 0,
  • R 3 is hydrogen or halogen
  • R 4 is hydrogen or halogen
  • U is a single bond, oxygen or -CC 4 alkylene
  • R 6 is hydrogen, halogen, cyano, Ci-Cg-alkyl, Ci-Cg-haloalkyl, C 3 -C 7 cycloalkyl, saturated C 3 -C 7 heterocyclyl, which has one or two heteroatoms selected from oxygen and sulfur in the ring , Ci-Cg-alkoxyalkyl, cyano-Ci-Cg-alkyl, C0 2 H, Ci-Cg-alkoxycarbonyl and C ⁇ -Cg-alkoxycarbonyl-C ⁇ -Cg-alkyl, C 3 -Cg alkenyl or C 3 -Cg alkynyl.
  • n has the value 0,
  • R 3 is hydrogen or halogen
  • T is a single bond, oxygen or -CC 4 alkylene
  • R 7 is hydrogen, halogen, cyano, Ci-Cg-alkyl, Ci-Cg-haloalkyl, C 3 -C 7 cycloalkyl, saturated C 3 -C 7 heterocyclyl, which has one or two heteroatoms selected from oxygen and sulfur in the ring , Ci-Cg-alkoxyalkyl, cyano-Ci-Cg-alkyl, C0 2 H, Ci-Cg-alkoxycarbonyl and C ⁇ -Cg-alkoxycarbonyl-C ⁇ -Cg-alkyl, C 3 -Cg-alkenyl or C 3 -Cg-alkynyl ,
  • Another class relates to compounds of the general formulas Ia, in which Q is Q-6.
  • the variables have the aforementioned meanings and, independently of one another, have the following meanings:
  • n has the value 0,
  • R 3 is hydrogen or halogen
  • R 4 is hydrogen or halogen
  • R 8 and R 9 independently of one another are hydrogen, Ci-Cg-alkyl, halogen, cycloalkyl or Ci-Cg-haloalkyl, or
  • R 8 and R 9 together with the carbon atom to which they are attached mean a carbonyl group.
  • a special class relates to compounds of the general formula Ia, in which n, R a , Z 1 , X and W have the abovementioned meanings and Q represents the radical Q-7 defined above.
  • Preferred among these compounds are those in which the variables n, R a , Z 1 , X and W independently of one another, preferably in combination, have the following meanings:
  • n has the value 0,
  • R3 preferably represents halogen, in particular fluorine or chlorine.
  • R 30 has the meanings given above, in particular the meanings given as preferred:
  • R 30 in Q-7 stands for:
  • R 30 particularly preferably represents one of the following radicals:
  • Particularly preferred compounds of the general formula Ia are compounds of the formula Ia-1, in which R 3 , R 4 and R 5 have the meanings listed in one row of Table 1 (compounds Ia-1.1 to Ia-1.206).
  • Particularly preferred compounds of the general formula Ia are also compounds of the formula Ia-2, in which R 3 , R 4 and R 5 have the meanings listed in one row of Table 1 (compounds Ia-2.1 to la-2.206).
  • Particularly preferred compounds of the general formula Ia are also compounds of the formula Ia-3, in which R 3 , R 4 and R 5 have the meanings listed in one row of Table 1 (compounds Ia-3.1 to Ia-3.206).
  • Particularly preferred compounds of the general formula Ia are furthermore compounds of the formula Ia-4, in which R 3 , R 4 and R 5 have the meanings listed in one row of Table 1 (compounds Ia-4.1 to Ia-4.206).
  • Particularly preferred compounds of the general formula Ia are compounds of the formulas Ia-52 and Ia-53 below, in which Q is Q-6, and Z 1 , X, R 4 , R 8 and R 9 are those listed in one row of Table 4 Have meanings (compounds Ia-52.1 to Ia-52.168 and Ia-53.1 to Ia-53.168)
  • Particularly preferred compounds of the general formula Ia are furthermore compounds of the formulas Ia-54 to la-57 below, in which Q is Q-7 and Z 1 , X and R 30 have the meanings listed in one row of Table 5 (compounds Ia-54.1 to la-57.56)
  • the new compounds Ia and their agriculturally useful salts are suitable - both as isomer mixtures and in the form of the pure isomers - as herbicides.
  • Herbicidal agents which contain compounds Ia, control plant growth on non-cultivated areas very well, especially at high application rates. In crops such as wheat, rice, corn, soybeans and cotton, they act against weeds and grass weeds without significantly damaging the crop plants. This effect occurs especially at low application rates.
  • the compounds generally or compositions containing them can also be used in a further number of crop plants for eliminating undesirable plants.
  • the following crops are considered, for example: Allium cepa, pineapple comosus, Arachis hypogaea, Asparagus officinalis, Beta vulgaris spec. altissima, Beta vulgaris spec. rapa, Brassica napus var. napus, Brassica napus var. napobrassica, Brassica rapa var.
  • the compounds Ia can also be used in crops which are tolerant to the action of herbicides by breeding, including genetic engineering methods.
  • the fused triazoles Ia are also suitable for the desiccation and / or defoliation of plants.
  • desiccants are particularly suitable for drying out the aerial parts of crops such as potatoes, rapeseed, sunflower and soybeans. This enables a fully mechanical harvesting of these important crops.
  • the compounds Ia or the compositions comprising them can be sprayed, for example in the form of directly sprayable aqueous solutions, powders, suspensions, including high-strength aqueous, oily or other suspensions or dispersions, emulsions, oil dispersions, pastes, dusts, sprinkles or granules. Misting, dusting, scattering, watering or treating the seed or mixing with the seed can be used.
  • the application forms depend on the purposes; in any case, they should ensure the finest possible distribution of the active compounds according to the invention.
  • the herbicidal compositions comprise a herbicidally effective amount of at least one compound of the formula Ia or an agriculturally useful salt of Ia and auxiliaries customary for the formulation of crop protection agents.
  • mineral oil fractions of medium to high boiling point such as kerosene or diesel oil, also coal tar oils and oils of vegetable or animal origin, aliphatic, cyclic and aromatic hydrocarbons, e.g. Paraffin, tetrahydronaphthalene, alkylated naphthalenes or their derivatives, alkylated benzenes or their derivatives, alcohols such as methanol, ethanol, propanol, butanol, cyclohexanol, ketones such as cyclohexanone or strongly polar solvents, e.g. B. amines such as N-methylpyrrolidone or water.
  • mineral oil fractions of medium to high boiling point such as kerosene or diesel oil, also coal tar oils and oils of vegetable or animal origin
  • aliphatic, cyclic and aromatic hydrocarbons e.g. Paraffin, tetrahydronaphthalene, alkylated naphthalenes or their derivatives, al
  • Aqueous use forms can be prepared from emulsion concentrates, suspensions, pastes, wettable powders or water-dispersible granules by adding water.
  • the fused triazoles Ia as such or dissolved in an oil or solvent can be homogenized in water by means of wetting agents, adhesives, dispersants or emulsifiers.
  • concentrates consisting of an active substance, wetting agent, tackifier, dispersant or emulsifier and possibly solvent or oil, which are suitable for dilution with water.
  • the surface-active substances are the alkali metal, alkaline earth metal, ammonium salts of aromatic sulfonic acids, for example lignin, phenol, naphthalene and dibutylnaphthalenesulfonic acid, and of fatty acids, alkyl and alkylarylsulfonates, alkyl, lauryl ether and fatty alcohol sulfates, and salts of sulfated Hexa-, hepta- and octadecanols as well as fatty alcohol glycol ether, condensation products of sulfonated naphthalene and its derivatives with formaldehyde, condensation products of naphthalene or naphthalene sulfonic acids with phenol and formaldehyde, polyoxyethylene octylphenol ether, ethoxylated isooctyl, octyl or nonyl phenol kylphenyl, tributylphen
  • Powders, materials for broadcasting and dusts can be prepared by mixing or grinding the active substances together with a solid carrier.
  • Granules e.g. Coated, impregnated and homogeneous granules can be produced by binding the active ingredients to solid carriers.
  • Solid carriers are mineral soils such as silicas, silica gels, silicates, talc, kaolin, limestone, lime, chalk, bolus, loess, clay, dolomite, diatomaceous earth, calcium and magnesium sulfate, magnesium oxide, ground plastics, fertilizers such as ammonium sulfate, ammonium phosphate, Ammonium nitrate, ureas and vegetable products such as corn flour, tree bark, wood and nutshell flour, cellulose powder or other solid carriers.
  • the concentrations of the active ingredients Ia in the ready-to-use preparations can be varied over a wide range.
  • the formulations generally contain 0.001 to 98% by weight, preferably 0.01 to 95% by weight, of at least one active ingredient.
  • the active ingredients are used in a purity of 90% to 100%, preferably 95% to 100% (according to the NMR spectrum).
  • the compounds according to the invention can be formulated, for example, as follows:
  • I 20 parts by weight of the compound from Example 8 are dissolved in a mixture consisting of 80 parts by weight of alkylated benzene, 10 parts by weight of the adduct of 8 to 10 moles of ethylene oxide and 1 mole of oleic acid-N-monoethanolamide, 5 parts by weight of calcium salt the dodecylbenzenesulfonic acid and 5 parts by weight of the adduct of 40 moles of ethylene oxide and 1 mole of castor oil.
  • aqueous dispersion is obtained which contains 0.02% by weight of the active ingredient.
  • Example III 20 parts by weight of the active ingredient from Example 30 (see Table 10) are dissolved in a mixture consisting of 25 parts by weight of cyclohexanone, 65 parts by weight of a mineral oil fraction with a boiling point of 210 to 280 ° C. and 10 parts by weight of the adduct of 40 moles of ethylene oxide and 1 mole Castor oil is made up. Pouring the solution into 100,000 parts by weight of water and finely distributing it therein gives an aqueous dispersion which contains 0.02% by weight of the active ingredient.
  • Example 123 20 parts by weight of the active ingredient from Example 123 (see Table 11) are mixed well with 3 parts by weight of the sodium salt of diisobutylnaphthalenesulfonic acid, 17 parts by weight of the sodium salt of a lignosulfonic acid from a sulfite waste liquor and 60 parts by weight of powdered silica gel and ground in a hammer mill. By finely distributing the mixture in 20,000 parts by weight of water, a spray liquor is obtained which contains 0.1% by weight of the active ingredient.
  • V 3 parts by weight of the active ingredient from Example 3 are mixed with 97 parts by weight of finely divided kaolin. In this way a dust is obtained which contains 3% by weight of the active ingredient.
  • VI 20 parts by weight of the active ingredient from Example 26 are intimately mixed with 2 parts by weight of calcium salt of dodecylbenzenesulfonic acid, 8 parts by weight of fatty alcohol polyglycol ether, 2 parts by weight of sodium salt of a phenol-urea-formaldehyde condesate and 68 parts by weight of a paraffinic mineral oil , A stable oily dispersion is obtained.
  • the herbicidal compositions or the active compounds can be applied pre-emergence, post-emergence or together with the seeds of a crop. There is also the possibility of applying the herbicidal compositions or active ingredients by spreading seeds of a crop plant which have been pretreated with the herbicidal compositions or active ingredients.
  • active ingredients are less compatible for certain crop plants, application techniques can be used in which the herbicidal compositions are sprayed with the aid of sprayers in such a way that the leaves of the sensitive crop plants are not hit wherever possible, while the active ingredients are applied to the leaves of undesirable plants growing below them or the uncovered floor area (post-directed, lay-by).
  • the application rates of active ingredient are 0.001 to 3.0, preferably 0.01 to 1.0 kg / ha of active substance (a.s.), depending on the control target, the season, target plants and growth stage.
  • the fused triazoles of the formula Ia can be mixed with numerous representatives of other herbicidal or growth-regulating active compound groups and applied together.
  • Comparative Example 1 Reaction of 4- [(4-chloro-2-fluoro-5-methoxy-anilino) carbonyl] -1, 3,4-oxadiazinane with thiophosgene in pypridine under normal pressure.
  • Comparative Example 2 Reaction of 4 [(2,4-dichloro-5-methoxy-anilino) carbonyl] -1, 3,4-oxadiazinane with thiophosgene under pressure.
  • Example 1 2- [2,4-dichloro-5-propynyloxyphenyl] -3-thioxotetrahyroid-1H- [1,2,4] triazolo [1,2-c] [1,3,4] oxadiazine -l-on 3.5 g (8.657 mmol) of 3- [(2,4-dichloro-5-propynyloxyanilino) carbothioyl] -1.3.4-oxadiazinan-4-carboxylic acid methyl ester were placed in a mixture of 200 ml of methanol and 70 ml of water. 1.00 g (9.523 mol) of tri-5-ethylamine was added at 22 ° C. with stirring.
  • Example 4 2- [4-chloro-2-fluoro-5- (1-methoxycarbonyl-ethyl-l thio) phenyl] 3-thioxotetrahydro-IH- [1,2,4] triazolo [1,2-c] [ 1,3,4] oxadiazin-l-one 45
  • Example 4 2- [4-chloro-2-fluoro-5- (1-methoxycarbonyl-ethyl-l thio) phenyl] 3-thioxotetrahydro-IH- [1,2,4] triazolo [1,2-c] [ 1,3,4] oxadiazin-l-one 45
  • Example 4 2- [4-chloro-2-fluoro-5- (1-methoxycarbonyl-ethyl-l thio) phenyl] 3-thioxotetrahydro-IH- [1,2,4] triazolo [1,2-c] [ 1,3,4] oxadiazin-l-one 45
  • Process example 2 2- [4-chloro-2-fluoro-5- (2-propynyloxy) pheny1] tetrahydro-lH- [1,2,4] triazolo [1,2-c] [1,3 4] oxadiazin-l, 3-dione by phosgene cyclization.
  • Process example 3 2- [4-cyano-2-fluoro-5- (propargyloxy) phenyl] -3-thioxotetrahydro-lH- [1,2,4] -triazolo- [1,2-c] [1,3 4] -oxadiazin-1-one (compound 75 from Table 10) by alkylation of the corresponding phenol (compound 111 from Table 10).
  • Plastic pots with loamy sand with about 3.0% humus as substrate served as culture vessels.
  • the seeds of the test plants were sown separately according to species.
  • the active ingredients suspended or emulsified in water were applied directly after sowing using finely distributing nozzles.
  • the tubes were lightly sprinkled to promote germination and growth, and then covered with clear plastic covers until the plants had grown. This cover causes the test plants to germinate evenly, unless this was affected by the active ingredients.
  • test plants were first grown to a height of 3 to 15 cm and then treated with the active ingredients suspended or emulsified in water.
  • the test plants were either sown directly and grown in the same containers, or they were first grown separately as seedlings and transplanted into the test containers a few days before the treatment.
  • the application rate for post-emergence treatment was 62.5, 31.2, 15.6, 7.8 and 3.9 g a.S./ha.
  • the plants were kept at temperatures of 10 - 25 ° C or 20 - 35 ° C depending on the species.
  • the trial period lasted 2 to 4 weeks.
  • the plants were cared for and their response to each treatment was evaluated. Evaluation was carried out on a scale from 0 to 100. 100 means no emergence of the plants or complete destruction of at least the aerial parts and 0 means no damage or normal growth.
  • the plants used in the greenhouse experiments are composed of the following types:
  • the compound from Example 5 showed a very good herbicidal activity against ABUTH, AMARE, CHEAL and PHPBU at the rate of application of 7.8 and 3.9 g / ha aS
  • the compound from Example 104 showed a very good herbicidal activity against BIDPI, COMBE and POLPE at application rates of 15.6 and 7.8 g / ha aS
  • the compound from Example 26 showed a very good herbicidal activity against BIDPI, COMBE, GALAP and POLPE at a rate of 15.6 and 7.8 g / ha a.S.
  • the compound from Example 35 showed a very good herbicidal activity against BIDPI, COMBE, GALAP and POLPE at application rates of 7.8 and 3.9 g / ha a.S.
  • Example 96 The compound from Example 96 showed good to very good herbicidal activity against SETFA, COMBE and GALAP and POLPE at application rates of 31.2 and 62.5 g / ha a.S.
  • the comparative compound A showed a medium to good herbicidal activity against BIDPI, COMBE and POLPE at application rates of 15.6 and 7.8 g / ha a.S.
  • the comparative compound B showed a medium to poor herbicidal activity against BIDPI, COMBE, GALAP and POLPE at a rate of 15.6 and 7.8 g / ha a.S.
  • the comparative compound C showed a medium to good herbicidal activity against BIDPI, GALAP and POLPE at application rates of 7.8 and 3.9 g / ha a.S.
  • the comparative compound D showed a medium to moderate herbicidal activity against SETFA, COMBE and GALAP and POLPE at application rates of 31.2 and 62.5 g / ha a.S.
  • the young cotton plants were treated to runoff with aqueous preparations of the active compounds (with the addition of 0.15% by weight of the fatty alcohol alkoxylate Plurafac® LF 700, based on the spray mixture).
  • the amount of water applied was the equivalent of 1000 l / ha. After 13 days, the number of leaves dropped and the degree of defoliation in% were determined.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Environmental Sciences (AREA)
  • Plant Pathology (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Dentistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Agronomy & Crop Science (AREA)
  • Zoology (AREA)
  • Pest Control & Pesticides (AREA)
  • Plural Heterocyclic Compounds (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Nitrogen And Oxygen Or Sulfur-Condensed Heterocyclic Ring Systems (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Thiazole And Isothizaole Compounds (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung von anellierten Tetrahydro-[1H]-triazolen der Formel (I), worin die Variablen R?a, Z, Z1¿, X, W, n und Q die in Anspruch 1 gennanten Bedeutungen aufweisen, durch Cyclisierung von Verbindungen der allgemeinen Formel (II), worin R für C(X)OR2 oder C(X)SR2 steht, worin X für Sauerstoff oder Schwefel steht und R2 die in Anspruch 1 genannten Bedeutungen hat, in Gegenwart einer Base. Die Erfindung betrifft auch Verbindungen der allgemeinen Formel (I), worin W für Schwefel steht, wenn Z für eine gegebenenfalls durch Ra substituierte Methylengruppe steht, sowie weiterhin Verbindungen der Formel (I), worin Q für einen Benzoxazol- oder Benzothiazolrest steht und die Verwendungen dieser Verbindungen als Herbizide.

Description

Verfahren zur Herstellung anellierter Tetrahydro-[ lH]-triazole
Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung von anellierten Tetrahydro-[lH]-triazolen der Formel I
worin die Variablen Ra, , X, n und Q die folgenden Bedeutungen aufweisen:
Ra Hydroxy, C02R1, Halogen, Cyano, C(0)N(R1) , wobei die Reste R1 gegebenenfalls voneinander verschieden sind, ORla, Ci-Cö-Alkyl, Cι-C6-Halogenalkyl, C3-C6-Alkenyl, C3-C6-Alkinyl, COR1, S(0)nR1 mit n = 0, 1 oder 2 oder C(0)SR1; worin
R1 Wasserstoff, Ci-Cg-Alkyl, Cι-C6-Halogenalkyl, Cι-C3-Alko- xy-Cι-C3-alkyl, C3-C6-Alkenyl oder C3-C6-Alkinyl; und
Rla Cι-C6-Alkyl, C3-C6-Alkenyl, C3-C6-Alkinyl, die teilweise oder vollständig halogeniert oder substituiert sein können, C3-C6-Cycloalkyl, Benzyl oder Phenethyl die am Phe- nylring substituiert sein können, sowie gegebenenfalls substituiertes Phenyl oder gegebenenfalls substituiertes Pyridyl; bedeuten,
n den Wert 0, 1, 2 oder 3;
X,W unabhängig voneinander S oder O;
Q Phenyl, das 1, 2, 3 oder 4 Substituenten aufweist, wobei zwei an benachbarte Kohlenstoffatome gebundene Substituenten mit diesen Atomen auch einen 5- oder 6-gliedrigen gesättigten oder ungesättigten Carbocyclus oder einen 5- oder 6-gliedri- gen gesättigten oder ungesättigten Heterocyclus bilden können, der 1, 2 oder 3 Heteroato e, ausgewählt unter O, N und S aufweist und der seinerseits substituiert oder unsubstituiert sein kann; worin eine der Gruppen Z oder Z1 für eine Methylengruppe, die gegebenenfalls durch Ra substituiert ist, und die andere Gruppe Z oder Z1 für 0, S, S=0 oder S02 steht.
Die WO 94/10173 und die WO 00/01700 beschreiben ein Verfahren zur Herstellung von anellierten Tetrahydro-[lH]-triazolen der Formel b (im Folgenden auch als Triazolindione bezeichnet), bei dem man gemäss Schema 1 einen substituierten Harnstoff der Formel a mit Phosgen oder einem Phosgenersatz wie Diphosgen cyclisiert. In Schema 1 steht Ph für einen substituierten Phenylring. X bedeutet Sauerstoff oder Schwefel. Die Verwendung von Phosgen ist jedoch aufgrund seiner hohen Giftigkeit problematisch.
Schema 1:
Nachteilig ist ausserdem, dass sich auf diesem Wege keine Deri- vate b' des Triazolindions b herstellen lassen, in denen die Car- bonylgruppe im Triazolring durch eine Thiocarbonylgruppe ersetzt ist. Beispielsweise gelang es nicht, die Verbindung a aus Schema 1 in Analogie zu dem in WO 94/10173 und WO 00/01700 beschriebenen Verfahren mit Thiophosgen oder einem Thiophosgenäquivalent zu der in Schema 2 gezeigten Verbindung b' zu cyclisieren. Darüber hinausgehende Versuche der Anmelderin haben gezeigt, dass es selbst mit besonders effektiven Schwefelungsmitteln wie Phosphorpenta- sulfid/Natriumcarbonat (siehe Denis Brillon, Synth. Commun. 20, (1990) S. 3085) nicht gelingt, Triazolindione b gemäss Schema 2 in die entsprechenden Thiocarbonylverbindungen der Formel b' umzuwandeln.
Schema 2 :
Der vorliegenden Erfindung lag somit die Aufgabe zugrunde, ein Verfahren zur Herstellung der eingangs definierten Verbindungen der Formel I bereitzustellen, das ohne Phosgen oder einen Phosgenersatz auskommt.
Diese Aufgabe konnte überraschenderweise dadurch gelöst werden, dass man substituierte Harnstoffderivate der allgemeinen Formel II,
worin die Variablen R , Z, Z1, W, n und Q die zuvor genannten Bedeutungen aufweisen und
R für C(X)OR2 oder C(X)SR2 steht, worin
X Sauerstoff oder Schwefel und
R2 Cι-C6-Alkyl, C3-C8-Cycloalkyl, C2-C6-Alkenyl, C3-C6-Alki- nyl, die teilweise oder vollständig halogeniert oder die substituiert sein können, P(0)(OR1)2, Aryl oder Heteroa- ryl, die gegebenenfalls substituiert sein können, bedeuten und R1 die zuvor genannten Bedeutungen aufweist;
mit einer Base umsetzt.
Demnach betrifft die vorliegende Erfindung ein Verfahren zur Herstellung von Verbindungen der vorstehend definierten Formel I, das dadurch gekennzeichnet ist, dass man eine Verbindung II mit einer Base umsetzt.
Die als Ausgangverbindungen eingesetzten substituierten Harnstoffe der allgemeinen Formel II sind Gegenstand der älteren Internationalen Anmeldung PCT/EP 00/05794, auf die hiermit Bezug genommen wird.
Die bei der Definintion von Ra' R1 bis R28 sowie an Phenyl-, Cy- cloalkyl- und HeterocyclyIringen genannten organischen Molekülteile stellen Sammelbegriffe für individuelle Aufzählungen der einzelnen Gruppenmitglieder dar. Sämtliche Kohlenstoff etten, also alle (gegebenenfalls substituierten) Alkyl-, Alkenyl- oder Alkinyl-Teile können geradkettig oder verzweigt sein. Haloge- nierte Substituenten tragen vorzugsweise ein bis fünf gleiche oder verschiedene Halogenatome.
Die Bedeutung Halogen steht jeweils für Fluor, Brom, Chlor oder Iod, insbesondere für Fluor oder Chlor.
Ferner stehen beispielsweise:
Cι-C4-Alkyl für CH3, C2H5, n-Propyl, CH(CH3)2, n-Butyl, CH(CH3)-C2H5, 2-Methylpropyl oder C(CH3)3, insbesondere für CH3, C2H5 oder CH(CH3)2;
Cχ-C -Halogenalkyl für: einen Cι-C-Alkylrest wie vorstehend genannt, der partiell oder vollständig durch Fluor, Chlor, Brom und/oder Iod substituiert ist, also z. B. CH2F, CHF2,
CF3, CH2C1, Dichlor ethyl, Trichlormethyl, Chlorfluormethyl, Dichlorfluormethyl, Chlordifluor ethyl, 2-Fluorethyl, 2-Chlo- rethyl, 2-Bromethyl, 2-Iodethyl, 2 2-Difluorethyl, 2,2,2-Tri- fluorethyl, 2-Chlor-2-fluorethyl, 2-Chlor-2,2-difluorethyl, 2,2-Dichlor-2-fluorethyl, 2,2,2-Trichlorethyl, C2F5, 2-Fluor- propyl, 3-Fluorpropyl, 2,2-Difluorpropyl, 2,3-Difluorpropyl, 2-Chlorpropyl, 3-Chlorpropyl, 2,3-Dichlorpropyl, 2-Brompro- pyl, 3-Brompropyl, 3,3,3-Tri luorpropyl, 3,3,3-Trichlorpor- pyl, 2,2,3,3,3-Pentafluorpropyl, Heptafluorpropyl, l-(Fluor- methyl)-2-fluorethyl, l-(Chlormethyl) -2-chlorethyl, l-(Brom- methyl)-2-bromethyl, 4-Fluorbutyl, 4-Chlorbutyl, 4-Brombutyl oder Nonafluorbutyl, insbesondere für CH2F, CHF2, CF3, CH2C1, 2-Fluorethyl, 2-Chlorethyl oder 2,2,2-Trifluorethyl;
- Ci-Cö-Alkyl für: Cχ-C-Alkyl wie vorstehend genannt, sowie z.B. n-Pentyl, 1-Methylbutyl, 2-Methylbutyl, 3-Methylbutyl, 2,2-Dimethylpropyl, 1-Ethylpropyl, n-Hexyl, 1, 1-Dimethylpro- pyl, 1,2-Dimethylpropyl, 1-Methylpentyl, 2-Methylpentyl, 3-Methylpentyl, 4-Methylpentyl, 1, 1-Dimethylbutyl, 1,2-Dime- thylbutyl, 1,3-Dimethylbutyl, 2,2-Dimethylbutyl, 2,3-Dime- thylbutyl, 3,3-Dimethylbutyl, 1-Ethylbutyl, 2-Ethylbutyl, 1, 1,2-Trimethylpropyl, 1,2,2-Trimethylpropyl, 1-Ethyl-l-me- thylpropyl oder l-Ethyl-2-methylpropyl, insbesondere für CH3, C2H5, n-Propyl, CH(CH3)2, n-Butyl, C(CH3)3, n-Pentyl oder n-Hexyl ;
Ci-Cβ-Halogenalkyl für: Cι-C6-Alkyl wie vorstehend genannt, das partiell oder vollständig durch Fluor, Chlor, Brom und/ Iod substituiert ist, also z.B. einen der unter Cι-C -Haloge- nalkyl genannten Reste oder für 5-Fluor-l-pentyl,
5-Chlor-l-pentyl, 5-Brom-l-pentyl, 5- od-l-pentyl, 5,5,5-Tri- chlor-1-pentyl, Undecafluorpentyl, 6-Fluor-l-hexyl, 6-Chlor- 1-hexyl, 6-Brom-l-hexyl, 6-Iod-l-hexyl, 6, 6,6-Trichlor-l- hexyl oder Dodecafluorhexyl, insbesondere für Chlormethyl, Fluormethyl, Difluormethyl, Trifluormethyl, 2-Fluorethyl, 2-Chlorethyl oder 2,2,2-Trifluorethyl;
Hydroxy-Cι-C6-alkyl für: z.B. Hydroxymethyl, 2-Hydroxyeth- 1-yl, 2-Hydroxy-prop-l-yl, 3-Hydroxy-prop-l-yl, 1-Hydroxy- prop-2-yl, 2-Hydroxy-but-l-yl, 3-Hydroxy-but-l-yl, 4-Hydroxy- but-l-yl, l-Hydroxy-but-2-yl, l-Hydroxy-but-3-yl, 2-Hydroxy- but-3-yl, l-Hydroxy-2-methyl-prop-3-yl, 2-Hydroxy-2-methyl- prop-3-yl oder 2-Hydroxymethyl-prop-2-yl, insbesondere für 2-Hydroxyethyl;
Cyano-Cι-C6-alkyl für: z.B. Cyanomethyl, 1-Cyanoeth-l-yl, 2-Cyanoeth-l-yl, 1-Cyanoprop-l-yl, 2-Cyanoprop-l-yl, 3-Cyano- prop-1-yl, l-Cyanoprop-2-yl, 2-Cyanoprop-2-yl, 1-Cyanobut- 1-yl, 2-Cyanobut-l-yl, 3-Cyanobut-l-yl, 4-Cyanobut-l-yl, l-Cyanobut-2-yl, 2-Cyanobut-2-ylr l-Cyanobut-3-yl, 2-Cyano- but-3-yl, l-Cyano-2-methyl-prop-3-yl, 2-Cyano-2-methyl- prop-3-yl, 3-Cyano-2-methyl-prop-3-yl oder 2-Cyanomethyl- prop-2-yl, insbesondere für Cyanomethyl oder 2-Cyanoethyl;
Phenyl-Cι-C6-alkyl für: z.B. Benzyl, 1-Phenylethyl, 2-Phenyl- ethyl, 1-Phenylprop-l-yl, 2-Phenylprop-l-yl, 3-Phenylprop- 1-yl, 1-Phenylbut-l-yl, 2-Phenylbut-l-yl, 3-Phenylbut-l-yl, 4-Phenylbut-l-yl, l-Phenylbut-2-yl, 2-Phenylbut-2-yl, 3-Phenylbut-2-yl, 4-Phenylbut-2-yl, l-(Phenylmethyl)-eth- 1-yl, l-(Phenylmethyl)-l-(methyl)-eth-l-yl oder l-(Phenyl- methyl)-prop-l-ylf insbesondere für Benzyl oder 2-Phenyl- ethyl;
Phenyl- (Cι-C6-alkyl)carbonyloxy für: z.B. Benzylcarbonyloxy, 1-Phenylethylcarbonyloxy, 2-Phenylethylcarbonyloxy, 1-Phenyl- prop-1-ylcarbonyloxy, 2-Phenylprop-l-ylcarbonyloxy, 3-Phenyl- prop-1-ylcarbonyloxy, 1-Phenylbut-l-ylcarbonyloxy, 2-Phenyl- but-1-ylcarbonyloxy, 3-Phenylbut-l-ylcarbonyloxy, 4-Phenyl- but-1-ylcarbonyloxy, l-Phenylbut-2-ylcarbonyloxy, 2-Phenyl- but-2-ylcarbonyloxy, 3-Phenylbut-2-ylcarbonyloxy, 4-Phenyl- but-2-ylcarbon loxy, 1-(Phenylmethy1) -eth-1-ylcarbonyloxy, 1- (Phenylmethyl)-l-(methyl)-eth-l-ylcarbonyloxy oder l-(Phenylmethyl)-prop-l-ylcarbonyloxy, insbesondere für Benzylcarbonyloxy oder 2-Phenylethylcarbonyloxy;
Phenyl-Ci-Cg-alkylsulfonyloxy für: z.B. Benzylsulfonyloxy, 1-Phenylethylsulfonyloxy, 2-Phenylethylsulfonyloxy, 1-Phenyl- prop-1-ylsulfonyloxy, 2-Phenylprop-l-ylsulfonyloxy, 3-Phenyl- prop-1-ylsulfonyloxy, 1-Phenylbut-l-ylsulfonyloxy, 2-Phenyl- but-1-ylsulfonyloxy, 3-Phenylbut-l-ylsulfonyloxy, 4-Phenyl- but-1-ylsulfonyloxy, l-Phenylbut-2-ylsulfonyloxy, 2-Phenyl- but-2-ylsulfonyloxy, 3-Phenylbut-2-ylsulfonyloxy, 4-Phenyl- but-2-ylsulfon loxy, 1-(Phen lmethyl)-eth-l-ylsulfonyloxy, l-(Phenylmethyl)-l-(methyl)-eth-l-ylsulfonyloxy oder
1- (Phenylmethyl)-prop-l-ylsulfonyloxy, insbesondere für Benzylsulfonyloxy oder 2-Phenylethylsulfonyloxy;
(Cι-C6-Alkyl)carbonyl für: CO-CH3, C0-CH5,, n-Propylcarbonyl, i-Methylethylcarbonyl, n-Butylcarbonyl, 1-Methylpropyl- carbonyl, 2-Methylpropylcarbonyl, 1,1-Dimethylethylcarbonyl, n-Pentylcarbonyl, 1-Methylbutylcarbon 1, 2-Methylbutyl- carbonyl, 3-Methylbutylcarbony1, 1, 1-Dimethylprop lcarbony1, 1 ,2-Dimethylpropylcarbony1, 2 , 2-Di ethylpropylcarbony1, 1-Ethylpropylcarbony1, n-Hexylcarbonyl, 1-Methylpentyl- carbonyl, 2-Methylpentylcarbony1, 3-Methylpentylcarbonyl, 4-Methylpentylcarbonyl, 1 , 1-Dimethylbutylcarbony1, 1,2-Dimethylbutylcarbony1, 1, 3-Dimethylbutylcarbony1, 2 ,2-Dimethylbutylcarbony1, 2,3-Dimethylbutylcarbony1, 3,3-Dimethylbutylcarbonyl, 1-Ethylbutylcarbony1, 2-Ethyl- butylcarbonyl, 1, 1,2-Trimethylpropylcarbonyl, 1,2,2-Tri- ethylpropylcarbonyl, 1-Ethyl-1-methylpropylcarbony1 oder l-Ethyl-2-methylpropylcarbonyl, insbesondere für C0-CH3, C0-C2H5 oder C0-CH(CH3)2;
(Cι-C6-Alkyl)carbonyl-Cι-C6-alkyl für: durch (Cι-C6-Alkyl)- carbonyl wie vorstehend genannt substituiertes Ci-Cö-Alkyl, also z.B. für Methylcarbonylmethyl ;
(Ci-Cβ-Halogenalkyl)carbonyl für: einen (Ci-Cg-Alkyljcarbonyl- rest wie vorstehend genannt, der partiell oder vollständig durch Fluor, Chlor, Brom und/oder Iod substituiert ist, also z.B. Chloracetyl, Dichloracetyl, Trichloracetyl, Fluoracetyl, Difluoracetyl, Trifluoracetyl, Chlorfluoracetyl, Dichlor- fluoracetyl, Chlordifluoracetyl, 2-Fluorethylcarbonyl, 2-Chlorethylcarbonyl, 2-Bromethylcarbonyl, 2-lodethyl- carbonyl, 2,2-Difluorethylcarbonyl, 2,2,2-Trifluorethyl- carbonyl, 2-Chlor-2-fluorethylcarbonyl, 2-Chlor-2,2-difluor- ethylcarbonyl, 2, 2-Dichlor-2-fluorethylcarbonyl, 2,2,2-Tri- chlorethylcarbonyl, Pentafluorethylcarbonyl, 2-Fluorpropyl- carbonyl, 3-Fluorpropylcarbonyl, 2,2-Difluorpropylcarbonyl, 2,3-Difluorpropylcarbonyl, 2-Chlorpropylcarbonyl, 3-Chlor- propylcarbonyl, 2,3-Dichlorpropylcarbonyl, 2-Brompropy1- carbonyl, 3-Brompropylcarbonyl, 3, 3, 3-Trifluorpropylcarbonyl, 3,3,3-Trichlorpropylcarbonyl, 2, 2 ,3, 3, 3-Pentafluorpropylcarbonyl, Heptafluorpropylcarbonyl, 1- (Fluormethyl)-2-fluorethylcarbonyl, l-(Chlormethyl)-2-chlorethylcarbonyl, l-(Brom- methyl) -2-bromethylcarbonyl, 4-Fluorbutylcarbonyl, 4-Chlor- butylcarbonyl, 4-Brombut lcarbonyl, Nonafluorbutylcarbonyl, ( 5-Fluor-1-pentyl)carbonyl, (5-Chlor-1-penty1)carbonyl, (5-Brom-l-pentyl)carbonyl, (5-Iod-l-pentyl)carbonyl, (5, 5, 5-Trichlor-l-pentyl)carbonyl, Undecafluorpentylcarbonyl, (6-Fluor-l-hexyl)carbonyl, (6-Chlor-l-hexyl)carbonyl, ( 6-Brom-l-hexyl)carbonyl, ( 6-Iod-l-hexyl)carbonyl, (6, 6, 6-Trichlor-l-hexyl)carbonyl oder Dodecafluorhexyl- carbonyl, insbesondere für Trifluoracetyl;
(Ci-Cö-Alkyl)carbonyloxy für: Acetyloxy, Ethylcarbonyloxy, n-Propylcarbonyloxy, 1-Methylethylcarbonyloxy, n-Butyl- carbonyloxy, 1-Methylpropylcarbonyloxy, 2-Methylpropyl- carbonyloxy, 1, 1-Dimethylethylcarbonyloxy, n-Pentylcarbony1- oxy, 1-Methylbutylcarbonyloxy, 2-Methylbutylcarbonyloxy, 3-Meth lbutylcarbonyloxy, 1 , 1-Dimethylpropylcarbonyloxy, 1 , 2-Dimethylpropylcarbonyloxy, 2 , 2-Dimethylpropylcarbonyloxy, 1-Ethylpropylcarbonyloxy, n-Hexylcarbonyloxy, 1-Methylpentyl- carbonyloxy, 2-Methylpentylcarbonyloxy, 3-Methylpentyl- carbonyloxy, 4-Methylpentylcarbonyloxy, 1, 1-Dimethylbutyl- carbon loxy, 1,2-Dimethylbutylcarbonyloxy, 1,3-Dimethylbuty1- carbonyloxy, 2, 2-Dimethylbutylcarbonyloxy, 2, 3-Dimethylbutylcarbonyloxy, 3, 3-Dimethylbutylcarbonyloxy, 1-Ethylbutylcarbonyloxy, 2-Ethylbutylcarbonyloxy, 1, 1,2-Trimethylpropyl- carbonyloxy, 1,2,2-Trimethylpropylcarbonyloxy, 1-Ethyl-l- methylpropylcarbonyloxy oder l-Ethyl-2-methylpropylcarbonyl- oxy, insbesondere für Acetyloxy;
(Ci-Cß-Halogenalkyl)carbonyloxy für: einen (Ci-Cδ-Alkyl)- carbonyloxy-Rest wie vorstehend genannt, der partiell oder vollständig durch Fluor, Chlor, Brom und/oder Iod substituiert ist, also z.B. Chloracetyloxy, Dichloracetyloxy, Trichloracetyloxy, Fluoracetyloxy, Difluoracetyloxy, Tri- fluoracetyloxy, Chlorfluoracetyloxy, Dichlorfluoracetyloxy, Chlordifluoracetyloxy, 2-Fluorethylcarbonyloxy, 2-Chlorethyl- carbonyloxy, 2-Bromethylcarbon loxy, 2-Iodeth lcarbonyloxy, 2 , 2-Difluorethylcarbonyloxy, 2 , 2 , 2-Trifluorethylcarbonyloxy, 2-Chlor-2-fluorethylcarbon loxy, 2-Chlor-2 , 2-difluorethylcarbonyloxy, 2, 2-Dichlor-2-fluorethylcarbonyloxy, 2,2,2-Tri- chlorethylcarbonyloxy, Pentafluorethylcarbonyloxy, 2-Fluor- propylcarbonyloxy, 3-Fluorpropylcarbonyloxy, 2,2-Difluor- propylcarbonyloxy, 2,3-Difluorpropylcarbonyloxy, 2-Chlor- propylcarbonyloxy, 3-Chlorpropylcarbonyloxy, 2,3-Dichlor- propylcarbonyloxy, 2-Brompropylcarbonyloxy, 3-Brompropy1- carbonyloxy, 3,3,3-Trifluorpropylcarbonyloxy, 3,3,3-Trichlor- propylcarbonyloxy, 2,2,3,3, 3-Pentafluorpropylcarbonyloxy, Heptafluorpropylcarbonyloxy, 1- (Fluormethyl)-2-fluorethyl- carbonyloxy, 1- (Chlormethyl)-2-chlorethylcarbonyloxy, 1- (Brommethyl) -2-brometh lcarbonyloxy, 4-Fluorbutylcarbonyl- oxy, 4-Chlorbutylcarbonyloxy, 4-Brombutyl oder Nonafluor- butyl, insbesondere für Trifluoracetoxy;
(Cι-C6-Alkyl)carbonyloxy-Cι-C6-alkyl für: durch (Ci-Cö-Alkyl)- carbonyloxy wie vorstehend genannt substituiertes Cι-C6-Alkyl, also z.B. für Methylcarbonyloxymethyl, Ethylcarbonyloxy- methyl, l-(Methylcarbonyloxy)ethyl, 2-(Methylcarbonyloxy)- ethyl, 2-(Ethylcarbonyloxy)ethyl, 3- (Methylcarbonyloxy)- propyl, 4-(Methoxycarbonyloxy)butyl, 5-(Methoxycarbonyloxy)- pentyl oder 6-(Methoxycarbonyloxy)hexyl;
(cι_c 6-Alkyl)carbonyIthio für AcetyIthio, Ethylcarbonylthio, n-Propylcarbonylthio, 1-MethylethylcarbonyIthio, n-Butyl- carbonylthio, 1-Methylpropylcarbonylthio, 2-Methylpropy1- carbonyIthio, 1, 1-DimethylethylcarbonyIthio, n-Pentyl- carbonyIthio, 1-MethylbutylcarbonyIthio, 2-Methylbuty1- carbonyIthio, 3-MethylbutylcarbonyIthio, 1, 1-Dimethylpropyl- carbonylthio, 1,2-DimethylpropylcarbonyIthio, 2,2-Dimethyl- propylcarbonylthio, 1-EthylpropylcarbonyIthio, n-Hexyl- carbonylthio, 1-MethylpentylcarbonyIthio, 2-Methylpenty1- carbonylthio, 3-Methylpentylcarbonylthio, 4-Methylpenty1- carbonylthio, 1, 1-Dimethylbutylcarbonylthio, 1,2-Dimethyl- butylcarbonyIthio, 1,3-Dimethylbutylcarbonylthio,
2 , 2-DimethylbutylcarbonyIthio, 2,3-Dimethylbutylcarbon Ithio, 3 , 3-DimethylbutylcarbonyIthio, 1-Ethylbutylcarbonylthio, 2-EthylbutylcarbonyIthio, 1,1,2-TrimethylpropylcarbonyIthio, 1 , 2 , 2-Trimethylpropylcarbonylthio, 1-Ethyl-l-methylpropyl- carbonylthio oder l-Ethyl-2-methylpropylcarbonylthio, insbesondere für AcetyIthio;
(Cι-C6-Halogenalkyl)carbonylthio für: einen (Cι-C6-Alkyl)- carbonylthio-Rest wie vorstehend genannt, der partiell oder vollständig durch Fluor, Chlor, Brom und/oder Iod substituiert ist, also z.B. ChloracetyIthio, DichloracetyIthio, Trichloracetylthio, FluoracetyIthio, DifluoracetyIthio, Tri- fluoracetyIthio, Chlorfluoracetylthio, Dichlorfluoracetyl- thio, Chlordifluoracetylthio, 2-FluorethylcarbonyIthio, 2-ChlorethylcarbonyIthio, 2-BromethylcarbonyIthio, 2-Iod- ethylcarbonyIthio, 2, 2-DifluorethylcarbonyIthio, 2,2,2-Tri- fluorethylcarbonyIthio, 2-Chlor-2-fluorethylcarbonyIthio, 2-Chlor-2 , 2-difluorethylcarbonyIthio, 2 , 2-Dichlor-2-fluorethylcarbonyIthio, 2, 2, 2-TrichlorethylcarbonyIthio, Penta- fluorethylcarbonyIthio, 2-Fluorpropylcarbonylthio, 3-Fluor- propylcarbonylthio, 2,2-DifluorpropylcarbonyIthio, 2,3-Di- fluorpropylcarbonylthio, 2-ChlorpropylcarbonyIthio, 3-Chlor- propylcarbonylthio, 2, 3-DichlorpropylcarbonyIthio, 2-Brom- propylcarbonylthio, 3-Brompropylcarbonylthio, 3,3,3-Trifluor- propylcarbonylthio, 3,3, 3-TrichlorpropylcarbonyIthio, 2,2,3,3 , 3-Pentafluorpropylcarbonylthio, Heptafluorpropyl- carbonylthio, l-(Fluormethyl)-2-fluorethylcarbonylthio,
1- (Chlormethyl) -2-chlorethylcarbonylthio, 1- (Brommethyl) - 2-bromethylcarbonylthio, 4-Fluorbutylcarbonylthio, 4-Chlor- butylcarbonyIthio, 4-Brombutylthio oder Nonafluorbutylthio, insbesondere für Trifluoracetylthio;
(Ci-Cß-Alkyl)carbamoyloxy für: Methylcarbamoyloxy, EthyIcarbamoyloxy, n-Propylcarbamoyloxy, 1-Methylethylcarbamoyloxy, n-ButyIcarbamoyloxy, 1-MethylpropyIcarbamoyloxy, 2-Methyl- propyIcarbamoyloxy, 1, 1-DimethylethyIcarbamoyloxy, n-Pentyl- carbamoyloxy, 1-MethylbutyIcarbamoyloxy, 2-Methylbutylcarb- amoyloxy, 3-Methylbutylcarbamoyloxy, 1, 1-DimethylpropyIcarbamoyloxy, 1,2-DimethylpropyIcarbamoyloxy, 2, 2-Dimethylpropy1- carbamoyloxy, 1-EthylpropyIcarbamoyloxy, n-HexyIcarbamoyloxy, 1-MethylpentyIcarbamoyloxy, 2-Methylpent Icarbamoyloxy, 3-Methylpentylcarbamoyloxy, 4-Methylpentylcarbamoyloxy,
1 , 1-DimethylbutyIcarbamoyloxy, 1, 2-Dimethylbut Icarbamoyloxy, 1, 3-DimethylbutyIcarbamoyloxy, 2 , 2-Dimeth lbutyIcarbamoyloxy, 2, 3-DimethylbutyIcarbamoyloxy, 3 , 3-Dimeth lbutyIcarbamoyloxy, 1-EthylbutyIcarbamoyloxy, 2-EthylbutyIcarbamoyloxy, 1, 1,2-TrimethylpropyIcarbamoyloxy, 1, 2,2-Trimethylpropy1- carbamoyloxy, 1-Ethyl-l-methylpropylcarbamoyloxy oder l-Ethyl-2-methylpropylcarbamoyloxy, insbesondere für Methylcarbamoyloxy;
(Ci-Cö-Halogenalkyl)carbamoyloxy für: einen (Cι-C6-Alkyl)- carbamoyloxy-Rest wie vorstehend genannt, der partiell oder vollständig durch Fluor, Chlor, Brom und/oder Iod substituiert ist, also z.B. ChlormethyIcarbamoyloxy, Dichlor- methyIcarbamoyloxy, Trichlormethylcarbamo loxy, Fluormethyl- carbamoyloxy, DifluormethyIcarbamoyloxy, Trifluormethylcarb- amoyloxy, Chlorfluormethylcarbamoyloxy, Dichlorfluormethyl- carbamoyloxy, Chlordifluormethylcarbamoyloxy, 2-Fluorethyl- carbamoyloxy, 2-ChlorethyIcarbamoyloxy, 2-BromethyIcarbamoyloxy, 2-Iodethylcarbamoyloxy, 2,2-Difluorethylcarbamoyl- oxy, 2,2,2-TrifluorethyIcarbamoyloxy, 2-Chlor-2-fluorethyl- carbamoyloxy, 2-Chlor-2,2-difluorethylcarbamoyloxy, 2,2-Di- chlor-2-fluorethylcarbamoyloxy, 2 , 2 , 2-Trichlorethylcarb- amoyloxy, PentafluorethyIcarbamoyloxy, 2-Fluorpropylcarb- amoyloxy, 3-FluorpropyIcarbamoyloxy, 2,2-Difluorpropylcarb- amoyloxy, 2,3-Difluorpropylcarbamoyloxy, 2-Chlorpropylcarb- amoyloxy, 3-Chlorpropylcarbamoyloxy, 2,3-Dichlorpropylcarb- amoyloxy, 2-Bromprop Icarbamoyloxy, 3-BrompropyIcarbamoyloxy, 3 , 3 , 3-Trifluorpropylcarbamoyloxy, 3 , 3 , 3-TrichlorpropyIcarbamoyloxy, 2,2,3,3,3-Pentafluorpropylcarbamoyloxy, HeptafluorpropyIcarbamoyloxy, 1- (Fluormethyl) -2-fluorethylcarbamoyloxy, 1- (Chlormethyl)-2-chlorethyIcarbamo loxy, 1- (Brommethyl)- 2-brometh Icarbamoyloxy, 4-FluorbutyIcarbamoyloxy, 4-Chlor- butyIcarbamoyloxy, 4-BrombutyIcarbamoyloxy oder Nonafluor- butyIcarbamoyloxy, insbesondere für Trifluormethylcarbamoyl- oxy;
- Cx-Ce-Alkoxy für: z.B. 0CH3, 0C2H5, OCH2-C2H5, 0CH(CH3)2, n-Butoxy, OCH(CH3)-C2H5, 0CH2-CH(CH3)2/ 0C(CH3)3, n-Pentoxy, 1-Methylbutoxy, 2-Methylbutoxy, 3-Methylbutoxy, 1, 1-Dimethyl- propoxy, 1,2-Dimethylpropoxy, 2,2-Dimethylpropoxy, 1-Ethyl- propoxy, n-Hexoxy, 1-Methylpentoxy, 2-Methylpentoxy, 3-Methylpentoxy, 4-Methylpentoxy, 1, 1-Dimethylbutoxy,
1,2-Dimeth lbutoxy, 1,3-Dimethylbutoxy, 2, 2-Dimethylbutoxy, 2, 3-Dimethylbutoxy, 3, 3-Dimethylbutoxy, 1-Ethylbutoxy, 2-Ethylbutoxy, 1, 1,2-Trimethylpropoxy, 1,2,2-Trimethylpropoxy, 1-Ethyl-l-methylpropoxy und l-Ethyl-2-methylpropoxy, insbesondere für 0CH3, OC2H5 oder OCH(CH3)2;
Cι-C -Halogenalkoxy für: einen Cι-C-Alkoxyrest wie vorstehend genannt, der partiell oder vollständig durch Fluor, Chlor, Brom und/oder Iod substituiert ist, also z.B. Chlormethoxy, Dichlormethoxy, Trichlormethoxy, Fluormethoxy, Difluormeth- oxy, Trifluormethoxy, Chlorfluormethoxy, Dichlorfluormethoxy, Chlordifluormethoxy, 2-Fluorethoxy, 2-Chlorethoxy, 2-Brom- ethoxy, 2-Iodethoxy, 2,2-Difluorethoxy, 2,2,2-Trifluorethoxy, 2-Chlor-2-fluorethoxy, 2-Chlor-2,2-difluorethoxy, 2,2-Di- chlor-2-fluorethoxy, 2,2,2-Trichlorethoxy, Pentafluorethoxy, 2-Fluorpropoxy, 3-Fluorpropoxy, 2,2-Difluorpropoxy, 2,3-Di- fluorpropoxy, 2-Chlorpropoxy, 3-Chlorpropoxy, 2,3-Dichlor- propoxy, 2-Brompropoxy, 3-Brompropoxy, 3,3,3-Trifluorpropoxy, 3,3,3-Trichlorpropoxy, 2,2,3,3,3-Pentafluorpropoxy, Hepta- fluorpropoxy, 1- (Fluormethyl) -2-fluorethoxy, l-(Chlormethyl) -2-chlorethoxy, l-(Brommethyl)-2-bromethoxy, 4-Fluor- butoxy, 4-Chlorbutoxy, 4-Brombutoxy oder Nonafluorbutoxy, insbesondere für 2-Chlorethoxy oder 2,2, 2-Tri luorethoxy;
- Ci-Cδ-Halogenalkoxy für: einen Cι-C6-Alkoxyrest wie vorstehend genannt, der partiell oder vollständig durch Fluor, Chlor, Brom und/oder Iod substituiert ist, also z.B. einen der unter Cι-C -Halogenalkoxy genannten Reste oder für 5-Fluor-l-pent- oxy, 5-Chlor-l-pentoxy, 5-Brom-l-pentoxy, 5-Iod-l-pentoxy, 5,5,5-Trichlor-l-pentoxy, Undecafluorpentoxy, 6-Fluor-l- hexoxy, 6-Chlor-l-hexoxy, 6-Brom-l-hexoxy, 6-Iod-l-hexoxy, 6,6, 6-Trichlor-l-hexoxy oder Dodecafluorhexoxy, insbesondere für Chlormethoxy, Fluormethoxy, Difluormethoxy, Trifluormeth- oxy, 2-Fluorethoxy, 2-Chlorethoxy oder 2, 2,2-Trifluorethoxy;
Hydroxy-Ci-Ce-alkoxy für: z.B. OCH2-OH, OCH(CH3)-OH, OCH2-CH2-OH, OCH(C2H5)-OH, OCH2-CH(CH3)-OH, 3-Hydroxy- prop-1-yloxy, 1-Hydroxybut-l-yloxy, 2-Hydroxybut-l-yloxy, 3-Hydroxybut-l-yloxy, 4-Hydroxybut-l-yloxy, 1-Hydroxy- but-2-yloxy, 2-Hydroxybut-2-yloxy, 3-Hydroxybut-2-yloxy, 4-Hydroxybut-2-yloxy, l-(CH2-OH)-eth-l-yloxy, l-(CH2-OH)- l-(CH3)-eth-l-yloxy oder l-(CH2-OH)-prop-l-yloxy, insbesondere für OCH2-OH oder OCH2-CH2-OH;
Cyano-Cι-C6-alkoxy für: z.B. OCH2-CN, OCH(CH3)-CN, OCH2-CH2-CN, 0CH(C2H5)-0H, OCH2-CH(CH3)-CN, 3-Cyanoprop-l-yl- oxy, 1-Cyanobut-l- loxy, 2-Cyanobut-l-yloxy, 3-Cyanobut-l-yl- oxy, 4-Cyanobut-l-yloxy, l-Cyanobut-2-yloxy, 2-Cyanobut-2-yl- oxy, 3-Cyanobut-2-yloxy, 4-Cyanobut-2-yloxy, l-(CH2-CN)-eth- 1-yloxy, l-(CH2-CN)-l-(CH3)-eth-l-yloxy oder l-(CH2-CN)-prop- 1-yloxy, insbesondere für OCH2-CN oder OCH2-CH2-CN;
Phenyl-Ci-Cβ-alkoxy für: z.B. Benzyloxy, 1-Phen lethoxy, 2-Phenylethoxy, 1-Phenylprop-1-yloxy, 2-Phenylprop-l-yloxy, 3-Phenylprop-1-yloxy, 1-Phenylbut-l-yloxy, 2-Phenylbut-l-yl- oxy, 3-Phenylbut-l-yloxy, 4-Phenylbut-l-yloxy, 1-Phenyl- but-2-yloxy, 2-Phenylbut-2-yloxy, 3-Phenylbut-2-yloxy,
4-Phen lbut-2-yloxy, l-(Benzyl)-eth-l-yloxy, l-(Benzyl)-l- (methyl)-eth-l-yloxy oder 1- (Benzyl)-prop-l-yloxy, insbesondere für Benzyloxy oder 2-Phenylethoxy;
Heterocyclyl-Cι-C6-alkoxy für: z.B. Heterocyclylmethoxy, l-(Heterocyclyl)ethoxy, 2-(Heterocyclyl)ethoxy, l-(Hetero- cyclyl)prop-l-yloxy, 2-(Heterocyclyl)prop-l-yloxy, 3-(Hetero- cyclyl)prop-l-yloxy, l-(Heterocyclyl)but~l-yloxy, 2-(Hetero- cyclyl)but-l-yloxy, 3-(Heterocyclyl)but-l-yloxy, 4-(Hetero- cyclyl)but-l-yloxy, l-(Heterocyclyl)but-2-yloxy, 2-(Hetero- cyclyl)but-2-yloxy, 3-(Heterocyclyl)but-2-yloxy, 4-(Hetero- cycl 1)but-2-yloxy, 1- (Heterocyclylmethy1) -eth-1-yloxy, l-(Heterocyclylmethyl)-l-(methyl)-eth-l-yloxy oder l-(Hetero- cyclylmethyl)-prop-l-yloxy, insbesondere für Heterocyclyl- methoxy oder 2-(Heterocyclyl)ethoxy;
Phenyl-Cι-C6-alkyIthio für: z.B. Benzylthio, 1-Phenylethyl- thio, 2-Phenylethylthio, 1-Phenylprop-l-ylthio, 2-Phenyl- prop-1-ylthio, 3-Phenylprop-l-ylthio, 1-Phenylbut-l-ylthio, 2-Phenylbut-l- Ithio, 3-Phenylbut-l- Ithio, 4-Phenylbut-l- ylthio, l-Phenylbut-2-ylthio, 2-Phenylbut-2-ylthio, 3-Phenyl- but-2-ylthio, 4-Phenylbut-2-ylthio, l-(Phenylmethyl)-eth-l- yIthio, 1- (Phenylmethyl)-l-(methyl)-eth-l-yIthio oder l-(Phenylmethyl)-prop-l-ylthio, insbesondere für Benzylthio oder 2-PhenylethyIthio;
(Cι-C6-Alkoxy)carbonyl für: z.B. CO-OCH3, CO-OC2Hs,
COO-CH2-C2H5, CO-OCH(CH3)2, n-Butoxycarbonyl, CO-OCH(CH3)-C2H5, CO-OCH2-CH(CH3)2, CO-OC(CH3)3, n-Pentoxycarbonyl, 1-Methyl- butoxycarbonyl, 2-Methylbutoxycarbonyl, 3-Methylbutoxy- carbonyl, 2 , 2-Dimethylpropoxycarbonyl , 1-Ethylpropoxy- carbonyl, n-Hexoxycarbonyl, 1, 1-Dimethylpropoxycarbonyl, 1, 2-Dimethylpropoxycarbonyl, 1-Methylpentoxycarbonyl, 2-Methylpentoxycarbonyl, 3-Methylpentoxycarbonyl, 4-Methyl- pentoxycarbonyl, 1, 1-Dimethylbutoxycarbonyl, 1,2-Dimethyl- butoxycarbonyl, 1,3-Dimethylbutoxycarbonyl, 2,2-Dimethyl- butoxycarbony1, 2, 3-Dimethylbutoxycarbonyl, 3 , 3-Dimethyl- butoxycarbonyl, 1-Ethylbutoxycarbonyl, 2-Ethylbutoxycarbonyl, 1,1,2-Trimethylpropoxycarbonyl, 1,2,2-Trimethylpropoxycarbonyl, 1-Ethyl-l-methyl-propoxycarbonyl oder l-Ethyl-2- methyl-propoxycarbonyl, insbesondere für CO-OCH3, CO-OCH5, CO-OCH(CH3)2 oder CO-CH2-CH(CH3)2;
(Ci-Cö-Alkoxy)carbonyloxy für: Methoxycarbonyloxy, Ethoxy- carbon loxy, n-Propoxycarbonyloxy, 1-Methylethoxycarbonyloxy, n-Butoxycarbonyloxy, 1-Methylpropoxycarbonyloxy, 2-Meth 1- propoxycarbonyloxy, 1, 1-Dimethylethoxycarbonyloxy, n-Pentoxy- carbonyloxy, 1-Methylbutoxycarbonyloxy, 2-Meth lbutoxy- carbonyloxy, 3-Methylbutoxycarbonyloxy, 2, 2-Dimethylpropox - carbonyloxy, 1-Ethylpropoxycarbonyloxy, n-Hexoxycarbonyloxy, 1 , 1-Dimethylpropoxycarbonyloxy, 1, 2-Dimethylpropoxycarbonyl- oxy, 1-Methylpentoxycarbonyloxy, 2-Methylpentoxycarbonyloxy, 3-Methylpentoxycarbonyloxy, 4-Methylpentoxycarbonyloxy, 1 , 1-Dimethylbutoxycarbonyloxy, 1 ,2-Dimethylbutoxycarbon loxy, 1, 3-Dimethylbutoxycarbonyloxy, 2 , 2-Dimethylbutoxycarbonyloxy, 2 , 3-Dimethylbutoxycarbonyloxy, 3 , 3-Dimethylbutoxycarbonyloxy, 1-Ethylbutoxycarbonyloxy, 2-Ethylbutoxycarbonyloxy,
propoxycarbonyIthio, 1-EthylpropoxycarbonyIthio, n-Hexoxy- carbonylthio, 1, 1-DimethylpropoxycarbonyIthio, 1,2-Dimethyl- propoxycarbonylthio, 1-MethylpentoxycarbonyIthio, 2-Methyl- pentoxycarbonylthio, 3-Methylpentoxycarbonylthio, 4-Methyl- pentoxycarbonyIthio, 1, 1-DimethylbutoxycarbonyIthio, 1,2-Di- methylbutoxycarbonylthio, 1, 3-Dimethylbutoxycarbon Ithio, 2 , 2-DimethylbutoxycarbonyIthio, 2 , 3-Dimethylbutoxycarbonyl- thio, 3, 3-DimethylbutoxycarbonyIthio, 1-Eth lbutoxycarbony1- thio, 2-Ethylbutoxycarbonylthio, 1, 1,2-Trimethylpropoxy- carbonylthio, 1,2,2-Trimethylpropoxycarbonylthio, 1-Ethyl- 1-methyl-propoxycarbonylthio oder 1-Ethy1-2-methyl-propoxy- carbonylthio, insbesondere für MethoxycarbonyIthio, Ethoxy- carbonylthio oder 1-MethylethoxycarbonyIthio;
Cι-C6-Alkylthio für: SCH3, SC2H5, SCH2-C2H5, SCH(CH3) , n-ButyIthio, 1-MethylpropyIthio, 2-MethylpropyIthio, SC(CH3)3, n-Pentylthio, 1-Methylbutylthio, 2-MethylbutyIthio, 3-Methyl- butyIthio, 2,2-DimethylpropyIthio, 1-EthylpropyIthio, n-Hexylthio, 1, 1-DimethylpropyIthio, 1,2-DimethylpropyIthio, 1-MethylpentyIthio, 2-MethylpentyIthio, 3-MethylpentyIthio,
4-MethylpentyIthio, 1, 1-DimethylbutyIthio, 1, 2-Dimethylbutyl- thio, 1, 3-DimethylbutyIthio, 2, 2-DirnethylbutyIthio, 2 , 3-Dimethylbut Ithio, 3 , 3-Dimethylbut Ithio, 1-Ethylbutyl- thio, 2-EthylbutyIthio, 1, 1,2-TrimethylpropyIthio, 1,2,2-Tri- methylpropyIthio, 1-Ethyl-l-methylpropyIthio und 1-Ethyl- 2-methylpropylthio, insbesondere für SCH3 oder SC2H5;
Ci-Cδ-HalogenalkyIthio für: Ci-Cε-Alk Ithio wie vorstehend genannt, das partiell oder vollständig durch Fluor, Chlor, Brom und/oder Iod substituiert ist, also z.B. für SCHF2, SCF3, Chlordifluormethylthio, Bromdifluormethylthio, 2-Fluorethyl- thio, 2-Chlorethylthio, 2-BromethyIthio, 2-Iodethylthio, 2,2-Difluorethylthio, 2, 2, 2-TrifluorethyIthio, 2,2,2-Tri- chlorethylthio, 2-Chlor-2-fluorethylthio, 2-Chlor-2,2-di- fluorethylthio, 2,2-Dichlor-2-fluorethylthio, SC2F5, 2-Fluor- propyIthio, 3-Fluorpropylthio, 2-Chlorpropylthio, 3-Chlor- propyIthio, 2-BrompropyIthio, 3-BrompropyIthio, 2,2-Difluor- propylthio, 2,3-Difluorpropylthio, 2,3-Dichlorpropylthio, 3,3, 3-TrifluorpropyIthio, 3 , 3 , 3-Trichlorpropylthio, 2,2,3,3,3-Pentafluorpropylthio, Heptafluorpropylthio,
1- (Fluormethyl) -2-fluorethyIthio, 1- (Chlormethyl) -2-chlor- ethylthio, l-(Brommethyl)-2-bromethylthio, 4-Fluorbutylthio, 4-ChlorbutyIthio, 4-Brombutylthio, Nonafluorbutylthio, 5-Fluorpentylthio, 5-Chlorpentylthio, 5-Brompentylthio, 5-Iodpentylthio, Undecafluorpentylthio, 6-Fluorhexylthio oder 6-Chlorhexylthio, insbesondere für SCH2F, SCHF2, SCF3, SCH2C1, 2-FluorethyIthio, 2-Chlorethylthio oder 2,2,2-Trifluorethyl- thio;
Cι-C6-Alkylsulfinyl für: S0-CH3, S0-C2H5, n-Propylsulfinyl, 1-Methylethylsulfinyl, n-Butylsulfinyl, 1-Methylpropyl- sulfinyl, 2-Methylpropylsulfinyl, 1, 1-Dimethylethylsulfinyl, n-Pentylsulfinyl, 1-Methylbutylsulfinyl, 2-Meth lbutylsulfi- nyl, 3-Methylbutylsulfinyl, 1, 1-Dimethylpropylsulfinyl, 1 , 2-Dimethylpropylsulfinyl, 2 , 2-Dimethylpropylsulfinyl, 1-Ethylpropylsulfinyl, n-Hexylsulfinyl, 1-Methylpentylsulfi- nyl, 2-Methylpentylsulfinyl, 3-Methylpentylsulfinyl, 4-Methylpentylsulfinyl, 1, 1-Dimethylbutylsulfinyl, 1,2-Dimethylbutylsulfinyl, 1,3-Dimethylbutylsulfinyl, 2,2-Dimethyl- butylsulfinyl, 2,3-Dimethylbutylsulfinyl, 3, 3-Dimethylbuty1- sulfinyl, 1-Ethylbutylsulfinyl, 2-Ethylbutylsulfinyl,
1,1, 2-Trimethylpropylsulfinyl, 1,2 , 2-Trimethylpropylsulfinyl, 1-Ethyl-l-methylpropylsulfinyl oder l-Ethyl-2-methylpropylsulfinyl, insbesondere für SO-CH3;
Ci-Cβ-Alkylsulfonyl für: S02-CH3, S02-C2H5, n-Propylsulfonyl, S02-CH(CH3)2, n-Butylsulfonyl, 1-Methylpropylsulfonyl, 2-Methylpropylsulfonyl, S02-C(CH3)3, n-Pentylsulfonyl, 1-Methylbutylsulfonyl, 2-Methylbutylsulfonyl, 3-Methylbutylsulfonyl, 1, 1-Dimethylpropylsulfonyl, 1,2-Dimethylpropy1- sulfonyl, 2, 2-Dimethylpropylsulfonyl, 1-Ethylpropylsulfonyl, n-Hexylsulfonyl, 1-Methylpentylsulfonyl, 2-Methylpenty1- sulfonyl, 3-Methylpentylsulfonyl, 4-Methylpentylsulfonyl, 1, 1-Dimethylbutylsulfonyl, 1,2-Dimethylbutylsulfonyl, 1, 3-Dimethylbutylsulfonyl, 2, 2-Dimethylbutylsulfonyl, 2, 3-Dimethylbutylsulfonyl, 3, 3-Dimethylbutylsulfonyl,
1-Ethylbutylsulfonyl, 2-Ethylbutylsulfonyl, 1, 1,2-Trimethy1- propylsulfonyl, 1,2,2-Trimethylpropylsulfonyl, 1-Ethyl-l-methylpropylsulfonyl oder l-Ethyl-2-methylpropyl- sulfonyl, insbesondere für S02-CH3;
Cι-C6-Alkylsulfonyloxy für: 0-S0-CH3, 0-S02-C2H5, n-Propyl- sulfonyloxy, 0-S02-CH(CH )2, n-Butylsulfonyloxy, 1-Methyl- propylsulfonyloxy, 2-Methylpropylsulfonyloxy, 0-SO-C(CH3)3, n-Pentylsulfonyloxy, 1-MethyIbutylsulfonyloxy, 2-Methylbut 1- sulfonyloxy, 3-MethyIbutylsulfonyloxy, 1, 1-Dimethylpropy1- sulfonyloxy, 1,2-Dimethylpropylsulfonyloxy, 2,2-Dimethyl- propylsulfonyloxy, 1-Ethylpropylsulfonyloxy, n-Hexylsulfonyl- oxy, 1-Methylpentylsulfonyloxy, 2-Methylpentylsulfonyloxy, 3-Methylpentylsulfonyloxy, 4-Methylpentylsulfonyloxy, 1,1-Dimethylbutylsulfonyloxy, 1,2-Dimethylbutylsulfonyloxy, 1, 3-Dimethylbutylsulfonyloxy, 2 , 2-Dimethylbutylsulfonyloxy, 2 , 3-Dimethylbutylsulfonyloxy, 3 , 3-Dimethylbutylsulfonyloxy, 1-Ethylbutylsulfonyloxy, 2-Ethylbutylsulfonyloxy, 1,1,2-Tri- methylpropylsulfonyloxy, 1 , 2 , 2-Trimethylpropylsulfonyloxy, 1-Ethyl-l-methylpropylsulfonyloxy oder l-Ethyl-2-methyl- propylsulfonyloxy, insbesondere für Methylsulfonyloxy;
Ci-Cδ-Halogenalkylsulfonyloxy für: Cι-C6-Alkylsulfonyloxy wie vorstehend genannt, das partiell oder vollständig durch Fluor, Chlor, Brom und/oder Iod substituiert ist, also z.B. ClCH2-S02-0-, CH(Cl)2-S02-0-, C(Cl)3-S02-0-, FCH-S02-0-, CHF2-S02-0-, CF3-S02-0-, Chlorfluormethyl-S02-0-, Dichlor- fluormethyl-S02-0-, Chlordifluormethyl-S02-0-, 1-Fluorethyl- S02-0-, 2-Fluorethyl-S02-0-, 2-Chlorethyl-S02-0-, 2-Brom- ethyl-S02-0-, 2-Iodethyl-S02-0-, 2, 2-Difluorethyl-S02-0-, 2,2,2-Trifluorethyl-S02-0-, 2-Chlor-2-fluorethyl-S0-0-, 2-Chlor-2,2-difluorethyl-S02-0-, 2,2-Dichlor-2-fluorethyl- S02-0-, 2,2,2-Trichlorethyl-S02-0-, C2F5-S02-0-, 2-Fluor- propyl-S02-0-, 3-Fluorpropyl-S02-0-, 2,2-Difluorpropyl-S02-0-, 2,3-Difluorpropyl-S0-0-, 2-Chlorpropyl-S02-0-, 3-Chlor- propyl-S02-0-, 2,3-Dichlorpropyl-S02-0-, 2-Brompropyl-S02-0-, 3-Brompropyl-S02-0-, 3,3,3-Trifluorpropyl-S02-0-, 3,3,3-Tri- chlorpropyl-S02-0-, 2,2,3,3, 3-Pentafluorpropyl-S02-0-, C2F5-CF2-S02-0-, 1- (Fluormethyl) -2-fluorethyl-S02-0-, l-(Chlormethyl)-2-chlorethyl-S02-0-, 1- (Brommethyl) -2-bro - ethyl-S02-0-, 4-Fluorbutyl-S02-0-, 4-Chlorbutyl-S02-0-, 4-Brombutyl-S02-0-, C2F5-CF-CF2-S02-0-, 5-Fluorpentyl-S02-0-, 5-Chlorpentyl-S02-0-, 5-Brompentyl-S02-0-, 5-Iodpentyl-S02-0-, 5,5,5-Trichlorpentyl-S02-0-, C2F5-CF2-CF2-CF2-S02-0-, 6-Fluor- hexyl-S02-0-, 6-Chlorhexyl-S02-0-, 6-Bromhexyl-S02-0-, 6-Iod- hexyl-S02-O-, 6,6,6-Trichlorhexyl-S02-0- oder Dodecafluor- hexyl-S02-0-, insbesondere für CF3-S02-0-;
(Ci-Cβ-Alkyl)aminocarbonyl für: (Cι-C-Alkyl) aminocarbonyl wie vorstehend genannt sowie z.B. n-Pentylaminocarbonyl, 1-Methylbutylaminocarbony1, 2-Methylbutylaminocarbony1, 3-Methylbuty1aminocarbonyl, 2 , 2-Dimethylpropylaminocarbony1, 1-Ethylpropylaminocarbonyl, n-Hexylaminocarbonyl, 1, 1-Dimethylpropylaminocarbony1, 1,2-Dimethylpropylaminocarbony1, 1-Methylpentylaminocarbonyl, 2-Methylpentylaminocarbonyl, 3-Methylpentylaminocarbonyl, 4-Methylpentylaminocarbonyl, 1, 1-Dimethylbutylaminocarbonyl, 1,2-Dimethylbutylaminocarbonyl, 1,3-Dimethylbutylaminocarbon l, 2, 2-Dimethylbutylaminocarbonyl, 2, 3-Dimethylbutylaminocarbonyl, 3,3-Dimethyl- butylaminocarbonyl, 1-Ethylbutylaminocarbonyl, 2-Ethylbutyl- aminocarbonyl, 1, 1,2-Trimethylpropylaminocarbonyl, 1,2,2-Tri- methylpropylaminocarbonyl, 1-Ethyl-l-methylpropylamino- carbonyl oder 1-Ethy1-2-methylpropylaminocarbonyl, insbesondere für C0-NH-CH3, C0-NH-C2H5 oder CO-NH-CH(CH3)2;
Di(Cι-C6-alkyl) aminocarbonyl für: z.B. N,N-Dimethylaminocarbo- nyl, N,N-Diethylaminocarbonyl, N,N-Dipropylaminocarbonyl,
N,N-Di- ( 1-methylethyl) aminocarbonyl, ,N-Dibutylaminocarbo- nyl, N, -Di- (1-methylpropy1)aminocarbonyl, N,N-Di- (2-methy1- propyl) aminocarbonyl, N,N-Di- ( 1, 1-dimethylethyl) aminocarbonyl, N-Ethyl-N-methylaminocarbonyl, N-Methyl-N-propyl- aminocarbonyl, N-Methyl-N-(l-methylethyl)aminocarbonyl,
N-Butyl-N-methylaminocarbonyl, N-Methyl-N- ( 1-methylpropy1) - aminocarbonyl, N-Methyl-N- ( 2-methylpropy1) aminocarbonyl, N- ( 1 , 1-Dimethylethyl) -N-methylaminocarbonyl, N-Ethyl-N- propylaminocarbonyl, N-Ethyl-N- ( 1-methylethyl) aminocarbonyl, N-Butyl-N-ethylaminocarbonyl, N-Ethyl-N- ( 1-methylpropy1) - aminocarbonyl, N-Ethyl-N- (2-methylpropy1) aminocarbonyl, N-Ethyl-N- ( 1, 1-dimethylethyl) aminocarbonyl, N- ( 1-Methyl- ethyl) -N-propylaminocarbonyl, N-Butyl-N-propylaminocarbonyl, N- ( 1-Methylpropy1) -N-propylaminocarbonyl, N- ( 2-Methylpropy1) - N-propylaminocarbonyl, N-( 1, 1-Dimethylethyl) -N-propylaminocarbonyl, N-Butyl-N- ( 1-methylethyl)aminocarbonyl, N- ( 1-Methylethyl ) -N- ( 1-methylprop 1) aminocarbonyl, N- ( 1-Methylethyl ) -N- ( 2-methylpropy1) aminocarbonyl, N- ( 1 , 1-Dimethylethyl) -N- ( 1-methylethyl) aminocarbonyl, N-Butyl-N- ( 1- methylpropyl)aminocarbonyl, N-Butyl-N- (2-methylpropy1) aminocarbonyl, N-Butyl-N- ( 1 , 1-dimethylethyl) aminocarbonyl, N- ( 1-Methylpropyl) -N- (2-methylpropyl) aminocarbonyl, N- ( 1 , 1-Dimethylethyl) -N- ( 1-methylpropyl) aminocarbonyl oder N- ( 1, 1-Dimethylethyl) -N- ( 2-methylpropyl) aminocarbonyl, insbesondere für N,N-Dimethylaminocarbonyl oder N,N-Diethyl- aminocarbonyl;
(Cι-C6-Alkyl)iminooxycarbonyl für: Methyliminooxycarbonyl, Ethyliminooxycarbonyl, n-Propyliminooxycarbonyl, 1-Methyl- ethyliminooxycarbonyl, n-Butyliminooxycarbonyl, 1-Methyl- propyliminooxycarbonyl, 2-Methylpropyliminooxycarbonyl, 1 , 1-Dimethylethyliminooxycarbonyl, n-Pentyliminooxycarbonyl, 1-Methylbutyliminooxycarbonyl, 2-Methylbutyliminooxycarbonyl, 3-Methylbutyliminooxycarbonyl, 1, 1-Dimethylpropyliminooxy- carbonyl, 1,2-Dimethylpropyliminooxycarbonyl, 2,2-Dimethyl- propyliminooxycarbonyl, 1-Ethylpropyliminooxycarbonyl, n-Hexyliminooxycarbonyl, 1-Methylpentyliminooxycarbonyl, 2-Methylpentyliminooxycarbonyl, 3-Methylpentyliminooxycarbonyl, 4-Methylpentyliminooxycarbonyl, 1 , 1-Dimethylbutyl- iminooxycarbonyl, 1, 2-Dimethylbutyliminooxycarbonyl, 1, 3-Dimethylbutyliminooxycarbonyl, 2 , 2-Dimethylbutyliminooxycarbonyl, 2 , 3-Dimethylbutyliminooxycarbonyl, 3 , 3-Dimethyl- butyliminooxycarbonyl, 1-Ethylbutyliminooxycarbonyl, 2-Ethy1- butyliminooxycarbonyl, 1,1, 2-Trimethylpropyliminooxycarbonyl, 1, 2 , 2-Trimethylpropyliminooxycarbonyl, 1-Ξthy1-1-methy1- propyliminooxycarbonyl oder l-Ethyl-2-methylpropyliminooxy- carbonyl, insbesondere für Methyliminooxycarbonyl, Ethyliminooxycarbonyl oder 1-Methylethyliminooxycarbonyl;
Ci-Cδ-Alkylidenaminoxy für: 1-Propylidenaminoxy, 2-Propylide- naminoxy, 1-Butylidenaminoxy, 2-Butylidenaminoxy oder 2-Hexy- lidenaminoxy, insbesondere für Butylidenaminoxy oder 2-Propy- lidenaminoxy;
Ci-Cö-Alkyliminooxy für: Methyliminooxy, Ethyliminooxy, n-Propyliminooxy, 1-Methylethyliminooxy, n-Butyliminooxy, 1-Methylpropyliminooxy, 2-Methylpropyliminooxy, n-Pentyl- iminooxy, n-Hexyliminooxy, 1-Methylpentyliminooxy, 2-Methyl- pentyliminooxy, 3-Methylpentyliminooxy oder 4-Methylpenty1- iminooxy, insbesondere für Methyliminooxy, Ethyliminooxy oder 1-Methylethyliminooxy;
Cι-C6-Alkoxy-(Cι-C6-alkyl)aminocarbonyl für: (Ci-Cö-Alkyl)- aminocarbonyl wie CO-NH-CH3, CO-NH-C2H5, CO-NH-CH2-C2H5, CO-NH-CH(CH3)2, CO-NH-(CH2)3-CH3, CO-NH-CH(CH3 )-C2H5, CO-NH-CH2-CH(CH3)2, CO-NH-C(CH3)3, CO-NH-(CH2 )4-CH3, 1-Methyl- butylaminocarbonyl, 2-Methylbutylaminocarbonyl, 3-Methyl- butylaminocarbonyl, 2, 2-Dimethylpropylaminocarbonyl, 1-Ethyl- propylaminocarbonyl, n-Hexylaminocarbonyl, 1, 1-Dimethyl- propylaminocarbonyl, 1,2-Dimethylpropylaminocarbonyl, 1-Methylpentylaminocarbonyl, 2-Methylpentylaminocarbonyl, 3-Methylpentylaminocarbonyl, 4-Methylpentylaminocarbonyl, 1, 1-Dimethylbutylaminocarbonyl, 1,2-Dirnethylbutylamino- carbonyl, 1,3-Dimethylbutylaminocarbonyl, 2, 2-Dimethylbuty1- aminocarbonyl, 2, 3-Dimethylbutylaminocarbonyl, 3,3-Dimethyl- butylaminocarbonyl, 1-Ethylbutylaminocarbonyl, 2-Ethylbutyl- aminocarbonyl, 1, 1,2-Trimethylpropylaminocarbonyl, 1,2,2-Tri- ethylpropylaminocarbonyl, 1-Ethyl-l-methylpropylaminocarbonyl und l-Ethyl-2-methylpropylaminocarbonyl, vorzugsweise (Cχ-C -Alkyl) aminocarbonyl, das durch Cι-C6-Alkoxy - wie vorstehend genannt - substituiert ist, also z.B. für CO-NH-CH2-OCH3 oder CO-NH-CH2-OC2H5;
Cι-Cg-Alkoxyamino-Cι-C6-alkyl für: z.B. CH2-NH-OCH3, CH2-NH-OC2H5, CH2-NH-OCH2-C2H5, CH2-NH-OCH(CH3 )2 , CH2-NH-OCH2-CH2-C2H5, CH2-NH-0CH(CH3 ) -C2H5, CH2-NH-OCH2-CH(CH3)2, CH2-NH-OC(CH3 )3, CH2-NH-OCH2-(CH2 )3-CH3, ( 1-Methylbutoxyamino)methy1, ( 2-Methylbutoxyamino)methy1, (3-Methylbutoxyamino)methy1, (2 , 2-Dimethylpropoxyamino)me- thyl, (l-Ethylpropoxyamino)methyl, n-Hexoxyamino-methyl, ( 1, 1-Dimethylpropoxyamino)methy1, ( 1, 2-Dimethylpropoxyamino) - methyl, (1-Methylpentoxyamino)methyl, (2-Methylpentoxy- amino)methy1, ( 3-Methylpentoxyamino)methyl, (4-Methylpentoxy- amino)methyl, ( 1, 1-Dimethylbutoxyamino)methyl, ( 1,2-Dimethy1- butoxyamino)methyl, (1,3-Dirnethylbutoxyamino)methyl, (2, 2-Dimethylbutoxyamino)methyl, (2 , 3-Dimethylbutoxyamino)methyl, (3 , 3-Dimethylbutoxyamino)methyl, ( 1-Ethylbutoxyamino)methyl, (2-Ethylbutoxyamino)methyl, (1,1, 2-Trimethylpropoxyamino)- methyl, ( 1,2, 2-Trimethylpropoxyamino)methyl, (1-Ethyl-l- methylpropoxyamino)methyl, ( l-Ethyl-2-methylpropoxyamino) - methyl, Methoxyamino-ethyl, Ethoxyamino-ethyl, n-Propoxy- amino-ethyl, ( 1-Methylethoxyamino)ethy1, n-Butoxyamino-ethyl, ( 1-Methylpropoxyamino)ethyl, (2-Methylpropoxyamino)ethyl, (1, 1-Dimethylethoxyamino)ethy1, n-Pentoxyaminoethyl,
( 1-Methylbutoxyamino)ethyl, ( 2-Methylbutoxyamino)ethyl, (3-Methylbutoxyamino)ethyl, (2,2-Dimethylpropoxyamino)ethyl, (1-Ethylpropoxyamino)ethyl, n-Hexoxyamino-ethyl, (1, 1-Dimethylpropoxyamino)ethyl, (1,2-Dimethylpropoxyamino)ethyl, (1-Methylpentoxyamino)ethyl, (2-Methylpentoxyamino)ethyl, (3-Methylpentoxyamino)ethyl, ( 4-Methylpentoxyamino)ethyl, ( 1 , 1-Dimethylbutoxyamino)ethyl, ( 1 , 2-Dimethylbutoxyamino) - ethyl, (1,3-Dimethylbutoxyamino)ethyl, (2, 2-Dimethylbutoxyamino)ethyl, (2, 3-Dimeth lbutoxyamino)eth l, (3,3-Dimethyl- butoxyamino)ethy1, ( 1-Ethylbutoxyamino)ethyl, (2-Ethylbutoxyamino)ethyl, (1,1, 2-Trimethylpropoxyamino)ethyl, (1,2,2-Tri- meth lpropoxyamino)ethy1, ( 1-Ethyl-l-methylpropoxyamino)- ethyl, (1-Ethy1-2-methylpropoxyamino)ethyl, 2-(Methoxyamino)- propyl, 3-(Methoxyamino)propyl oder 2-(Ethoxyamino)propyl, vorzugsweise Cι-C6-Alkoxyamino-Cχ-C2-alkyl;
Cι-C6-Alkoxy-Cι-C6-alkylamino-Cι-C6-alkyl für: Cι-C6-Alkyl- amino-Cι-C6-alkyl wie CH2-NH-CH3, CH2-NH-C2H5, CH2-NH-CH2-C2H5, CH2-NH-CH(CH3)2, CH2-NH-(CH2)3-CH3, CH2-NH-CH(CH3 ) -C2H5, CH2-NH-CH2-CH(CH3)2, CH2-NH-C(CH3)3, CH2-NH-(CH2 ) 4-CH3 ,
( 1-Methylbutylamino)methyl, ( 2-Methylbutyla ino)methyl, ( 3-Methylbutylamino)methyl, ( 2 , 2-Dimethylpropylamino)methyl, (1-Ethylpropylamino)methyl, n-Hexylamino-methyl, (1, 1-Dimethylpropylamino)methyl, (1,2-Dimethylpropylamino)methyl, (1-Methylpentylamino)methyl, ( 2-Methylpentylamino)methyl, ( 3-Methylpentylamino)methyl, (4-Methylpentylamino)methyl, ( 1 , 1-Dimethylbutylamino)methyl, ( 1 , 2-Dimethylbutylamino) - methyl, ( 1,3-Dimethylbutylamino)methyl, (2, 2-Dimethylbutyl- amino)methyl, (2, 3-Dimethylbutylamino)methyl, (3,3-Dimethyl- butylamino)methyl, ( 1-Ethylbutylamino)methyl, (2-Ethylbutyl- amino)methyl, ( 1, 1,2-Trimethylpropylamino)methyl, (1,2, 2-Trimethylpropylamino)methyl, ( 1-Ethyl-1-meth lpropylamino)- methyl, ( l-Ethyl-2-methylpropylamino)methyl, Methylamino- ethyl, Ethylamino-ethyl, n-Propylamino-ethyl, ( 1-Methylethyl- amino)ethyl, n-Butylamino-ethyl, ( 1-Methylpropylamino)ethyl, (2-Methylpropylamino)ethyl, ( 1 , 1-Dimethylethylamino)ethyl, n-Pentylaminoethyl, (1-Methylbutylamino)ethyl, (2-Methyl- butylamino)ethyl, (3-Methylbutylamino)ethyl, (2, 2-Dimethylpropylamino)ethyl, (1-Ethylpropylamino)ethyl, n-Hexylamino- ethyl, (1, 1-Dimethylpropylamino)ethyl, ( 1,2-Dimethylpropy1- amino)ethyl, ( 1-Methylpentylamino)ethyl, (2-Methylpentyl- amino) ethyl, (3-Methylpentylamino)ethyl, (4-Methylpentyl- amino)ethyl, (1, 1-Dimethylbutylamino)ethyl, ( 1, 2-Dimethy1- butylamino)ethy1, ( 1,3-Dimethylbutylamino)ethyl, (2, 2-Dirnethylbutylamino)ethyl, ( 2 , 3-Dimethylbutylamino)ethyl, (3,3-Dimethylbutylamino)ethyl, ( 1-Ethylbutylamino)ethyl, (2-Ethylbutylamino)ethyl, ( 1, 1,2-Trimethylpropylamino)ethyl, (1,2 , 2-Trimethylpropylamino)ethyl, ( 1-Ethy1-1-methylpropy1- amino)ethyl, ( 1-Ethy1-2-methylpropylamino)ethyl, 2-(Methyl- amino)propyl, 3- (Methylamino)propyl und 2- (Ethylamino)propyl, vorzugsweise Cι-Cg-Alkylamino-Cι-C2-alkyl, das durch Ci-Cß-Alkoxy - wie vorstehend genannt - substituiert ist, also z.B. für CH2-NH-CH2-OCH3 oder CH2-NH-CH2-OC2H5;
Cι-C6-Alkyloximino-Cι-C6-alkyl für: durch Ci-Cö-Alkyloximino wie Methoxyimino, Ethoxyimino, 1-Propoxyimino, 2-Propoxy- imino, 1-Methylethoxyimino, n-Butoxyimino, sec.-Butoxyimino, tert.-Butoxyimino, 1-Methyl-1-propoxyimino, 2-Methyl-1-prop- oxyimino, l-Methyl-2-propoxyimino, 2-Methyl-2-propoxyimino, n-Pentoxyimino, 2-Pentoxyimino, 3-Pentoxyimino, 4-Pentoxy- imino, 1-Methyl-1-butoxyimino, 2-Methyl-1-butoxyimino, 3-Methyl-1-butoxyimino, l-Methyl-2-butoxyimino, 2-Methyl- 2-butoxyimino, 3-Methyl-2-butoxyimino, 1-Methyl-3-butoxy- imino, 2-Methyl-3-butoxyimino, 3-Methyl-3-butoxyimino, 1 , l-Dimethyl-2-propoxyimino, 1, 2-Dimethyl-l-propoxyimino, 1 , 2-Dimethyl-2-propoxyimino, 1-Ethyl-1-propoxyimino, l-Ethyl-2-propoxyimino, n-Hexoxyimino, 2-Hexoxyimino,
3-Hexoxyimino, 4-Hexoxyimino, 5-Hexoxyimino, 1-Methyl-l-pent- oxyimino, 2-Methyl-1-pentoxyimino, 3-Methyl-1-pentox imino, 4-Methyl-1-pentoxyimino, l-Methyl-2-pentoxyimino, 2-Methyl- 2-pentoxyimino, 3-Methyl-2-pentoxyimino, 4-Methyl-2-pentoxy- imino, 1-Methyl-3-pentoxyimino, 2-Methyl-3-pentoxyimino,
3-Methyl-3-pentoxyimino, 4-Methyl-3-pentoxyimino, l-Methyl-4- pentoxyimino, 2-Methyl-4-pentoxyimino, 3-Methyl-4-pentoxy- imino, 4-Methyl-4-pentoxyimino, 1, l-Dimethyl-2-butoxyimino, 1 , 1-Dimethy1-3-butoxyimino, 1 , 2-Dimethy1-1-butoxyimino, 1,2-Dimethy1-2-butoxyimino, 1,2-Dimethy1-3-butoxyimino, 1 , 3-Dimethyl-l-butoxyimino, 1 , 3-Dimethy1-2-butoxyimino, 1, 3-Dimethyl-3-butoxyimino, 2, 2-Dimethy1-3-butoxyimino, 2 , 3-Dimethyl-l-butoxyimino, 2 , 3-Dimethyl-2-butoxyimino, 2 , 3-Dimethyl-3-butoxyimino, 3 , 3-Dimethyl-1-butoxyimino, 3, 3-Dimethy1-2-butoxyimino, 1-Ethyl-l-butoxyimino, 1-Ethyl- 2-butoxyimino, l-Ethyl-3-butoxyimino, 2-Ethyl-1-butoxyimino, 2-Ethyl-2-butoxyimino, 2-Ethyl-3-butoxyimino, 1,1,2-Tri- methy1-2-propoxyimino, l-Ethyl-l-methyl-2-propoxyimino, l-Ethyl-2-methyl-l-propoxyimino und l-Ethyl-2-methyl-2- propoxyimino, substituiertes Cι-C6-Alkyl, also z.B. für Methoxyi inomethy1;
Cι-C6-Alkoxy-Cι-C6-alkyl für: durch Ci-Cδ-Alkoxy - wie vorstehend genannt - substituiertes Cι-C6-Alkyl, also z.B. für CH2-OCH3, CH2-OC2H5, n-Propoxymethyl, CH2-OCH(CH3)2, n-Butoxy- methyl, ( 1-Methylpropoxy)methyl, (2-Methylpropoxy)methyl, CH2-OC(CH3)3, 2- (Methoxy)ethyl, 2-(Ethoxy)ethyl, 2-(n-Prop- oxy)ethyl, 2-(l-Methylethoxy)ethyl, 2-(n-Butoxy)ethyl, 2- ( 1-Methylpropoxy)ethyl, 2- ( 2-Methylpropoxy)ethyl, 2-( 1,1-Dirnethylethoxy)ethyl, 2- (Methoxy)propyl, 2- (Ethoxy) - propyl, 2- (n-Propoxy)propyl, 2- (1-Methylethoxy)propyl, 2-(n-Butoxy)propyl, 2-(1-Methylpropoxy)propyl, 2-(2-Methyl- propoxy)propyl, 2- ( 1, 1-Dimethylethoxy)propyl, 3- (Methoxy) - propyl, 3- (Ethoxy)-propyl, 3- (n-Propoxy)propyl, 3-(l-Methyl- ethoxy)propyl, 3- (n-Butoxy)propyl, 3- (1-Methylpropoxy)propyl, 3- ( 2-Methylpropoxy)propyl, 3- ( 1 , 1-Dimethylethoxy) ropyl, 2- (Methoxy)-butyl, 2- (Ethoxy)butyl, 2- (n-Propoxy)butyl, 2-(l-Methylethoxy)butyl, 2- (n-Butoxy)butyl, 2-(l-Methyl- propoxy)butyl, 2-(2-Methylpropoxy)butyl, 2-( 1, 1-Dimethyl- ethoxy)butyl, 3- (Methoxy)butyl, 3- (Ethoxy)butyl, 3- (n-Propoxy)butyl, 3-(l-Methylethoxy)butyl, 3- (n-Butoxy) - butyl, 3-(l-Methylpropoxy)butyl, 3-(2-Methylpropoxy)butyl, 3-(l,l-Dimethylethoxy)butyl, 4- (Methoxy)butyl, 4- (Ethoxy) - butyl, 4- (n-Propoxy)butyl, 4-( 1-Methylethoxy)butyl, 4- (n-Butoxy)butyl, 4- ( 1-Methylpropoxy)butyl, 4-(2-Methyl- propoxy)butyl oder 4-( 1, 1-Dimethylethoxy)butyl, insbesondere für CH2-OCH3 oder 2-Methoxyethyl;
Di(Cι-C6-Alkoxy)-Cι-C6-alkyl für: z.B. 2,2-Dimethoxyethyl oder 2 , 2-Diethoxyethy1;
Cι-C6-Alkoxy-Cι-C6-alkoxy für: durch Cx-Cδ-Alkoxy wie vorstehend genannt substituiertes Ci-Cg-Alkoxy, also z.B. für OCH2-OCH3, OCH2-OC2H5, n-Propoxymethoxy, OCH2-OCH(CH3)2, n-Butoxymethoxy, ( 1-Methylpropoxy)methoxy, (2-Methy1- propoxy)methoxy, OCH2-OC(CH3)3, 2- (Methoxy)ethoxy, 2- (Ethoxy)ethoxy, 2- (n-Propoxy)ethoxy, 2-(l-Methyl- ethoxy)ethoxy, 2- (n-Butoxy)ethoxy, 2- (1-Methylpropoxy)ethoxy, 2- (2-Methylpropoxy)ethoxy, 2- ( 1 , 1-Dimethylethoxy)ethoxy, 2-(Methoxy)propoxy, 2- (Ethoxy)propoxy, 2- (n-Propoxy)propoxy, 2-(l-Methylethoxy)propoxy, 2- (n-Butoxy)propoxy, 2-(l-Methyl- propoxy)propoxy, 2- (2-Methylpropoxy)propoxy, 2-(l, 1-Dimethyl- ethoxy)propoxy, 3- (Methoxy) -propoxy, 3- (Ethoxy)propoxy, 3- (n-Propoxy)propoxy, 3- ( 1-Methylethoxy)propoxy,
3- (n-Butoxy)propoxy, 3- ( 1-Methylpropoxy)propoxy, 3-(2-Methyl- propoxy)propoxy, 3- ( 1, 1-Dimethylethoxy)propoxy, 2-(Methoxy)- butoxy, 2- (Ethoxy)butoxy, 2-(n-Propoxy)butoxy, 2-(l-Methyl- ethoxy)butoxy, 2- (n-Butoxy) -butoxy, 2-( 1-Methylpropoxy)- butoxy, 2- (2-Methylpropoxy)butoxy, 2-( 1, 1-Dimethylethoxy)- butoxy, 3- (Methoxy)butoxy, 3- (Ethoxy)butoxy, 3- (n-Propoxy) - butoxy, 3- (1-Methylethoxy)butoxy, 3- (n-Butoxy)butoxy, 3- ( 1-Methylpropoxy)butoxy, 3- ( 2-Methylpropoxy)butoxy, 3- ( 1, 1-Dimethylethoxy)butoxy, 4-(Methoxy)butoxy, 4- (Ethoxy) - butoxy, 4- (n-Propoxy)butoxy, 4- ( 1-Methylethoxy)butoxy,
4-(n-Butoxy)butoxy, 4-(1-Methylpropoxy)butoxy, 4-(2-Methyl- propoxy) utoxy, 4- ( 1, 1-Dimethylethoxy)butoxy, 5- (Methoxy) - pentoxy, 5-(Ethoxy)pentoxy, 5- (n-Propoxy)pentoxy, 5- ( 1-Methylethoxy)pentoxy, 5- (n-Butoxy)pentoxy, 5-(l-Methyl- propoxy)pentoxy, 5- (2-Methylpropoxy)pentoxy, 5-(l, 1-Dimethyl- ethoxy)pentoxy, 6- (Methoxy)hexoxy, 6- (Ethoxy) exoxy, 6- (n-Propoxy)hexoxy, 6-( 1-Methylethoxy) hexoxy, 6-(n-Butoxy)- hexoxy, 6- (1-Meth lpropoxy) hexoxy, 6-(2-Methylpropoxy)hexoxy oder 6-( 1, 1-Dimethylethoxy)hexoxy, insbesondere für OCH2-OCH3 oder OCH2-OC2H5;
(Cι-C6-Alkyl)carbonyl-Cι-C6-alkoxy für: durch (Cι-C6-Alkyl)- carbonyl wie vorstehend genannt substituiertes Ci-Cö-Alkoxy, also z.B. für OCH2-CO-CH3, OCH2-CO-C2H5, OCH2-CO-CH2-C2H5, OCH2-CO-CH(CH3)2, n-Butylcarbony1-methoxy, 1-(C0-CH3)ethoxy, 2- (CO-CH3)ethoxy, 2- (C0-C2H5)ethoxy, 2- (C0-CH2-C2H5)ethoxy, 2- (n-Butylcarbonyl)ethoxy, 3- (C0-CH3) ropoxy, 3-(CO-C2H5)- propoxy, 3- (CO-CH2-C2H5)propoxy, 3- (n-Butylcarbonyl)propoxy, 4- (CO-CH3)butoxy, 4- (CO-C2H5)butoxy, 4- (CO-CH2-C2H5)butoxy, 4- (n-Butylcarbonyl)butoxy, 5- (CO-CH3)pentoxy, 5-(CO-C2H5)- pentoxy, 5- (CO-CH2-C2H5)pentoxy, 5- (n-Butylcarbonyl)butoxy, 6- (CO-CH3)hexoxy, 6- (CO-C2H5)hexoxy, 6-(CO-CH2-C2H )hexoxy oder 6- (n-Butylcarbonyl)hexoxy, insbesondere für OCH-CO-OCH3 oder l-(CO-CH3)ethoxy;
(Cι-C6-Alkoxy)carbonyl-Cι-C6-alkoxy für: durch (C;ι_-C6-Alkoxy)- carbonyl wie vorstehend genannt substituiertes Ci-Cδ-Alkoxy, also z.B. für OCH2-CO-OCH3, OCH2-CO-OC2H5, OCH2-CO-OCH-C2H5, OCH2-CO-OCH(CH3)2, n-Butoxycarbonyl-methoxy, l-(Methoxy- carbonyl)ethoxy, 2-(Methoxycarbonyl)ethoxy, 2-(Ethoxy- carbonyl)ethoxy, 2-(n-Propoxycarbonyl)ethoxy, 2-(n-Butoxy- carbonyl)ethoxy, 3-(Methoxycarbonyl)propoxy, 3-(Ethoxy- carbonyl)propoxy, 3- (n-Propoxycarbonyl)propoxy, 3- (n-Butoxycarbonyl)propoxy, 4- (Methoxycarbonyl)butoxy, 4-(Ethoxy- carbonyl)butoxy, 4- (n-Propoxycarbonyl)butoxy, 4- (n-Butoxy- carbonyl)butoxy, 5- (Methoxycarbonyl)pentoxy, 5-(Ethoxy- carbonyl)pentoxy, 5- (n-Propoxycarbonyl)pentoxy, 5-(n-Butoxy- carbonyl)butoxy, 6- (Methoxycarbonyl)hexoxy, 6-(Ethoxy- carbonyl)hexoxy, 6- (n-Propoxycarbonyl)hexoxy oder 6- (n-Butoxycarbonyl)hexoxy, insbesondere für OCH2-CO-OCH3 oder 1-(Methoxycarbonyl)ethoxy;
(Cι-C6-Alkoxy)carbonyl-Cι-C6-alkyl für: durch (Cι-C6-Alkoxy)- carbonyl wie vorstehend genannt substituiertes Cχ-C6-Alkyl, also z.B. für Methoxycarbonylmethyl, Ethoxycarbonylmethyl, 1- (Methoxycarbonyl)ethyl, 2- (Methoxycarbonyl) ethyl, 2-(Ethoxycarbonyl)ethyl, 3- (Methoxycarbonyl)propyl, 4- (Methoxycarbonyl)butyl, 5- (Methoxycarbonyl)pentyl oder 6- (Methoxycarbonyl)hexyl;
(Cι-C6-Alkoxy)carbonyl-Cι-C6-alkylsulfonyl für: durch (Ci-Cö-Alkoxy)carbonyl wie vorstehend genannt substituiertes Ci-Cδ-Alkylsulfonyl, also z.B. für Methoxycarbonylmethylsul- fonyl, Ethoxycarbonylmethylsulfonyl, 1- (Methoxycarbonyl)- ethylsulfonyl, 2- (Methoxycarbonyl)ethylsulfonyl, 2-(Ethoxy- carbonyl)ethylsulfonyl, 3- (Methoxycarbonyl)propylsulfonyl, 4- (Methoxycarbonyl)butylsulfonyl, 5- (Methoxycarbonyl)pentyl- sulfonyl oder 6- (Methoxycarbonyl)hexylsulfonyl;
Cι-C6-Alkylthio-Cι-C6-alkyl für: durch Ci-Cg-Alkylthio wie vorstehend genannt substituiertes Cχ-C6-Alkyl, also z.B. für CH2-SCH3, CH2-SC2H5, CH2-SCH2-C2H5, CH2-SCH(CH3)2, n-Butyl- thiomethyl, CH2-SCH(CH3)-C2H5, CH2-SCH2-CH(CH3)2, CH2-SC(CH3)3, 2-(SCH3)ethyl, 2-(SC2H5)ethyl, 2-(SCH2-C2H5)ethyl, 2- [SCH(CH3)2 ]ethyl, 2-(n-Butylthio)ethyl, 2-[SCH(CH3)-C2H5]- ethyl, 2-(2-Methylpropylthio)ethyl, 2-[SC(CH3)3]ethyl, 2- (SCH3) ropyl, 3- (SCH3)propyl, 2-(SC2H5)propyl, 3-(SC2H5)- propyl, 3- (SCH2-C2H5)propyl, 3- (Butylthio) ropyl, 4-(SCH3)- butyl, 4-(SC2H5)butyl, 4-(SCH2-C2H5)butyl oder 4-(n-Butyl- thio)butyl, insbesondere für 2-(SCH3)ethyl;
Cι-C6-Alkylthio-Cι-C6-alkoxy für: durch Cι-C6-Alkylthio wie vorstehend genannt substituiertes Cι-C6-Alkoxy, also z.B. für OCH2-SCH3, OCH2-SC2H5, OCH2-SCH2-C2H5, OCH2-SCH(CH3)2, n-Butylthiomethoxy, OCH2-SCH(CH3)-C2H5, OCH2-SCH2-CH(CH3)2, OCH2-SC(CH3)3, 2- (SCH3)ethoxy, 2- (SC2H5)ethoxy, 2-(SCH2-C2H5)- ethoxy, 2-[SCH(CH3) ]ethoxy, 2-(n-Butylthio)ethoxy,
2-[SCH(CH3 ) -C2H5 ]ethoxy, 2- (2-MethylpropyIthio)ethoxy, 2-[SC(CH3)3]ethoxy, 2-(SCH3)propoxy, 3- (SCH3)propoxy, 2- (SC2H5)propoxy, 3-(SC2H5)propoxy, 3- (SCH2-C2H5)propoxy, 3- (Butylthio)propoxy, 4- (SCH3)butoxy, 4- (SC2H5)butoxy, 4-(CH2- C2H5)butoxy oder 4- (n-Butylthio)butoxy, insbesondere für 2- (SCH3)ethoxy;
Cι-C6-Alkylthio-(Cι-C6-alkyl)carbonyl für: durch Ci-Cß-Alkyl- thio wie vorstehend genannt, vorzugsweise SCH3 oder SC2Hs, substituiertes (Ci-Cδ-Alkyl)carbonyl, also z.B. für Methyl- thiomethylcarbonyl, Ethylthiomethylcarbony1, l-(Methyl- thio)ethylcarbonyl, 2- (MethyIthio)ethylcarbonyl, 3-(Methyl- thio)propylcarbonyl, 4-(MethyIthio)butylcarbonyl, 5 ( ethyl- thio)pentylcarbonyl oder 6- (MethyIthio)hexylcarbonyl, insbesondere für CO-CH2-SCH3 oder CO-CH(CH3)-SCH3;
DifCi-Cg-alkylJamino-Ci-Ce-alkoxy: durch Di-(Cι-C6-alkyl)- amino wie N(CH3)2, N(C2H5)2, N,N-Dipropylamino, N,N-Di- ( 1-methylethyl)amino, N,N-Dibut lamino, N,N-Di-(1-methylpropy1) amino, N,N-Di-( 2-methylpropyl) amino, N[C(CH3)3]2, N-Ethyl-N-methylamino, N-Methyl-N-propylamino, N-Methyl- N-( 1-methylethyl) amino, N-Butyl-N-methylamino, N-Methyl-
N- ( 1-methylpropyl) amino, N-Methyl-N- ( 2-methylpropyl)amino, N-(l, 1-Dirnethylethyl) -N-methylamino, N-Ethyl-N-propylamino, N-Ethyl-N- ( 1-methylethyl) amino, N-Butyl-N-ethylamino, N-Ethyl-N- ( 1-methylpropyl) amino, N-Ethyl-N-( 2-methyl- propyl) amino, N-Ethyl-N- ( 1, 1-dimethylethyl) amino,
N- ( 1-Meth lethyl) -N-propylamino, N-Butyl-N-propylamino, N- ( 1-Methylpropyl) -N-propylamino, N- ( 2-Methylpropyl) -N- propylamino, N-(l, 1-Dimeth lethyl) -N-propylamino, N-Butyl- N-( 1-methylethyl) amino, N-( l-Methylethyl)-N-( 1-methylpropyl)- amino, N-( 1-Methylethyl)-N-(2-methylpropyl)amino, N-( 1,1-Dimethylethyl) -N-( 1-methylethyl)amino, N-Butyl-N- ( 1-methyl- propyl) amino, N-Butyl-N- (2-methylpropyl) amino, N-Butyl-N- ( 1, 1-dimethylethyl)amino, N- ( 1-Methylpropyl) -N- (2-methyl- propyl) amino, N- ( 1, 1-Dimethylethyl) -N-( 1-methylpropyl) amino oder N-(l, 1-Dimethylethyl)-N-(2-methylpropyl) amino, vorzugsweise N,N-Dimethylamino oder N,N-Diethylamino, substituiertes Cι-C6-Alkoxy, also z.B. für OCH2-N(CH3)2, 0CH2-N(C2H5)2, OCH(CH3)-N(CH3)2, 2- (Dimethylamino)ethoxy, OCH(CH3)-N(C2H5)2, 3- (Dirnethylamino)propoxy, 4-(Dimethylamino)butoxy, 5-(Di- methylamino)pentoxy oder 6- (Dimethylamino) exoxy, insbesondere für OCH2-N(CH3)2 oder OCH(CH3)-N(CH3)2;
C3-C6-Alkenyl für: z.B. Prop-2-en-l-yl, n-Buten-4-yl, l-Methyl-prop-2-en-l-yl, 2-Methyl-prop-2-en-l-yl, 2-Buten- 1-ylf n-Penten-3-yl, n-Penten-4-yl, l-Methyl-but-2-en-l-yl, 2-Methyl-but-2-en-l-yl, 3-Methyl-but-2-en-l-yl, 1-Methyl- but-3-en-l-yl, 2-Methyl-but-3-en-l-yl, 3-Methyl-but-3-en- Ul t t
O Ul o Ul o Ul o Ul
oxy, l-Methyl-pent-2-en-l-yloxy, 2-Methyl-pent-2-en-l-yloxy, 3-Methyl-pent-2-en-1-yloxy, 4-Methyl-pent-2-en-1-yloxy, l-Methyl-pent-3-en-l-yloxy, 2-Methyl-pent-3-en-l-yloxy, 3-Methyl-pent-3-en-l-yloxy, 4-Methyl-pent-3-en-l-yloxy, l-Methyl-pent-4-en-l-yloxy, 2-Methyl-pent-4-en-l-yloxy, 3-Methyl-pent-4-en-l-yloxy, 4-Methyl-pent-4-en-l-yloxy, 1 , l-Dimethyl-but-2-en-l-yloxy, 1 , l-Dimethyl-but-3-en-l-yloxy, 1 , 2-Dimethyl-but-l-en-l-yloxy, 1 ,2-Dimethyl-but-2-en-l-yloxy, 1 , 2-Dimethyl-but-3-en-l-yloxy, 1, 3-Dimethyl-but-l-en-l-yloxy, 1 , 3-Dimethyl-but-2-en-l-yloxy, 1 , 3-Dimethyl-but-3-en-l-yloxy, 2 , 2-Dimethyl-but-3-en-l-yloxy, 2 , 3-Dimethyl-but-l-en-l-yloxy, 2 , 3-Dimethyl-but-2-en-l-yloxy, 2 , 3-Dimethy1-but-3-en-l-yloxy, 3 , 3-Dimethyl-but-l-en-l-yloxy, 3 , 3-Dimethyl-but-2-en-l-yloxy, 1-Ethyl-but-l-en-l-yloxy, l-Ethyl-but-2-en-l-yloxy, 1-Ethyl- but-3-en-l-yloxy, 2-Ethyl-but-l-en-l-yloxy, 2-Ethyl-but-2- en-1-yloxy, 2-Ethyl-but-3-en-l-yloxy, 1, 1,2-Trimethy1-prop-2- en-1-yloxy, l-Ethyl-l-methyl-prop-2-en-l-yloxy, l-Ethyl-2- methyl-prop-1-en-l-yloxy oder l-Ethyl-2-methyl-prop-2-en-l- yloxy, insbesondere für Prop-2-en-l-yloxy;
C2-C6-Alkenyloxy für: Ethenyloxy oder einen der unter C3-C6-Alkenyloxy genannten Reste, insbesondere für Ethenyloxy oder Prop-2-en-l-yloxy;
- C3-C6-Halogenalkenyloxy für: C3-C6-Alkenyloxy wie vorstehend genannt, das partiell oder vollständig durch Fluor, Chlor und/oder Brom substituiert ist, also z.B. 2-Chlorallyloxy, 3-Chlorallyloxy, 2,3-Dichlorallyloxy, 3,3-Dichlorallyloxy, 2,3,3-Trichlorallyloxy, 2,3-Dichlorbut-2-enyloxy, 2-Brom- allyloxy, 3-Bromallyloxy, 2,3-Dibromallyloxy, 3,3-Dibrom- allyloxy, 2,3,3-Tribromallyloxy oder 2,3-Dibrombut-2-enyloxy, insbesondere für 2-Chlorallyloxy oder 3,3-Dichlorallyloxy;
Phenyl-C3-C6-alkenyloxy für: z.B. 3-Phenyl-allyloxy, 4-Phenyl- but-2-enyloxy, 4-Phenyl-but-3-enyloxy oder 5-Phenyl-pent-4- enyloxy, vorzugsweise 3-Phenylallyloxy oder 4-Phenyl-but-2- enyloxy, insbesondere für 3-Phenylallyloxy;
Heterocyclyl-C3-C6-alkenyloxy für: z.B. 3-Heterocyclyl-allyl- oxy, 4-Heterocyclyl-but-2-enyloxy, 4-Heterocyclyl-but-3- enyloxy oder 5-Heterocyclyl-pent-4-enyloxy, vorzugsweise 3-Heterocyclyl-allyloxy oder 4-Heterocyclyl-but-2-enyloxy, insbesondere für 3-Heterocyclyl-allyloxy;
- C2-C6-AlkenyIthio für: Ethenylthio, Prop-1-en-l-ylthio,
Prop-2-en-l-ylthio, 1-MethylethenyIthio, n-Buten-1-ylthio, n-Buten-2-ylthio, n-Buten-3-ylthio, 1-Methyl-prop-l-en-l-yl- thio, 2-Methyl-prop-l-en-l-ylthio, l-Methyl-prop-2-en-l-yl- thio, 2-Methyl-prop-2-en-l-ylthio, n-Penten-1-ylthio, n-Penten-2-ylthio, n-Penten-3-ylthio, n-Penten-4-ylthio, 1-Methyl-but-l-en-l-ylthio, 2-Methyl-but-l-en-l-ylthio, 3-Methyl-but-l-en-l-ylthio, l-Methyl-but-2-en-l-ylthio, 2-Methyl-but-2-en-1-yIthio, 3-Methyl-but-2-en-1-yIthio, l-Methyl-but-3-en-l-ylthio, 2-Methyl-but-3-en-l-ylthio, 3-Methyl-but-3-en-l-yIthio, 1, l-Dimethyl-prop-2-en-l-ylthio, 1 , 2-Dimethy1-prop-l-en-l-yIthio, 1 , 2-Dimethyl-prop-2-en- 1-ylthio, l-Ethyl-prop-l-en-2-ylthio, l-Ethyl-prop-2-en-
1-ylthio, n-Hex-1-en-l-ylthio, n-Hex-2-en-l-ylthio, n-Hex- 3-en-l-ylthio, n-Hex-4-en-l-ylthio, n-Hex-5-en-l-ylthio, 1-Methyl-pent-l-en-l-ylthio, 2-Methyl-pent-l-en-l-ylthio, 3-Methy1-pent-l-en-l-yIthio, 4-Methyl-pent-l-en-l-ylthio, l-Methyl-pent-2-en-l-ylthio, 2-Methyl-pent-2-en-l-ylthio, 3-Methyl-pent-2-en-l-ylthio, 4-Methyl-pent-2-en-l-ylthio, l-Methyl-pent-3-en-l-yIthio, 2-Methyl-pent-3-en-l-ylthio, 3-Methyl-pent-3-en-l-ylthio, 4-Methyl-pent-3-en-l-ylthio, l-Methyl-pent-4-en-l-ylthio, 2-Methyl-pent-4-en-l-yIthio, 3-Methyl-pent-4-en-l-ylthio, 4-Methyl-pent-4-en-l-ylthio,
1, l-Dimethyl-but-2-en-l-yIthio, 1, l-Dimethyl-but-3-en-l-yl- thio, 1,2-Dimethyl-but-l-en-l-yIthio, 1,2-Dimethyl-but- 2-en-l-ylthio, l,2-Dimethyl-but-3-en-l-ylthio, 1,3-Dimethyl- but-1-en-l-ylthio, l,3-Dimethyl-but-2-en-l-yIthio, 1,3-Di- methyl-but-3-en-l-ylthio, 2,2-Dimethyl-but-3-en-l-ylthio,
2 , 3-Dimethyl-but-l-en-l-ylthio, 2 , 3-Dimethyl-but-2-en-l-yl- thio, 2,3-Dimethyl-but-3-en-l-ylthio, 3,3-Dimethyl-but-l-en- 1-ylthio, 3,3-Dimethyl-but-2-en-l-ylthio, 1-Ethyl-but-l-en- 1-ylthio, l-Ethyl-but-2-en-l-yIthio, l-Ethyl-but-3-en-l-yl- thio, 2-Ethyl-but-l-en-l-ylthio, 2-Ethyl-but-2-en-l-ylthio, 2-Ethyl-but-3-en-l-ylthio, 1, l,2-Trimethyl-prop-2-en-l-yl- thio, l-Ethyl-l-methyl-prop-2-en-l-ylthio, l-Ethyl-2-methyl- prop-1-en-l-ylthio oder l-Ethyl-2-methyl-prop-2-en-l-ylthio, insbesondere für Ethenylthio oder Prop-2-en-l-ylthio;
C3-C6-Alkinyl für: Prop-1-in-l-yl, Prop-2-in-l-yl, n-But-1- in-l-yl, n-But-l-in-3-yl, n-But-l-in-4-yl, n-But-2-in-l-yl, n-Pent-1-in-l-yl, n-Pent-l-in-3-yl, n-Pent-l-in-4-yl, n-Pent- l-in-5-yl, n-Pent-2-in-l-yl, n-Pent-2-in-4-yl, n-Pent-2-in- 5-yl, 3-Methyl-but-l-in-3-yl, 3-Methyl-but-l-in-4-yl, n-Hex- 1-in-l-yl, n-Hex-l-in-3-yl, n-Hex-l-in-4-yl, n-Hex-l-in-5-yl, n-Hex-l-in-6-yl, n-Hex-2-in-l-yl, n-Hex-2-in-4-yl, n-Hex-2- in-5-yl, n-Hex-2-in-6-yl, n-Hex-3-in-l-yl, n-Hex-3-in-2-yl, 3-Methyl-pent-l-in-l-yl, 3-Methyl-pent-l-in-3-yl, 3-Methyl- pent-l-in-4-yl, 3-Methyl-pent-l-in-5-yl, 4-Methyl-pent-l-in- 1-yl, 4-Methyl-pent-2-in-4-yl oder 4-Methyl-pent-2-in-5-yl, insbesondere für Prop-2-in-l-yl;
C2-C6-Alkinyl für: Ethinyl oder einen der unter C3-C6-Alkinyl genannten Reste, insbesondere für Ethinyl oder Prop-2-in- 1-yl;
C3-C6-Alkinyloxy für: Prop-1-in-l-yloxy, Prop-2-in-l-yloxy, n-But-1-in-l-yloxy, n-But-l-in-3-yloxy, n-But-l-in-4-yloxy, n-But-2-in-l-yloxy, n-Pent-1-in-l-yloxy, n-Pent-l-in-3-yloxy, n-Pent-l-in-4-yloxy, n-Pent-l-in-5-yloxy, n-Pent-2-in-l-yl- oxy, n-Pent-2-in-4-yloxy, n-Pent-2-in-5-yloxy, 3-Methyl- but-l-in-3-yloxy, 3-Methyl-but-l-in-4-yloxy, n-Hex-1-in-l-yl- oxy, n-Hex-l-in-3-yloxy, n-Hex-l-in-4-yloxy, n-Hex-l-in-5-yl- oxy, n-Hex-l-in-6-yloxy, n-Hex-2-in-l-yloxy, n-Hex-2-in-4-yl- oxy, n-Hex-2-in-5-yloxy, n-Hex-2-in-6-yloxy, n-Hex-3-in-l-yl- oxy, n-Hex-3-in-2-yloxy, 3-Methylpent-l-in-l-yloxy, 3-Methyl- pent-l-in-3-yloxy, 3-Methyl-pent-l-in-4-yloxy, 3-Methyl-pent- l-in-5-yloxy, 4-Methyl-pent-l-in-l-yloxy, 4-Methyl-pent-2-in- 4-yloxy oder 4-Methylpent-2-in-5-yloxy, insbesondere für Prop-2-in-1-yloxy;
C2-C6-Alkinyloxy für: Ethinyloxy oder einen der unter c 3 _c 6-Alkinyloxy genannten Reste, insbesondere für Ethinyloxy oder Prop-2-in-l-yloxy;
Phenyl-C3-C6-alkinyloxy für: z.B. 3-Phenylprop-2-in-l-yloxy, 4-Phenylbut-2-in-l-yloxy, 3-Phenylbut-3-in-2-yloxy, 5-Phenyl- pent-3-in-l-yloxy oder 6-Phenylhex-4-in-l-yloxy, insbesondere für 3-Phenylprop-2-in-l-yloxy oder 3-Phenylbut-3-in-2-yloxy;
Heterocyclyl-C-C6-alkinyloxy für: z.B. 3-(Heterocyclyl)prop- 2-in-l-yloxy, 4-(Heterocyclyl)but-2-in-l-yloxy, 3-(Hetero- cyclyl)but-3-in-2-yloxy, 5-(Heterocyclyl)pent-3-in-l-yloxy oder 6-(Heterocyclyl)hex-4-in-l-yloxy, insbesondere für
3-(Heterocyclyl)prop-2-in-l-yloxy oder 3-(Heterocyclyl)but- 3-in-2-yloxy;
C3-C6-Alkinylthio für: Prop-1-in-l-yIthio, Prop-2-in-l-ylthio, n-But-1-in-l-ylthio, n-But-l-in-3-ylthio, n-But-l-in-4- ylthio, n-But-2-in-l-ylthio, n-Pent-1-in-l-yIthio, n-Pent- l-in-3-ylthio, n-Pent-l-in-4-ylthio, n-Pent-l-in-5-ylthio, n-Pent-2-in-l-ylthio, n-Pent-2-in-4-yIthio, n-Pent-2-in-5- ylthio, 3-Methyl-but-l-in-3-yIthio, 3-Methylbut-l-in-4- ylthio, n-Hex-1-in-l-ylthio, n-Hex-l-in-3-ylthio, n-Hex-1- in-4-ylthio, n-Hex-l-in-5-ylthio, n-Hex-l-in-6-ylthio, n-Hex-2-in-l-ylthio, n-Hex-2-in-4-yIthio, n-Hex-2-in-5- ylthio, n-Hex-2-in-6-ylthio, n-Hex-3-in-l-ylthio, n-Hex-3- in-2-ylthio, 3-Methylpent-l-in-l-ylthio, 3-Methyl-pent-l-in- 3-ylthio, 3-Methyl-pent-l-in-4-ylthio, 3-Methylpent-l-in-5- ylthio, 4-Methy1-pent-l-in-l-yIthio, 4-Methyl-pent-2-in-4- ylthio oder 4-Methyl-pent-2-in-5-ylthio, insbesondere für Prop-2-in-l-ylthio;
C2-C6-AlkinyIthio für: Ethinylthio oder einen der unter C3-C6-AlkinyIthio genannten Reste, insbesondere für Ethinyl- thio oder Prop-2-in-l-ylthio;
(C3-C6-Alkenyloxy)carbonyl für: Prop-l-en-1-yloxycarbonyl, Prop-2-en-l-yloxycarbonyl, 1-Methylethenyloxycarbonyl, n-Buten-1-yloxycarbonyl, n-Buten-2-yloxycarbonyl, n-Buten-3- yloxycarbonyl, 1-Methyl-prop-l-en-l-yloxycarbonyl, 2-Methyl- prop-1-en-l-yloxycarbonyl, l-Methyl-prop-2-en-l-yloxy- carbonyl, 2-Methyl-prop-2-en-l-yloxycarbonyl, n-Penten-1- yloxycarbonyl, n-Penten-2-yloxycarbonyl, n-Penten-3-yloxy- carbonyl, n-Penten-4-yloxycarbonyl, 1-Methyl-but-l-en-l- yloxycarbonyl, 2-Methyl-but-l-en-l-yloxycarbonyl, 3-Methyl- but-1-en-l-yloxycarbonyl, 1-Methyl-but-2-en-1-yloxycarbonyl, 2-Methyl-but-2-en-1-yloxycarbonyl, 3-Methyl-but-2-en-l-yloxy- carbonyl, l-Methyl-but-3-en-l-yloxycarbonyl, 2-Methyl-but-3- en-1-yloxycarbonyl, 3-Methyl-but-3-en-l-yloxycarbonyl, 1, l-Dimethyl-prop-2-en-l-yloxycarbonyl, 1,2-Dimethyl-prop-l- en-1-yloxycarbonyl, l,2-Dimethyl-prop-2-en-l-yloxycarbonyl, 1-Ethyl-prop-1-en-2-yloxycarbonyl, 1-Ethyl-prop-2-en-1-yloxycarbonyl, n-Hex-1-en-l-yloxycarbonyl, n-Hex-2-en-l-yloxy- carbonyl, n-Hex-3-en-l-yloxycarbonyl, n-Hex-4-en-l-yloxy- carbonyl, n-Hex-5-en-l-yloxycarbonyl, 1-Methyl-pent-l-en-l- yloxycarbony1, 2-Methyl-pent-l-en-l-yloxycarbonyl, 3-Methyl- pent-1-en-l-yloxycarbonyl, 4-Methyl-pent-l-en-l-yloxy- carbonyl, l-Methyl-pent-2-en-l-yloxycarbonyl, 2-Methyl-pent- 2-en-1-yloxycarbonyl, 3-Methy1-pent-2-en-1-yloxycarbonyl, 4-Methyl-pent-2-en-l-yloxycarbonyl, l-Methyl-pent-3-en-l- yloxycarbonyl, 2-Methyl-pent-3-en-l-yloxycarbonyl, 3-Methyl- pent-3-en-1-yloxycarbonyl, 4-Methyl-pent-3-en-l-yloxy- carbonyl, l-Methyl-pent-4-en-l-yloxycarbonyl, 2-Methyl-pent- 4-en-1-yloxycarbonyl, 3-Methy1-pent-4-en-1-yloxycarbonyl, 4-Methyl-pent-4-en-1-yloxycarbonyl, 1, l-Dimethyl-but-2-en-l- yloxycarbonyl, 1, l-Dimethyl-but-3-en-l-yloxycarbonyl, 1,2-Di- methyl-but-1-en-l-yloxycarbonyl, l,2-Dimethyl-but-2-en-l- yloxycarbonyl, l,2-Dimethyl-but-3-en-l-yloxycarbonyl, 1,3-Di- methyl-but-1-en-l-yloxycarbonyl, l,3-Dimethyl-but-2-en-l- yloxycarbonyl, l,3-Dimethyl-but-3-en-l-yloxycarbonyl, 2,2-Di- methyl-but-3-en-l-yloxycarbonyl, 2 , 3-Dimethyl-but-l-en-l- yloxycarbonyl, 2,3-Dimethyl-but-2-en-l-yloxycarbonyl, 2,3-Di- methyl-but-3-en-l-yloxycarbonyl, 3 , 3-Dimethyl-but-l-en-l- yloxycarbonyl, 3 , 3-Dimethyl-but-2-en-l-yloxycarbonyl, 1-Ethyl-but-l-en-l-yloxycarbonyl, l-Ethyl-but-2-en-l-yloxy- carbonyl, l-Ethyl-but-3-en-l-yloxycarbonyl, 2-Ethyl-but-l- en-1-yloxycarbonyl, 2-Ethyl-but-2-en-l-yloxycarbonyl,
2-Ethyl-but-3-en-l-yloxycarbonyl, 1, 1, 2-Trimethyl-prop-2-en- l-yloxycarbonyl, l-Ethyl-l-methyl-prop-2-en-l-yloxycarbonyl, l-Ethyl-2-methyl-prop-l-en-l-yloxycarbonyl oder l-Ethyl-2- methyl-prop-2-en-l-yloxycarbonyl, insbesondere für Prop-2- en-l-yloxycarbonyl;
(C3-C6-Alkenyloxy)carbonyl-Cι-C6-alkyl für: durch (C3-C6-Alkenyloxy)carbonyl wie vorstehend genannt, vorzugsweise Prop-2-en-l-yl-oxycarbonyl, substituiertes Ci-Cg-Alkyl, also beispielsweise Prop-2-en-l-yl-oxycarbonyl-methyl;
(C2-C6-Alkenyl)carbonyloxy für: Ethenylcarbonyloxy, Prop- 1-en-l-ylcarbonyloxy, Prop-2-en-l-ylcarbonyloxy, 1-Methyl- ethenylcarbonyloxy, n-Buten-1-ylcarbonyloxy, n-Buten-2-yl- carbonyloxy, n-Buten-3-ylcarbonyloxy, 1-Methyl-prop-l-en- 1-ylcarbonyloxy, 2-Methy1-prop-1-en-1-ylcarbonyloxy, 1-Methy1-prop-2-en-1-ylcarbonyloxy, 2-Methyl-prop-2-en-1-y1- carbonyloxy, n-Penten-1-ylcarbonyloxy, n-Penten-2-ylcarbonyl- oxy, n-Penten-3-ylcarbon loxy, n-Penten-4-ylcarbonyloxy, 1-Methyl-but-l-en-l-ylcarbonyloxy, 2-Methyl-but-l-en-l-yl- carbonyloxy, 3-Methyl-but-l-en-l-ylcarbonyloxy, 1-Methyl- but-2-en-l-ylcarbonyloxy, 2-Methyl-but-2-en-l-ylcarbonyloxy, 3-Methyl-but-2-en-l-ylcarbonyloxy, 1-Methyl-but-3-en-l-yl- carbonyloxy, 2-Methyl-but-3-en-l-ylcarbonyloxy, 3-Methyl- but-3-en-l-ylcarbonyloxy, 1, l-Dimethyl-prop-2-en-l-yl- carbonyloxy, 1,2-Dimethyl-prop-l-en-l-ylcarbonyloxy, 1,2-Di- methyl-prop-2-en-l-ylcarbonyloxy, l-Ethyl-prop-l-en-2-yl- carbonyloxy, l-Ethyl-prop-2-en-l-ylcarbonyloxy, n-Hex-1-en- 1-ylcarbonyloxy, n-Hex-2-en-l-ylcarbonyloxy, n-Hex-3-en-l-yl- carbonyloxy, n-Hex-4-en-l-ylcarbonyloxy, n-Hex-5-en-l-yl- carbonyloxy, 1-Methyl-pent-l-en-l-ylcarbonyloxy, 2-Methyl- pent-1-en-l-ylcarbonyloxy, 3-Methyl-pent-l-en-l-ylcarbonyl- oxy, 4-Methyl-pent-l-en-l-ylcarbonyloxy, l-Methyl-pent-2-en- 1-ylcarbonyloxy, 2-Methy1-pent-2-en-l-ylcarbonyloxy, 3-Methyl-pent-2-en-l-ylcarbonyloxy, 4-Methyl-pent-2-en-l-yl- carbonyloxy, l-Methyl-pent-3-en-l-ylcarbonyloxy, 2-Methyl- pent-3-en-l-ylcarbonyloxy, 3-Methyl-pent-3-en-l-ylcarbonyl- oxy, 4-Methyl-pent-3-en-l-ylcarbonyloxy, l-Methyl-pent-4-en- 1-ylcarbonyloxy, 2-Methy1-pent-4-en-1-ylcarbonyloxy, 3-Methyl-pent-4-en-l-ylcarbonyloxy, 4-Methyl-pent-4-en-l-yl- carbonyloxy, 1, l-Dimethyl-but-2-en-l-ylcarbonyloxy, 1,1-Di- methyl-but-3-en-l-ylcarbonyloxy, 1 , 2-Dimethy1-but-l-en-l-yl- carbonyloxy, l,2-Dimethyl-but-2-en-l-ylcarbonyloxy, 1,2-Di- methyl-but-3-en-l-ylcarbonyloxy, 1,3-Dimethyl-but-l-en-l-yl- carbonyloxy, 1,3-Dimethyl-but-2-en-1-ylcarbonyloxy, 1, 3-Dimethyl-but-3-en-l-ylcarbonyloxy, 2,2-Dimethyl-but-3-en-l-yl- carbonyloxy, 2,3-Dimethyl-but-l-en-l-ylcarbonyloxy, 2,3-Di- methyl-but-2-en-l-ylcarbonyloxy, 2 , 3-Dimethyl-but-3-en-l-yl- carbonyloxy, 3,3-Dimethyl-but-l-en-l-ylcarbonyloxy, 3, 3-Dimethyl-but-2-en-l-ylcarbonyloxy, 1-Ethy1-but-1-en-l-yl- carbonyloxy, l-Ethyl-but-2-en-l-ylcarbonyloxy, 1-Ethyl-but- 3-en-l-ylcarbonyloxy, 2-Ethyl-but-l-en-l-ylcarbonyloxy, 2-Ethyl-but-2-en-l-ylcarbonyloxy, 2-Ethyl-but-3-en-l-yl- carbonyloxy, 1,1, 2-Trimethyl-prop-2-en-l-ylcarbonyloxy, l-Ethyl-l-methyl-prop-2-en-l-ylcarbonyloxy, 1-Ethy1-2-methy1- prop-1-en-l-ylcarbonyloxy oder l-Ethyl-2-methyl-prop-2-en- 1-ylcarbonyloxy, insbesondere für Ethenylcarbonyloxy oder Prop-2-en-1-ylcarbonyloxy;
(C2-Cg-Alkenyl)carbonylthio für: EthenylcarbonyIthio, Prop- 1-en-l-ylcarbonylthio, Prop-2-en-l-ylcarbonyIthio, 1-Methyl- ethenylcarbonylthio, n-Buten-1-ylcarbonylthio, n-Buten-2-yl- carbonylthio, n-Buten-3-ylcarbonyIthio, 1-Methy1-prop-l-en- l-ylcarbonyIthio, 2-Methyl-prop-1-en-1-ylcarbonylthio, 1-Methyl-prop-2-en-1-ylcarbonyIthio, 2-Methyl-prop-2-en-1-y1- carbonylthio, n-Penten-1-ylcarbonylthio, n-Penten-2-yl- carbonylthio, n-Penten-3-ylcarbonyIthio, n-Penten-4-yl- carbonylthio, 1-Methyl-but-l-en-l-ylcarbonylthio, 2-Methyl- but-1-en-l-ylcarbonyIthio, 3-Methyl-but-l-en-1-ylcarbonylthio, l-Methyl-but-2-en-l-ylcarbonylthio, 2-Methyl-but-2-en- 1-ylcarbonyIthio, 3-Methyl-but-2-en-l-ylcarbonylthio, l-Methyl-but-3-en-l-ylcarbonyIthio, 2-Methyl-but-3-en-l-yl- carbonyIthio, 3-Methyl-but-3-en-l-ylcarbonyIthio, 1, 1-Dimethyl-prop-2-en-l-ylcarbonylthio, 1 , 2-Dimethyl-prop-l-en- 1-ylcarbonyIthio, 1 , 2-Dimethyl-prop-2-en-l-ylcarbonylthio, l-Ethyl-prop-l-en-2-ylcarbonyIthio, l-Ethyl-prop-2-en-l-yl- carbonylthio, n-Hex-1-en-l-ylcarbonylthio, n-Hex-2-en-l-yl- carbonylthio, n-Hex-3-en-l-ylcarbonyIthio, n-Hex-4-en-l-yl- carbonyIthio, n-Hex-5-en-l-ylcarbonyIthio, 1-Methy1-pent- 1-en-l-ylcarbonyIthio, 2-Methy1-pent-l-en-1-ylcarbonyIthio, 3-Methyl-pent-l-en-l-ylcarbonylthio, 4-Methyl-pent-l-en-l-yl- carbonylthio, l-Methyl-pent-2-en-l-ylcarbonylthio, 2-Methyl- pent-2-en-l-ylcarbonylthio, 3-Methyl-pent-2-en-l-ylcarbonyl- thio, 4-Methyl-pent-2-en-l-ylcarbonylthio, 1-Methy1-pent- 3-en-l-ylcarbonylthio, 2-Methyl-pent-3-en-1-ylcarbonyIthio, 3-Methyl-pent-3-en-l-ylcarbonylthio, 4-Methyl-pent-3-en-l-yl- carbonylthio, l-Methyl-pent-4-en-l-ylcarbonylthio, 2-Methyl- pent-4-en-l-ylcarbonyIthio, 3-Methyl-pent-4-en-l-ylcarbonyl- thio, 4-Methyl-pent-4-en-l-ylcarbonylthio, 1, 1-Dimethyl- but-2-en-l-ylcarbonyIthio, 1, l-Dimethyl-but-3-en-l-yl- carbonyIthio, 1,2-Dimethyl-but-l-en-l-ylcarbonylthio, 1,2-Di- methyl-but-2-en-l-ylcarbonyIthio, l,2-Dimethyl-but-3-en-l-yl- carbonylthio, 1,3-Dimethyl-but-l-en-l-ylcarbonylthio, 1,3-Di- methyl-but-2-en-l-ylcarbonyIthio, l,3-Dimethyl-but-3-en-l-yl- carbonyIthio, 2, 2-Dimethyl-but-3-en-l-ylcarbonylthio, 2,3-Di- methyl-but-1-en-l-ylcarbonyIthio, 2, 3-Dimethyl-but-2-en-l-y1- carbonyIthio, 2,3-Dimethyl-but-3-en-l-ylcarbonylthio, 3,3-Di- methyl-but-1-en-l-ylcarbonylthio, 3,3-Dimethyl-but-2-en-l-yl- carbonylthio, 1-Ethyl-but-l-en-l-ylcarbonylthio, 1-Ethyl-but- 2-en-l-ylcarbonylthio, l-Ethyl-but-3-en-l-ylcarbonyIthio, 2-Ethy1-but-1-en-1-ylcarbonyIthio, 2-Ethyl-but-2-en-1-yl- carbonylthio, 2-Ethyl-but-3-en-l-ylcarbonylthio, 1,1,2-Tri- methyl-prop-2-en-l-ylcarbonylthio, 1-Ethyl-l-methyl-prop- 2-en-l-ylcarbonyIthio, l-Ethyl-2-methyl-prop-l-en-l-yl- carbonylthio oder l-Ethyl-2-methyl-prop-2-en-l-ylcarbonyl- thio, insbesondere für EthenylcarbonyIthio oder Prop-2-en- 1-yl-carbonylthio;
(C2-C6-Alkinyl)carbonyloxy für: Ethinylcarbonyloxy, Prop- 1-in-l-ylcarbonyloxy, Prop-2-in-l-ylcarbonyloxy, n-But- 1-in-l-ylcarbonyloxy, n-But-l-in-3-ylcarbonyloxy, n-But- l-in-4-ylcarbonyloxy, n-But-2-in-l-ylcarbonyloxy, n-Pent- 1-in-1-ylcarbonyloxy, n-Pent-l-in-3-ylcarbonyloxy, n-Pent- l-in-4-ylcarbonyloxy, n-Pent-l-in-5-ylcarbonyloxy, n-Pent- 2-in-l-ylcarbonyloxy, n-Pent-2-in-4-ylcarbonyloxy, n-Pent- 2-in-5-ylcarbonyloxy, 3-Methy1-but-l-in-3-ylcarbonyloxy, 3-Methy1-but-l-in-4-ylcarbonyloxy, n-Hex-1-in-l-ylcarbonyl- oxy, n-Hex-l-in-3-ylcarbonyloxy, n-Hex-l-in-4-ylcarbonyloxy, n-Hex-l-in-5-ylcarbonyloxy, n-Hex-l-in-6-ylcarbonyloxy, n-Hex-2-in-1-ylcarbonyloxy, n-Hex-2-in-4-ylcarbonyloxy, n-Hex-2-in-5-ylcarbonyloxy, n-Hex-2-in-6-ylcarbonyloxy, n-Hex-3-in-l-ylcarbonyloxy, n-Hex-3-in-2-ylcarbon loxy, 3-Methylpent-1-in-1-ylcarbonyloxy, 3-Meth 1-pent-1-in-3-y1- carbonyloxy, 3-Methyl-pent-l-in-4-ylcarbonyloxy, 3-Methyl- pent-l-in-5-ylcarbonyloxy, 4-Methyl-pent-l-in-1-ylcarbonyloxy, 4-Methyl-pent-2-in-4-ylcarbonyloxy oder 4-Methylpent- 2-in-5-ylcarbonyloxy, insbesondere für Ethinylcarbonyloxy oder Prop-2-in-l-ylcarbonyloxy;
C3-Cg-Alkinylsulfonyloxy für: Prop-1-in-l-ylsulfonyloxy, Prop-2-in-l-ylsulfonyloxy, n-But-1-in-l-ylsulfonyloxy, n-But-l-in-3-ylsulfonyloxy, n-But-l-in-4-ylsulfonyloxy, n-But-2-in-l-ylsulfonyloxy, n-Pent-1-in-l-ylsulfonyloxy, n-Pent-l-in-3-ylsulfonyloxy, n-Pent-l-in-4-ylsulfonyloxy, n-Pent-l-in-5-ylsulfonyloxy, n-Pent-2-in-1-ylsulfonyloxy, n-Pent-2-in-4-ylsulfonyloxy, n-Pent-2-in-5-ylsulfonyloxy, 3-Methy1-but-l-in-3-ylsulfonyloxy, 3-Methy1-but-l-in-4-yl- sulfonyloxy, n-Hex-1-in-l-ylsulfonyloxy, n-Hex-l-in-3-yl- sulfonyloxy, n-Hex-l-in-4-ylsulfonyloxy, n-Hex-l-in-5-yl- sulfonyloxy, n-Hex-l-in-6-ylsulfonyloxy, n-Hex-2-in-l-yl- sulfonyloxy, n-Hex-2-in-4-ylsulfonyloxy, n-Hex-2-in-5-yl- sulfonyloxy, n-Hex-2-in-6-ylsulfonyloxy, n-Hex-3-in-l-yl- sulfonyloxy, n-Hex-3-in-2-ylsulfonyloxy, 3-Methylpent-l- in-1-ylsulfonyloxy, 3-Methyl-pent-l-in-3-ylsulfonyloxy, 3-Methyl-pent-l-in-4-ylsulfonyloxy, 3-Methyl-pent-l-in-5-yl- sulfonyloxy, 4-Methyl-pent-l-in-l-ylsulfonyloxy, 4-Methyl- pent-2-in-4-ylsulfonyloxy oder 4-Methylpent-2-in-5-yl- sulfonyloxy, insbesondere für Prop-2-in-l-ylsulfonyloxy;
(C2-C6-Alkinyl)carbonylthio für: EthinylcarbonyIthio, Prop-1-in-l-ylcarbonylthio, Prop-2-in-l-ylcarbonyIthio, n-But-1-in-1-ylcarbonyIthio, n-But-l-in-3-ylcarbonyIthio, n-But-l-in-4-ylcarbonyIthio, n-But-2-in-l-ylcarbonyIthio, n-Pent-1-in-l-ylcarbonylthio, n-Pent-l-in-3-ylcarbonyIthio, n-Pent-l-in-4-ylcarbonylthio, n-Pent-l-in-5-ylcarbonyIthio, n-Pent-2-in-l-ylcarbonylthio, n-Pent-2-in-4-ylcarbonylthio, n-Pent-2-in-5-ylcarbonylthio, 3-Methyl-but-l-in-3-yl- carbonylthio, 3-Methylbut-l-in-4-ylcarbonylthio, n-Hex-1- in-1-ylcarbonylthio, n-Hex-l-in-3-ylcarbonylthio, n-Hex-1- in-4-ylcarbonyIthio, n-Hex-l-in-5-ylcarbonylthio, n-Hex-1- in-6-ylcarbonyIthio, n-Hex-2-in-1-ylcarbonyIthio, n-Hex-2- in-4-ylcarbonylthio, n-Hex-2-in-5-ylcarbonylthio, n-Hex-2- in-6-ylcarbonyIthio, n-Hex-3-in-l-ylcarbonylthio, n-Hex-3- in-2-ylcarbonyIthio, 3-Methylpent-l-in-1-ylcarbonylthio, 3-Methyl-pent-l-in-3-ylcarbonylthio, 3-Methyl-pent-l-in-4-yl- carbonylthio, 3-Methylpent-l-in-5-ylcarbonylthio, 4-Methyl- pent-1-in-l-ylcarbonyIthio, 4-Methyl-pent-2-in-4-ylcarbonylthio oder 4-Methyl-pent-2-in-5-ylcarbonylthio, insbesondere für Prop-2-in-l-ylcarbonylthio;
- (C1-C6-Alkoxy)carbonyl-C2-C6-alkenyl für: durch (Ci-Cg-Alk- oxy)carbonyl wie vorstehend genannt substituiertes C-Cg-Alkenyl, also beispielsweise für Methoxycarbonyl- prop-2-en-l-yl;
- (Cι-C6-Alkoxy)carbonyl-C2-C6-alkenyloxy für: durch (Cι-C6-Alk- oxy)carbonyl wie vorstehend genannt substituiertes C-C6-Alke- nyloxy, also beispielsweise für 1-Methoxycarbonyle- then-1-yloxy und Methoxycarbonylprop-2-en-l-yloxy; Cι-C6-Alkoxy-C3-Cg-alkenyloxy für: durch Cι-C6-Alkoxy wie vorstehend genannt substituiertes C3-Cg-Alkenyloxy, also beispielsweise für Methylprop-2-en-l-yloxy;
- Cs-Cg-Alkenyloxy-Ci-Cg-alkyl für: durch C3-Cg-Alkenyloxy wie vorstehend genannt, vorzugsweise Allyloxy, 2-Methy1- prop-2-en-l-yloxy, But-l-en-3-yloxy, But-l-en-4-yloxy oder But-2-en-l-yloxy substituiertes Cι-C6-Alkyl, also beispielsweise für Allyloxymethyl, 2-Allyloxyethyl oder But-l-en-4- yloxymethyl;
C-C6-Alkinyloxy-Cι-Cg-alkyl für: durch C3-Cg-Alkinyloxy wie vorstehend genannt, vorzugsweise Propargyloxy, But-l-in-3-yl- oxy, But-l-in-4-yloxy oder But-2-in-l-yloxy, substituiertes Cι-C6-Alkyl, also beispielsweise für Propargyloxymethyl oder 2-Propargyloxyethyl;
C3-C6-Cycloalkyl für: Cyclopropyl, Cyclobutyl, Cyclopentyl oder Cyclohexyl;
C3-Cg-Cycloalkyl-Cχ-Cg-alkoxy für: z. B. Cyclopropylmethoxy, Cyclobutylmethoxy, Cyclopentyl ethoxy, Cyclohexyl ethoxy, 1- (Cyclopropyl)ethoxy, l-(Cyclobutyl)ethoxy, l-(Cyclopentyl)- ethoxy, l-(Cyclohexyl)ethoxy, 2- (Cyclopropyl)ethoxy, 2- (Cyclobutyl)ethoxy, 2- (Cyclopentyl)ethoxy, 2- (Cyclohexyl)- ethoxy, 3- (Cyclopropyl)propoxy, 3- (Cyclobutyl)propoxy, 3- (Cyclopentyl)propoxy, 3- (Cyclohexyl)propoxy, 4- (Cyclopropyl)butoxy, 4- (Cyclobutyl)butoxy, 4- (Cyclopentyl)butoxy, 4- (Cyclohexyl)butoxy, 5- (Cyclopropyl)pentoxy, 5- (Cyclobutyl)- pentoxy, 5- (Cyclopentyl)pentoxy, 5- (Cyclohexyl)pentoxy,
6- (Cyclopropyl)hexoxy, 6- (Cyclobutyl)hexoxy, 6- (Cyclopentyl)- hexoxy oder 6- (Cyclohexyl)hexoxy, insbesondere für Cyclopentylmethoxy oder Cyclohexylmethoxy;
- C3-C6-Cycloalkyloxy für: Cyclopropyloxy, Cyclobutyloxy, Cyclo- pentyloxy oder Cyclohexyloxy;
C3-C6-CycloalkyIthio für: CyclopropyIthio, CyclobutyIthio, CyclopentyIthio oder CyclohexyIthio;
C3-C6-Cycloalkylcarbonyloxy für: Cyclopropylcarbonyloxy, Cyclobutylcarbonyloxy, Cyclopentylcarbonyloxy oder Cyclohexylcarbonyloxy; C3-Cg-Cycloalkylsulfonyloxy für: Cyclopropylsulfonyloxy, Cyclobutylsulfonyloxy, Cyclopentylsulfonyloxy oder Cyclo- hexylsulfonyloxy;
- C5-C7-Cycloalkenyloxy für: Cyclopent-1-enyloxy, Cyclopent- 2-enyloxy, Cylopent-3-enyloxy, Cyclohex-1-enyloxy, Cyclo- hex-2-enyloxy, Cyclohex-3-enyloxy, Cyclohept-1-enyloxy, Cyclohept-2-enyloxy, Cyclohept-3-enyloxy oder Cyclohept-4- enyloxy.
3- bis 7gliedrige Azaheterocyclen, die neben Kohlenstoffringgliedern noch ein Sauerstoff- oder Schwefelatom als Ringglied enthalten können, sind z.B.
Pyrrolidin-1-yl, Isoxazolidin-2-yl, Isothiazolidin-2-yl, Ox- azolidin-3-yl, Thiazolidin-3-yl, Piperidin-1-yl, Morpholin-1-yl, Thiomorpholin-1-yl und Azepin-1-yl.
Unter 3- bis 7-gliedrigem Heterocyclyl - das direkt oder über eine Sauerstoff-, Alkoxy-, Alkenyloxy- oder Alkinyloxybrücke ver- knüpft sein kann - sind sowohl gesättigte, partiell oder vollständig ungesättigte als auch aromatische Heterocyclen mit ein bis drei Heteroatomen, ausgewählt aus einer Gruppe bestehend aus ein bis drei Stickstoffatomen, einem oder zwei Sauerstoff- und - einem oder zwei Schwefelatomen, zu verstehen.
Beispiele für gesättigte Heterocyclen, die ein Carbonyl- oder Thiocarbonyl-Ringglied enthalten können, sind: Oxiranyl, Thiiranyl, Aziridin-1-yl, Aziridin-2-yl, Diaziridin- 1-yl, Diaziridin-3-yl, 0xetan-2-ylr Oxetan-3-yl, Thietan-2-yl, Thietan-3-yl, Azetidin-1-yl, Azetidin-2-yl, Azetidin-3-yl, Tetra- hydrofuran-2-yl, Tetrahydrofuran-3-yl, Tetrahydrothiophen-2-yl, Tetrahydrothiophen-3-yl, Pyrrolidin-1-yl, Pyrrolidin-2-yl, Pyrrolidin-3-yl, l,3-Dioxolan-2-yl, l,3-Dioxolan-4-yl, 1,3-Oxa- thiolan-2-yl, l,3-Oxathiolan-4-yl, l,3-Oxathiolan-5-yl, l,3-0x- azolidin-2-yl, l,3-0xazolidin-3-yl, l,3-0xazolidin-4-yl, l,3-0x- azolidin-5-yl, l,2-Oxazolidin-2-yl, l,2-0xazolidin-3-yl, 1,2-Ox- azolidin-4-yl, l,2-Oxazolidin-5-yl, l,3-Dithiolan-2-yl, 1,3-Di- thiolan-4-yl, Pyrrolidin-1-yl, Pyrrolidin-2-yl, Pyrrolidin-5-yl, Tetrahydropyrazol-1-yl, Tetrahydropyrazol-3-yl, Tetrahydropyr- azol-4-yl, Tetrahydropyran-2-yl, Tetrahydropyran-3-yl, Tetra- hydropyran-4-yl, Tetrahydrothiopyran-2-yl, Tetrahydrothiopyran- 3-yl, Tetrahydrothiopyran-4-yl, Piperidin-1-yl, Piperidin-2-yl, Piperidin-3-yl, Piperidin-4-yl, l,3-Dioxan-2-yl, l,3-Dioxan-4-yl, l,3-Dioxan-5-yl, l,4-Dioxan-2-yl, l,3-Oxathian-2-yl, 1,3-Oxa- thian-4-yl, l,3-Oxathian-5-yl, l,3-Oxathian-6-yl, 1,4-Oxathian- 2-yl, l,4-Oxathian-3-yl, Morpholin-2-yl, Morpholin-3-yl, Morpholin-4-yl, Hexahydropyridazin-1-yl, Hexahydropyridazin-3-yl, Hexahydropyridazin-4- 1, Hexahydropyrimidin-1-y1, Hexahydropyri- midin-2-yl, Hexahydropyrimidin-4-yl, Hexahydropyrimidin-5-yl, Piperazin-1-yl, Piperazin-2-yl, Piperazin-3-yl, Hexahydro-1,3, 5- triazin-1-yl, Hexahydro-l,3,5-triazin-2-yl, Oxepan-2-yl, Oxepan- 3-yl, Oxepan-4-yl, Thiepan-2-yl, Thiepan-3-yl, Thiepan-4-yl, l,3-Dioxepan-2-yl, l,3-Dioxepan-4-yl, l,3-Dioxepan-5-yl, 1,3-Di- oxepan-6-yl, l,3-Dithiepan-2-yl, l,3-Dithiepan-2-yl, 1,3-Dithi- epan-2-yl, l,3-Dithiepan-2-yl, l,4-Dioxepan-2-yl, 1,4-Dioxepan- 7-yl, Hexahydroazepin-1-yl, Hexahydroazepin-2-yl, Hexahydro- azepin-3-yl, Hexahydroazepin-4-yl, Hexahydro-l,3-diazepin-l-yl, Hexahydro-1, 3-diazepin-2-yl, Hexahydro-l,3-diazepin-4-yl, Hexa- hydro-l,4-diazepin-l-yl und Hexahydro-l,4-diazepin-2-yl;
Beispiele für ungesättigte Heterocyclen, die ein Carbonyl- oder Thiocarbonyl-Ringglied enthalten können, sind: Dihydrofuran-2-yl, l,2-Oxazolin-3-yl, l,2-Oxazolin-5-yl, 1 , 3-Oxazolin-2-yl;
Unter den Heteroaromaten sind die 5- und 6-gliedrigen bevorzugt, also z.B. Furyl wie 2-Furyl und 3-Furyl, Thienyl wie 2-Thienyl und 3-Thienyl, Pyrrolyl wie 2-Pyrrolyl und 3-Pyrrolyl, Isoxazolyl wie 3-Isoxazolyl, 4-Isoxazolyl und 5-lsoxazolyl, Isothiazolyl wie 3-Isothiazolyl, 4-lsothiazolyl und 5-Isothiazolyl, Pyrazolyl wie 3-Pyrazolyl, 4-Pyrazolyl und 5-Pyrazolyl, Oxazolyl wie 2-Oxazolyl, 4-0xazolyl und 5-0xazolyl, Thiazolyl wie 2-Thiazolyl, 4-Thiazolyl und 5-Thiazolyl, Imidazolyl wie 2-Imidazolyl und 4-Imidazolyl, Oxadiazolyl wie l,2,4-0xadiazol-3-yl, l,2,4-Oxadiazol-5-yl und l,3,4-Oxadiazol-2-yl, Thiadiazolyl wie l,2,4-Thiadiazol-3-yl, l,2,4-Thiadiazpl-5-yl und l,3,4-Thiadiazol-2-yl, Triazolyl wie 1,2,4-Triazol-l-yl, 1,2 ,4-Triazol-3-yl und l,2,4-Triazol-4-yl, Pyridinyl wie 2-Pyridinyl, 3-Pyridinyl und 4-Pyridinyl, Pyridazinyl wie 3-Pyridazinyl und 4-Pyridazinyl, Pyrimidinyl wie 2-Pyrimidinyl, 4-Pyrimidinyl und 5-Pyrimidinyl, des weiteren 2-Pyrazinyl, l,3,5-Triazin-2-yl und l,2,4-Triazin-3-yl, insbesondere Pyridyl, Pyrimidyl, Furanyl und Thienyl.
Sofern Q für Phenyl steht, das einen kondensierten Heterocyclus aufweist, ist der Rest Q z.B. ein von Indol, Benzimidazol, Benzo- pyrazol, Benzoxazol, Benzisoxazol, Benzothiophen, Benzothiazol, Benzoisothiazol, Benzothiadiazol, Benzoisothiadiazol, Benzoxazo- lidinon, Benzoxazolidinthion, Benzothiazolidinon Benzothiadiazo- lidinthion, Benzochinolin, l,2,3,4-Tetrahydrobenzo-l,4-oxa- zin-3-on, l,2,3,4-Tetrahydrobenzo-l,4-thiazin-3-on, 1,2,3,4-Te- trahydrobenzochinolin, 1,2,3, 4-Tetrahydrobenzochinolin-2-on, Ben- zopyridazin, 1,2,3,4-Tetrahydrobenzopyridazin oder 1, 2,3,4-Tetra- hydrobenzopyridazin-2-on, insbesondere von Benzoxazol, Benzothia- zol, Benzoisothiazol, Benzoxazolidinon, Benzoxazolidinthion, Ben- zothiazolidinon, 1,2,3, 4-Tetrahydrobenzo-l, 4-oxazin-3-on, l,2,3,4-Tetrahydrobenzo-l,4-thiazin-3-on oder 1,2,3,4-Tetrahydro- benzochinolin abgeleiteter Rest der unsubstituiert oder substituiert sein kann. Geeignete Substituenten sind die unter R3, R4, UR6, TR7 und R30 genannten Reste.
Geeignete Substituenten für Cx-Ce-Alkyl in Rla sind beispielsweise: COOH, CN, Ci-Cδ-Alkoxy, Cι-C6-Alkoxycarbonyl, Cχ-Cg-AkyIthio, Cι-C6-Alkylsulfinyl, Cι-C6-Alkylsulfonyl, C3-C6-Cycloalkyl, C3-C6-Alkenyloxy, C3-Cg-Alkenyloxycarbonyl, C3-Cg-Alkinyloxy, C3-C6-Alkinyloxycarbonyl, C3-C6-Cycloalkoxy, C3-C6-CycloalkyIthio, Cι-C6-Halogenalkoxy, C3-Cg-Halogenalkenyloxy, C3-Cg-Halogenalkinyl- oxy, C3-Cg-CycloalkyIthio, C3-Cg-AlkenyIthio, C3-Cg-AlkinyIthio und C3-C6-Halogencycloalkyl, COR1, P(0)(OR1)2, P(0)(OR1)2, P(S)(OR1)2, C(0)N(R1)2, C(0)NH2 sowie Phenyl, Phenoxy und Benzyloxy, wobei Benzolringe der drei letztgenannten Gruppen ihrerseits mit Halo- gen, Cι-C-Alkyl oder Cι-C4-Halogenalkyl substituiert sein können.
Geeignete Substituenten für C3-Cg-Alkenyl und C3-Cg-Alkinyl in Rla sind beispielsweise: COOH, Cx-Cg-Alkoxy, Cj-Cg-Alkoxycarbonyl, Cι-C6-Akylthio, Cι-C6-Alkylsulfinyl, Cχ-C6-Alkylsulfonyl, C3-C6-Cy- cloalkyl, C3-C6-Cycloalkoxy, Ci-Cg-Halogenalkoxy, und C3-C6-Halo- gencycloalkyl sowie Phenyl, Benzyl, Phenoxy und Benzyloxy, wobei Benzolringe der 4 letztgenannten Gruppen ihrerseits mit Halogen, Cι-C -Alkyl oder Cι-C4-Halogenalkyl substituiert sein können.
Die Bedeutung des Substituenten Ra ist für das erfindungsgemässe Verfahren von untergeordneter Bedeutung. Vorzugsweise steht Ra für C02R1, Halogen, Cyano, 0Rla und insbesondere für Halogen oder Cι-C3-Alkyl. R1 und Rla haben darin die vorgenannten Bedeutungen. Insbesondere steht R1 für: Wasserstoff und Cι-C3-Alkyl.
Insbesondere steht Rla für: Cι-C3-Alkyl, C3-C6-Cycloalkyl, C3-C6-Alkenyl, C3-C6-Alkinyl, Cι-C3-Halogenalkyl, Cι-C3-Alkoxycar- bonyl-Cι-C3-alkyl, Cyano-Cι-C3-alkyl, Benzyl, welches mit Halogen, Cι-C -Alkyl oder Trifluormethyl substituiert sein kann, oder Phenyl, welches mit Halogen, C!-C4-Alkyl, Trifluormethyl oder Cι-C -Alkoxy substituiert sein kann.
Bevorzugte Reste R sind C(0)0R2 und C(S)0R2. Hierin hat R2 die zu- vor genannten Bedeutungen und steht vorzugsweise für Cι-C6-Alkyl, C3-C6-Alkenyl oder C3-C6-Alkinyl, die unsubstituiert sind oder substituiert sein können. Hinsichtlich der Substituenten an Cι-C6-Alkyl, C3-C6-Alkenyl und C3-Cg-Alkinyl in R2 bestehen grundsätzlich keine Einschränkungen. Grundsätzlich kommen hier alle Substituenten in Betracht, die als Substituenten für Cι-C6-Alkyl, C3-C6-Alkenyl bzw. C3-C6-Alkinyl in Rla genannten werden.
Insbesondere steht R2 für: Ci-Cg-Alkyl, C3-Cg-Cycloalkyl, C2-Cg-Al- kenyl, C3-Cg-Alkinyl, Ci-Cg-Halogenalkyl, Cι-Cg-Alkoxy-Cι-Cg-alkyl, Cι-C6-Alkoxycarbonyl-Cι-Cg-alkyl, C3-Cg-Alkenyloxy-Cι-Cg-alkyl, C3-C6-Alkinyloxy-Cι-C6-alkyl, Cyano-Ci-Cg-alkyl, Phenyl oder Ben- zyl, wobei Phenyl und Benzyl jeweils ein- bis fünffach durch Halogen, Cι-C4-Alkyl, Cι-C4-Halogenalkyl, Cι-C4-Alkoxy, Cι-C4-Haloge- nalkoxy, Amino, C2-C-Monoalkylamino, Cι-C4-Dialkylamino, C1-C4-AI- koxycarbonyl, Nitro oder Cyano substituiert sein können. Insbesondere steht R2 für Cχ-Cg- und besonders bevorzugt für Cχ-C-Al- kyl, das vorzugsweise linear und insbesondere unsubstituiert ist.
Insbesondere steht R für Cι-C4-Alkyloxycarbonyl oder Cι-C4-Alkylo- xythiocarbonyl .
Z oder Z1 stehen vorzugsweise für Sauerstoff oder Schwefel.
Die Variable n ist vorzugsweise 0 oder 1. In einer besonders bevorzugten Aufsführungsform der Erfindung hat n den Wert 0.
Q steht beispielsweise für
Q-4 Q-5 Q-6 Q-7 In den Formeln Q-l - Q-7 haben die Variablen Y und Y', T, U und die Reste R3, R4, R5, R6, R7, R8, R9 und R30 die folgenden Bedeutungen:
Y und Y' unabhängig voneinander Sauerstoff oder Schwefel;
T eine chemische Bindung oder Sauerstoff;
U eine chemische Bindung, C1-C4-Alkylen, 0, S, SO oder S02;
R3 Wasserstoff oder Halogen;
R4 Cι-C4-Alkyl, Cι-C4-Halogenalkyl, Cι-C4-Alkoxy, Cχ-C-AkyIthio, Cχ-C -Halogenalkoxy, Halogen, Cyano oder N02;
R5 Hydroxy, Mercapto, Cyano, Nitro, Halogen, Ci-Cβ-Alkyl, C2-C6-Alkenyl, C2-Cg-Alkinyl, Cι-C6-Halogenalkyl, Ci-Cg-Alkoxy- (Ci-Cg-alkyl )carbonyl, Ci-Cg-AlkyIthio- (Ci-Cg-al- kyl) carbonyl, (Ci-Cg-Alkyl )-iminooxycarbonyl, Cχ-Cg-Alko- xy-Ci-Cg-alkyl, C -C6-Alkoxyamino-Cι-C6-alkyl, Cι-C6-Alko- xy-Cι-Cg-alkylamino-Cι-Cg-alkyl, Cι-C3-Alkoxy-C3-C6-alkenyl, C3-C6-Halogenalkenyl, Cyano-C3-C6-alkenyl, C3-C6-Alkinyl, Cι-C3-Alkoxy-C3-C6-alkinyl, C3-C6-Halogenalkinyl, Cyano-C3-Cg-alkinyl,
Ci-Cg-Alkoxy, Cι-C6-AlkyIthio, C3-C6-Cycloalkoxy, C3-C6-Cyclo- alkylthio, C2-C6-Alkenyloxy, C2-C6-Alkenylthio, C2-C6-Alkiny- loxy, C2-C6-AlkinyIthio, (Ci-Cg-Alkyl) carbonyloxy, (Ci-Cg-Alkyl) carbonylthio, (Ci-Cg-Alkoxy) carbonyloxy, (C2-Cg-Alke- nyl) carbonyloxy, (C2-C6-Alkenyl) carbonylthio, (C2-Cg-Alki- nyl) carbonyloxy, (C2-C6-Alkinyl) carbonylthio, Ci-Cg-Alkylsul- fonyloxy oder Ci-Cg-Alkylsulfonyl, wobei jeder der zuletzt genannten 17 Reste gewünschtenfalls einen, zwei oder drei Substituenten tragen kann, die ausgewählt sind unter:
Halogen, Nitro, Cyano, Hydroxy, C3-Cg-Cycloalkyl, Ci-Cg-Alkoxy, C3-C6-Cycloalkoxy, C3-Cg-Alkenyloxy, C3-Cg-Alkinyloxy, Cι-Cg-Alkoxy-Cι-Cg-alkoxy, Ci-Cg-Alkyl- thio, Ci-Cg-Alkylsulfinyl, Ci-Cg-Alkylsulfonyl, Ci-Cg-Al- kylidenaminoxy, Oxo, =N-OR10
Phenyl, Phenoxy oder Phenylsulfonyl, wobei die drei letztgenannten Gruppen gegebenenfalls einen, zwei oder drei Substituenten tragen können, ausgewählt unter Halo- gen, Nitro, Cyano, Ci-Cg-Alkyl, Ci-Cg-Halogenalkyl,
Ci-Cg-Alkoxy und (Ci-Cg-Alkoxy) carbonyl; -CO-R11, -CO-OR11, -CO-SR11, -CO-N(R1:L)-R12, -OCO-R11, -OCO-OR11', -OCO-SR11', -OCO-N(R1:L)-R12, -N(R1:L)-R12, und -C(R13)=N-OR10;
C(Z2)-R14, -C(=NR15)R14, C(R14) (Z3R16) (Z4R17), C(R14 )=C(R18 )-CN,
C ( R14 ) =C ( R18 ) -CO-R19 , -CH ( R14 ) -CH ( R18 ) -COR19 ,
-C(R1 )=C(R18)-CH2-CO-R19, -C(R1 )=C(R18)-C(R20)=C(R21)-CO-R19, -C(R14)=C(R18)-CH2-CH(R22)-CO-R19, -CO-OR23, -CO-SR23, -CON(R23)-OR10, -C≡C-CO-NHOR10, -C≡C-CO-N(R23 )-OR10, -C≡C-CS-NH-OR10, -C≡C-CS-N(R 3)-OR10, -C(R14)=C(R18)-CO-NHOR10,
-C (R1 ) =C (R18 ) -CO-N (R23 ) -OR10 , -C (R14 ) =C (R18 ) -CS-NHOR10 , -C(Rl4)=C(R18)-CS-N(R 3)-OR10, -C(R1 )=C(R18) -C(R13)=N-OR1°, C(R13)=N-OR10, -C≡C-C(R13)=NOR10, C ( Z3R16 ) (Z R17 ) -OR23, -C(Z3Rl6)(Z Rl7)SR23, C(Z3R16)(Z R17)-N(R24)R25, -N(R )-R25, -CO-N(R2 )-R25 oder -C(R14)=C(R18)CO-N(R24)R25; wobei Z2, Z3, Z4 unabhängig voneinander für Sauerstoff oder Schwefel stehen;
C02H, Ci-Cg-Alkyl, Ci-Cg-Halogenalkyl, Hydroxy-Cι-C4-alkyl,
Cyano-Cι-C4-alkyl, Cι-C -Alkoxy-Cι-C4-alkyl, Amino-Cι-C4-alkyl, Cι-C4-Alkylamino-Cι-C -alkyl, Di (Cι-C4-alkyl ) amino-Cι-C4-alkyl, Cι-C4-Alkylthio-Cι-C4-alkyl, Hydroxycarbonyl-Cι-C4-alkyl , (Cι-C -Alkoxy)carbonyl-Cι-C4-alkyl, (Cι-C4-Alkylthio)carbo- nyl-Cι-C -alkyl, Aminocarbonyl-Cι-C4-alkyl, (Cι-C4-Alkyla- mino) carbonyl-Cι-C4-alkyl, Di (Cι-C4-alkyl) aminocarbo- nyl-Cι-C -alkyl, C3-Cg-Alkenyl, Cι-C3-Alkoxy-C3-C6-alkenyl, C3-C6-Halogenalkenyl, Cyano-C3-C6-alkenyl, C3-C6-Alkinyl, Cι-C3-Alkoxy-C3-Cg-alkinyl, C3-C6-Halogenalkinyl, Cya- no-C3-Cg-alkinyl,
Phenyl, Phenyl-Cι-C4-alkyl, worin die Phenylringe gegebenenfalls einen, zwei oder drei Substituenten tragen, ausgewählt unter Halogen, Cyano, Ci-Cg-Alkyl, Ci-Cg-Halogenalkyl, Ci-Cg- Alkoxy oder Ci-Cg-Halogenalkoxy;
C3-C7-Cycloalkyl, 3- bis 7-gliedriges gesättigtes Heterocy- clyl, wobei jeder Cycloalkyl- und jeder Heterocyclyl-Ring ein Carbonyl- oder Thiocarbonyl-Ringlied enthalten kann und wobei jeder Cycloalkyl- und Heterocyclyl-Ring unsubstituiert sein oder ein zwei, drei oder vier Substituenten tragen kann, aus- gewählt unter Cyano, Nitro, Amino, Hydroxy, Halogen, C1-C4-AI- kyl, Cι-C4-Halogenalkyl, Cι-C -Cyanoalkyl, Cι-C -Hydroxyalkyl, Cι-C4-Aminoalkyl, Cι-C4-Alkoxy, Cι-C4-Halogenalkoxy, C1-C4-AI- kyIthio, Cι-C -HalogenalkyIthio, Cι-C -Alkylsulfinyl, Cι-C4-Alkylsulfonyl, Cι-C -Halogenalkylsulfonyl, (Cι-C -Al- koxy) carbonyl, (Cι-C4-Alkyl) carbonyl, (Cι-C4-Halogenalkyl) carbonyl, (Cι-C -Alkyl)carbonyloxy, (Cι-C4-Halogenalkyl) carbonyloxy, Di(Cι-C4-alkyl) amino, C3-C6-Alkenyl, C3-C6-Alkinyl, C3-C -Alkenyloxy, C3-C4-AlkenyIthio, C3-C4-Alkinyloxy und C3-C4-Alkinylthio;
oder, sofern U (bzw. T) eine chemische Bindung bedeutet, R6 auch für Wasserstoff, Hydroxy, Cyano, Mercapto, Amino,
Cι-C4-Alkylamino, Di-Cι-C4-alkylamino, gesättigtes, 5- oder 6-gliedriges, N-gebundenes Stickstoffheterocyclyl, C3-Cg-Cy- cloalkylamino, Halogen, -(CH2)n-CH(0H)-CH2-R28 , - (CH2)n-CH(Halogen)-CH2-R28, -(CH2)n-CH2-CH(Halogen)-R28, -(CH2)n-CH=CH-R28 oder -(CH2)n-CH=C(Halogen)-R28 stehen kann, worin R28 Hydroxy- carbonyl, (Cι-C4-Alkoxy)carbonyl, (Cι-C -Alkylthio)carbonyl, Aminocarbonyl, (Cι-C4-Alkylamino) carbonyl oder Di (Cι-C4-alkyl) aminocarbonyl bedeutet und n für 0 oder 1 steht;
R7 die für R6 angegebenen Bedeutungen;
R8 Wasserstoff, Cι-C3-Alkyl, Cι-C3-Halogenalkyl oder Halogen;
R9 Wasserstoff, Cι-C3-Alkyl, Cι-C3-Halogenalkyl; oder
R8 und R9 gemeinsam C=0;
R10 Wasserstoff, Cι-C6-Alkyl, Ci-Cg-Halogenalkyl, C3-C6-Cycloal- kyl, C3-C6-Alkenyl, C3-Cg-Alkinyl, Hydroxy-Ci-Cg-alkyl,
Cι-Cg-Alkoxy-Cι-Cg-alkyl, Cι-Cg-Alkylthio-Cι-Cg-alkyl, Cyano- Ci-Cg-alkyl, (Cι-Cg-Alkyl)carbonyl-Cι-Cg-alkyl, (Ci-Cg-Al- koxy)carbonyl-Cι-C6-alkyl, (Cι-Cg-Alkoxy)-carbonyl-C2-C6-alke- nyl, (Cι-Cg-Alkyl)carbonyloxy-Cι-Cg-alkyl oder Phe- nyl-Ci-Cg-alkyl, worin der Phenylring gewünschtenfalls ein zwei oder drei Substituenten tragen kann, ausgewählt unter Cyano, Nitro, Halogen, Ci-Cg-Alkyl, Ci-Cg-Halogenalkyl, Ci-Cg-Alkoxy und (Ci-Cg-Alkoxy) carbonyl;
R11 Wasserstoff, Ci-Cg-Alkyl, C3-Cg-Cycloalkyl, C3-C6-Alkenyl,
C3-Cg-Alkinyl, Cι-Cg-Alkoxy-Cι-Cg-alkyl, (Cι-Cg-Alkoxy)-carbo- nyl-Ci-Cg-alkyl, (C3-C6-Alkenyloxy)carbonyl-Cι-Cg-alkyl, Phenyl oder Phenyl-Ci-Cg-alkyl, wobei der Phenyl-Ring der zwei zuletzt genannten Gruppen unsubstituiert sein oder einen zwei oder drei Reste tragen kann, ausgewählt unter Halogen, Nitro, Cyano, Ci-Cg-Alkyl, Ci-Cg-Halogenalkyl, Ci-Cg-Alkoxy und (Ci-Cg-Alkyl ) carbonyl ;
R11' die für R11 genannten Bedeutungen, ausgenommen Wasserstoff; R12 Wasserstoff, Hydroxy, Ci-Cg-Alkyl, C3-C6-Cycloalkyl, C3-C6-Cy- cloalkylaminocarbonyl, Ci-Cg-Alkylaminocarbonyl, Ci-Cg-Alkoxy, (Cι-Cg-Alkoxy)carbonyl-Cι-Cg-alkoxy, C3-Cg-Alkenyl oder C3-Cg-Alkenyloxy;
R13 Wasserstoff, Halogen, Ci-Cg-Alkyl, Ci-Cg-Halogenalkyl,
Ci-Cg-Alkoxy, Ci-Cg-Halogenalkoxy, C3-C6-Alkenyloxy, C3-Cg-Al- kinyloxy, Ci-Cg-Alkylthio, Ci-Cg-Halogenalkylthio, (Ci-Cg-Alkyl)carbonyloxy, (Ci-Cg-Halogenalkyl) carbonyloxy, Cι-C6-Alkyl- sulfonyloxy oder Ci-Cg-Halogenalkylsulfonyloxy, wobei die letztgenannten 12 Reste einen der folgenden Substituenten tragen können: Hydroxy, Cyano, Hydroxycarbonyl, Ci-Cg-Alkoxy, Ci-Cg-Alkylthio, (Ci-Cg-Alkyl) carbonyl, (Ci-Cg-Alkoxy) carbonyl, (Ci-Cg-Alkyl) aminocarbonyl, Di(Ci-Cg-alkyl) aminocarbonyl, (Ci-Cg-Alkyl) carbonyloxy, Cι-Cg-Alkoxy-(Cι-Cg-alkyl) aminocarbonyl ;
(Ci-Cg-Alkyl ) carbonyl, (Ci-Cg-Halogenalkyl ) carbonyl, (Ci-Cg-Alkoxy) carbonyl, (Ci-Cg-Alkoxy) carbonyloxy, (Ci-Cg-Al- kyl) carbonylthio, (Ci-Cg-Halogenalkyl) carbonylthio, (Ci-Cg-Al- koxy) carbonylthio, C2-Cg-Alkenyl, (C -Cg-Alkenyl) carbonyloxy, C2-Cg-AlkenyIthio, C3-C6-Alkinyl, C3-C6-Alkinyloxy, C3-C6-Alki- nyIthio, (C2-Cg-Alkinyl) carbonyloxy, C3-Cg-Alkinylsulfonyoxy, C3-C6-Cycloalkyl, C3-Cg-Cycloalkyloxy, C3-Cg-CycloalkyIthio, (C3-C6-Cycloalkyl) carbonyloxy, C3-Cg-Cycloalkylsulfonyloxy;
Phenyl, Phenoxy, PhenyIthio, Benzoyloxy, Phenylsulfonyloxy, Phenyl-Ci-Cg-alkyl, Phenyl-Ci-Cg-alkoxy, Phenyl-Ci-Cg-alkylt- hio, Phenyl- (Ci-Cg-alkyl) -carbonyloxy oder Phenyl- (Ci-Cg-al- kyl) sulfonyloxy, wobei die Phenylringe der letzgenannten 10 Reste unsubstituiert sein oder ihrerseits ein bis drei Stub- stituenten tragen können, jeweils ausgewählt aus der Gruppe bestehen aus Cyano, Nitro, Halogen, Ci-Cg-Alkyl, Ci-Cg-Halogenalkyl, Ci-Cg-Alkoxy und (Ci-Cg-Alkoxy) carbonyl;
R14 Wasserstoff, Cyano, Ci-Cg-Alkyl, Ci-Cg-Halogenalkyl, C2-C6-Al- kenyl, C2-Cg-Alkinyl, C3-C6-Cycloalkyl, Cι-C6-Alkoxy-Cι-C6-al- kyl oder (Ci-Cg-Alkoxy) carbonyl;
R15 Wasserstoff, Hydroxy, Ci-Cg-Alkyl, C3-C6-Alkenyl, C3-Cg-Alki- nyl, C3-C6-Cycloalkyl, Ci-Cg-Halogenalkyl, Cι-C6-Alko- xy-Ci-Cg-alkyl, Ci-Cg-Alkoxy, C3-Cg-Alkenyloxy, C3-Cg-Alkiny- loxy, C3-C6-Cycloalkoxy, C5-C7-Cycloalkenyloxy, Ci-Cg-Halogenalkoxy, C3-Cg-Halogenalkenyloxy, Hydroxy-Ci-Cg-alkoxy, Cyano- Ci-Cg-alkoxy, C3-Cg-Cycloalkyl-Cι-C6-alkoxy, Ci-Cg-Alko- xy-Ci-Cg-alkoxy, Cι-C6-Alkoxy-C3-C6-alkenyloxy, (Ci-Cg-Alkyl) carbonyloxy, (Ci-Cg-Halogenalkyl) carbonyloxy, (Ci-Cg-Al- kyl)carbamoyloxy, (Cι-Cg-Halogenalkyl)carbamoyloxy, (Ci-Cg-Alkyl) carbonyl-Ci-Cg-alkyl, (Ci-Cg-Alkyl)carbonyl-Ci-Cg-alkoxy, (Ci-Cg-Alkoxy)carbonyl-Cι-C6-alkyl, (Ci-Cg-Alkoxy)carbonyl- Cι-C6-alkoxy, Cι-Cg-Alkylthio-Cι-Cg-alkoxy, Di(Cι-C6-alkyl)ami- no-Ci-Cg-alkoxy, -N(R26)R27, Phenyl, das seinerseits noch einen zwei oder drei Substituenten tragen kann, jeweils ausgewählt unter Cyano, Nitro, Halogen, Ci-Cg-Alkyl, Ci-Cg-Halogenalkyl, C2-Cg-Alkenyl, Ci-Cg-Alkoxy und (Ci-Cg-Alkoxy)carbonyl;
Phenyl-Ci-Cg-alkoxy, Phenyl-(Ci-Cg-alkyl) , Phenyl-C3-Cg-alke- nyloxy oder Phenyl-C3-Cg-alkinyloxy, wobei jeweils eine oder zwei Methylengruppen der Kohlenstoffketten in den vier zuletzt genannten Gruppen durch -0-, -S-, oder -N(Ci-Cg-Alkyl)- ersetzt sein können und wobei Phenylringe in den vier zuletzt genannten Gruppen unsubstituiert oder ihrerseits einen bis drei Substituenten tragen können, ausgewählt unter Cyano, Nitro, Halogen, Ci-Cg-Alkyl, Ci-Cg-Halogenalkyl, C2-Cg-Alkenyl, Ci-Cg-Alkoxy und (Ci-Cg-Alkoxy)carbonyl;
C3-C7-Heterocyclyl, C3-C7-Heterocyclyl-Cι-Cg-alkyl, C3-C7-Hete- rocyclyl-Ci-Cg-alkoxy, C3-C7-Heterocyclyl-C3-Cg-alkenyloxy oder C -C7-Heterocyclyl-C3-Cg-alkinyloxy, wobei jeweils eine oder zwei Methylengruppen der Kohlenstoffketten in den vier zuletzt genannten Gruppen durch -0-, -S- oder -N(Ci-Cg-Alkyl)- ersetzt sein können und wobei jeder Heterocyclus gesättigt, ungesättigt oder aromatisch sein kann und entweder unsubstituiert ist oder seinerseits einen bis drei Substituenten trägt, ausgewählt unter Cyano, Nitro, Halogen, Ci-Cg-Alkyl, Ci-Cg-Halogenalkyl, C2-C6-Alkenyl, Ci-Cg-Alkoxy und (Ci-Cg-Al- koxy)carbonyl;
R16, R17 unabhängig voneinander Ci-Cg-Alkyl, Ci-Cg-Halogenalkyl,
C3-C6-Alkenyl, C3-Cg-Alkinyl, Ci-Cg-Alkoxy-Ci-Cg-alkyl bedeuten oder zusammen für eine gesättigte oder ungesättigte, 2- bis
4-gliedrige Kohlenstoffkette stehen, die einen Oxosubstituen- ten tragen kann, wobei ein den Variablen Z3 und Z4 nicht benachbartes Glied dieser Kette durch -0-, -S-, -N=, -NH- oder -N(Ci-Cg-Alkyl)- ersetzt sein kann, und wobei die Kohlenstoff- kette noch ein bis drei Reste tragen kann, ausgewählt unter Cyano, Nitro, Amino, Halogen, Ci-Cg-Alkyl, C2-Cg-Alkenyl, Ci-Cg-Alkoxy, C2-C6-Alkenyloxy, C2-Cg-Alkinyloxy, Ci-Cg-Halogenalkyl, Cyano-Ci-Cg-alkyl, Hydroxy-Ci-Cg-alkyl, Ci-Cg-Alkoxy-Ci-Cg-alkyl, c3-C6-Alkenyloxy-Cι-Cg-alkyl, C3-C6-Alkinyloxy- Ci-Cg-alkyl, C3-Cg-Cycloalkyl, C3-Cg-Cycloalkoxy, Carboxy,
(Ci-Cg-Alkoxy)carbonyl, (Ci-Cg-Alkyl)carbonyloxy-Ci-Cg-alkyl und Phenyl; gegebenenfalls substituiertes Phenyl, wobei die Kohlenstoffkette auch durch einen ankondensierten oder spiro- verknüpften 3- bis 7-gliedrigen Ring substituiert sein kann, der ein oder zwei Heteroatome als Ringglieder enthalten kann, ausgewählt unter Sauerstoff, Schwefel, Stickstoff und durch Ci-Cg-Alkyl substituiertem Stickstoff, und der gewünschten- falls seinerseits einen oder zwei der folgenden Substituenten tragen kann: Cyano, Ci-Cg-Alkyl, C2-Cg-Alkenyl, Ci-Cg-Alkoxy, Cyano-Ci-Cg-alkyl, Ci-Cg-Halogenalkyl und (Ci-Cg-Alkoxy)carbonyl;
R18 Wasserstoff, Cyano, Halogen, Ci-Cg-Alkyl, Ci-Cg-Halogenalkyl, Ci-Cg-Alkoxy, (Ci-Cg-Alkyl)carbonyl oder (Ci-Cg-Alkoxy)carbonyl;
R19 Wasserstoff, O-R28, S-R28, Ci-Cg-Alkyl, das noch einen oder zwei Ci-Cg-Alkoxysubstituenten tragen kann, C2-Cg-Alkenyl, C2-C6-Alkinyl, Ci-Cg-Halogenalkyl, C3-Cg-Cycloalkyl, Ci-Cg-Al- kylthio-Ci-Cg-alkyl, Ci-Cg-Alkyliminooxy, -N(R24)R25 oder Phenyl, das unsubstituiert sein oder ein bis drei Substituenten tragen kann, jeweils ausgewählt aus der Gruppe bestehend aus Cyano, Nitro, Halogen, Ci-Cg-Alkyl, C2-C6-Alkenyl, Ci-Cg-Halogenalkyl, Ci-Cg-Alkoxy und (Ci-Cg-Alkoxy)carbonyl;
R20 Wasserstoff, Cyano, Halogen, Ci-Cg-Alkyl, C3-C6-Alkenyl, C3-C6-Alkinyl, Ci-Cg-Alkoxy-Ci-Cg-alkyl, (Ci-Cg-Alkyl)carbonyl, (Ci-Cg-Alkoxy)carbonyl, -N(R24)R25 oder Phenyl, das seinerseits noch einen bis drei Substituenten tragen kann, ausgewählt unter Cyano, Nitro, Halogen, Ci-Cg-Alkyl, Ci-Cg-Halogenalkyl, C3-Cg-Alkenyl, Ci-Cg-Alkoxy und (Cι-Cg-Alkoxy)carbo- nyl;
R21 Wasserstoff, Cyano, Halogen, Ci-Cg-Alkyl, Ci-Cg-Alkoxy,
Ci-Cg-Halogenalkyl, (Ci-Cg-Alkyl)carbonyl oder (Ci-Cg-Al- koxy)carbonyl;
R22 Wasserstoff, Cyano, Ci-Cg-Alkyl oder (Ci-Cg-Alkoxy)carbonyl;
R23, R28 unabhängig voneinander Wasserstoff, Ci-Cg-Alkyl, Ci-Cg-Halogenalkyl, C2-Cg-Alkenyl oder C2-Cg-Alkinyl, wobei die letzt- genannten 4 Gruppen jeweils einen oder zwei der folgenden Reste tragen können: Cyano, Halogen, Hydroxy, Hydroxycarbonyl, Ci-Cg-Alkoxy, Ci-Cg-Alkylthio, (Ci-Cg-Alkyl)carbonyl, (Ci-Cg-Alkoxy)carbonyl, (Ci-Cg-Alkyl)carbonyloxy, (C3-Cg-Alke- nyloxy)carbonyl; (Ci-Cg-Halogenalkyl) carbonyl, (Ci-Cg-Alkoxy) carbonyl , Ci-Cg-Alkylaminocarbonyl, Di (Ci-Cg-alkyl) aminocarbonyl, Cι-Cg-Alkyloximino-Cι-Cg-alkyl, C3-C6-Cycloalkyl ;
Phenyl oder Phenyl-Ci-Cg-alkyl, worin die Phenylringe unsubstituiert oder ihrerseits ein bis drei Substituenten tragen können, jeweils ausgewählt unter Cyano, Nitro, Halogen, Ci-Cg-Alkyl, Ci-Cg-Halogenalkyl, Ci-Cg-Alkoxy und (Ci-Cg-Al- koxy) carbonyl;
R24, R25, R26, R27 unabhängig voneinander Wasserstoff, Ci-Cg-Alkyl, C3-Cg-Alkenyl, C2-Cg-Alkinyl, C3-Cg-Cycloalkyl, Ci-Cg-Halogenalkyl, Ci-Cg-Alkoxy-Ci-Cg-alkyl, (Ci-Cg-Alkyl) carbonyl, (Ci-Cg-Alkoxy) carbonyl, (Cι-Cg-Alkoxy)carbonyl-Cι-Cg-alkyl,
(Cι-C6-Alkoxy)carbonyl-C2-Cg-alkenyl, worin die Alkenylkette zusätzlich ein bis drei Halogen- und/oder Cyano-Reste tragen kann, Ci-Cg-Alkylsulfonyl, (Cι-Cg-Alkoxy)carbonyl-Cι-Cg-alkyl- sulfonyl, Phenyl oder Phenylsulfonyl, wobei die Phenylringe der beiden letztgenannten Reste unsubstituiert sein oder ihrerseits einen bis drei Substituenten tragen können, jeweils ausgewählt unter Cyano, Nitro, Halogen, Ci-Cg-Alkyl, Ci-Cg-Halogenalkyl, C3-Cg-Alkenyl, Ci-Cg-Alkoxy und (Ci-Cg-Alkoxy) carbonyl ; oder
R24 und R25 und/oder
R26 und R27 zusammen mit dem jeweils gemeinsamen Stickstoffatom für einen gesättigten oder ungesättigten 4- bis 7-gliedrigen Azaheterocyclus, der neben Kohlenstoffringgliedern gewünsch- tenfalls eines der folgenden Glieder enthalten kann: -0-, -S-, -N=, -NH- oder -N(Cι-Cg-Alkyl)-.
R30 Wasserstoff, Ci-Cg-Alkyl, C3-C8-Cycloalkyl, CH20-Cι-Cg-Alkyl, CH20-C2-C4-Alkenyl, CH20-C2-C4-Alkinyl, CH2CH20-Cι-C4-Alkyl, CH2CH20-C2-C4-Alkenyl, CH2CH20-C2-C4-Alkinyl, (Cι-C6-Al- koxy) carbonyl, (C3-C4-Alkenyloxy) carbonyl, (C3-C -Alkinyl- oxy) carbonyl, (C3-Cg-Cycloalkyloxy)carbonyl,
(Ci-Cg-AlkyIthio) carbonyl , (Cι-C -Alkoxy)carbonyl-Cι-C4-alkyl , (C3-C4-Alkenyloxy)carbonyl-Cι-C -alkyl, (C3-C4-Alkinyloxy)car- bonyl-Cι-C4-alkyl, (Cι-C4-Alkylamino)carbonyl, (Cι-C4-Dialkyl- amino) carbonyl, (C3-C4-Alkenylamino) carbonyl, (C3-C -Alkinyl- a ino)carbonyl, (C3-C4-Dialkenylamino)carbonyl, (C3-C -Dialki- nylamino) carbonyl, (C3-C4-Alkenyloxy) carbonyl-Cι-C4-alkyl, (C3-C4-Alkinyloxy)carbonyl-Cι-C4-alkyl, Cι-C4-Alkylsulfonyla- midocarbony1, CH (0-Cι-C4-Alkyl) 2 , CH [O(CH2 ) 30] , CH[0 (CH2 ) 40] oder Phenyl, das unsubstituiert sein oder seinerseits einen bis drei Substituenten tragen kann, jeweils ausgewählt unter Cyano, Nitro, Halogen, Ci-Cg-Alkyl, Ci-Cg-Halogenalkyl, Ci-Cg-Alkoxy, (Ci-Cg-Alkoxy)carbonyl und Cι-C4-Alkoxycarbo- nyl-Cι-C4-alkyl,
wobei jeder Alkylrest der vorgenannten Reste unsubstituiert oder einen, zwei oder drei Substituenten tragen kann, die unabhängig voneinander unter Halogen, Cyano, Nitro, Cι-C -Alkoxy und Cι-C-Alkylthio ausgewählt sind und jeder Cycloalkylrest der vorgenannten Reste unsubstituiert sein kann, oder ein, zwei oder drei Substituenten tragen kann, die unabhängig voneinander ausgewählt sind unter Halogen, Cyano, Nitro, Cι-C4-Alkyl, Cι-C-Alkoxy und Cι-C4-AlkyIthio.
Verbindungen, worin Z für eine gegebenenfalls durch Ra substituierte Methylengruppe steht und die Variablen Ra, W, X, Q und n die vorgenannten Bedeutungen haben, werden im Folgenden auch als Verbindungen Ia bezeichnet.
Verbindungen, worin Z1 für eine gegebenenfalls durch Ra substituierte Methylengruppe steht und die Variablen R , W, X, Q und n die vorgenannten Bedeutungen haben, werden im Folgenden auch als Verbindungen Ib bezeichnet.
Dementsprechend steht in den Verbindungen Ha Z für eine gegebenenfalls durch Ra substituierte Methylengruppe und die Variablen Ra, R, W, Q und n haben die vorgenannten Bedeutungen.
In den Verbindungen Ilb steht Z1 für eine gegebenenfalls durch Ra substituierte Methylengruppe und die Variablen Ra, R, W, Q und n haben die vorgenannten Bedeutungen.
Die Umsetzung der Verbindungen II mit einer Base gemäß Schema 3, worin die Variablen Ra, z, Z1, W, X, R2, n und Q die zuvor genannten Bedeutungen aufweisen, wird in der Regel bei Temperaturen im Bereich von 0 - 150°C, vorzugsweise 10 - 100°C, besonders bevorzugt 20 - 60°C durchgeführt. Die Umsetzung kann drucklos oder unter Druck, kontinuierlich oder diskontinuierlich durchgeführt werden.
Schema 3 :
R = C(X)OR2 C(X)SR2
Vorzugsweise führt man die Umsetzung von II mit einer Base in einem Lösungmittel durch. Als Lösungsmittel kommen - je nach Tempe- raturbereich - in Betracht: z.B. Kohlenwasserstoffe wie Pentan, Hexan, Heptan, Cyclohexan, Aromaten, z. B Benzol, Toluol, Xylol, Heteroaromaten, wie Pyridin, α-, ß- oder γ-Picolin und Chinolin, chlorierte Kohlenwasserstoffe wie Dichlormethan, 1,1-Dichlor- ethan, 1,2-Dichlorethan, 1, 1,2,2-Tetrachlorethan, 1,1-Dichlor- ethylen, Chlorbenzol, 1,2-, 1,3-, 1,4-Dichlorbenzol, 1-Chlornaph- thalin und 1,2,4-Trichlorbenzol, Ether wie Diethylether, tert.- Butylmethylether, Tetrahydrofuran, 1,4-Dioxan, Anisol, Glykole- ther wie Dimethylglykolether, Ester wie Ξthylacetat, Propylace- tat, Methylisobutyrat, Isobutylacetat, Carbonsäureamide wie Dime- thylformamid (DMF), N-Methylpyrrolidon (NMP), Nitrokohlenwasser- stoffe wie Nitromethan, Nitroethan, Nitropropan und Nitrobenzol, Harnstoffe wie Tetraethylharnstoff, Tetrabutylharnstoff, Dime- thylethylenharnstoff, Dimethylpropylenharnstoff, Sulfoxide wie Dimethylsulfoxid, Sulfone wie Dimethylsulfon, Diethylsulfon, Te- tramethylensulfon, Nitrile wie Acetonnitril, Propionitril, Buty- ronitril oder Isobutyronitril; Wasser oder auch Gemische einzelner Lösungsmittel.
Als Base kommen grundsätzlich alle Verbindungen in Betracht, die das azide Proton der NH-Gruppe der Harnstofffunktion in den Verbindungen der Formel II abstrahieren können. Hierzu zählen Oxoba- sen, Stickstoffbasen und Hydridbasen.
Zu den Oxobasen zählen beispielsweise anorganische Basen wie Al- kali- oder Erdalkalihydroxide, Alkali- und Erdalkalihydrogencar- bonate sowie Alkali- und Erdalkalicarbonate, beispielsweise Lithium-, Natrium-, Kalium-, Calcium- oder Magnesiumhydroxid, -hy- drogencarbont oder -carbonat. Ebenfalls geeigente Oxobasen sind Alkalimetallalkoholate, insbesondere des Lithiums, Natriums oder Kaliums, wobei man in der Regel Alkoholate von Ci-Cg- vorzugsweise Cι-C4-Alkanolen wie Natrium- oder Kaliummethylat, -ethylat, -n-bu- tylat oder tert . -Butylat einsetzt.
Zu den Stickstoffbasen zählen primäre, sekundäre oder vorzugsweise tertiäre Amine z.B. Trialkylamine wie Triethylamin, Tri- n-propylamin, N-Ethyl-diisopropylamin, cycloaliphatische Amine wie N, N-Dimethylcyclohexylamin, cyclische Amine wie Azabi- cyclo[2.2.2 ]octan (= Triethylendiamin) , N-Methylpyrrolidin, N-Ethylpiperidin, Dialkylaniline wie Dimethylaminoanilin, p-Dime- thylaminopyridin, weiterhin aromatische Stickstoffheterocyclen wie Pyridin, a-, ß- oder γ-Picolin, 2,4- und 2,6 - Lutidin, Chino- lin, Chinazolin, Chinoxalin, p-Dimethylaminopyridin, Pyrimidin, sowie tertäre Amide, z.B. Dimethylformamid, Ameisensäure-N-me- thylamidid, N-Methylpyrolidon oder Teramethylharnstoff.
Hydridbasen sind beispielsweise Alkalimetallhydride wie Natrium- hydrid oder Kaliumhydrid.
Bevorzugte Basen sind tertiäre Amine, insbesondere Trialkylamine.
Vorzugsweise beträgt das molare Verhältnis von Verbindung II zur Base 0,9 bis 1,4, insbesondere 0,95 bis 1,2 und besonders bevorzugt 0,98 bis 1,15.
Zur Umsetzung von Verbindung II mit der Base gemäß Schema 3 legt man vorzugsweise die Verbindung II in einem der vorgenannten Lö- sungsmittel oder einen Lösungsmittelgemisch vor, gibt unter
Durchmischen, z.B unter Rühren, die Base in den Reaktionsansatz. Vorzugsweise erfolgt die Basenzugabe bei einer Temperatur im Bereich von 0 bis 50°C und insbesondere bei 10 bis 30°C.
In der Regel wird man dann zur Vervollständigung der Reaktion die Komponenten noch 10 min bis 48 h bei 20 bis 150°C, vorzugsweise 20 bis 100°C und insbesondere 20 bis 60°C nachreagieren lassen. Die Reaktion ist bei Thioharnstoffen der Formel II (X = S) im allgemeinen nach 0,5 bis 10 h, bei Harnstoffen der Formel II (X = O) nach 4 bis 48 h und insbesondere nach 8 bis 24 h weitgehend vollständig (Umsatz > 90%). Man kann jedoch auch die Base, vorzugsweise in einem der vorgenannten Lösungsmittel vorlegen, oder als solche, wenn es sich um eine Flüssigkeit handelt, dann die Verbindung II zugeben und wie oben die Reaktion zu Ende führen. Die Konzentration der Edukte im Lösungsmittel liegt im allgemeinen im Bereich von 0,5 bis 5 mol/1, bevorzugt im Bereich von 0,2 bis 2 mol/1.
Die Aufarbeitung der Reaktion erfolgt in üblicher Weise, beispielsweise wässrig extraktiv, durch Dialyse und/oder chromatographisch. Zur bevorzugten extraktiven Aufarbeitung nimmt man in der Regel die Reaktionsmischung, welche die anellierte Tetrahy- dro-[ lH]-triazolverbindung I enthält - gegebenenfalls nach Ent- fernen des Lösungsmittels - in einem mit Wasser nicht mischbaren Lösungsmittel auf, extrahiert basische oder sauere Verbindungen mit verdünnter Säure oder verdünntem Alkali oder mit Wasser, trocknet gegebenenfalls die organische Phase und entfernt dann das Lösungsmittel, vorzugsweise unter reduziertem Druck. Nach an sich bekannten Methoden kann hierbei das Produkt mittels Filtration, Kristallisation oder Lösungsmittelextraktion gewonnen werden.
Die anellierten Triazole der Formel I können ein oder mehrere Chiralitätszentren enthalten und fallen dann üblicherweise als Enantiomeren- oder Diastereomeren-gemische an. Die Mischungen können gewünschtenfalls nach den hierfür üblichen Methoden wie Kristallisation oder Chromatographie, auch an einem optisch aktiven Adsorbat, in die weitgehend reinen Isomeren getrennt werden. Reine optische aktive Isomere lassen sich beispielsweise auch aus entsprechenden optisch aktiven Ausgangsmaterialien herstellen.
Die als Ausgangsstoffe für das erfindungsgemäße Verfahren benötigten substituierten Harnstoffe der Formel II und ein Verfahren zu ihrer Herstellung sind in der PCT/EP 00/05794 beschrieben, auf die hiermit in vollem Umfang Bezug genommen wird.
Verbindungen der Formel II kann man beispielsweise gemäss Schema 4 herstellen, indem man lH,2H-Perhydrodiazine der Formel III mit einem Isocyanat (W = 0) oder einem Isothiocyanat (W = S) der Formel IV umsetzt. In Schema 4 haben n, R, Ra, Z, Z1, W und Q die zuvor genannten Bedeutungen. Die in Schema 4 dargestellte Vorgehensweise hat sich insbesondere zur Herstellung solcher Verbindungen II bewährt, in denen Z für eine Methylengruppe steht, die gegebenenfalls durch Ra substituiert ist (Verbindungen Ila) . Vorzugsweise steht Z1 in Schema 4 für Sauerstoff oder Schwefel. Schema 4 :
Die molaren Verhältnisse, in denen die Ausgangsverbindungen der Formeln III und IV gemäss Schema 4 miteinander umgesetzt werden, betragen im allgemeinen 0,9 bis 1,4, vorzugsweise 0,95 bis 1,2, besonders bevorzugt 0,98 bis 1,15 für das Verhältnis von III zu Iso(thio)cyanat IV.
Vorzugsweise gibt man das Iso(thioJcyanat IV während 5 bis 30 min zu einer Mischung der Verbindung III in einem der vorgenannten Lösungsmittel bei 10 bis 25°C und rührt dann zur Vervollständigung der Reaktion noch 0,5 bis 24 Stunden, vorzugsweise 1 bis 10 Stunden bei 20 bis 80°C nach. Selbstverständlich kann man das Iso(thio)cyanat IV in einem der vorgenannten Lösungsmittel vorle- gen, das N-substituierte Perhydrodiazin der Formel III zugeben und dann die Reaktion wie oben beschrieben zu Ende führen.
Die in Schema 4 eingesetzten Iso(thio)cyanate IV sind bekannt oder können in Analogie zu bekannten Verfahren hergestellt wer- den; siehe z. B. Houben-Weyl, "Methoden der Organischen Chemie", Bd. VIII, S. 120 (1952), Bd. IX, S. 875, 869 (1955), EP 304920, EP 238711 sowie die in WO 94/10173 angeführten Literaturstellen.
Beispielsweise kann man Isothiocyanate IV durch Umsetzung eines aromatischen Amins Q-NH2, im Folgenden auch Anilinverbindung IX mit Phosgen oder Thiophosgen X gemäß Schema 5 herstellen. In Schema 5 haben Q und W die zuvor genannten Bedeutungen.
Schema 5 : Cl
Q-NH2 + W=C ^ ► Q-N=C=W
Cl IX X IV
Die Umsetzung gemäß Schema 5 erfolgt üblicherweise in einem iner- ten organischen Lösungsmittel. Die Reaktionstemperatur liegt in der Regel im Bereich von 10 bis 200 °C.
Die Reaktionszeit beträgt in der Regel 1 bis 20 Stunden, vorzugsweise 2 bis 15 Stunden, besonders bevorzugt 3 bis 10 Stunden. Als Lösungsmittel verwendet man für diese Umsetzungen - je nach Temperaturbereich - Kohlenwasserstoffe wie Pentan, Hexan, Cyclo- pentan, Cyclohexan, Toluol, Xylol, chlorierte Kohlenwasserstoffe wie Methylenchlorid, Chloroform, 1,2-Dichlorethan, 1,1,2,2-Te- trachlorethan, Chlorbenzol, 1,2-, 1,3- oder 1,4-Dichlorbenzol, Ether wie 1,4-Dioxan, Anisol, Glykolether wie Dimethylglykol- ether, Diethylglykolether, Diethylenglykoldimethylether, Ester wie Ethylacetat, Propylacetat, Methylisobutyrat, Isobutylacetat, Carbonsäureamide wie DMF, N-Methylpyrrolidon, Nitrokohlenwasser- Stoffe wie Nitrobenzol, Harnstoffe wie Tetraethylharnstoff, Te- trabutylharnstoff, Dimethylethylenharnstoff, Dimethylpropylen- harnstoff, Nitrile wie Acetonitril, Propionitril, Butyronitril oder Isobutyronitril oder auch Gemische einzelner Lösungsmittel.
Häufig verwendet man ein basisches Reaktionshilfsmittel. Hierzu kommen beispielsweise basische anorganische Verbindungen in Betracht, z. B. Alkali- oder Erdalkalihydroxide bzw. basische -hy- drogencarbonate oder -carbonate verwenden. Man kann die Reaktion jedoch auch in Gegenwart einer organischen Base, z. B. Triethyla- min, Tri-n-propylamin, N-Ethyldiisopropylamin, Pyridin, et-, ß-, γ-Picolin, 2,4-, 2,6-Lutidin, N-Methylpyrrolidin, Dimethylanilin, N,N-Dimethylcyclohexylamin, Chinolin oder Acridin durchführen.
Zur Umsetzung des Amins IX mit Thiophosgen X (W = S) legt man üblicherweise das Amin in einem inerten Lösungsmittel vor und gibt dann das Thiophosgen zu. Üblicherweise erfolgt die Zugabe innerhalb 10 bis 60 min bei einer Temperatur im Bereich von 10 bis 40 °C, vorzugsweise 20 bis 30 °C. In der Regel wird man zur Vervollständigung der Reaktion die Komponenten noch bei 50 bis 180 °C , vorzugsweise 60 bis 120 °C, besonders bevorzugt 70 bis 100 °C nachreagieren lassen. Die Reaktionsdauer liegt in der Regel im Bereich von 10 min bis 15 Stunden. Vorzugsweise beträgt das molare Verhältnis von Anilin IX zu Thiophosgen X (W = S) 0,9 bis 5, vorzugsweise 0,95 bis 3, besonders bevorzugt 0,98 bis 1,3. Die Reaktion kann gegebenenfalls in Gegenwart einer Hilfsbase, z. B. Calciumcarbonat, durchgeführt werden.
Bei Verwendung von Phosgen X (W = 0) begast man zweckmäßigerweise zuvor das Amin IX mit Chlorwasserstoff bei 10 bis 40 °C, vorzugs- weise 20 bis 30 °C. Dann leitet man Phosgen üblicherweise bei 60 bis 150 °C, vorzugsweise 70 bis 120 °C, gegebenenfalls in Gegenwart von Aktivkohle als Katalysator, ein.
An Stelle von Phosgen kann man auch Diphosgen verwenden. Vorteil- haft gibt man das Diphosgen während 2 bis 20 min unter Rühren bei 0 bis -5 °C zu der Mischung des Ausgangsstoffes und einem der vorgenannten Lösungsmittel, gegebenenfalls unter Zusatz von Aktiv- kohle, DMF oder der organischen Base, lässt innerhalb einer Stunde auf 10 °C erwärmen und rührt dann noch 1 bis 12 Stunden bei 10 bis 60 °C. Die molare Menge an Phosgen bzw. Diphosgen beträgt 0,98 bis 5, vorzugsweise 1 bis 3, besonders bevorzugt 1 bis 1,3 pro mol Ausgangsstoff.
Die Konzentration der Edukte im Lösungsmittel beträgt im Allgemeinen 0,1 bis 5 mol/1, bevorzugt 0,2 bis 2 mol/1.
Die Reaktion kann drucklos oder unter Druck, kontinuierlich oder diskontinuierlich durchgeführt werden.
Zur Aufarbeitung entfernt man überschüssiges Phosgen oder Thiophosgen sowie das Lösungsmittel im Vakuum und setzt dann den Rückstand für die Folgeumsetzung, Schema 4, ein.
Geeignete Anilinverbindungen IX sind beispielsweise in der WO 01/05775 beschrieben.
Das Verfahren gemäß Schema 5 ist im Falle von Anilinen IX mit freier Phenol- oder Thiophenol-Funktion insofern überraschend, als man die Bildung entsprechender O-Aryl- bzw. S-Aryl-chlorthio- noformiate erwartet hätte. Sowohl freie Phenole als auch Thiophe- nole reagieren mit Thiophosgen an ihrer Phenolfunktion wie es beispielsweise beschrieben ist in JP 60 67 467, Collect. Czech. Chem. Commun., 1979, 44, 918 (Phenole) bzw. J. Chem. Soc. Perkin Trans. 1981 Part 1, 413, J. Chem. Commun. 1975, 926 (Thiophe- nole) . Im Falle von gleichzeitiger Amino- und Thiophenol-Substi- tution ist ferner die Bildung von Benzthiazolderivaten bekannt, siehe Heterocycl. Chem. 1991, 28, 359.
In EP 648 772 sind in allgemeiner Form die Bildung von Phenyliso- thiocyanaten beschrieben, die gleichzeitig durch eine freie Hydroxy- oder Aminogruppe substituiert sind. Da Thiophosgen im All- gemeinen zwischen Aminogruppen oder der Hydroxfunktion nicht differenziert, wird in den Beispielen der EP 648 772 auch nur die Reaktion eines geschützten Anilins beschrieben.
Eine besonders interessante Variante der in Schema 5 gezeigten Umsetzung betrifft daher die Herstellung von Thioisocyanaten der allgemeinen Formel IVb,
in der R3 Halogen und Y'' Hydroxy oder Mercapto bedeuten. Diese Verbindungen sind neu und als interessante Vorstufen für das er- findungsgemße Verfahren ebenfalls von Bedeutung.
Eine weitere besonders interessante Variante der in Schema 5 gezeigten Umsetzung betrifft ferner die Herstellung von Isocyanaten der allgemeinen Formel IVc,
worin
R3 für Halogen steht und R30 die zuvor bei Q-7 genannten Bedeutungen aufweist
durch Umsetzung der Aniline IXb,
worin R3 für Halogen steht und R30 die zuvor genannten Bedeutungen aufweist mit Thiophosgen. Die Umsetzung erfolgt auf die zuvor beschriebene Weise. Die Verbindungen IVc sind neu und als interessante Vorstufen für das erfindungsgemäße Verfahren ebenfalls Ge- genstand der Erfindung.
Bevorzugt sind Isothiocyanate IVc, worin
R3 für Halogen, insbesondere Chlor oder Fluor, steht, R30 für Wasserstoff, Ci-Cg-Alkyl, C3-C8-Cycloalkyl, CH0-Cι-C4-Al- kyl, CH20-C3-C4-Alkenyl, CH20-C3-C4-Alkinyl, CH2CH20-Cι-C4-Al- kyl, CH2CH20-C3-C4-Alkenyl, CH2CH20-C3-C4-Alkinyl, (Cι-C4- Alkoxy)carbonyl, (C3-C4-Alkenyloxy)carbonyl, (C3-C4-Alkinyl- oxy)carbonyl, (Cι-C4-Alkoxy)carbonyl-Cι-C2-alkyl, (C3-C -Alke- nyloxy)carbonyl-Cι-C2-alkyl, (C3-C4-Alkinyloxy)carbonyl-Cι-C - alkyl, Cι-C4-Alkylsulfonylamidocarbonyl, CH(0-Cι-C4-Alkyl) , CH[0(CH2)30], CH[0(CH2)40] oder Phenyl, das unsubstituiert sein oder seinerseits einen bis drei Substituenten tragen kann, jeweils ausgewählt unter Cyano, Nitro, Halogen, Cι-C2- Alkyl, CF3, Cι-C2-Alkoxy, (Cι-C2-Alkoxy)carbonyl und Cι-C2-Al- koxycarbonyl-Cι-C2-alkyl steht.
Jeder Alkylreste in den vorstehend genannten Resten kann unsubstituiert sein oder einen, zwei oder drei, vorzugsweise nur einen Substituenten tragen, die unabhängig voneinander ausgewählt sind unter Halogen, Cyano und Methoxy. Jeder Cy- cloalkylrest kann unsubstituiert sein oder einen, zwei oder drei Substituenten tragen, die unabhängig voneinander ausgewählt sind unter Halogen, Cyano, Methoxy und Methyl.
Besonders bevorzugt steht R30 für einen der folgenden Reste:
R30 Ci-Cg-Alkyl, C3-C8-Cycloalkyl, CH20-Cι-C4-Alkyl, CH20-C3-C4-A1- kenyl, CH20-C3-C4-Alkinyl, (Cι-C4-Alkoxy)carbonyl, (C3-C4-Alke- nyloxy)carbonyl, (C3-C4-Alkinyloxy)carbonyl, (C1-C4-AI- koxy)carbonyl-Cι-C2-alkyl, (C3-C4-Alkenyloxy)carbonyl-Cι-C2- alkyl, (C3-C -Alkinyloxy)carbonyl-Cι-C2-alkyl, Cι-C4-Alkylsul- fonylamidocarbony1,
CH(0-Cι-C4-Alkyl)2, CH[0(CH2)30], CH[0(CH2)40] , Phenyl, 2-, 3-, 4-Chlorphenyl, 2,4-Dichlorphenyl, 2-, 3-, 4-CF3-phenyl, 2-, 3-, 4-Methoxycarbonylphenyl, 2-, 3-, 4-Tolyl, 2-, 3-, 4-An- isyl, 2-, 3-, 4-Methoxycarbonylphenyl.
Bei der Darstellung der Harnstoffe II gemäß Schema 4 hat sich überraschenderweise gezeigt, dass die Umsetzung der Perhydrodi- azine der Formel III, in denen R für eine Gruppe C(S)0R2 steht (Perhydrodiazin III') mit einem Isothiocyanat S=C=N-Q IVa direkt zu den Verbindungen der Formel I ' , worin X und W beide für Schwefel stehen, führt, ohne dass der Zusatz einer Base erforderlich ist (siehe Schema 6), wenn man die Umsetzung in einem aprotisch polaren Lösungsmittel, beispielsweise einem cyclischen Ether wie Tetrahydrofuran oder Dioxan, durchführt. In analoger Weise erhält man aus lila' die Verbindung Ia'. Schema 6 :
Man kann die Verbindungen II auch nach dem in Schema 7a bzw. 7b gezeigten Verfahren herstellen, indem man ein Harnstoffderivat Vlla bzw. Vllb mit einer Verbindung der Formel R2-0-C(X)-A oder der Formel R2-S-C(X)-A umsetzt, worin A für eine Abgangsgruppe, z.B. Halogen, steht. Vorzugsweise erfolgt die Umsetzung in Gegenwart einer Base. In Schema 7a bzw. 7b haben n, R2, X, Ra, Z, Z1, w und Q die zuvor genannten Bedeutungen. Die Verbindungen der For- mel R2-0-C(X)-A wird im Folgenden als Verbindung Villa und die Verbindung der Formel R2-S-C(X)-A als Verbindung Vlllb bezeichnet.
Schema 7a:
(
Schema 7b:
Die in Schema 7b eingesetzten Harnstoffverbindungen Vllb sind zum Teil aus der WO 94/10173 und der WO 00/01700 bekannt. Im übrigen sind die in Schema 7a und die in Schema 7b eingesetzten HarnstoffVerbindungen der Formeln Vlla und Vllb aus der älteren An- meidung PCT/EP 00/05794 bekannt.
Die gemäß Schema 4 als Ausgangsverbindungen eingesetzten Oxazin- derivate der allgemeinen Formel lila (Verbindungen III, in denen Z für eine Methylengruppe steht, die gegebenenfalls durch Ra sub- stituiert ist) werden nach einer bevorzugten Ausführungsform hergestellt, indem man in einem ersten Reaktionsschritt ein substituiertes Hydrazin der Formel V,
(Ra)n
worin Ra und n die zuvor genannte Bedeutung haben und Z1 für Sauerstoff oder Schwefel steht, mit einer Verbindung der allgemeinen Formel R2-0-C(X)-A oder der Formel R2-S-C(X)-A (Villa bzw. Vlllb), worin R2 und X die zuvor genannten Bedeutungen aufweist, und A für eine nucleophil verdrängbare Abgangsgruppe, insbesondere ein Ha- logenatom und speziell für Chlor steht, umsetzt. Hierbei erhält man ein Hydrazinderivat der allgemeinen Formel VI,
(Ra)n
worin Z1, R, Ra und n die zuvor genannte Bedeutung haben.
In einem zweiten Schritt wird die Verbindung VI mit Formaldehyd in Gegenwart einer Säure zu den substituierten Perhydrodiazinen der allgemeinen Formel lila mit Z1 = O oder S cyclisiert, und ge- gebenenfalls in einem weiteren Reaktionsschritt für Z1 = S zu den Sulfoxiden mit Z1 = SO oder Sulfonen mit Z1 = S02 oxidiert.
Beispiele für geeignete, nucleophil verdrängbare Abgangsgruppen A sind Halogen, vorzugsweise Chlor oder Brom, weiterhin Ci-Cg-Alkoxy wie Methoxy, Ethoxy, n-Propoxy, n-Butoxy, Cι-C4-Halogenalkoxy wie Trichlormethoxy, Trifluormethoxy, Pentafluorethoxy, N-gebundenes Heterocyclyl wie I idazolyl, Ci-Cg-Alkylcarbonyloxy (bzw. Ci-Cg-Alkanoat) wie Acetat, Propionat, n-Butyrat, Isobutyrat, Pi- valat und Capronat, Ci-Cg-Halogenalkylcarbonyloxy wie Mono-, Di- und Trichloracetat, Ci-C6-Alkylsulfonyloxy wie Methylsulfonyloxy, Ci-Cg-Halogenalkylsulfonyloxy wie Trifluormethylsulfonyloxy, Phe- nylsulfonyloxy, worin der Phenylrest gegebenenfalls mit Halogen oder Ci-Cg-Alkyl ein- oder zweifach substituiert sein kann, wie Phenylsulfonyloxy, p-Toluolsulfonyloxy und p-Cl-Phenylsulfonyloxy oder N-gebundenes Stickstoff-Cs-Cg-Heterocyclyl wie N-Imidazolyl.
Bevorzugte Abgangsgruppe A ist Halogen, insbesondere Chlor oder Brom, sowie weiterhin Acetat oder Trifluoracetat.
Die Cyclisierung des 2. Herstellungsschritts kann sowohl mit Formaldehyd oder einer Verbindung, die unter sauren Bedingungen Formaldehyd freisetzt, wie Paraformaldehyd oder 1,3,5-Trioxan, in Gegenwart einer Säure erfolgen.
Man kann jedoch auch die im 1. Herstellungsschritt erhaltenen Hy- drazide mit Formaldehyd unter Bildung der Schiffschen Base umset- zen und dann die Cyclisierung durch Zugabe einer Säure bewirken.
Für die Darstellung der Verbindungen lila steht beispielhaft die in folgendem Schema 8 beschriebene Umsetzung, wobei ausgehend von 2-Hydrazinoethanol und Methylchlorformiat als Säurederivat zu- nächst das N-Amino-N-methoxycarbonyl-2-hydrazinoethanol hergestellt wird, das in einer Folgereaktion mit Formaldehyd zum Te- trahydro-4-methoxycarbonyl-4H-l-oxa-3,4-diazin cyclisiert wird.
Schema 8 :
Bevorzugte Ausführungsformen des Verfahrens sind im folgenden genannt :
Im Folgenden wird der erste Reaktionsschritt näher erläutert: Die Umsetzung der Hydrazinoethanole/thiole V mit den Verbindungen Villa bzw. Vlllb wird vorteilhaft in Gegenwart eines Lösungsmittels bei Temperaturen im Bereich von -30 bis 100°C, vorzugsweise -10 bis 80°C, besonders bevorzugt 0 bis 60°C durchgeführt.
Als Lösungsmittel verwendet man für diese Umsetzungen - je nach Temperaturbereich - Kohlenwasserstoffe wie Pentan, Hexan, Cyclo- pentan, Cyclohexan, Toluol, Xylol, chlorierte Kohlenwasserstoffe wie Methylenchlorid, Chloroform, 1,2-Dichlorethan, 1,1,2,2-Te- trachlorethan, Chlorbenzol, 1,2-, 1,3- oder 1,4-Dichlorbenzol, Ether wie 1,4-Dioxan, Anisol, Glykolether wie Dimethylglykol- ether, Diethylglykolether, Diethylenglykoldimethylether, Ester wie Ethylacetat, Propylacetat, Methylisobutyrat, Isobutylacetat, Carbonsäureamide wie DMF, N-Methylpyrrolidon, Nitrokohlenwasser- stoffe wie Nitrobenzol, Harnstoffe wie Tetraethylharnstoff, Te- trabutylharnstoff, Dimethylethylenharnstoff, Dimethylpropylen- harnstoff, Sulfoxide wie Dimethylsulfoxid, Sulfone wie Dimethyl- sulfon, Diethylsulfon, Tetramethylensulfon, Nitrile wie Acetoni- tril, Propionitril, Butyronitril oder Isobutyronitril; Wasser oder auch Gemische einzelner Lösungsmittel.
Die molaren Verhältnisse, in denen die Ausgangsverbindungen V und Villa bzw. Vlllb miteinander umgesetzt werden, betragen im Allgemeinen 0,9 bis 1,2, vorzugsweise 0,95 bis 1,1, besonders bevorzugt 0,98 bis 1,04 für das Verhältnis von Villa bzw. Vlllb zu Hy- drazinoethanol/thiol V.
Vorteilhaft arbeitet man im ersten Reaktionsschritt unter neutralen Bedingungen. Sofern bei der Reaktion ein saures Reaktionsprodukt entsteht, z.B. Halogenwasserstoff, wenn A in Formel Villa bzw. Vlllb für Halogen steht, entfernt man diesen durch Zugabe basischer Verbindungen, z. B. Alkali- oder Erdalkalihydroxide bzw. -hydrogencarbonate oder -carbonate. Man kann die Reaktion jedoch auch in Gegenwart einer organischen Base, z. B. Triethyl- amin, Tri-n-propylamin, N-Ethyldiisopropylamin, Pyridin, α-, ß-, γ-Picolin, 2,4-, 2,6-Lutidin, N-Methylpyrrolidin, Dimethylanilin, N,N-Dimethylcyclohexylamin, Chinolin oder Acridin durchführen.
Schließlich kann man die Reaktion auch in einem wäßrigen Zweiphasensystem durchführen, vorzugsweise in Gegenwart von Phasentransferkatalysatoren wie quartären Ammonium- oder Phosphoniumsalzen. Für die Zweiphasen-Reaktion sind die vorgenannten Phasentransfer- katalysatoren sowie die vorgenannten und die in der EP-A 556737 beschriebenen Reaktionsbedingungen geeignet.
Vorteilhaft gibt man die Verbindung Villa bzw. Vlllb während 0,25 bis 2 Stunden zu einer Mischung des Hydrazinoethanols/thiols V und der Base in einem der vorgenannten Lösungsmittel bei 0 bis 60°C und rührt zur Vervollständigung der Reaktion noch 0,5 bis 16 Stunden, vorzugsweise 2 bis 8 Stunden bis 0 bis 60°C nach.
Bei Verwendung eines wäßrigen Zweiphasensystems kann man in be- liebiger Reihenfolge die AusgangsStoffe V und Villa bzw. Vlllb zu einer Mischung des Phasentransferkatalysators in den beiden Pha- sen unter Rühren zugeben und dann im genannten Temperaturbereich unter Zugabe von Base die Umsetzung zu Ende bringen.
Die Reaktion kann drucklos oder unter Druck kontinuierlich oder 5 diskontinuierlich durchgeführt werden.
Zur Aufarbeitung trennt man von den gegebenenfalls ausgefallenen Salzen ab, oder vervollständigt deren Abscheidung durch Zugabe unpolarer Lösungsmittel und reichert so die Hydrazide ,in dem Fil- 10 trat an.
Im folgenden wird der zweite Reaktionsschritt erläutert: Vorteilhaft setzt man dann die Hydrazide unter sauren Bedingungen mit einer Formaldehydlosung oder Paraformaldehyd in einem der vorge- 15 nannten Lösungsmittel um.
Für den Folgeschritt werden zweckmäßig 0,9 bis 1,2, vorzugsweise 0,95 bis 1,1, besonders bevorzugt 0,98 bis 1,04 Moläquivalente Formaldehyd oder Paraformaldehyd pro Mol Hydrazidderivat VI ein- 20 gesetzt. Die Konzentration der Edukte im Lösungsmittel beträgt 0,1 bis 5 Mol/1, bevorzugt 0,2 bis 2 Mol/1.
Als Säure kann man aromatische Sulfonsäuren, z.B. Benzolsulfon- säure, p-Chlor- oder p-Toluolsulfonsäure, aliphatische Sulfonsäu-
25 ren wie Methansulfonsäure, Trifluormethansulfonsäure, Ethansul- fonsäure und n-Propylsulfonsäure, Sulfaminsäuren wie Methylsulf- aminsäure, Ethylsulfaminsäure oder Isopropylsulfaminsäure, aliphatische Carbonsäure wie Essigsäure, Trifluoressigsäure, Pro- pionsäure, Buttersäure oder Isobuttersäure sowie anorganische
30 Säuren wie Chlorwasserstoffsäure, Schwefelsäure, Salpetersäure oder Borsäure verwenden. Zweckmäßig kann man eine Säure wie Essigsäure oder Propionsäure direkt auch als Reaktionsmedium verwenden. Den sauren Katalysator setzt man zweckmäßig in einer Menge von 1 bis 20 Mol.-%, bevorzugt 3 bis 15 Mol.-%, besonders
35 bevorzugt 5 bis 10 Mol.-% Säure pro Mol Hydrazid ein.
Vorzugsweise gibt man eine Formaldehydlosung oder Paraformaldehyd während 2 bis 60 min zu einer Mischung von Hydrazid und dem sauren Katalysator in einem der vorgenannten Lösungsmittel bei 0 bis 40 100°C, vorteilhaft 10 bis 80°C, besonders bevorzugt 20 bis 50°C und rührt zur Vervollständigung der Reaktion noch 10 bis 50 Stunden, vorzugsweise 15 bis 30 Stunden bei 40 bis 50°C nach.
Setzt man eine wäßrige For alinlösung ein, entfernt man zweckmä- 45 ßig das Wasser, z.B. am Wasserabscheider. Man kann jedoch auch den sauren Katalysator zu einer Mischung von Hydrazid und Paraformaldehyd in einem der vorgenannten Lösungsmittel geben und dann wie beschrieben die Reaktion zu Ende führen.
Die Reaktion kann drucklos oder unter Druck, kontinuierlich oder diskontinuierlich betrieben werden.
Die sich gegebenenfalls anschließende Oxidation der Verbindungen III mit Z oder Z1 = S zu den Sulfoxiden (Z oder Z1 = S02) wird bevorzugt mit WasserstoffSuperoxid durchgeführt, wobei mit etwa äquivalenten Mengen an Oxidationsmittel die Sulfoxide und mit etwa doppelt molaren Mengen die Sulfone erhalten werden.
Die Oxidation mit Wasserstoffperoxid kann durch geeignete Metallverbindungen katalysiert werden, z.B. Übergangsmetalloxide wie Vanadinpentoxid, Natriumwolframat, Kaliumdichromat, Eisenoxidwol- framat, Natriumwolframat-Molybdänsäure, Osmiumsäure, Titantri- chlorid, Selendioxid, Phenylenselensäure, Oxovanadinyl-2,4-pen- tandionat. Die Katalysatoren werden im allgemeinen in einer Menge von 0,5 bis 10% Gew.-%, bezogen auf das Substrat eingesetzt, wegen der leichten Filtrierbarkeit und Wiedergewinnung der anorganischen Katalysatoren können jedoch auch stöchiometrische Mengen eingesetzt werden.
Als Lösungsmittel für die Oxidation mit Wasserstoffperoxid können beispielsweise Wasser, Acetonitril, Alkohole wie Methanol, Etha- nol, Isopropanol, tert.-Butanol, chlorierte Kohlenwasserstoffe wie Methylenchlorid, 1, 1,2,2-Tetrachlorethan oder Ketone wie Ace- ton oder Methylethylketon verwendet werden.
Neben Wasserstoffperoxid können als Oxidationsmittel auch Persäuren, wie Perbenzoesäure, Monoperphthalsäure oder 3-Chlorperben- zoesäure eingesetzt werden. Die Umsetzung mit Persäuren erfolgt zweckmäßig in chlorierten Kohlenwasserstoffen wie Methylenchlorid oder 1,2-Dichlorethan.
Sehr geeignet zur Oxidation der Thiole zu Sulfoxiden oder Sulfo- nen sind ferner Chlor und Brom. Diese Oxidation wird zweckmäßi- gerweise in polaren Lösungsmitteln wie Wasser, Acetonitril, Dioxan, oder in Zweiphasensystemen wie wäßriger Kaliumhydrogencar- bonatlösung/Dichlormethan ferner auch Essigsäure durchgeführt. Als Quelle für aktives Halogen können ferner tert . -Butylhypochlo- rit, unterchlorige sowie unterbromige Säure, deren Salze, ferner N-Halogenverbindungen wie N-Brom- und N-Chlorsuccinimid oder auch Sulfurylchlorid eingesetzt werden. Geeignet für die Oxidation ist auch die photosensibilisierte SauerstoffÜbertragung, wobei üblicherweise als Photosensibilisatoren organische Farbstoffe, z.B. Porphyrine wie Tetraphenylporphyrin, Chlorophyll, Protoporphyrin, Xanthenfarbstoffe, wie Bengalrosa oder Phenothiazin-Farbstoffe wie Methylenblau eingesetzt werden.
Als inerte Lösungsmittel sind Kohlenwasserstoffe wie Pentan, Hexan, Heptan, Cyclohexan, chlorierte Kohlenwasserstoffe wie Methylenchlorid, 1,2-Dichlorethan, 1, 1,2,2-Tetrachlorethan, Alkohole wie Methanol, Ethanol, n-Propanol oder Isopropanol, Ketone wie Aceton, Methylethylketon, polare aprotische Lösungsmittel wie Acetonitril, Propionitril oder aromatische Kohlenwasserstoffe wie Benzol, Toluol, Chlorbenzol oder Xylol geeignet. An Stelle von Sauerstoff kann man auch Ozon verwenden in den obengenannten Lö- sungsmitteln, zusätzlich noch Ether, 1,4-Dioxan oder Tetrahydrofuran (THF) .
Neben der Photosensibilisierung eignen sich für die Sauerstoffo- xidation auch Katalysatoren z.B. Oxide und Sulfide vom Nickel, Kupfer, Aluminium, Wolfram, Chrom, Vanadium, Ruthenium, Titan, Mangan, Molybdän, Magnesium und Eisen.
Je nach Stöchiometrie der verwendeten Oxidationsmittel gelangt man entweder zu den Sulfoxiden (lila mit Z1 = SO) oder deren Sul- fönen (lila mit Z1 = S02). Die molaren Verhältnisse, in denen die Ausgangsverbindungen miteinander umgesetzt werden, betragen im Allgemeinen 0,9 bis 1,8, vorzugsweise 1,05 bis 1,3 für das Verhältnis von Tetrahydrothiadiazin zu Oxidationsmittel im Falle der Oxidation zum Sulfoxid und im allgemeinen 1,9 bis 3,5, vorzugs- weise 2,05 bis 2,9 im Falle der Oxidation zum Sulfon.
Die Konzentration der Edukte im Lösungsmittel beträgt im Allgemeinen 0,1 bis 5 Mol/1, bevorzugt 0,2 bis 2 Mol/1.
Vorteilhaft legt man das 1-Thiadiazin der Formel lila mit Z1 = S oder das Sulfoxid ggf. mit einem der vorgenannten Katalysatoren in einem der vorgenannten Lösungsmittel vor und gibt dann das Oxidationsmittel während 0,25 bis 20 Stunden unter Rühren hinzu. Die Zugabe und Reaktionstemperatur richtet sich nach der optima- len Effizienz der jeweiligen Oxidationsmittel und der Vermeidung von Nebenreaktionen. Im Falle der Verwendung von photosensibili- siertem Sauerstoff arbeitet man im allgemeinen bei -20 bis 80°C, metallkatalysiert jedoch im allgemeinen bei 50 bis 140°C und bei Verwendung von Ozon im allgemeinen bei -78 bis 60°C. Wegen der be- grenzten Löslichkeit der Sauerstoffderivate werden diese vorzugsweise über einen längeren Zeitraum (bis zu 20 h) kontinuierlich in das Reaktionsgemisch eingeführt, bis die Oxidation auf der Sulfoxid- oder Sulfon-Stufe abgeschlossen ist. Flüssige oder leicht lösliche Oxidationsmittel wie Wasserstoffsuperoxid, unterchlorige oder unterbromige Säure, tert.-Butylhypochlorit, Chlor oder Brom, ferner N-Chlor-, bzw. N-Bromsuccinimid können je nach exothermen Charakter der Reaktion in kürzeren Zeitspannen während 0,25 bis 6 h zu der Reaktionsmischung des Thiadiazins oder -sul- foxids zugegeben werden, um die Reaktion nach weiteren 1 bis 60 h zum Abschluß zu bringen. Bevorzugt ist ferner eine gestaffelte Zugabe des flüssigen oder gelösten Oxidationsmittels . Im Falle von Wasserstoffsuperoxid arbeitet man im allgemeinen bei 0 bis 90°C, mit tert.-Butylpypochlorit im allgemeinen bei -78 bis 30°C und mit N-Halogenverbindungen im allgemeinen bei 0 bis 30°C. Im Falle von Chlor oder Brom ist eine Reaktionstemperatur von 0 bis 40°C zu empfehlen.
Die Oxidationen können drucklos, unter Druck, kontinuierlich oder diskontinuierlich betrieben werden.
Vorteilhaft kann man die mehrstufige Reaktion auch als Eintopf- verfahren durchführen, wobei man die Thiadiazine lila (Z1 = S) ohne Isolierung und Reinigung direkt zu den Sulfoxiden lila (Z1 = SO) oder den Sulfonen lila (Z1 = S02) umsetzt. Dementsprechend läßt man das Umsetzungsprodukt Ia gegebenenfalls auf 90 bis 20°C abkühlen, gibt gegebenenfalls ein Lösungsmittel, z.B. Methylen- chlorid und/oder Wasser hinzu und fügt nun das Oxidationsmittel nach Maßgabe seines Verbrauches hinzu. Als Oxidationsmittel sind Wasserstoffperoxid oder Natriumhypochlorit besonders bevorzugt.
Zur Aufarbeitung der Oxidationsmischung nimmt man im Allgemeinen die Endstoffe lila in einem mit Wasser nicht mischbaren Lösungsmittel auf, extrahiert saure Verunreinigungen bzw. Oxidationsmittel mit verdünntem Alkali- bzw. Wasser, trocknet und entfernt das Lösungsmittel unter reduziertem Druck.
Selbstverständlich kann man Verbindungen der allgemeinen Formel I, in denen X Sauerstoff bedeutet und Q für Q-2 oder Q-3 stehen, auch nach den aus dem Stand der Technik bekannten sauren Cycli- sierungs-Verfahren herstellen.
Beispielsweise kann man die Verbindungen der bei Schema 7a bzw. 7b definierten Formeln Vlla bzw. Vllb
mit Phosgen oder einem Phosgenäquivalent, wie Diphosgen, zu den erfindungsgemässen Verbindungen I cylisieren. Die Umsetzung von Verbindung Vlla mit Phosgen oder einem Phosgenäquivalent ist neu und ebenfalls Gegenstand der vorliegenden Erfindung.
Die Cyclisierung von Vlla bzw. Vllb mit Phosgen oder einem Phos- genäquivalent erfolgt vorteilhaft in Gegenwart eines der vorgenannten wasserfreien Lösungsmittel bei Temperaturen im Bereich von -10 bis 120°C, vorzugsweise 0 bis 80°C, besonders bevorzugt 10 bis 60°C.
Vorteilhaft leitet man das Phosgen bei 10 bis 60°C unter Rühren in eine Mischung eines 4-(Phenylcarbamoyl)-tetrahydro-4H-l,3,4-ox (bzw. thia)diazins und einer Menge von 0,5 bis 5 Gew.-%, bezogen auf den Einsatzstoff, Aktivkohle als Katalysator in einem der vorgenannten wasserfreien Lösungsmittel während 0,5 bis 20 Stun- den, bevorzugt 1 bis 12 Stunden.
Die Reaktion kann zusätzlich durch einen basischen Amid-Katalysa- tor beschleunigt werden, z.B. DMF, das üblicherweise in einer Menge von 0,3 bis 10 Gew.-% bezogen auf den Eingangsstoff einge- setzt werden kann. Als basischen Katalysator kann man auch organische Basen wie Triethylamin, Tri-n-propylamin, N,N-Dimethylani- lin oder N,N-Dimethylcyclohexylamin verwenden. Vorzugsweise kann man auch Pyridin, ggf. direkt als Lösungsmittel einsetzen.
An Stelle von Phosgen kann man auch Diphosgen verwenden. Vorteilhaft gibt man das Diphosgen während 2 bis 20 min unter Rühren bei 0 bis —5°C zu der Mischung des Ausgangsstoffes und einem der vorgenannten Lösungsmittel, ggf. unter Zusatz von Aktivkohle, DMF oder der organischen Base, läßt innerhalb 1 Stunde auf 10°C erwär- men und rührt dann noch 1 bis 12 Stunden bei 10 bis 60°C. Die molare Menge an Phosgen bzw. Diphosgen beträgt 0,98 bis 5, vorzugsweise 1 bis 3, besonders bevorzugt 1 bis 1,3 pro mol Ausgangsstoff.
Die Konzentration der Edukte im Lösungsmittel beträgt im Allgemeinen 0,1 bis 5 mol/1, bevorzugt 0,2 bis 2 mol/1. Die Reaktion kann drucklos oder unter Druck, kontinuierlich oder diskontinuierlich durchgeführt werden.
Das erfindungsgemässe basische Cyclisierungs-Verfahren nach Schema 3 hat gegenüber den aus dem Stand der Technik bekannten sauren Cyclisierungs-Verfahren zur Herstellung von annellierten Tetrahydrotriazolen den Vorteil, dass kein Phosgen eingesetzt werden muss. Ein weiterer wichtiger Vorteil des erfindungsgemäs- sen Verfahrens besteht darin, dass auf diesem Wege solche Verbin- düngen der Formel I hergestellt werden können, in denen Z für eine gegebenenfalls durch Ra substituierte Methylengruppe und W für Schwefel stehen, und die nach den Verfahren des Standes der Technik, wie sie in WO 94/10173 und WO 00/01700 beschrieben wurden, prinzipiell nicht hergestellt werden können und bislang auch auf anderen Wegen, wie einleitend erwähnt, nicht hergestellt werden konnten.
Ausserdem können Verbindungen I {R5 = Ci-Cg-Alkoxy, Ci-Cg-Alkylthio, C3-Cg-Cycloalkoxy, C3-Cg-Cycloalkylthio, C2-Cg-Alkenyloxy, C2-Cg-Alkenylthio, C2-Cg-Alkinyloxy, C2-Cg-AlkinyIthio, (Ci-Cg-Alkyl)carbonyloxy, (Ci-Cg-Alkyl)carbonylthio, (Ci-Cg-Alkoxy)carbonyloxy, (C2-Cg-Alkenyl)carbonyloxy, (C2-Cg-Alkenyl)carbonylthio, (C2-C6-Alkinyl)carbonyloxy, (C2-C6-Alkinyl)carbonylthio oder Ci-Cg-Alkylsulfonyloxy, wobei jeder Rest gewünschtenfalls einen bei R5 genannten Rest tragen kann} durch Umsetzung der entsprechenden Hydroxy- bzw. Mercaptoverbindung {R5 = OH, SH} oder deren Alkali- oder Erdalkalimetallsalze mit einem reaktiven Alkylants G-R5' der Formel XI, gegebenenfalls in Gegenwart eines Säureakzeptors und gegebenenfalls in Gegenwart eines Verdünnungsmittels hergestellt werden. In Formel XI bedeutet G eine nucleophil verdrängbare Abgangsgruppe und R5' einen Ci-Cg-Alkyl-, C3-Cg-Cycloal- kyl, C2-C6-Alkenyl-, C2-Cg-Alkinyl-, (Ci-Cg-Alkyl)carbonyl-, (Ci-Cg-Alkoxy)carbonyl-, (C2-C6-Alkenyl)carbonyl-, (C2-C6-Alki- nyl )carbonyl- oder Ci-Cg-Alkylsulfonylrest, der die bei R5 genann- ten Substituenten tragen kann.
Beispiele für nucleophil verdrängbare Abgangsgruppen sind Halogen, vorzugsweise Chlor oder Brom, Ci-Cg-Alkylcarbonyloxy (bzw. Ci-Cg-Alkanoat) wie Acetat, Propionat, n-Butyrat, Isobutyrat, Pi- valat, Ci-Cg-Halogenalkylcarbonyloxy wie Mono-, Di- und Trichlor- acetat, Ci-Cg-Alkylsulfonyloxy wie Methylsulfonyloxy, Ci-Cg-Halo- genalkylsulfonyloxy wie Trifluormethylsulfonyloxy, Phenylsulfo- nyloxy, worin der Phenylrest gegebenenfalls mit Halogen oder Ci-Cg-Alkyl ein- oder mehrfach substituiert sein kann, wie Phenyl- sulfonyloxy, p-Tolylsulfonyloxy und p-Chlorphenylsulfonyloxy. Als Abgangsgruppe bevorzugt ist Halogen, insbesondere Chlor oder Brom, sowie weiterhin Acetat oder Trifluoracetat und Methylsulfo- nat oder Trifluormethylsulfonat.
Die Umsetzung der Triazole I {R5 = OH, SH oder deren Alkali- oder Erdalkalimetallsalze} mit den Verbindungen der Formel XI wird vorteilhaft in Gegenwart eines Lösungsmittels bei Temperaturen im Bereich von -20 bis 120 °C, vorzugsweise -10 bis 100 °C, besonders bevorzugt 10 bis 90 °C durchgeführt.
Als Lösungsmittel verwendet man für diese Umsetzungen - je nach Temperaturbereich - Kohlenwasserstoffe wie Pentan, Hexan, Cyclo- pentan, Cyclohexan, Toluol, Xylol, chlorierte Kohlenwasserstoffe wie Methylenchlorid, Chloroform, 1,2-Dichlorethan, 1,1,2,2-Te- trachlorethan, Chlorbenzol, 1,2-, 1,3- oder 1,4-Dichlorbenzol, Ether wie 1,4-Dioxan, Anisol, Glykolether wie Dimethylglykol- ether, Diethylglykolether, Diethylenglykoldimethylether, Ester wie Ethylacetat, Propylacetat, Methylisobutyrat, Isobutylacetat, Carbonsäureamide wie DMF, N-Methylpyrrolidon, Nitrokohlenwasser- Stoffe wie Nitrobenzol, Harnstoffe wie Tetraethylharnstoff, Te- trabutylharnstoff, Dimethylethylenharnstoff, Dimethylpropylen- harnstoff, Nitrile wie Acetonitril, Propionitril, Butyronitril oder Isobutyronitril oder auch Gemische einzelner Lösungsmittel.
Die molaren Verhältnisse, in denen die Ausgangsverbindungen I {R5 = OH, SH oder deren Alkali- oder Erdalkalimetallsalze} und XI miteinander umgesetzt werden, betragen im Allgemeinen 0,9 bis 1,2, vorzugsweise 0,95 bis 1,1, besonders bevorzugt 0,98 bis 1,04.
Vorteilhaft arbeitet man bei der Alkylierung unter neutralen Bedingungen. Sofern bei der Reaktion ein saures Reaktionsprodukt entsteht, z. B. Halogenwasserstoff, wenn G in Formel XI für Halogen steht, entfernt man diesen durch Zugabe basischer Verbindun- gen, z. B. Alkali- oder Erdalkalihydroxide bzw. -hydrogencarbo- nate oder -carbonate. Man kann die Reaktion jedoch auch in Gegenwart einer organischen Base, z. B. Triethylamin, Tri-n-propyl- amin, N-Ethyldiisopropylamin, Pyridin, α-, ß-, γ-Picolin, 2,4-, 2,6-Lutidin, N-Methylpyrrolidin, Dimethylanilin, N,N-Dimethylcy- clohexylamin, Chinolin oder Acridin durchführen.
Schließlich kann man die Reaktion auch in einem wässrigen Zweiphasensystem durchführen, vorzugsweise in Gegenwart von Phasentransferkatalysatoren wie quartären Ammonium- oder Phosphonium- salzen. Für die Zweiphasen-Reaktion sind die in der EP-A 556737 beschriebenen Reaktionsbedingungen geeignet. Als Phasentransferkatalysatoren können quartäre Ammonium- oder Phosphoniumsalze verwendet werden. An geeigneten Verbindungen seien folgende genannt: Tetraalkyl-(Cι-Ci8)-ammoniumchloride, -bromide oder fluoride, N-Benzyltrialkyl-(Cι-Cι8)-ammoniumchlo- ride, -bromide oder -fluoride, Tetraalkyl-(Cι-Cι8)-phosphonium- chloride oder -bromide, Tetraphenylphosphoniumchlorid oder -bro- mid, (Phenyl)0(alkyl-(Cι-Cι8)p-phosphoniumchloride oder -bromide, wobei o = 1 bis 3, p = 3 bis 1 und o + p = 4 ist. Besonders bevorzugt sind Tetraethylammoniumchlorid und N-Benzyltriethylammo- niumchlorid. Die Menge an Phasentransferkatalysator beträgt im Allgemeinen bis zu 20 Gew.-%, bevorzugt zwischen 1 und 15 Gew.-% und besonders bevorzugt zwischen 2 bis 8 Gew.-%, bezogen auf das Triazol I {R5 = OH, SH oder deren Alkali- oder Erdalkalimetallsalze} .
Vorteilhaft gibt man das Alkylans XI während 0,15 bis 2 Stunden zu einer Mischung des Triazols I {R5 = OH, SH oder deren Alkalioder Erdalkalimetallsalze} und der Base in einem der vorgenannten Lösungsmittel bei 10 bis 60 °C und rührt zur Vervollständigung der Reaktion noch 0,5 bis 16 Stunden, vorzugsweise 2 bis 8 Stunden bis 10 bis 90 °C nach.
Bei Verwendung eines wässrigen Zweiphasensystems kann man in beliebiger Reihenfolge die AusgangsStoffe I {R5 = OH, SH oder deren Alkali- oder Erdalkalimetallsalze} und XI zu einer Mischung des Phasentransferkatalysators in den beiden Phasen unter Rühren zugeben und dann im genannten Temperaturbereich unter Zugabe von Base die Umsetzung zu Ende bringen.
Die Reaktion kann drucklos oder unter Druck kontinuierlich oder diskontinuierlich durchgeführt werden.
Zur Aufarbeitung trennt man von den gegebenenfalls ausgefallenen Salzen ab, oder vervollständigt deren Abscheidung durch Zugabe unpolarer Lösungsmittel und reichert so die Triazole I in dem Filtrat an.
Verbindungen der allgemeinen Formel Ia, in denen Z gegebenenfalls durch Ra substituiertes Methylen bedeutet, W für Schwefel steht und Q einen der vorstehend definierten Reste Q-1, Q-4, Q-5 oder Q-6 bedeutet, sowie die landwirtschaftlich verträglichen Salze dieser Verbindungen sind überraschenderweise wirksame Herbizide und daher ebenfalls Gegenstand der vorliegenden Erfindung. Hinsichtlich ihrer herbiziden Wirksamkeit sind sie den Verbindungen der Formel I, in denen W für ein Sauerstoffatom steht, überlegen. Außerdem sind Verbindungen der allgemeinen Formel Ia, in denen Q für einen der vorstehend definierten Reste Q-2, Q-3 oder Q-7 steht, sowie die landwirtschaftlich verträglichen Salze dieser Verbindungen ebenfalls herbizid wirksam und somit ebenfalls Ge- genstand der vorliegenden Erfindung. Hinsichtlich ihrer herbizi- den Wirksamkeit steht in diesen Verbindungen W ebenfalls bevorzugt für Schwefel.
Die neuen Verbindungen der Formel Ia können je nach Substituti- onsmuster ein oder mehrere ChiralitätsZentren enthalten und liegen dann als Enantiomeren- oder Diastereomerengemische vor. Bei Verbindungen Ia mit mindestens einem olefinischen Rest sind gegebenenfalls auch E-/Z-Isomere möglich. Gegenstand der Erfindung sind sowohl die reinen Enantiomere oder Diastereomere als auch deren Gemische.
Unter landwirtschaftlich brauchbaren Salzen kommen vor allem die Salze derjenigen Kationen oder die Säureadditionssalze derjenigen Säuren in Betracht, deren Kationen beziehungsweise Anionen die herbizide Wirkung der Verbindungen Ia nicht negativ beeinträchtigen. So kommen als Kationen insbesondere die Ionen der Alkalimetalle, vorzugsweise Lithium, Natrium und Kalium, der Erdalkalimetalle, vorzugsweise Calcium, Magnesium und Barium, und der Übergangsmetalle, vorzugsweise Mangan, Kupfer, Zink und Eisen, sowie das Ammoniumion, das gewünschtenfalls ein bis vier Cι-C -Alkylsub- stituenten und/oder einen Phenyl- oder Benzylsubstituenten tragen kann, vorzugsweise Diisopropylammonium, Tetramethylammonium, Te- trabutylammonium, Trimethylbenzylammonium, des weiteren Phospho- niumionen, Sulfoniumionen, vorzugsweise Tri(Cι-C-alkyl) sulfonium und Sulfoxoniumionen, vorzugsweise Tri(Cι-C4-alkyl)sulfoxonium, in Betracht.
Anionen von brauchbaren Säureadditionssalzen sind in erster Linie Chlorid, Bromid, Fluorid, Hydrogensulfat, Sulfat, Dihydrogen- phosphat, Hydrogenphosphat, Phosphat, Nitrat, Hydrogencarbonat, Carbonat, Hexafluorosilikat, Hexafluorophosphat, Benzoat, sowie die Anionen von Cι-C-Alkansäuren, vorzugsweise Formiat, Acetat, Propionat und Butyrat. Sie können durch Umsetzung der Verbindungen der Formel Ia mit einer Säure des entsprechenden Anions, vor- zugsweise der Chlorwasserstoffsäure, Bromwasserstoffsäure, Schwefelsäure, Phosphorsäure oder Salpetersäure, gebildet werden.
Im Hinblick auf die Verwendung der erfindungsgemäßen Verbindungen Ia als Herbizide haben die Variablen vorzugsweise folgende Bedeu- tungen, und zwar jeweils für sich allein oder in Kombination: Q Q-1 , Q-2 , Q-3 , Q-4 oder Q-7 ;
X, Y und Y' unabhängig voneinander O oder S;
T eine chemische Bindung oder 0;
U eine chemische Bindung, Cι-C-Alkylen, 0 oder S;
R3 Wasserstoff, Fluor oder Chlor;
R4 Chlor, Trifluormethyl oder Cyano;
R5 Hydroxy, Mercapto, Cyano, Nitro, Halogen, Ci-Cg-Alkyl, Ci-Cg-Halogenalkyl, Ci-Cg-Alkoxy- (Ci-Cg-alkyl)carbonyl, Ci-Cg-Alkylthio- (Ci-Cg-alkyl)carbonyl, (Ci-Cg-Alkyl) -imi- nooxycarbonyl, Ci-Cg-Alkoxy-Ci-Cg-alkyl, Ci-Cg-Alkoxya- mino-Ci-Cg-alkyl, Cι-Cg-Alkoxy-Cι-Cg-alkylamino-Cι-Cg-al- kyl,
Ci-Cg-Alkoxy, Ci-Cg-Alkylthio, C3-Cg-Cycloalkoxy,
C3-Cg-Cycloalkylthio, C2-Cg-Alkenyloxy, C2-Cg-AlkenyIthio, C2-Cg-Alkinyloxy, C2-Cg-Alkinylthio, (Ci-Cg-Alkyl) carbonyloxy, (Ci-Cg-Alkyl)carbonylthio, (Ci-Cg-Alkoxy)carbonyloxy, (C2-Cg-Alkenyl)carbonyloxy, (C2-Cg-Alkenyl)carbo- nyIthio, (C2-C6-Alkinyl) -carbonyloxy, (C2-C6-Alkinyl)carbonylthio, Ci-Cg-Alkylsulfonyloxy oder Ci-Cg-Alkylsulfo- nyl, wobei jeder dieser 17 Reste gewünschtenfalls einen zwei oder drei Substituenten tragen kann, ausgewählt unter:
- Halogen, Nitro, Cyano, Hydroxy, C3-Cg-Cycloalky, Ci-Cg-Alkoxy, C3-Cg-Cycloalkoxy, C3-Cg-Alkenyloxy, C3-Cg-Alkinyloxy, Cι-Cg-Alkoxy-Cι-Cg-alkoxy, Ci-Cg-Alkylthio, Ci-Cg-Alkylsulfinyl, Ci-Cg-Alkylsulfonyl, Ci-Cg-Alkylidenaminoxy, Oxo, =N-OR10
Phenyl, Phenoxy oder Phenylsulfonyl, wobei die drei letztgenannten Substituenten ihrerseits einen, zwei oder drei Substituenten tragen können, jeweils ausge- wählt unter Halogen, Nitro, Cyano, Ci-Cg-Alkyl,
Ci-Cg-Halogenalkyl, Ci-Cg-Alkoxy und (Ci-Cg-Al- koxy)carbonyl;
-CO-R11, -CO-OR11, -CO-SR11, -CO-NfR11 ) -R12, -OCO-R11, -OCO-OR11', -0C0-SR11', -0C0-N(R1:L)-R12, -N(R1:L)-R12, und -C(R13)=N-OR10; C(Z )-R14, -C(=NR15)R14, C(R14)(Z2R16)(Z4R17), C ( R14 ) =C ( R18 ) -CN, C ( R14 ) =C ( R18 ) -CO-R19 , -CH ( R14 ) -CH ( R18 ) -COR19 , -C ( R14 ) =C ( 18 ) -CH2-C0-R19 , -C(R1 )=C(R18)-C(R20)=C(R21)-CO-R 9, -C(R14)=C(R18)-CH2-CH(R21)-CO-R21, -CO-OR23, -CO-SR23,
-CON(R23)-OR10, -C≡C-CO-NHOR10, -O≡C-C0-N(R23) -OR10, -C≡C-CS-NH-OR10 , -C≡C-CS-N ( R23 ) -OR10 ,
-C ( R14 ) =C ( R18 ) -CO-NHOR10 , -C ( R14 ) =C ( R18 ) -CO-N ( R23 ) -OR10 , -C (R14 ) =C (R18 ) -CS-NHOR10 , -C ( R14 ) =C (R18 ) -CS- (R23 ) -OR10 , -C(R1 )=C(R18)-C(R13)=N-OR10, C(R13)=N-OR10,
-C≡C-C ( R13 ) =NOR10 , C ( Z3R16 ) ( Z4R17 ) -OR23 ,
_C(Z3R16) (Z4R17)SR23 C ( ZSR1^ ) ( Z4R17 ) -N (R24 )R25, -N(R24)-R25, -CO-N(R24)-R25 oder -C(R1 )=C(R18)CO-N(R2 )R25; worin Z2, Z3, Z4 unabhängig voneinander für Sauerstoff oder Schwe- fei stehen;
R6 Wasserstoff, Halogen, Cyano, Ci-Cg-Alkyl, Ci-Cg-Halogenalkyl, C3-C -Cycloalkyl, gesättigtes C3-C7-Heterocyclyl, das ein oder zwei Heteroatome ausgewählt unter Sauerstoff und Schwefel im Ring aufweist, Ci-Cg-Alkoxyalkyl, Cyano-
Ci-Cg-alkyl, C02H, Ci-Cg-Alkoxycarbonyl und Ci-Cg-Alkoxy- carbonyl-Ci-Cg-alkyl, C3-Cg-Alkenyl oder C3-C6-Alkinyl;
R7 Wasserstoff, Halogen, Cyano, Ci-Cg-Alkyl, Ci-Cg-Halogenal- kyl, C3-C7-Cycloalkyl, gesättigtes C3-C7-Heterocyclyl, das ein oder zwei Heteroatome ausgewählt unter Sauerstoff und Schwefel im Ring aufweist, Ci-Cg-Alkoxyalkyl, Cyano- Ci-Cg-alkyl, C02H, Ci-Cg-Alkoxycarbonyl und Ci-Cg-Alkoxy- carbonyl-Ci-Cg-alkyl, C3-Cg-Alkenyl oder C3-Cg-Alkinyl;
R8 Wasserstoff oder Cι-C3-Alkyl;
R9 Wasserstoff, Cι-C3-Alkyl
R8 und R9 gemeinsam C=0;
R10 Wasserstoff, Ci-Cg-Alkyl, Ci-Cg-Halogenalkyl, C3-C6-Cyclo- alkyl, C3-Cg-Alkenyl, C3-Cg-Alkinyl, Cι-C6-Alko- xy-Ci-Cg-alkyl, Cyano-Ci-Cg-alkyl, (Cι-Cg-Alkoxy)carbonyl- Ci-Cg-alkyl oder Phenylalkyl, wobei der Phenylring ein- bis dreifach durch Halogen, Cyano, Nitro, Cι-C3-Alkyl, Cι-C3-Halogenalkyl oder Cι-C3-Alkoxy substituiert sein kann; R11 Wasserstoff, Ci-Cg-Alkyl, C3-C6-Cycloalkyl, C3-C6-Alkenyl, C3-C6-Alkinyl, Ci-Cg-Alkoxy-Ci-Cg-alkyl, (Ci-Cg-Al- koxy)carbonyl-Cι-Cg-alkyl, C3-Cg-Alkenyloxycarbonyl- Ci-Cg-alkyl,
Phenyl oder Benzyl, welche am Phenylring unsubstituiert oder ein- bis dreifach durch Halogen, Cyano, Nitro, Cι-C3-Alkyl, Cι-C3-Halogenalkyl oder Cι-C3-Alkoxy substituiert sein können;
R11' die für R11 genannten Bedeutungen, ausgenommen Wasserstoff;
R12 Wasserstoff, Hydroxy, Ci-Cg-Alkyl, C3-C7-Cycloalkyl, C3-C6-Cycloalkylaminocarbonyl, Ci-Cg-Alkylaminocarbonyl, Ci-Cg-Alkoxy, (Cι-C3-Alkoxy)carbonyl-Cι-C3-alkoxy, C3-C6-Alkenyl, C3-Cg-Alkenyloxy, C3-C6-Alkinyl oder C3-Cg-Alkinyloxy;
R13 Wasserstoff, Halogen, Ci-Cg-Alkyl, Ci-Cg-Halogenalkyl,
Ci-Cg-Alkoxy, C3-Cg-Alkenyloxy, (Cι-Cg-Alkoxy)carbonylal- koxy, C2-Cg-Alkenyl, (C2-Cg-Alkenyl) carbonyloxy, C3-Cg-Al- kinyl , (C2-Cg-Alkinyl ) carbonyloxy,
Phenyl, Phenoxy oder Benzyl, wobei die Phenylringe der letztgenannten 3 Reste unsubstituiert oder ein- bis dreifach durch Halogen, Cyano, Nitro, Cι-C3-Alkyl, Cι-C3-Halo- genalkyl, Cι-C3-Alkoxy oder (Cι~C3-Alkoxy) carbonyl substituiert sein können;
R14 Wasserstoff, Cyano, Ci-Cg-Alkyl, Ci-Cg-Halogenalkyl, C2-C6-Alkenyl, C2-Cg-Alkinyl, Ci-Cg-Alkoxy-Ci-Cg-alkyl oder (Ci-Cg-Alkoxy) carbonyl;
R15 Wasserstoff, Ci-Cg-Alkyl, C3-C6-Alkenyl, C3-Cg-Alkinyl, C3-C6-Cycloalkyl, Ci-Cg-Halogenalkyl, Cι-C6-Alko- xy-Ci-Cg-alkyl, Ci-Cg-Alkoxy, (Cι-Cg-Alkoxy)carbonyl- Cι-C6-alkyl,
Phenyl oder Phenyl- (Ci-Cg-alkyl ) , wobei die beiden letztgenannten Phenylreste durch Halogen, Cyano, Nitro, Cι-C3-Alkyl, Cι-C3-Halogenalkyl, Cι-C3-Alkoxy oder (Cι-C3-Alkoxy)carbonyl substituiert sein können; R16, R17 unabhängig voneinander Ci-Cg-Alkyl, Ci-Cg-Halogenalkyl, C3-C6-Alkenyl, C3-Cg-Alkinyl, Cι-Cg-Alkoxy-Cι-Cg-al- kyl, oder
R16 und R17 zusammen für eine gesättigte 2- bis 4-gliedrige
Kohlenstoffkette, die einen Oxosubstituenten tragen kann, wobei ein den Variablen Z3 und Z4 nicht benachbartes Kohlenstoffatom dieser Kette durch -0-, -S-, -N=, -NH- oder —N(Ci-Cg-Alkyl)- ersetzt sein kann, und wobei die Kohlen- stoffkette noch ein- bis dreimal durch Halogen oder Ci-Cg-Alkyl substituiert sein kann;
R18 Wasserstoff, Cyano, Halogen, Ci-Cg-Alkyl, Ci-Cg-Halogenalkyl oder Ci-Cg-Alkoxy;
R19 Wasserstoff, OR28, S-R28, Ci-Cg-Alkyl, das noch einen oder zwei Ci-Cg-Alkoxysubstituenten tragen kann, C-Cg-Alkenyl, C2-Cg-Alkinyl, Ci-Cg-Halogenalkyl oder C3-Cg-Cycloalkyl;
R20 Wasserstoff, Cyano, Halogen, Ci-Cg-Alkyl, C3-Cg-Alkenyl oder C3-Cg-Alkinyl;
21 Wasserstoff, Cyano, Halogen, Ci-Cg-Alkyl, Ci-Cg-Alkoxy oder Ci-Cg-Halogenalkyl
R22 Wasserstoff, Cyano oder Ci-Cg-Alkyl;
R23 ; R28 unabhänging voneinander Wasserstoff, Ci-Cg-Alkyl,
Ci-Cg-Halogenalkyl, C2-Cg-Alkenyl oder C2-Cg-Alkinyl, wo- bei die letztgenannten 4 Gruppen jeweils einen oder zwei der folgenden Reste tragen können: Cyano, Halogen, Ci-Cg-Alkoxy, (Ci-Cg-Alkyl)carbonyl, (Ci-Cg-Alkoxy)carbonyl, Phenyl oder Phenyl-Ci-Cg-alkyl;
R24, R25, R26, R27 unabhängig voneinander Wasserstoff,
Ci-Cg-Alkyl, C3-C6-Alkenyl, C2-C6-Alkinyl, C3-Cg-Cycloal- kyl, Ci-Cg-Halogenalkyl, Ci-Cg-Alkoxy-Ci-Cg-alkyl, Ci-Cg-Alkylcarbonyl, (Ci-Cg-Alkoxy)carbonyl,oder
R24 und R25 und/oder R26 und R29 zusammen mit dem jeweils gemeinsamen Stickstoffatom für einen gesättigten oder ungesättigten 4- bis 7-gliedrigen Azaheterocyclus, der neben Kohlenstoffringgliedern gewünschtenfalls ein Sauerstoffatom oder eine —NH-Gruppe enthalten kann;
Insbesondere steht R5 in Q-1 für: Ci-Cg-Alkoxy, C2-C6-Alkenyloxy oder C2-C6-Alkinyloxy, wobei jeder der letztgenannten 3 Reste gewünschtenfalls ein bis drei Substituenten tragen kann, jeweils ausgewählt aus der Gruppe bestehend aus Halogen, Ci-Cg-Alkoxy, C3-C6-Alkenyloxy, C3-C6-Alkinyloxy, Ci-Cg-Alkylsulfonyl, -CO-R11, -CO-OR11, -CO-N(R11)-R12, -N(R1:L)-R12, und -C(R13)=N-OR10;
-CO-R14, -C(=NR15)-R14, -C(R14) (OR16) (OR17), -C(R1 )=C(R18)-CO-R19, -CH(R1 )-CH(R18)-CO-R19, -CO-OR23,
-CO-N(R23 ) -OR10, -C (R14 ) =C (R18 ) -CO-N(R23 ) -OR10 , -C(R13)=N-OR10, -C(OR16)(OR1 )-OR23, -N(R2 )R2^, -CON(R2 )R25 oder -C(R14)=C(R18)CO-N(R24)R25;
und speziell für C2-Cg-Alkenyloxy, C -Cg-Alkinyloxy, -C(R14) (OR16) (OR17), -C(R14)=C(R18)-C(0)R19, -CH(R1 )-CH(R18)-C(0)R19, C(0)OR23, -C(0)-N(R3)-OR10, -C(R13)=N-OR10 und C(0)N(R24)R25,
wobei R10 bis R19 und R23 bis R25 die zuvor genannten Bedeutungen aufweisen, und insbesondere die im folgenden genannten Bedeutungen haben:
R10 Ci-Cg-Alkyl, Ci-Cg-Halogenalkyl, C3-C6-Alkenyl, C3-C6-Ha- logenalkenyl, C3-Cg-Alkinyl, Ci-Cg-Cyanoalkyl und Cι-Cg-Alkoxycarbonyl-Cι-Cg-alkyl;
R13 Wasserstoff, Ci-Cg-Alkyl, Ci-Cg-Alkoxy, C3-Cg-Alkenyloxy, C3-Cg-Alkinyloxy, Cι-Cg-Alkoxycarbonyl-Cι-Cg-alkyl und Cι-Cg-Alkoxycarbonyl-Cι-Cg-alkoxy;
R14 Wasserstoff, Ci-Cg-Alkyl,
R15 Ci-Cg-Alkoxy,
R16 und R17 unabhängig voneinander Ci-Cg-Alkyl;
R18 Wasserstoff, Halogen, Ci-Cg-Alkyl;
R19 Hydroxy, Ci-Cg-Alkoxy, Ci-Cg-AlkyIthio, Ci-Cg-Alkoxycarbo- nyl-Ci-Cg-alkyl ;
R23 Ci-Cg-Alkyl, C3-Cg-Halogenalkyl, C3-C6-Alkenyl, C3-C6-Al- kinyl, C3-Cg-Alkenyloxy, C3-C6-Alkinyloxy, Ci-Cg-Alkoxy- carbonyl-Ci-Cg-alkyl, C3-Cg-Alkenyloxycarbonyl-Cι-Cg-al- kyl, C3-Cg-Alkinyloxycarbonyl-Cι-C6-alkyl, Ci-Cg-Alkoxyal- kyl;
R24 Wasserstoff, Ci-Cg-Alkyl;
R25 Wasserstoff, Ci-Cg-Alkyl, Ci-Cg-Alkoxy, oder
R24 und R25 gemeinsam einen 6-gliedrigen, gesättigten Azahete- rocyclus, der gegebenenfalls ein oder zwei nicht benach- barte Sauerstoffatome im Ring aufweist.
Im Hinblick auf die herbizide Wirksamkeit von Verbindungen Ia, in denen Q für Q-7 steht, hat R30 vorzugsweise die bei den Isothio- cyanaten IVc als bevorzugt angegebenen Bedeutungen. Insbesondere steht R30 in Q-7 für:
Ci-Cg-Alkyl, C3-C8-Cycloalkyl, CH20-Cι-C4-Alkyl, CH20-C3-C4-Al- kenyl, CH20-C3-C -Alkinyl, (Cι-C -Alkoxy)carbonyl, (C3-C -Alke- nyloxy)carbonyl, (C3-C-Alkinyloxy)carbonyl, (Cι-C4-Al- koxy)carbonyl-Cι-C2-alkyl, (C3-C4-Alkenyloxy)carbonyl-Cι-C2-al- kyl, (C3-C4-Alkinyloxy)carbonyl-Cι-C2-alkyl, Cι-C4-Alkylsulfo- nylamidocarbonyl, wobei jeder Alkylrest unsubstituiert sein oder einen, zwei oder drei Substituenten tragen kann, ausgewählt unter Halogen, Cyano und Methoxy und jeder Cycloalkyl- rest unsubstituiert sein kann, oder ein, zwei oder drei Substituenten tragen kann, ausgewählt unter Halogen, Cyano, Methoxy und Methyl,
CH(0-Cι-C-Alkyl)2, CH[0(CH2)30], CH[0(CH2)40] oder Phenyl, das unsubstituiert sein oder seinerseits einen, zwei oder drei Substituenten tragen kann, jeweils ausgewählt unter Cyano, Nitro, Halogen, Cι-C2-Alkyl, CF3, Cι-C2-Alkoxy, (Cι-C2-Al- koxy)carbonyl und Cι-C2-Alkoxycarbonyl-Cι-C -alkyl.
Eine spezielle Klasse betrifft Verbindungen Ia, worin Q für Q-1 steht, W für Schwefel steht und X Sauerstoff oder Schwefel bedeutet. Hierin haben die Variablen die zuvor genannten, und besonders bevorzugt die folgenden Bedeutungen:
Z 0 oder S, insbesondere O
n den Wert 0,
R3 Wasserstoff oder Halogen, insbesondere Fluor oder Chlor, R4 Wasserstoff, Halogen, insbesondere Fluor oder Chlor oder Cyano, und
R5 Ci-Cg-Alkyl, C3-C6-Alkenyl, Ci-Cg-Halogenalkyl, C3-C6-Haloge- nalkenyl, Ci-Cg-Alkoxy, Ci-Cg-Halogenalkoxy, Ci-Cg-AlkyIthio, Ci-Cg-Halogenalkylthio, C3-Cg-Alkenyloxy, C3-Cg-Alkinyloxy, Ci-Cg-Halogenalkenyloxy, C3-C6-AlkenyIthio, C3-Cg-Halogenalke- nylthio, Cι-Cg-Alkoxycarbonyl-Cι-C6-alkoxy, C3-Cg-Alkenyloxy- carbonyl-Ci-Cg-alkoxy, C3-C6-Alkinyloxycarbonyl-Cι-C6-alkoxy, [Ci-Cg-Alkoxy] -Cι-Cg-alkoxycarbonyl-Cι-Cg-alkoxy, C3-C6-Alkeny- loxycarbonyl-Cι-C6-alkoxycarbonyl-Cι-C4-alkoxy, Ci-Cg-Alkoxy- carbonyl-Ci-Cg-alkylthio, Cι-Cg-Alkenyloxycarbonyl-Cι-Cg-al- kyIthio, Cι-Cg-Alkinyloxycarbonyl-Cι-Cg-alkylthio, [Ci-Cg-Al- koxy]-Cι-C6-alkoxycarbonyl-Cι-Cg-alkylthio, Ci-Cg-Alkoxyimino- Ci-Cg-alkyl, N-Cι-Cg-Alkoxy-N-(Cι-C6-alkyl)amino-Cι-C6-alkyl, Ci-Cg-Alkylsulfon lamino, -COOR23, -CONR2R25, -C(=NR15)R14, -C (R13 ) =NOR10 , C (R1 ) =C (R18 ) -CO-R1 ,
worin die Variablen R10, R13 bis R15, R18, R19, R23 bis R25 die folgenden Bedeutungen haben:
R10 Ci-Cg-Alkyl, Ci-Cg-Halogenalkyl, C3-C6-Alkenyl, C3-C6-Ha- logenalkenyl, C3-C6-Alkinyl, Ci-Cg-Cyanoalkyl und
Ci-Cg-Alkoxycarbonyl-Ci-Cg-alkyl;
R13 Wasserstoff, Ci-Cg-Alkyl, Ci-Cg-Alkoxy, Ci-Cg-Alkoxycarbo- nyl-Ci-Cg-alkyl, Cι-Cg-Alkoxycarbonyl-Cι-Cg-alkoxy und
Phenoxycarbonyl-Ci-Cg-alkoxy;
R14 Wasserstoff, Ci-Cg-Alkyl;
R15 Ci-Cg-Alkoxy;
R18 Wasserstoff, Halogen, Ci-Cg-Alkyl;
R19 Hydroxy, Ci-Cg-Alkoxy, Ci-Cg-AlkyIthio, Ci-Cg-Alkoxycarbo- nyl-Ci-Cg-alkyl;
R23 Ci-Cg-Alkyl, C3-Cg-Halogenalkyl, C3-C6-Alkenyl, C3-C6-Al- kinyl, Ci-Cg-Alkoxycarbonyl-Ci-Cg-alkyl, C3-Cg-Alkenyloxy- carbonyl-Ci-Cg-alkyl, C3-C6-Alkinyloxycarbonyl-Cι-Cg-al- kyl, Ci-Cg-Alkoxyalkyl;
R24 Wasserstoff, Ci-Cg-Alkyl;
R25 Wasserstoff, Ci-Cg-Alkyl, Ci-Cg-Alkoxy, oder R24 und R25 gemeinsam einen 6-gliedrigen, gesättigten Azaheterocyclus, der gegebenenfalls ein oder zwei nicht benachbarte Sauerstoffatome im Ring aufweist.
Insbesondere hat R5 die folgende Bedeutung:
R5 CN, COOH, Cι-C4-Alkoxyiminomethyl, Cι-C-Alkoxy, C3-C6-Cyclo- alkyloxy, C3-C6-Alkenyloxy, C3-C6-Alkinyloxy, C3-Cg-Alkenylo- xyiminomethyl, (Cι-C4-Alkoxycarbonyl) -C2-Cg-alkenyloxy, C3-C6-Alkinyloxyiminomethyl, 2-[Cι-C4-Alkoxycarbonyl]-2-chlo- rethyl, 2-[Cι-C4-Alkoxycarbonyl]-2-chlorethenyl, Cι-C4-Alkoxy- carbonyl, (Ci-Cg-Alkoxycarbonyl)- Cι-C4-alkoxy, (Cι-Cg-Alkoxycarbonyl)-Cι-C-thioalkyl,
COOR23 mit R23 = Cι-C4-Alkoxy-Cι-C4-alkyl oder C3-Cg-Alkenylo- xycarbonyl-Cι-C4-alkyl,
CONR24R25 mit R24 = Wasserstoff oder Cι-C4-Alkyl und R25 = Wasserstoff, Cι-C4-Alkyl oder Cι-C4-Alkoxy;
Zwei weitere Klassen betreffen Verbindungen der allgemeinen Formeln Ia, worin Q für Q-2 oder Q-3 steht. Hierin haben die Variablen unabhängig voneinander besonders bevorzugt die folgenden Bedeutungen:
W Sauerstoff oder vorzugsweise Schwefel,
X Sauerstoff oder Schwefel,
Z 0 oder S, insbesondere 0,
n den Wert 0,
R3 Wasserstoff oder Halogen,
R4 Wasserstoff oder Halogen,
Y 0 oder S,
U eine Einfachbindung, Sauerstoff oder Cι-C4-Alkylen und
R6 Wasserstoff, Halogen, Cyano, Ci-Cg-Alkyl, Ci-Cg-Halogenalkyl, C3-C7-Cycloalkyl, gesättigtes C3-C7-Heterocyclyl, das ein oder zwei Heteroatome ausgewählt unter Sauerstoff und Schwefel im Ring aufweist, Ci-Cg-Alkoxyalkyl, Cyano-Ci-Cg-alkyl, C02H, Ci-Cg-Alkoxycarbonyl und Cι-Cg-Alkoxycarbonyl-Cι-Cg-alkyl, C3-Cg-Alkenyl oder C3-Cg-Alkinyl.
Zwei weitere Klassen betreffen Verbindungen der allgemeinen For- mein Ia, worin Q für Q-4 oder Q-5 steht. Hierin haben die Variablen unabhängig voneinander besonders bevorzugt die folgenden Bedeutungen:
W Schwefel,
X Sauerstoff oder Schwefel,
Z 0 oder S, insbesondere 0,
X O oder S,
n den Wert 0,
R3 Wasserstoff oder Halogen,
Y O oder S,
Y' in Formel Q-5 Sauerstoff oder Schwefel,
T eine Einfachbindung, Sauerstoff oder Cι-C4-Alkylen und
R7 Wasserstoff, Halogen, Cyano, Ci-Cg-Alkyl, Ci-Cg-Halogenalkyl, C3-C7-Cycloalkyl, gesättigtes C3-C7-Heterocyclyl, das ein oder zwei Heteroatome ausgewählt unter Sauerstoff und Schwefel im Ring aufweist, Ci-Cg-Alkoxyalkyl, Cyano-Ci-Cg-alkyl, C02H, Ci-Cg-Alkoxycarbonyl und Cι-Cg-Alkoxycarbonyl-Cι-Cg-alkyl, C3-Cg-Alkenyl oder C3-Cg-Alkinyl.
Eine weitere Klasse betrifft Verbindungen der allgemeinen Formeln Ia, worin Q für Q-6 steht. Hierin haben die Variablen die zuvor genannten, und unabhängig voneinander die folgenden Bedeutungen:
W Schwefel,
X Sauerstoff oder Schwefel,
Z O oder S, insbesondere 0,
n den Wert 0,
R3 Wasserstoff oder Halogen, R4 Wasserstoff oder Halogen, wobei
R8 und R9 unabhängig voneinander Wasserstoff, Ci-Cg-Alkyl, Halogen, Cycloalkyl oder Ci-Cg-Halogenalkyl bedeuten, oder
R8 und R9 gemeinsam mit dem Kohlenstoffatom, an das sie gebunden sind, eine Carbonylgruppe bedeuten.
Eine spezielle Klasse betrifft Verbindungen der allgemeinen Fro- mel Ia, worin n, Ra, Z1, X und W die vorgenannten Bedeutungen aufweisen und Q für den oben definierten Rest Q-7 steht. Unter diesen Verbindungen sind solche bevorzugt, worin die Variablen n, Ra, Z1, X und W unabhängig voneinander, vorzugsweise in Kombination die folgenden Bedeutungen aufweisen:
W Sauerstoff oder insbesondere Schwefel,
X Sauerstoff oder Schwefel,
Z 0 oder S, insbesondere O
n den Wert 0,
X Sauerstoff oder Schwefel,
W Schwefel.
In dem Rest Q-7 steht R3 vorzugsweise für Halogen, insbesondere für Fluor oder Chlor. R30 hat die zuvor angegebenen, insbeson- dere die als bevorzugt angegebenen- Bedeutungen:
Insbesondere steht R30 in Q-7 für:
Wasserstoff, Ci-Cg-Alkyl, C3-C8-Cycloalkyl, CH20-Cι-C4-Alkyl, CH20-C3-C4-Alkenyl, CH20-C3-C4-Alkinyl, CH2CH20-Cι-C4-Alkyl, CH2CH20-C3-C4-Alkenyl, CH2CH20-C3-C4-Alkinyl, (Cι-C4-Al- koxy)carbonyl, (C3-C-Alkenyloxy)carbonyl, (C3-C-Alkinyl- oxy)carbonyl, (Cι-C4-Alkoxy)carbonyl-Cι-C2-alkyl, (C3-C4-Alke- nyloxy)carbonyl-Cι-C2-alkyl, (C3-C-Alkinyloxy)carbonyl-Cι-C2- alkyl, Cι-C4-Alkylsulfonylamidocarbony1, CH(0-Cι-C4-Alkyl)2, CH[0(CH )30] , CH[0(CH2)40] oder Phenyl, das unsubstituiert sein oder seinerseits einen, zwei oder drei Substituenten tragen kann, jeweils ausgewählt unter Cyano, Nitro, Halogen, Cι-C2-Alkyl, CF3, Cι-C2-Alkoxy, (Cι-C2-Alkoxy)carbonyl und Cι-C2-Alkoxycarbonyl-Cι-C2-alkyl, wobei jeder Alkylrest der zuvor genannten Reste unsubstituiert sein oder einen, zwei oder drei, vorzugsweise nur einen Substituenten tragen kann, der ausgewählt ist unter Halogen, Cyano und Methoxy, und wobei jeder Cycloalkylrest unsubstituiert sein kann, oder ein, zwei oder drei Substituenten tragen kann, ausgewählt unter Halogen, Cyano, Methoxy und Methyl.
Besonders bevorzugt steht R30 für einen der folgenden Reste:
Ci-Cg-Alkyl, C3-C8-Cycloalkyl, CH20-Cι-C4-Alkyl, CH20-C3-C -A1- kenyl, CH0-C3-C4-Alkinyl, (Cι-C4-Alkoxy) carbonyl, (C3-C -Alke- nyloxy)carbonyl, (C3-C-Alkinyloxy)carbonyl, (Cι-C-Al- koxy)carbonyl-Cι-C2-alkyl, (C3-C4-Alkenyloxy)carbonyl-Cι-C- alkyl, (C3-C4-Alkinyloxy)carbonyl-Cι-C2-alkyl, Cι-C4-Alkylsul- fonylamidocarbonyl,
CH(0-Cι-C4-Alkyl)2, CH[0(CH2)30] , CH[0(CH2)40] , Phenyl, 2-, 3-, 4-Chlorphenyl, 2,4-Dichlorphenyl, 2-, 3-, 4-CF3-phenyl, 2-, 3-, 4-Methoxycarbonylphenyl, 2-, 3-, 4-Tolyl, 2-, 3-, 4-An- isyl, 2-, 3-, 4-Methoxycarbonylphenyl.
Besonders bevorzugte Verbindungen der allgemeinen Formel Ia sind Verbindungen der Formel Ia-1, worin R3, R4 und R5 die in jeweils einer Zeile der Tabelle 1 aufgeführten Bedeutungen haben (Verbin- düngen Ia-1.1 bis Ia-1.206).
Tabelle 1
Besonders bevorzugte Verbindungen der allgemeinen Formel Ia sind weiterhin Verbindungen der Formel Ia-2 , worin R3 , R4 und R5 die in jeweils einer Zeile der Tabelle 1 aufgeführten Bedeutungen haben (Verbindungen Ia-2.1 bis la-2.206).
Besonders bevorzugte Verbindungen der allgemeinen Formel Ia sind weiterhin Verbindungen der Formel Ia-3, worin R3, R4 und R5 die in jeweils einer Zeile der Tabelle 1 aufgeführten Bedeutungen haben (Verbindungen Ia-3.1 bis Ia-3.206).
Besonders bevorzugte Verbindungen der allgemeinen Formel Ia sind weiterhin Verbindungen der Formel Ia-4 , worin R3 , R4 und R5 die in jeweils einer Zeile der Tabelle 1 aufgeführten Bedeutungen haben (Verbindungen Ia-4.1 bis Ia-4.206).
Besonders bevorzugte Verbindungen der allgemeinen Formel Ia sind weiterhin Verbindungen der Formel Ia-5, worin Q für Q-2 mit Y = Sauerstoff steht, und Z1, X, U und R6 die in jeweils einer Zeile der Tabelle 2 aufgeführten Bedeutungen haben (Verbindungen Ia-5.1 bis Ia-5.224)
Tabelle 2
Besonders bevorzugte Verbindungen der allgemeinen Formel Ia sind weiterhin Verbindungen der Formel Ia-6, worin Q für Q-2 mit Y = Sauerstoff steht, und Z1, X, U und R6 die in jeweils einer Zeile der Tabelle 2 aufgeführten Bedeutungen haben (Verbindungen Ia-6.1 bis Ia-6.224)
Besonders bevorzugte Verbindungen der allgemeinen Formel Ia sind weiterhin Verbindungen der Formel Ia-7, worin Q für Q-2 mit Y = Sauerstoff steht, und Z1, X, U und R6 die in jeweils einer Zeile der Tabelle 2 aufgeführten Bedeutungen haben (Verbindungen Ia-7.1 bis Ia-7.224)
Besonders bevorzugte Verbindungen der allgemeinen Formel Ia sind weiterhin Verbindungen der Formel Ia-8, worin Q für Q-2 mit Y = Schwefel steht, und Z1, X, U und R6 die in jeweils einer Zeile der Tabelle 2 aufgeführten Bedeutungen haben (Verbindungen la-8.1 bis Ia-8.224)
Besonders bevorzugte Verbindungen der allgemeinen Formel Ia sind weiterhin Verbindungen der Formel la-9, worin Q für Q-2 mit Y = Schwefel steht, und Z1, X, U und R6 die in jeweils einer Zeile der Tabelle 2 aufgeführten Bedeutungen haben (Verbindungen Ia-9.1 bis Ia-9.224)
Besonders bevorzugte Verbindungen der allgemeinen Formel Ia sind weiterhin Verbindungen der Formel Ia-10, worin Q für Q-2 mit Y = Schwefel steht, und Z1, X, U und R6 die in jeweils einer Zeile der Tabelle 2 aufgeführten Bedeutungen haben (Verbindungen Ia-10.1 bis Ia-10.224)
Besonders bevorzugte Verbindungen der allgemeinen Formel Ia sind weiterhin Verbindungen der Formel Ia-11, worin Q für Q-2 mit Y = Sauerstoff steht, und Z1, X, U und R6 die in jeweils einer Zeile der Tabelle 2 aufgeführten Bedeutungen haben (Verbindungen Ia-11.1 bis Ia-11.224)
Besonders bevorzugte Verbindungen der allgemeinen Formel Ia sind weiterhin Verbindungen der Formel Ia-12, worin Q für Q-2 mit Y = Schwefel steht, und Z1, X, U und R6 die in jeweils einer Zeile der Tabelle 2 aufgeführten Bedeutungen haben (Verbindungen la-12.1 bis Ia-12.224)
Besonders bevorzugte Verbindungen der allgemeinen Formel Ia sind weiterhin Verbindungen der nachstehenden Formeln Ia-13 bis Ia-20, worin Q für Q-2 mit Y = Sauerstoff oder Schwefel steht, und Z1, X, U und R6 die in jeweils einer Zeile der Tabelle 2 aufgeführten Bedeutungen haben (Verbindungen Ia-13.1 bis Ia-20.224)
Besonders bevorzugte Verbindungen der allgemeinen Formel Ia sind weiterhin Verbindungen der nachstehenden Formeln Ia-21 bis Ia-44, worin Q für Q-3 mit Y = Sauerstoff oder Schwefel steht, und Z1, X, U und R6 die in jeweils einer Zeile der Tabelle 2 aufgeführten Bedeutungen haben (Verbindungen Ia-21.1 bis Ia-44.224)
Besonders bevorzugte Verbindungen der allgemeinen Formel Ia sind weiterhin Verbindungen der nachstehenden Formeln Ia-45 worin Q für Q-4 mit Y = Sauerstoff steht, und Z1, X, T und R7 die in je- weils einer Zeile der Tabelle 3 aufgeführten Bedeutungen haben (Verbindungen Ia-45.1 bis Ia-45.140)
(Ia-45)
Tabelle 3
Besonders bevorzugte Verbindungen der allgemeinen Formel Ia sind weiterhin Verbindungen der nachstehenden Formeln Ia-46 und Ia-47 worin Q für Q-4 mit Y = Sauerstoff steht, und Z1, X, T und R7 die in jeweils einer Zeile der Tabelle 3 aufgeführten Bedeutungen haben (Verbindungen Ia-46.1 bis Ia-46.140 und Ia-47.1 bis Ia-47.140)
(Ia-46) (Ia-47)
Besonders bevorzugte Verbindungen der allgemeinen Formel Ia sind weiterhin Verbindungen der nachstehenden Formeln Ia-48 worin Q für Q-5 mit Y = Y' = Sauerstoff steht, und Z1, X, T und R7 die in jeweils einer Zeile der Tabelle 3 aufgeführten Bedeutungen haben (Verbindungen Ia-48.1 bis Ia-48.140)
(Ia-48)
Besonders bevorzugte Verbindungen der allgemeinen Formel Ia sind weiterhin Verbindungen der nachstehenden Formeln Ia-49 und Ia-50 worin Q für Q-5 mit Y = Y' = Sauerstoff steht, und Z1, X, T und R7 die in jeweils einer Zeile der Tabelle 3 aufgeführten Bedeutungen haben (Verbindungen Ia-49.1 bis Ia-49.140 und Ia-50.1 bis Ia-50.140)
(Ia-49) (Ia-50) Besonders bevorzugte Verbindungen der allgemeinen Formel Ia sind weiterhin Verbindungen der nachstehenden Formeln Ia-51 worin Q für Q-6 steht, und Z1, X, R4, R8 und R9 die in jeweils einer Zeile der Tabelle 4 aufgeführten Bedeutungen haben (Verbindungen Ia-51.1 bis Ia-51.168)
Tabelle 4
Besonders bevorzugte Verbindungen der allgemeinen Formel Ia sind Verbindungen der nachstehenden Formeln Ia-52 und Ia-53 worin Q für Q-6 steht, und Z1, X, R4, R8 und R9 die in jeweils einer Zeile der Tabelle 4 aufgeführten Bedeutungen haben (Verbindungen Ia-52.1 bis Ia-52.168 und Ia-53.1 bis Ia-53.168)
Besonders bevorzugte Verbindungen der allgemeinen Formel Ia sind weiterhin Verbindungen der nachstehenden Formeln Ia-54 bis la-57, worin Q für Q-7 steht, und Z1, X und R30 die in jeweils einer Zeile der Tabelle 5 aufgeführten Bedeutungen haben (Verbindungen Ia-54.1 bis la-57.56)
(Ia-54) (Ia-55)
Tabelle 5
Die neuen Verbindungen Ia und deren landwirtschaftlich brauchbaren Salze eignen sich - sowohl als Isomerengemische als auch in Form der reinen Isomeren - als Herbizide. Herbizide Mittel, wel- ehe die Verbindungen Ia enthalten, bekämpfen Pflanzenwuchs auf Nichtkulturflächen sehr gut, besonders bei hohen Aufwandmengen. In Kulturen wie Weizen, Reis, Mais, Soja und Baumwolle wirken sie gegen Unkräuter und Schadgräser, ohne die Kulturpflanzen nennenswert zu schädigen. Dieser Effekt tritt vor allem bei niedrigen Aufwandmengen auf.
In Abhängigkeit von der jeweiligen Applikationsmethode können die Verbindungen ia bzw. sie enthaltende Mittel noch in einer weiteren Zahl von Kulturpflanzen zur Beseitigung unerwünschter pflanzen eingesetzt werden. In Betracht kommen beispielsweise folgende Kulturen: Allium cepa, Ananas comosus, Arachis hypogaea, Asparagus offici- nalis, Beta vulgaris spec. altissima, Beta vulgaris spec. rapa, Brassica napus var. napus, Brassica napus var. napobrassica, Brassica rapa var. silvestris, Camellia sinensis, Carthamus tinc- torius, Carya illinoinensis, Citrus limon, Citrus sinensis, Cof- fea arabica (Coffea canephora, Coffea liberica), Cucumis sativus, Cynodon dactylon, Daucus carota, Elaeis guineensis, Fragaria ve- sca, Glycine max, Gossypium hirsutum, (Gossypium arboreum, Gossy- pium herbaceum, Gossypium vitifolium) , Helianthus annuus, Hevea brasiliensis, Hordeum vulgäre, Humulus lupulus, Ipomoea batatas, Juglans regia, Lens culinaris, Linum usitatissimum, Lycopersicon lycopersicum, Malus spec, Manihot esculenta, Medicago sativa, Musa spec, Nicotiana tabacum (N.rustica), Olea europaea, Oryza sativa, Phaseolus lunatus, Phaseolus vulgaris, Picea abies, Pinus spec, Pisum sativum, Prunus avium, Prunus persica, Pyrus commu- nis, Ribes sylvestre, Ricinus communis, Saccharum officinarum, Seeale cereale, Solanum tuberosum, Sorghum bicolor (s. vulgäre), Theobroma cacao, Trifolium pratense, Triticum aestivum, Triticum durum, Vicia faba, Vitis vinifera, Zea mays.
Darüber hinaus können die Verbindungen Ia auch in Kulturen, die durch Züchtung einschließlich gentechnischer Methoden gegen die Wirkung von Herbiziden tolerant sind, verwandt werden.
Des weiteren eignen sich die anellierten Triazole Ia auch zur De- sikkation und/oder Defoliation von Pflanzen.
Als Desikkantien eignen sie sich insbesondere zur Austrocknung der oberirdischen Teile von Kulturpflanzen wie Kartoffel, Raps, Sonnenblume und Sojabohnen. Damit wird ein vollständig mechanisches Beernten dieser wichtigen Kulturpflanzen ermöglicht.
Von wirtschaftlichem Interesse ist ferner die Ernteerleichterung, die durch das zeitlich konzentrierte Abfallen oder Vermindern der Haftfestigkeit am Baum bei Zitrusfruchten, Oliven oder bei anderen Arten und Sorten von Kern-, Stein- und Schalenobst ermöglicht wird. Derselbe Mechanismus, das heißt die Förderung der Ausbildung von Trenngewebe zwischen Frucht- oder Blatt- und Sprossteil der Pflanzen ist auch für ein gut kontrollierbares Entblättern von Nutzpflanzen, insbesondere Baumwolle, wesentlich.
Außerdem führt die Verkürzung des Zeitintervalls, in dem die einzelnen Baumwollpflanzen reif werden, zu einer erhöhten Faserqualität nach der Ernte. Die Verbindungen Ia bzw. die sie enthaltenden Mittel können beispielsweise in Form von direkt versprühbaren wäßrigen Lösungen, Pulvern, Suspensionen, auch hochprozentigen wäßrigen, öligen oder sonstigen Suspensionen oder Dispersionen, Emulsionen, Öldisper- sionen, Pasten, Stäubemitteln, Streumitteln oder Granulaten durch Versprühen, Vernebeln, Verstäuben, Verstreuen, Gießen oder Behandlung des Saatgutes bzw. Mischen mit dem Saatgut angewendet werden. Die Anwendungsformen richten sich nach den Verwendungszwecken; sie sollten in jedem Fall möglichst die feinste Vertei- lung der erfindungsgemäßen Wirkstoffe gewährleisten. Die herbizi- den Mittel enthalten eine herbizid wirksame Menge mindestens einer Verbindung der Formel Ia oder eines landwirtschaftlich brauchbaren Salzes von Ia und für die Formulierung von Pflanzenschutzmitteln übliche Hilfsstoffe.
Als inerte Zusatzstoffe kommen im Wesentlichen in Betracht: Mineralölfraktionen von mittlerem bis hohem Siedepunkt, wie Kero- sin oder Dieselöl, ferner Kohlenteeröle sowie Öle pflanzlichen oder tierischen Ursprungs, aliphatische, cyclische und aromati- sehe Kohlenwasserstoffe, z.B. Paraffin, Tetrahydronaphthalin, al- kylierte Naphthaline oder deren Derivate, alkylierte Benzole oder deren Derivate, Alkohole wie Methanol, Ethanol, Propanol, Buta- nol, Cyclohexanol, Ketone wie Cyclohexanon oder stark polare Lösungsmittel, z. B. Amine wie N-Methylpyrrolidon oder Wasser.
Wäßrige Anwendungsformen können aus Emulsionskonzentraten, Suspensionen, Pasten, netzbaren Pulvern oder wasserdispergierbaren Granulaten durch Zusatz von Wasser bereitet werden. Zur Herstellung von Emulsionen, Pasten oder Öldispersionen können die anel- lierten Triazole Ia als solche oder in einem Öl oder Lösungsmittel gelöst, mittels Netz-, Haft-, Dispergier- oder Emulgiermittel in Wasser homogenisiert werden. Es können aber auch aus wirksamer Substanz, Netz-, Haft-, Dispergier- oder Emulgiermittel und eventuell Lösungsmittel oder Öl bestehende Konzentrate hergestellt werden, die zur Verdünnung mit Wasser geeignet sind.
Als oberflächenaktive Stoffe kommen die Alkali-, Erdalkali-, Ammoniumsalze von aromatischen Sulfonsäuren, z.B. Lignin-, Phenol-, Naphthalin- und Dibutylnaphthalinsulfonsäure, sowie von Fettsäu- ren, Alkyl- und Alkylarylsulfonaten, Alkyl-, Laurylether- und Fettalkoholsulfaten, sowie Salze sulfatierter Hexa-, Hepta- und Octadecanolen sowie von Fettalkoholglykolether, Kondensationsprodukte von sulfoniertem Naphthalin und seiner Derivate mit Formaldehyd, Kondensationsprodukte des Naphthalins bzw. der Naphthalin- sulfonsäuren mit Phenol und Formaldehyd, Polyoxyethylenoctylphe- nolether, ethoxyliertes Isooctyl-, Octyl- oder Nonylphenol, Al- kylphenyl-, Tributylphenylpolyglykolether, Alkylarylpolyetheral- kohole, Isotridecylalkohol, Fettalkoholethylenoxid-Kondensate, ethoxyliertes Rizinusöl, Polyoxyethylenalkylether oder Polyoxy- propylenalkylether, Laurylalkoholpolyglykoletheracetat, Sorbitester, Lignin-Sulfitablaugen oder Methylcellulose in Betracht.
Pulver-, Streu- und Stäubemittel können durch Mischen oder gemeinsames Vermählen der wirksamen Substanzen mit einem festen Trägerstoff hergestellt werden.
Granulate, z.B. Umhüllungs-, Imprägnierungs- und Homogengranulate können durch Bindung der Wirkstoffe an feste Trägerstoffe hergestellt werden. Feste Trägerstoffe sind Mineralerden wie Kieselsäuren, Kieselgele, Silikate, Talkum, Kaolin, Kalkstein, Kalk, Kreide, Bolus, Löß, Ton, Dolomit, Diatomeenerde, Calcium- und Ma- gnesiumsulfat, Magnesiumoxid, gemahlene Kunststoffe, Düngemittel, wie Ammoniumsulfat, Ammoniumphosphat, Ammoniumnitrat, Harnstoffe und pflanzliche Produkte wie Getreidemehl, Baumrinden-, Holz- und Nußschalenmehl, Cellulosepulver oder andere feste Trägerstoffe.
Die Konzentrationen der Wirkstoffe Ia in den anwendungsfertigen Zubereitungen können in weiten Bereichen variiert werden. Die Formulierungen enthalten im allgemeinen 0,001 bis 98 Gew.-%, vorzugsweise 0,01 bis 95 Gew.-%, mindestens eines Wirkstoffs. Die Wirkstoffe werden dabei in einer Reinheit von 90% bis 100%, vor- zugsweise 95% bis 100% (nach NMR-Spektrum) eingesetzt.
Die erfindungsgemäßen Verbindungen können beispielsweise wie folgt formuliert werden:
I 20 Gewichtsteile der Verbindung aus Beispiel 8 (siehe Tabelle 10) werden in einer Mischung gelöst, die aus 80 Gewichtsteilen alkylierte Benzol, 10 Gewichtsteilen des Anlagerungsproduktes von 8 bis 10 Mol Ethylenoxid an 1 Mol Ölsäure-N-mono- ethanolamid, 5 Gewichtsteilen Calciumsalz der Dodecylbenzol- sulfonsäure und 5 Gewichtsteilen des Anlagerungsproduktes von 40 Mol Ethylenoxid an 1 Mol Ricinusöl besteht. Durch Ausgießen und feines Verteilen der Lösung in 100 000 Gewichtsteilen Wasser erhält man eine wäßrige Dispersion, die 0,02 Gew. % des Wirkstoffs enthält.
II 20 Gewichtsteile der Verbindung aus Beispiel 5 (siehe Tabelle 10) werden in einer Mischung gelöst, die aus 40 Gewichtsteilen Cyclohexanon, 30 Gewichtsteilen Isobutanol, 20 Gewichtsteilen des Anlagerungsproduktes von 7 Mol Ethylenoxid an 1 Mol Isooctylphenol und 10 Gewichtsteilen des Anlagerungsproduktes von 40 Mol Ethylenoxid an 1 Mol Ricinusöl besteht. Durch Eingießen und feines Verteilen der Lösung in 100 000 Gewichtsteilen Wasser erhält man eine wäßrige Dispersion, die 0,02 Gew. % des Wirkstoffs enthält.
III 20 Gewichtsteile des Wirkstoffs aus Beispiel 30 (siehe Ta- belle 10) werden in einer Mischung gelöst, die aus 25 Gewichtsteilen Cyclohexanon, 65 Gewichtsteilen einer Mineralölfraktion vom Siedepunkt 210 bis 280°C und 10 Gewichtsteilen des Anlagerungsproduktes von 40 Mol Ethylenoxid an 1 Mol Ricinusöl besteht. Durch Eingießen und feines Verteilen der Lö- sung in 100 000 Gewichtsteilen Wasser erhält man eine wäßrige Dispersion, die 0,02 Gew. % des Wirkstoffs enthält.
IV 20 Gewichtsteile des Wirkstoffs aus Beispiel 123 (siehe Tabelle 11) werden mit 3 Gewichtsteilen des Natriumsalzes der Diisobutylnaphthalinsulfonsäure, 17 Gewichtsteilen des Natriumsalzes einer Ligninsulfonsäure aus einer Sulfit-Ablauge und 60 Gewichtsteilen pulverförmigem Kieselsäuregel gut vermischt und in einer Hammermühle vermählen. Durch feines Verteilen der Mischung in 20 000 Gewichtsteilen Wasser erhält man eine Spritzbrühe, die 0,1 Gew. % des Wirkstoffs enthält.
V 3 Gewichtsteile des Wirkstoffs aus Beispiel 3 (siehe Tabelle 10) werden mit 97 Gewichtsteilen feinteiligem Kaolin vermischt. Man erhält auf diese Weise ein Stäubemittel, das 3 Gew. % des Wirkstoffs enthält.
VI 20 Gewichtsteile des Wirkstoffs aus Beispiel 26 (siehe Tabelle 10) werden mit 2 Gewichtsteilen Calciumsalz der Dode- cylbenzolsulfonsäure, 8 Gewichtsteilen Fettalkohol-polyglyko- lether, 2 Gewichtsteilen Natriumsalz eines Phenol-Harnstoff- Formaldehyd-Kondesates und 68 Gewichtsteilen eines paraffinischen Mineralöls innig vermischt. Man erhält eine stabile ölige Dispersion.
VII 1 Gewichtsteil der Verbindung aus Beispiel 57 (siehe Tabelle 10) wird in einer Mischung gelöst, die aus 70 Gewichtsteilen Cyclohexanon, 20 Gewichtsteilen ethoxyliertem Isooctylphenol und 10 Gewichtsteilen ethoxyliertem Rizinusöl besteht. Man erhält ein stabiles Emulsionskonzentrat.
VIII 1 Gewichtsteil der Verbindung aus Beispiel 134 (siehe Tabelle 12) wird in einer Mischung gelöst, die aus 80 Gewichtsteilen Cyclohexanon und 20 Gewichtsteilen Wettol ® EM 31 (nicht ionischer Emulgator auf der Basis von ethoxyliertem Ricinusöl) . Man erhält ein stabiles Emulsionskonzentrat. Die Applikation der herbiziden Mittel bzw. der Wirkstoffe kann im Vorauflauf-, im Nachauflauf erfahren oder zusammen mit dem Saatgut einer Kulturpflanze erfolgen. Es besteht auch die Möglichkeit, die herbiziden Mittel bzw. Wirkstoffe dadurch zu applizie- ren, daß mit den herbiziden Mitteln bzw. Wirkstoffen vorbehandeltes Saatgut einer Kulturpflanze ausgebracht wird. Sind die Wirkstoffe für gewisse Kulturpflanzen weniger verträglich, so können Ausbringungstechniken angewandt werden, bei welchen die herbiziden Mittel mit Hilfe der Spritzgeräte so gespritzt werden, daß die Blätter der empfindlichen Kulturpflanzen nach Möglichkeit nicht getroffen werden, während die Wirkstoffe auf die Blätter darunter wachsender unerwünschter Pflanzen oder die unbedeckte Bodenfläche gelangen (post-directed, lay-by) .
Die Aufwandmengen an Wirkstoff betragen je nach Bekämpfungsziel, Jahreszeit, Zielpflanzen und Wachstumsstadium 0,001 bis 3,0, vorzugsweise 0,01 bis 1,0 kg/ha aktive Substanz (a. S.).
Zur Verbreiterung des WirkungsSpektrums und zur Erzielung syner- gistischer Effekte können die anellierten Triazole der Formel Ia mit zahlreichen Vertretern anderer herbizider oder wachstumsregulierender Wirkstoffgruppen gemischt und gemeinsam ausgebracht werden. Beispielsweise kommen als Mischungspartner 1,2,4-Thia- diazole, 1,3,4-Thiadiazole, Amide, Aminophosphorsäure und deren Derivate, Aminotriazole, Anilide, (Het)-Aryloxyalkansäure und deren Derivate, Benzoesäure und deren Derivate, Benzothiadiazinone, 2-Aroyl-l, 3-cyclohexandione, 2-Hetaroyl-l,3-cyclohexandione, He- taryl-Aryl-Ketone, Benzylisoxazolidinone, Meta-CF3-phenylderi- vate, Carbamate, Chinolincarbonsäure und deren Derivate, Chlora- cetanilide, Cyclohexenonoximether -Derivate, Diazine, Dichlorpro- pionsäure und deren Derivate, Dihydrobenzofurane, Dihydrofu- ran-3-one, Dinitroaniline, Dinitrophenole, Diphenylether, Dipyri- dyle, Halogencarbonsäuren und deren Derivate, Harnstoffe, 3-Phe- nyluracile, Imidazole, Imidazolinone, N-Phenyl-3, 4,5,6-tetrahy- drophthalimide, Oxadiazole, Oxirane, Phenole, Aryloxy- oder Hete- roaryloxyphenoxypropionsäureester, Phenylessigsäure und deren Derivate, Phenylpropionsäure und deren Derivate, Pyrazole, Phenyl- pyrazole, Pyridazine, Pyridincarbonsäure und deren Derivate, Py- rimidylether, Sulfonamide, Sulfonylharnstoffe, Triazine, Triazi- none, Triazolinone, Triazolcarboxamide, Uracile in Betracht.
Außerdem kann es von Nutzen sein, die Verbindungen der Formel Ia allein oder in Kombination mit anderen Herbiziden auch noch mit weiteren Pflanzenschutzmitteln gemischt, gemeinsam auszubringen, beispielsweise mit Mitteln zur Bekämpfung von Schädlingen oder phytopathogenen Pilzen bzw. Bakterien. Von Interesse ist ferner die Mischbarkeit mit Mineralsalzlösungen, welche zur Behebung von Ernährungs- und Spurenelementmängeln eingesetzt werden. Es können auch nichtphytotoxische Öle und Olkonzentrate zugesetzt werden.
Die folgenden Beispiele und Vergleichsbeispiele dienen der Erläu- terung der Erfindung.
I Versuche zur Herstellung von Verbindungen der Formel I mit X und/oder W = Schwefel durch Cyclisierung mit Thiophosgen
Vergleichsbeispiel 1: Umsetzung von 4-[ (4-Chlor-2-fluor-5-me- thoxy-anilino)carbonyl]-l,3,4-oxadiazinan mit Thiophosgen in Pypridin unter Normaldruck.
3,0 g (10,4 mmol) der TitelVerbindung vom Fp 140 - 148°C wur- den in 100 ml Pyridin gelöst. Anschließend wurden 0,05 g Aktivkohle und innerhalb 30 min unter Rühren 2,4 g (20,7 mmol) Thiophosgen in 8 ml Toluol bei 22 °C zugegeben. Der Ansatz wurde 36 h bei 22°C gerührt. Die erhaltene Suspension wurde auf 300 ml In Salzsäure gegeben. Man extrahierte 4 mal mit Methylenchlorid, wusch den organische Extrakt mit In Salzsäure und gesättigter Kochsalzlösung, rührte ihn mit Aktivkohle trocknete über Magnesiumsulfat. Nach dem Absaugen und Einengen im Vakuum erhielt man 1,8 g eines klebrigen Rückstandes. Dieser wurde in Methylenchlorid gelöst und über eine komerzielle Kieselgelsäule mit Dichlormethan chromatogra- phiert. Die erhaltenen Frationen wurden mittels 1H-NMR, IR und Massenspektrometrisch untersucht.
Alle Fraktionen zeigten nach dem Massenspektrum unter anderem Molpeaks bei 287 und 289 für das Ausgangsmaterial jedoch in keinem Fall für das gewünschte Thioxaimid. In keinem der IR- Spektren war die in dem authentischen Endprodukt gemessene, intensive
C=0/C=S Bande bei 1758cm-1 vertreten.
Man erhielt neben nicht näher charakterisierten Isothiocyana- ten und Zersetzungsprodukten 1,7 g (56,6 %) der Ausgangsverbindung zurück.
Vergleichsbeispiel 2: Umsetzung von 4 [(2, 4-Dichlor-5-me- thoxy-anilino) carbonyl]-l, 3, 4-oxadiazinan mit Thiophosgen unter Druck.
2,00 g (6,533 mmol) der Titelverbindung vom Fp 128 - 130°C, 1,1 ml (7,601 mmol) Triethylamin und eine Spatelspitze Aktivkohle wurden bei 22 °C unter Rühren in 30 ml Toluol vorgelegt. Hierzu gab man innerhalb 1 h bei 0 - 5°C 0,83, g (7,186 mmol) Thiophosgen in 30 ml Toluol und rührte 2 h bei 22 °C nach. Nach einer HPLC-Untersuchung war zu diesem Zeitpunkt keine Umsetzung eingetreten. Das Reaktionsgemisch wurde in einen Autoklaven überführt und 12 h bei 110°C unter Eigen- druck gerührt. Nach dem Abkühlen wurde das Reaktionsgemisch im Vakuum eingeengt. Der Rückstand bestand laut HPLC aus 13 Komponenten.
Zur Auftrennung wurde in Methylenchlorid:Diethylether 4:1 ge- löst und über eine Säule mit Flash-Kieselgel chromatogra- phiert, ab Fraktion 30 mit Methylenchlorid:Ether 2:1 . Die so erhaltenen Fraktionen wurden eingeengt und im IR-Spektrum untersucht.
Man erhielt neben nicht näher charakterisierbaren Isothiocya- naten und Zersetzungsprodukten das Ausgangsmaterial in einer Ausbeute von 30 % zurück. In keiner der Fraktionen war die für das 3-Thioxotriazol-Zielprodukt charakteristische intensive C=0/C=S Bande bei 1761 cm-1 zu beobachten.
Auch nach der HPLC-Untersuchung [25 cm RP-18 Säule (Merck), 254 nm; Acetonnitril / H20 60:40, 1 ml/min] war in keiner der Fraktionen eine Substanz mit der für das Zielprodukt gemessenen Retentionszeit (5,14 min) enthalten.
Versuche zur Herstellung von Verbindungen der Formel I mit X und/oder W = Schwefel durch Behandlung von Triazolindionen mit Schwefelungsagentien
Vergleichsbeispiel 3: Umsetzung von 2-[4-Chlor-2-fluor-5- ( 2-propynyloxy)phenyl ]dihydro-lH-[ 1,2 4]-tria- zolo[l,2-c] [1,3,4] oxadiazin-l,3(2H)-dion mit Phosphorpenta- sulfid / Natriumcarbonat (in Analogie zu der Vorschrift in Synth. Comm. 1990, 20, 3085)
0,28 g (2,679 mmol) Natriumcarbonat und 1,19 g (2,679 mmol) Phosphorpentasulfid wurden unter Rühren bei 22°C in 40 ml Tetrahydrofuran vorgelegt und 30 min gerührt. Zu der klaren Lösung gab man 0,7 g (2,061 mmol) der Titelverbindung, gelöst in 40 ml THF, zu und gab weiter 20 ml THF nach. Nach 30 minü- tigem Rühren bei 22°C wurde 5 h auf 50°C und dann nochmals 8 1/2 h auf 65°C erwärmt. Das Reaktionsgemisch wurde abgekühlt, der Niederschlag abgesaugt und mit Methylenchlorid gewaschen; man erhielt 1,5 g anorganischen Rückstand, der weder in Dime- thylsulfoxid noch einem 1:1 Gemisch Acetonitril/Wasser löslich war. Das Filtrat wurde eingeengt und ergab 1,1 g Rückstand mit folgenden HPLC-Signalen 1,16, 3,24, 3,74 (Ausgangsmaterial), 4,16 und 4,44. Laut HPLC enthielt die Lösung weder das l-Thioxo-3-oxo-tetrahydrotriazolderivat (HPLC 4,6) noch das isomere l-Oxo-3-thio-tetrahydrotriazolderivat (HPLC 4,7).
[HPLC-Bedingungen (25 cm RP-18 Säule (Merck), 254 nm; Aceto- nitril/H20 60:40, 1 ml/min] .
Der organische Rückstand wurde in 30 ml Essigester verrührt, unlösliches Material abgesaugt und getrocknet, wobei man 0,45 g Ausgangsmaterial mit einem Festpunkt von 196 - 199°C erhielt.
Das Filtrat wurde wieder eingeengt und mit Cyclohexan:Essig- ester 1 : 1 über eine Säule mit Flash-Kieselgel chromatogra- phiert .
Neben aliphatischen und aromatischen Verunreinigungen wurden 0,089 g der nachstehenden Verbindungen a und b
isoliert, die anhand ihrer charakteristischen XH-NMR-Signale (CDC13) bei δ 5,8 (Dublett) für Verbindung a und bei δ 5,5 (Dublett) für Verbindung b identifiziert wurden. Ausserdem gewann man 0,2 g der AusgangsVerbindung zurück. Insgesamt wurden so 0,65 g (93 %) der Ausgangs erbindung zurückgewonnen. Die gewünschten Zielverbindungen konnten nicht nachgewiesen werden.
Herstellung der substituierten Harnstoffe der Formel II:
N-Amino-N-2-hydroxyethyl-carbamidsäuremethylester
248,4 g (2,628 mol) Methylchlorformiat wurden bei 0 bis 5°C innerhalb 30 min unter Rühren zu einer Mischung von 200 g (2,628 mol) 2-Hydrazionethanol und 266 g (2,628 mol) Tri- ethylamin in 1600 ml Methylenchlorid gegeben. Nach 3 h Rühren bei 3 bis 22°C wurde das ausgefallene Hydrochlorid abgesaugt, mit THF gewaschen und das Filtrat im Vakuum eingeengt. Es wurde nochmals mit 800 ml THF verrührt, abgesaugt, mit 1 1 THF gewaschen und das Filtrat im Vakuum eingeengt. Man erhielt 366 g der TitelVerbindung als farbloses Öl mit einer HPLC-Reinheit von 95,3% entsprechend einer Ausbeute von 98,9% d.Th. Nach dem GC betrug die Reinheit 85,2%.
iH-NMR (400 MHZ, dg-DMSO) δ(ppm) : 4,4 - 4,8 (breit/3H) NH2/OH; 3,6 (s/3H) CH30; 3,52 (t/2H) und 3,35 (t/2H) CH2-CH2
b) N-Amino-N-2-hydroxyethylthiocarbamidsäuremethylester
Die Umsetzung von 23,3 g (0,306 mol) 2-Hydrazinoethanol mit 33,8 g (0,306 mol) Thioameisensäuremethylester in Gegewart von 31 g Triethylamin nach der unter lila angegebenen Vorschrift lieferte 40,7 g (88,5 % d. Theorie) der Titelverbindung als farbloses Öl mit einem Brechungsindex nD(23) = 1,5625.
c) Tetrahydro-4H-l , 3 , 4-oxdiazin-4-carbonsäuremethylester
22,4 g (0,746 mol) Paraformaldehyd wurden innerhalb 2 min unter Rühren zu einer Mischung von 100 g (0,746 mol) N-Ami- no-N-2-hydroxyethylcarbamidsäuremethylester in 1500 ml Methylenchlorid gegeben. Nach Zugabe von 8,5 g (0,045 mol) p-Tolu- olsulfonsäure wurde 21 h bei 42°C gerührt, bis sich der Niederschlag gelöst hatte. Man kühlte auf 20°C ab, gab Magnesiumsulfat zu, filtrierte und engte im Vakuum ein. Man erhielt 111,8 g der Titelverbindung als farbloses Harz mit einer GC- Reinheit von 85% entsprechend einer Ausbeute von 85,8% d.Th.
iH-NMR (500 MHZ, CF3C02D) δ(ppm) : 5,09 (s/2H) CH2; 4,02 (s/3H) CH30; 3,8 - 4,25 (m/4H) CH2CH2
IR v (cm-1) : C=0 1703
d) Tetrahydro-4H-l,3,4-oxdiazin-4-thiocarbonsäuremethylester
Die Umsetzung von 7,82 g (0,26 mol) Paraformaldehyd mit 39,8 g (0,26 mol) N-Amino-N-2-hydroxyethylthiocarbamidsäuremethyl- ester in Gegenwart von 2,97 g (0,015 mol) p-Toluolsulfon- säure-Monohydrat lieferte 42,3 g der Titelverbindung mit einem Siedepunkt von 110 bis 125 °C/1 mbar entsprechend einer Ausbeute von 99,8% d.Th. (GC: 7,14 min an einer CP-Sil-5 Säule mit 30 m Länge der Fa. Chro mpack) .
e) Tetrahydro-N- ( 2 , 4-dichlor-5-methoxyiminomethylphenyl) - 4H-1 , 3 , 4-oxdiazin-3-thiocarboxamid-4-carbonsäuremethylester (Vorstufe 96 aus Tabelle 6) 9,11 g (0,035 mol) 2,4-Dichlor-5-methoxyiminomethylphenyliso- thiocyanat wurden innerhalb 5 min unter Rühren zu 10,22 g (0,07 mol) Tetrahydro-4H-l,3,4-oxdiazin-4-carbonsäuremethyle- ster in 150 ml Tetrahydrofuran gegeben und 5 h bei 22°C und 2 h bei 40 bis 50°C gerührt. Das Reaktionsgemisch wurde im Vakuum eingeengt. Der Rückstand wurde in Methylenchlorid aufgenommen und über Kieselgel fraktioniert. Man erhielt 11,9 g (78% d.Th.) der Titelverbindung vom Fp. 80-83°C.
f) 6-Fluor-3-methyl-l,2-benzisothiazol-5-isothiocyanat
22,7 g (0,198 mol) Thiophosgen in 50 ml Methylenchlorid wurden innerhalb 25 min unter Rühren zu einer Mischung von 300 ml Methylenchlorid und 33,2 g (0,395 mol) Natriumhydrogencar- bonat in 200 ml Wasser gegeben. Man rührte 30 min bei 22 °C und versetzte anschließend innerhalb 5 min unter Rühren bei 22 bis 26 °C mit 18 g (98,8 mmol) 5-Amino-6-fluor-3-me- thyl-l,2-benzisothiazol in 150 ml Methylenchlorid. Anschlies- send wurde die Mischung 12 h bei 22°C gerührt. Der in beiden Phasen unlösliche Niederschlag wurde abgesaugt. Man wusch die organische Phase mit Wasser und trocknete sie über Magnesiumsulfat. Nach dem Einengen im Vakuum erhielt man 20,0 g (90,3 % der Theorie) der Titelverbindung vom Fp. 84-88°C.
g) 6-Fluor-3-methoxymethyl-l,2-benzisothiazol-5-isothiocyanat
Umsetzung von 2,8 g (13,19 mmol) 5-Amino-6-fluor-3-methoxyme- thyl-l,2-benzisothiazol, 4,4 g (52,77 mmol) Natriumhydrogen- carbonat und 3,0 g (26,38 mmol) Thiophosgen nach der unter f beschriebenen Vorgehensweise lieferte 3,3 g (98,4 % der Theorie) der Titelverbindung vom Fp. 115-117 °C.
h) 6-Fluor-3-ethoxycarbonyl-l,2-benzisothiazol-5-isothiocyanat
Umsetzung von 3,0 g (12,49 mmol) 5-Amino-6-fluor-3-ethoxycar- bonyl-l,2-benzisothiazol, 4,2 g (49,95 mmol) Natriumhydrogen- carbonat und 2,9 g (24,97 mmol) Thiophosgen nach der unter f beschriebenen Vorgehensweise lieferte 3,6 g (97 % der Theorie) der Titelverbindung vom Fp. 122-123 °C.
In analoger Weise wurden die in Tabellen 6, 7, 8 und 9 angegebenen Vorstufen 1 bis 153 hergestellt.
Tabelle 6 (Vorstufen 1 bis 103)
Tabelle 7 (Vorstufen 104 bis 111)
Tabelle 8 (Vorstufen 112 bis 119)
Tabelle 9 (Vorstufen 120 - 153)
IV Herstellung der anellierten Tetrahydro-[ IH]-triazole I
Beispiel 1: 2-[2,4-Dichlor-5-propynyloxy-phenyl]-3-thioxotetrahy- dro-lH- [1,2, 4 ]triazolo[ 1, 2-c ] [ 1 , 3 , 4 ]oxadiazin-l-on 3,5 g (8,657 mmol) 3-[ (2,4-Dichlor-5-propynyloxyanilino)carbo- thioyl]-l .3.4-oxadiazinan-4-carbonsäuremethylester wurden in einem Gemisch von 200 ml Methanol und 70 ml Wasser vorgelegt. Hierzu gab man bei 22°C unter Rühren 1,00 g (9,523 m mol) Tri- 5 ethylamin. Nach 3 h wurde das Reaktionsgemisch im Vakuum eingeengt, in Methylenchlorid aufgenommen und die organische Phase mit gesättigter Kochsalzlösung gewaschen. Nach dem Trocknen, Absaugen über Kieselgel und Einengen im Vakuum erhielt man 2,8 g (84,3 %) d. Th.) der Titelverbindung vom Fp 188 - 190°C. 10
Beispiel 2: 2 [2-Chlor-4-fluor-5-( l-oxo-3-thioxodihy- dro-lH- [1,2,4] -triazolo- [l,2-c][l,3,4]-oxadiazin-2 ( 3H) -yl)phenoxy]acrylsäure
15 2,2 g [5,071 mmol] 3-[ (4-Chlor-2-fluor-5{ [ 1- (methoxycarbonyl)vi- nyl ]oxy}anilino)carbothioyl]-1 , 3 , 4-oxadiazinon-4-carbonsäureme- thylester wurden in 40 ml Methanol gelöst und unter Rühren innerhalb 25 min. bei 5 bis 15°C mit einer Lösung von 0,2 g (5,1 mmol) Natriumhydroxid in 15 ml Wasser versetzt. Es wurde 2 h bei 10 bis
20 15°C gerührt; anschließend beliess man das Reaktionsgemisch über Nacht bei 22°C. Man säuerte unter Rühren mit In Salzsäure an, extrahierte mit Methylenchlorid, trocknete die organische Phase und engte sie im Vakuum ein. Man erhielt 2,0 g (96,6 % d. Th. ber. 95 % rein) Titelverbindung mit einem Festpunkt von 130°C (Zerset-
25 zung) .
Beispiel 3: 2-Chlor-4-fluor-5-(l-oxo-3-thioxodihy- dro-lH-[ 1,2, 4]triazolo[ 1,2-c] [ l,3,4]oxadiazin-2(3H)-yl)benzoesäu- reisopropylester
30
0,24 g (2,4 mmol) Triethylamin gab man zu einer Mischung von 1,0 g (2,4 mol) 3{ [4-Chlor-2-fluor-5-(isopropoxycarbonyl) anilino]carbothioyl}-l, 3, 4-oxadiazinan-4-carbosäuremethylester in einem Gemisch von 40 ml Isopropanol und 10 ml Wasser und rührte
35 die Mischung 12 h bei 22°C. Die klare Reaktionslösung wurde im Vakuum eingeengt, in Methylenchlorid aufgenommen und mit verdünnter Salzsäure extrahiert. Die organische Phase wurde mit gesättigter Kochsalzlösung gewaschen und getrocknet. Nach dem Einengen im Vakuum erhielt man 0,9 g (95,5 % d. Th. ber. 98 % rein) der Titel-
40 Verbindung mit einem Festpunkt von 67 - 69°C.
Beispiel 4: 2-[4-Chlor-2-fluor-5-( 1-methoxycarbonyl-ethyl-l thio)phenyl] 3-thioxotetrahydro-IH-[1,2,4]triazolo [ 1,2-c] [1,3,4 ]oxadiazin-l-on 45 Analog Beispiel 1 erhielt man ausgehend von 3,5 g (7,745 m mol) Methyl-3-{[4-chlor-2-fluor-5-(l-methoxycarbonyl-ethyl-l-thio)an- ilino]carbothioyl}-l,3,4-oxadizinan-4-carboxylat und 0,78 g (7,745 m mol) Triethylamin in 240 ml Methanol und 40 ml Wasser 3,3 g (96,4 % d. Th.) der Titelverbindung mit einem Festpunkt von 129 - 134°C.
Beispiel 5 : 2-[ 4-Chlor-2-fluor-5- ( 2-propynyloxy)phenyl]-3-thiote- trahydro-lH-( 1,2, 4)triazolo[ 1,2-c] [ 1,3,4 ]oxadiazin-l-on
Analog Beispiel 1 erhielt man ausgehend von Methyl-3-{ [4-chlor- 2-fluor-5- ( 2-propynyloxy) anilino]carbothioyl}-l, 3 , 4-oxadiazi- nan-4-carboxylat die Titelverbindung mit einem Festpunkt von 165-167°C.
Beispiel 6: 2- [4-Chlor-2-fluor-5-(2-propynyloxy)phenyl] tetrahy- dro-lH- [1,2,4 ]triazolo [ 1 , 2-c ] [ 1, 3 , 4 ]oxadiazin-l , 3-dithion
2,0 g (8,28 mmol) 4-Chlor-2-fluor-5-propynyloxyphenylisothiocyca- nat wurden innerhalb 2 Minuten unter Rühren bei Raumtemperatur zu einer Mischung von 4,03 g (12,4 mmo) Tetrahydro-4H-1,3,4-oxdia- zin-4-thiocarbonsäuremethylester (50 gew.-%ig) in 150 ml Tetrahydrofuran gegeben. Nach 12 h bei Raumtemperatur wurde das Reaktionsgemisch im Vakuum eingeengt, der Rückstand in Methylenchlorid aufgenommen und mit dem gleichen Lösungsmittel an Kieselgel chro- matographiert . Der nach dem Einengen des Eluats erhaltene Rückstand wurde aus Ethylacetat/Cyclohexan (1:4 v/v) kristallisiert. Man erhielt so 0,35 g (11 % d. Th.) der Titelverbindung mit einem Festpunkt von 167-169°C.
Die in Tabelle 10, 11, 12 und 13 angegebenen Verbindungen der Beispiele 7 bis 160 können analog zu den in den Beispielen 1 bis 6 beschriebenen Methoden hergestellt werden:
Tabelle 10 (Beispiele 1 bis 121):
2) Versuchsbedingungen wie in Vergleichsbeispiel 2
Tabelle 11 (Beispiele 122 bis 129)
Tabelle 12 (Beispiele 130 bis 137)
Tabelle 13 (Beispiele 138 bis 160)
10
35
Verfahrensbeispiel 1: 2-[4-Chlor-2-fluor-5-(2-propynyloxy)phenyl]-tetrahydro-lH-(l,2,4)triazolo[l,2-c][l,3,4]oxadia- zin-l,3-dion durch basenkatalysierte Cyclisierung
40 I/O 9 (9,87 m mol) Triethylamin wurden bei 22°C unter Rühren zu einer Mischung von Methyl-3-{[4-chlor-2-fluor-5-(2-propyny- loxy)anilino]carbonyl}-l,3,4-oxadiazinon-4-carboxylat in 100 ml Methanol und 25 ml Wasser gegeben und 12 h bei 22°C gerührt. Nach der Entfernung des Lösungsmittels im Vakuum wurde der Rückstand
45 zwischen Methylenchlorid und Wasser verteilt, die organische Phase getrocknet und eingeengt Der Rückstand wurde mit Cyclohe- xan/Essigester 9:1 über Kieselgel chromatographiert, wobei man 2,94 g (87,6 % d. Th.) der Titelverbindung vom Fp. 197 - 199°C erhielt.
Verfahrensbeispiel 2: 2-[4-Chlor-2-fluor-5-(2-propynyloxy)phe- ny1] -tetrahydro-lH-[l,2,4]triazolo[l,2-c][l,3,4]oxadia- zin-l,3-dion durch Phosgen-Cyclisierung.
7,5 g (23,907 m mol) Tetrahydro-N- ( 4 '-chlor-2 '-fluor-5 '-propar- gyloxy-phenyl) 4H-1, 3 ,4-oxdiazin-3-carboxamid-4-carbonsäureme- thylester wurden in 250 ml Ethanol als Suspension vorgelegt und dann innerhalb 20 min unter Rühren bei 60 - 70°C eine Lösung von 1,55 g (38,735 m mol) Natriumhydroxid in 80 ml Wasser zugegeben. Nach 30 min Rühren bei 60°C war die Verseifung beendet. Das Reaktionsgemisch wurde eingeengt, der Rückstand mit Wasser und Methy- lenchlorid versetzt und mit 1 n Salzsäure auf pH 1-4 eingestellt. Nach der Phasentrennung wurde die organische Phase nochmals mit Wasser gewaschen, getrocknet und eingeengt. Man erhielt 8,0 g (98,7 %) des Tetrahydro-N- ( 4 '-chlor-2 '-fluor-5 '-propargyloxyphe- nyl) 4H-l,3,4-oxdiazin-3- bzw. 4-carboxyamids als ca. 1:1 Isome- rengemisch vom Fp 139 - 142°C.
Hiervon wurden 7,5 g (23,907 m mol) in 80 ml Pyridin als Lösung vorgelegt, mit einer Spatelspitze Aktivkohle versetzt und dann unter Rühren bei 0 - 5°C 4,7g (23,907 m mol) Diphosgen zugegeben. Es wurde 30 min bei 0 - 5°C und 1 h bei 22°C nachgerührt.
Das Reaktionsgemisch wurde eingeengt, der Rückstand mit Wasser und Methylenchlorid versetzt und mit 1 n Salzsäure auf pH 3 eingestellt. Nach der Phasentrennung und Nachextraktion mit Methylenchlorid wurde der organische Extrakt noch mit gesättigter Kochsalzlösung gewaschen, getrocknet und eingeengt. Man erhielt 7,5 g (92,3 % d. Th.) der Titelverbindung vom Fp 198 - 200°C.
Verfahrensbeispiel 3: 2- [4-Cyano-2-fluoro-5- (propargyloxy)phenyl]-3-thioxotetrahydro-lH-[1,2,4]-triazolo- [l,2-c][l,3,4]-oxa- diazin-1-on (Verbindung 75 aus Tabelle 10) durch Alkylierung des entsprechenden Phenols (Verbindung 111 aus Tabelle 10).
0,45 g (3,244 mmol) Kaliumcarbonat und 0,39 g (3,244 mmol) Pro- pargylbromid wurden innerhalb von 2 min. unter Rühren zu einer Mischung aus 1,0 g (3,244 mmol) der Verbindung 111 aus Tabelle 10 in 70 ml Acetonitril gegeben. Man erwärmte 1,5 h auf 82°C, kühlte auf 22°C ab, trockente das Reaktionsgemisch über Magnesiumsulfat und engte die Lösung nach Entfernen des Trockenmittels im Vakuum ein. Der Rückstand wurde mit Diethylether verrührt, abgesaugt, gewaschen und getrocknet, wobei man 1,1 g (98 % d. Th. der Titelverbindung mit einem Schmelzpunkt von 226-227°C erhielt. Vorproduktbeispiel 1 : 4-Cyano-2-fluor-5-hydroxyphenylisothiocya- nat
19,8 g (0,173 mol) Thiophosgen in 50 ml Ethylacetat wurden unter Rühren bei 20 bis 23 °C innerhalb 30 min zu einer Lösung von 25 g (0,164 mol) 3-Amino-6-cyano-4-fluorphenol in 450 ml Ethylacetat gegeben, 1 h bei 22 °C und 3 h bei 77 °C gerührt. Nach dem Abkühlen wurde das Reaktionsgemisch im Vakuum eingeengt, wobei man 32 g (98,5 % der Theorie) der Titelverbindung vom Fp. 178 - 180 °C erhielt.
Anwendungsbeispiele
Die herbizide Wirkung der anellierten Triazole der Formel Ia ließ sich durch Gewächshausversuche zeigen:
Als Kulturgefäße dienten Plastiktöpfe mit lehmigem Sand mit etwa 3,0% Humus als Substrat. Die Samen der Testpflanzen wurden nach Arten getrennt eingesät.
Bei Vorauflaufbehandlung wurden die in Wasser suspendierten oder emulgierten Wirkstoffe direkt nach Einsaat mittels fein verteilender Düsen aufgebracht. Die Gefäße wurden leicht beregnet, um Keimung und Wachstum zu fördern, und anschließend mit durchsich- tigen Plastikhauben abgedeckt, bis die Pflanzen angewachsen waren. Diese Abdeckung bewirkt ein gleichmäßiges Keimen der Testpflanzen, sofern dies nicht durch die Wirkstoffe beeinträchtigt wurde.
Zum Zweck der Nachauflaufbehandlung wurden die Testpflanzen je nach Wuchsform erst bis zu einer Wuchshöhe von 3 bis 15 cm angezogen und dann mit den in Wasser suspendierten oder emulgierten Wirkstoffen behandelt. Die Testpflanzen wurden dafür entweder direkt gesät und in den gleichen Gefäßen aufgezogen oder sie wurden erst als Keimpflanzen getrennt angezogen und einige Tage vor der Behandlung in die Versuchsgefäße verpflanzt. Die Aufwandmenge für die Nachauflaufbehandlung betrug 62,5, 31,2, 15,6, 7,8 und 3,9 g a.S./ha.
Die Pflanzen wurden artenspezifisch bei Temperaturen von 10 - 25°C bzw. 20 - 35°C gehalten. Die Versuchsperiode erstreckte sich über 2 bis 4 Wochen. Während dieser Zeit wurden die Pflanzen gepflegt, und ihre Reaktion auf die einzelnen Behandlungen wurde ausgewertet. Bewertet wurde nach einer Skala von 0 bis 100. Dabei bedeutet 100 kein Aufgang der Pflanzen bzw. völlige Zerstörung zumindest der oberirdischen Teile und 0 keine Schädigung oder normaler Wachstumsverlauf .
Die in den Gewächshausversuchen verwendeten Pflanzen setzten sich aus folgenden Arten zusammen:
Bayercode Deutscher Name Englischer Name ABUTH Chinesischer Hanf velvet leaf
AMARE Zurückgekrümmter Fuchsschwanz common amaranth
BIDPI behaarter Zweizahn common blackjack
CHEAL Weißer Gänsefuß lambsquarters (goosefoot) COMBE Bengalische Commeline commelinal bengal GALAP Klettenlabkraut harrit cleavers POLPE Flohknöterich redshank PHBPU Purpurtrichterwinde common morningglory SETFA grosse Borstenhirse giant foxtail
a) herbizide Wirksamkeit:
Tabelle 14 : untersuchte Verbindungen
Die Verbindung aus Beispiel 5 zeigte im Nachauflauf eine sehr gute herbizide Wirksamkeit gegen ABUTH, AMARE, CHEAL und PHPBU bei Aufwandmengen von 7,8 und 3,9 g/ha a.S. Die Verbindung aus Beispiel 104 zeigte im Nachauflauf eine sehr gute herbizide Wirksamkeit gegen BIDPI, COMBE und POLPE bei Aufwandmengen von 15,6 und 7,8 g/ha a.S.
Die Verbindung aus Beispiel 26 zeigte im Nachauflauf eine sehr gute herbizide Wirksamkeit gegen BIDPI, COMBE, GALAP und POLPE bei Aufwandmengen von 15,6 und 7,8 g/ha a.S.
Die Verbindung aus Beispiel 35 zeigte im Nachauflauf eine sehr gute herbizide Wirksamkeit gegen BIDPI, COMBE, GALAP und POLPE bei Aufwandmengen von 7,8 und 3,9 g/ha a.S.
Die Verbindung aus Beispiel 96 zeigte im Nachauflauf eine gute bis sehr gute herbizide Wirksamkeit gegen SETFA, COMBE und GALAP und POLPE bei Aufwandmengen von 31,2 und 62,5 g/ha a.S.
Die VergleichsVerbindung A zeigte im Nachauflauf eine mittlere bis gute herbizide Wirksamkeit gegen BIDPI, COMBE und POLPE bei Aufwandmengen von 15,6 und 7,8 g/ha a.S.
Die Vergleichsverbindung B zeigte im Nachauflauf eine mittlere bis schlechte herbizide Wirksamkeit gegen BIDPI, COMBE, GALAP und POLPE bei Aufwandmengen von 15,6 und 7,8 g/ha a.S.
Die VergleichsVerbindung C zeigte im Nachauflauf eine mittlere bis gute herbizide Wirksamkeit gegen BIDPI, GALAP und POLPE bei Aufwandmengen von 7,8 und 3,9 g/ha a.S.
Die Vergleichsverbindung D zeigte im Nachauflauf eine mittlere bis massige herbizide Wirksamkeit gegen SETFA, COMBE und GALAP und POLPE bei Aufwandmengen von 31,2 und 62,5 g/ha a.S.
b) desikkant/defoliante Wirksamkeit
Als Testpflanzen dienten junge, 4-blättrige (ohne Keimblätter) Baumwollpflanzen, die unter Gewächshausbedingungen angezogen wurden (rel. Luftfeuchtigkeit 50 bis 70 %; Tag-/Nachttemperatur 27/20°C) .
Die jungen Baumwollpflanzen wurden tropfnaß mit wässrigen Aufbe- reitungen der Wirkstoffe (unter Zusatz von 0,15 Gew.-% des Fet- talkoholalkoxylats Plurafac ® LF 700, bezogen auf die Spritzbrühe) blattbehandelt. Die ausgebrachte Wassermenge betrug umgerechnet 1000 1/ha. Nach 13 Tagen wurde die Anzahl der abgeworfenen Blätter und der Grad der Entblätterung in % bestimmt.
Bei den unbehandelten Kontrollpflanzen trat kein Blattbefall auf. ./.

Claims

Patentansprüche
1. Verfahren zur Herstellung von anellierten Tetrahy- dro-[lH]-triazolen der allgemeinen Formel I
worin die Variablen Ra, W, X, n und Q die folgenden Bedeutungen aufweisen:
Ra Hydroxy, C02R1, Halogen, Cyano, C(0)N(R1)2, wobei die Reste R1 gegebenenfalls voneinander verschieden sind, ORla, Ci-Cg-Alkyl, Ci-Cg-Halogenalkyl, C3-Cg-Alkenyl, C3-Cg-Al- kinyl, COR1, S(0)nR1 mit n = 0, 1 oder 2 oder CfOJSR1; wo- rin
R1 Wasserstoff, d-Ce-Alkyl, Cι-C6-Halogenalkyl, Cι-C3-Al- koxy-Cι-C3-alkyl, C3-C6-Alkenyl oder C3-Cg-Alkinyl; und
Rla Ci-Cg-Alkyl, C3-C6-Alkenyl, C3-C6-Alkinyl, die teilweise oder vollständig halogeniert oder substituiert sein können, C3-Cg-Cycloalkyl, Benzyl oder Phenethyl die am Phenylring substituiert sein können, sowie ge- gebenenfalls substituiertes Phenyl oder gegebenenfalls substituiertes Pyridyl;
n den Wert 0, 1, 2 oder 3;
X,W unabhängig voneinander S oder 0;
Q Phenyl, das 1, 2, 3 oder 4 Substituenten aufweist, wobei zwei an benachbarte Kohlenstoffatome gebundene Substituenten mit diesen Atomen auch einen 5- oder 6-gliedrigen gesättigten oder ungesättigten Carbocyclus oder einen 5- oder 6-gliedrigen gesättigten oder ungesättigten Heterocyclus bilden können, der 1, 2 oder 3 Heteroatome, ausgewählt unter 0, N und S aufweist und der seinerseits substituiert oder unsubstituiert sein kann; worin eine der Gruppen Z oder Z1 für eine Methylengruppe, die gegebenenfalls durch Ra substituiert ist, und die andere Gruppe Z oder Z1 für 0, S, S=0 oder S02 steht;
dadurch gekennzeichnet, dass man eine Verbindung der allgemeinen Formel II
( Ra ) n
worin die Variablen Ra, Z, Z1, W, X, n und Q die zuvor genannten Bedeutungen aufweisen und
R für C(X)0R2 oder C(X)SR2 steht, worin
X Sauerstoff oder Schwefel und
R2 Ci-Cg-Alkyl, C3-C8-Cycloalkyl, C2-C6-Alkenyl,
C3-Cg-Alkinyl, die teilweise oder vollständig haloge- niert oder die substituiert sein können, P(0)(0R1)2,
Aryl oder Heteroaryl, die gegebenenfalls substituiert sein können, bedeuten, worin R1 die zuvor genannten Bedeutungen aufweist;
mit einer Base umsetzt.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Base ausgewählt ist unter tertären Aminen.
3. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass man 0,9 bis 1,4 Moläquivalent Base bezogen auf die Verbindung II einsetzt.
4. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass man die Umsetzung bei einer Temperatur im Bereich von 0 bis 150 °C durchführt.
5. Verfahren nach einem der vorhergenden Ansprüche, dadurch gekennzeichnet, dass W in Formel I und II für Schwefel steht.
6. Verfahren nach einem der vorhergenden Ansprüche, dadurch gekennzeichnet, dass R in Formel II ausgewählt ist unter und Cι-C-Alkyloxycarbonyl und Cι-C4-Alkyloxythiocarbonyl
7. Verfahren nach einem der vorhergenden Ansprüche, dadurch gekennzeichnet, dass Q in Formel I und II für einen Rest der allgemeinen Formeln Q-1 bis Q-7 steht,
Q-4 Q-5 Q-6 Q-7
worin die Variablen Y und Y', T, U und die Reste R3, R4, R5, R6, R7, R8, R9 und R30 die folgenden Bedeutungen haben:
Y und Y' unabhängig voneinander Sauerstoff oder Schwefel;
eine chemische Bindung oder Sauerstoff;
U eine chemische Bindung, Cι-C4-Alkylen, O, S, SO oder S0 ;
R3 Wasserstoff oder Halogen;
R4 Cι-C-Alkyl, Cι-C4-Halogenalkyl, Cι-C-Alkoxy,
Cι-C-AkyIthio, Cι-C-Halogenalkoxy, Halogen, Cyano oder N02;
R5 Hydroxy, Mercapto, Cyano, Nitro, Halogen, Ci-Cg-Alkyl, C2-C6-Alkenyl, C2-C6-Alkinyl, Ci-Cg-Halogenalkyl, C-C6-Halogenalkenyl, C2-Cg-Halogenalkinyl, Cι-C6-Al- koxy- (Ci-Cg-alkyl) carbonyl, Ci-Cg-Alkylthio- (Ci-Cg-al- kyl) carbonyl, (Ci-Cg-Alkyl )-iminooxycarbonyl, Ci-Cg-Alko- xy-Ci-Cg-alkyl, Cι-Cg-Alkoxyamino-Cι-Cg-alkyl, Ci-Cg-Alko- xy-Cι-Cg-alkylamino-Cι-Cg-alkyl, Cι-C3-Alkoxy-C3-Cg-alke- nyl, C3-C6-Halogenalkenyl, Cyano-C3-Cg-alkenyl, C3-Cg-Al- kinyl, Cι-C3-Alkoxy-C3-Cg-alkinyl, C3-Cg-Halogenalkinyl, Cyano-C3-Cg-alkinyl,
Ci-Cg-Alkoxy, Ci-Cg-Alkylthio, C3-Cg-Cycloalkoxy, C3-C6-CycloalkyIthio, C2-Cg-Alkenyloxy, C2-C6-Alkenylthio, C2-Cg-Alkinyloxy, C2-Cg-Alkinylthio, (Ci-Cg-Alkyl) carbonyloxy, (Ci-Cg-Alkyl)carbonylthio, (Ci-Cg-Alkoxy) carbonyloxy, (C2-Cg-Alkenyl) carbonyloxy, (C2-Cg-Alkenyl) carbonylthio, (C2-C6-Alkinyl) carbonyloxy, (C2-C6-Alkinyl)carbo- nylthio, Ci-Cg-Alkylsulfonyloxy oder Ci-Cg-Alkylsulfonyl, wobei jeder der zuletzt genannten 17 Reste gewünschtenfalls einen, zwei oder drei Substituenten tragen kann, die ausgewählt sind unter:
- Halogen, Nitro, Cyano, Hydroxy, C3-C6-Cycloalkyl, Ci-Cg-Alkoxy, C3-Cg-Cycloalkoxy, C3-C6-Alkenyloxy, C3-Cg-Alkinyloxy, Cι-Cg-Alkoxy-Cι-Cg-alkoxy, Ci-Cg-Al- kylthio, Ci-Cg-Alkylsulfinyl, Ci-Cg-Alkylsulfonyl, Ci-Cg-Alkylidenaminoxy, Oxo, =N-OR10
Phenyl, Phenoxy oder Phenylsulfonyl, wobei die drei letztgenannten Gruppen gegebenenfalls einen, zwei oder drei Substituenten tragen können, ausgewählt unter Halogen, Nitro, Cyano, Ci-Cg-Alkyl, Ci-Cg-Haloge- nalkyl, Ci-Cg-Alkoxy und (Ci-Cg-Alkoxy) carbonyl;
-CO-R11, -CO-OR11, -CO-SR11, -C0-N(Rn)-R12, -0C0-R11, -0C0-0R11', -0C0-SR11', -0C0-N(R1:L)-R12, -N(R1X)-R12, und -C(R13)=N-OR10;
C(Z2)-R14, -C(=NR15)R14, C(R14)(Z3R16)(Z4R17),
C (R14 ) =C (R18 ) -CN, C (R14 ) =C (R18 ) -CO-R19 ,
-CH (R14 ) -CH(R18 ) -COR19 , -C (R14 ) =C (R18 ) -CH2-CO-R19 ,
-C (R14 ) =C (R18 ) -C (R20 ) =C (R21 ) -CO-R" , -C(R1 )=C(R18)-CH2-CH(R22)-CO-R19, -CO-OR23, -CO-SR23,
-CON(R3)-OR10, -C≡C-CO-NHOR10, -C≡C-CO-N(R23)-OR10,
-C≡C-CS-NH-OR10 , -C≡C-CS-N (R23 ) -OR10 ,
-C ( R14 ) =C ( R18 ) -CO-NHOR10 , -C ( R14 ) =C ( R18 ) -CO-N ( R23 ) -OR10 ,
-C (R14 ) =C (R18 ) -CS-NHOR10 , -C ( R14 ) =C (R18 ) -CS-N (R23 ) -OR10 , -C ( R1 ) =C ( R18 ) -C ( R13 ) =N-OR10 , C ( R13 ) =N-OR10 ,
-C≡C-C ( R13 ) =NOR10 , C ( Z3R16 ) ( Z R17 ) -OR23 ,
_C ( Z3R16 ) ( Z4R17 ) SR23 C ( Z3R16 ) ( Z R17 ) -N ( R24 ) R2^ , -N ( R2 ) -R25 , -CO-N(R24)-R5 oder -C(R14)=C(R18)CO-N(R24)R5; wobei Z2, Z3, Z4 unabhängig voneinander für Sauerstoff oder Schwefel stehen;
C02H, Ci-Cg-Alkyl, Ci-Cg-Halogenalkyl, Hydro- xy-Cι-C4-alkyl, Cyano-Cι-C4-alkyl, Cι-C -Alko- xy-Cι-C -alkyl, Amino-Cι-C4-alkyl, Cι-C -Alkylami- no-Cι-C -alkyl, Di (Cι-C4-alkyl ) amino-Cι-C -alkyl , Cι-C4-Alkylthio-Cι-C -alkyl, Hydroxycarbonyl-Cι-C -alkyl, (Cι-C4-Alkoxy)carbonyl-Cι-C -alkyl, (Cι-C -Alkylthio)car- bonyl-Cι-C -alkyl, Aminocarbonyl-Cι-C -alkyl, (Cι-C -Alky- lamino) carbonyl-Cι-C -alkyl, Di (Cι-C -alkyl ) aminocarbo- nyl-Cι-C -alkyl, C3-Cg-Alkenyl, Cι-C3-Alkoxy-C3-C6-alke- nyl, C3-Cg-Halogenalkenyl, Cyano-C3-C6-alkenyl, C3-C6-Al- kinyl, Cι-C3-Alkoxy-C3-Cg-alkinyl, C3-Cg-Halogenalkinyl, Cyano-C3-Cg-alkinyl,
Phenyl, Phenyl-Cι-C -alkyl, worin die Phenylringe gegebenenfalls einen, zwei oder drei Substituenten tragen, aus- gewählt unter Halogen, Cyano, Ci-Cg-Alkyl, Ci-Cg-Halogenalkyl, Ci-Cg-Alkoxy oder Ci-Cg-Halogenalkoxy;
C3-C -Cycloalkyl, 3- bis 7-gliedriges gesättigtes Hetero- cyclyl, wobei jeder Cycloalkyl- und jeder Heterocyclyl- Ring ein Carbonyl- oder Thiocarbonyl-Ringlied enthalten kann und wobei jeder Cycloalkyl- und Heterocyclyl-Ring unsubstituiert sein oder ein zwei, drei oder vier Substituenten tragen kann, ausgewählt unter Cyano, Nitro, Amino, Hydroxy, Halogen, Cι-C -Alkyl, Cι-C -Halogenalkyl, Cι-C -Cyanoalkyl, Cι-C4-Hydroxyalkyl, Cι-C -Aminoalkyl, Cι-C4-Alkoxy, Cι-C -Halogenalkoxy, Cι-C -AlkyIthio, Cι-C -HalogenalkyIthio, Cι-C4-Alkylsulfinyl, Cι-C -Alkyl- sulfonyl, Cι-C4-Halogenalkylsulfonyl, (Cι-C4-Alkoxy) carbonyl, (Cι-C -Alkyl)carbonyl, (Cι-C -Halogenalkyl) carbonyl, (Cι-C4-Alkyl)carbonyloxy, (Cι~C -Halogenalkyl) carbonyloxy,
Di (Cι-C4-alkyl) amino, C3-C6-Alkenyl, C3-C6-Alkinyl, C3-C -Alkenyloxy, C3-C4-AlkenyIthio, C3-C -Alkinyloxy und C3-C -AlkinyIthio;
oder, sofern U bzw. T eine chemische Bindung bedeutet, R6 auch für Wasserstoff, Hydroxy, Cyano, Mercapto, Amino, Cι-C4-Alkylamino, Di-Cι-C -alkylamino, gesättigtes, 5- oder 6-gliedriges, N-gebundenes Stickstoffheterocyclyl, C3-C6-Cycloalkylamino, Halogen, -(CH2)n-CH(OH)-CH2-R28 , -(CH2)n-CH(Halogen)-CH2-R28, -(CH2)n-CH2-CH(Halogen)-R28, -(CH2)n-CH=CH-R28 oder -(CH2)n-CH=C(Halogen)-R28 stehen kann, worin R28 Hydroxycarbonyl, (Cι-C4-Alkoxy) carbonyl, (Cι-C -AlkyIthio) carbonyl, Aminocarbonyl, (Cι-C4-Alkyl- amino)carbonyl oder Di (Cι-C -alkyl) aminocarbonyl bedeutet und n für 0 oder 1 steht;
R7 die für R6 angegebenen Bedeutungen;
R8 Wasserstoff, Ci-C3-Alkyl, Cι-C3-Halogenalkyl oder Halogen;
R9 Wasserstoff, Cι-C3-Alkyl, C!-C3-Halogenalkyl; oder
R8 und R9 gemeinsam C=0;
R10 Wasserstoff, Ci-Cg-Alkyl, Ci-Cg-Halogenalkyl, C3-C6-Cyclo- alkyl, C3-C6-Alkenyl, C3-C6-Alkinyl, Hydroxy-Cι-C6-alkyl, Ci-Cg-Alkoxy-Ci-Cg-alkyl, Cι-Cg-Alkylthio-Cι-Cg-alkyl, Cyano-Ci-Cg-alkyl, (Ci-Cg-Alkyl ) carbonyl-Ci-Cg-alkyl , (Ci-Cg-Alkoxy)carbonyl-Cι-Cg-alkyl, (Cι-Cg-Alkoxy)-carbo- nyl-C2-Cg-alkenyl, (Ci-Cg-Alkyl ) carbonyloxy-Ci-Cg-alkyl oder Pheny1-Cι-Cg-alkyl, worin der Phenylring gewünsch- tenfalls ein zwei oder drei Substituenten tragen kann, ausgewählt unter Cyano, Nitro, Halogen, Ci-Cg-Alkyl, Ci-Cg-Halogenalkyl, Ci-Cg-Alkoxy und (Ci-Cg-Alkoxy) carbonyl;
R11 Wasserstoff, Cι-C6-Alkyl, C3-C6-Cycloalkyl, C3-C6-Alkenyl, C3-Cg-Alkinyl, Ci-Cg-Alkoxy-Ci-Cg-alkyl, (Ci-Cg-Al- koxy)-carbonyl-Cι-C6-alkyl, (C3-Cg-Alkenyloxy)carbonyl- Ci-Cg-alkyl, Phenyl oder Phenyl-Ci-Cg-alkyl, wobei der Phenyl-Ring der zwei zuletzt genannten Gruppen unsubsti- tuiert sein oder einen zwei oder drei Reste tragen kann, ausgewählt unter Halogen, Nitro, Cyano, Ci-Cg-Alkyl, Ci-Cg-Halogenalkyl, Ci-Cg-Alkoxy und (Ci-Cg-Alkyl) carbonyl;
R11' die für R11 genannten Bedeutungen, ausgenommen Wasserstoff;
R12 Wasserstoff, Hydroxy, Ci-Cg-Alkyl, C3-Cg-Cycloalkyl,
C3-Cg-Cycloalkylaminocarbonyl, Ci-Cg-Alkylaminocarbonyl, Ci-Cg-Alkoxy, (Cι-Cg-Alkoxy)carbonyl-Cι-Cg-alkoxy, C3-Cg-Alkenyl oder C3-Cg-Alkenyloxy;
R13 Wasserstoff, Halogen, Ci-Cg-Alkyl, Ci-Cg-Halogenalkyl, Ci-Cg-Alkoxy, Ci-Cg-Halogenalkoxy, C3-Cg-Alkenyloxy, C3-Cg-Alkinyloxy, Ci-Cg-AlkyIthio, Ci-Cg-HalogenalkyIthio, (Ci-Cg-Alkyl) carbonyloxy, (Ci-Cg-Halogenalkyl)carbonyloxy, Ci-Cg-Alkylsulfonyloxy oder Ci-Cg-Halogenalkylsulfonyloxy, wobei die letztgenannten 12 Reste einen der folgenden Substituenten tragen können: Hydroxy, Cyano, Hydroxycar- bonyl, Ci-Cg-Alkoxy, Ci-Cg-Alkylthio, (Ci-Cg-Alkyl)carbonyl, (Ci-Cg-Alkoxy) carbonyl, (Ci-Cg-Alkyl) aminocarbonyl, Di (Ci-Cg-alkyl) aminocarbonyl, (Ci-Cg-Alkyl) carbonyloxy, Ci-Cg-Alkoxy- (Ci-Cg-alkyl ) aminocarbonyl;
(Ci-Cg-Alkyl ) carbonyl, (Ci-Cg-Halogenalkyl ) carbonyl , (Ci-Cg-Alkoxy)carbonyl, (Ci-Cg-Alkoxy)carbonyloxy, (Cι-Cg-Alkyl)carbonylthio, (Ci-Cg-Halogenalkyl)carbonylthio, (Cι-Cg-Alkoxy)carbonylthio, C2-C6-Alkenyl, (C2-Cg-Al- kenyl) carbonyloxy, C2-Cg-AlkenyIthio, C3-Cg-Alkinyl, C3-C6-Alkinyloxy, C3-C6-Alkinylthio, (C2-Cg-Alkinyl)carbo- nyloxy, C3-Cg-Alkinylsulfonyoxy, C -C6-Cycloalkyl, C3-C6-Cycloalkyloxy, C3-Cg-Cycloalkylthio, (C3-C6-Cycloal- kyl ) carbonyloxy, C3-Cg-Cycloalkylsulfonyloxy;
Phenyl, Phenoxy, Phenylthio, Benzoyloxy, Phenylsulfony- loxy, Phenyl-Ci-Cg-alkyl, Phenyl-Ci-Cg-alkoxy, Phe- nyl-Ci-Cg-alkylthio, Phenyl- (Ci-Cg-alkyl) -carbonyloxy oder Phenyl- (Ci-Cg-alkyl) sulfonyloxy, wobei die Phenylringe der letzgenannten 10 Reste unsubstituiert sein oder ihrerseits ein bis drei Stubstitueriten tragen können, jeweils ausgewählt aus der Gruppe bestehen aus Cyano, Ni- tro, Halogen, Ci-Cg-Alkyl, Ci-Cg-Halogenalkyl, Cι-C6-Al- koxy und (Ci-Cg-Alkoxy) carbonyl;
R14 Wasserstoff, Cyano, Ci-Cg-Alkyl, Ci-Cg-Halogenalkyl,
C2-Cg-Alkenyl, C2-Cg-Alkinyl, C3-Cg-Cycloalkyl, Ci-Cg-Al- koxy-Ci-Cg-alkyl oder (Ci-Cg-Alkoxy) carbonyl;
R15 Wasserstoff, Hydroxy, Ci-Cg-Alkyl, C3-Cg-Alkenyl,
C3-C6-Alkinyl, C3-Cg-Cycloalkyl, Ci-Cg-Halogenalkyl, Ci-Cg-Alkoxy-Ci-Cg-alkyl, Ci-Cg-Alkoxy, C3-Cg-Alkenyloxy, C3-Cg-Alkinyloxy, C3-Cg-Cycloalkoxy, C5-C7-Cycloalkeny- loxy, Ci-Cg-Halogenalkoxy, C3-C6-Halogenalkenyloxy, Hydro- xy-Ci-Cg-alkoxy, Cyano-Ci-Cg-alkoxy, C3-C6-Cycloal- kyl-Ci-Cg-alkoxy, Cι-Cg-Alkoxy-Cι-Cg-alkoxy, Ci-Cg-Alko- xy_C3-Cg-alkenyloxy, (Ci-Cg-Alkyl) carbonyloxy, (Ci-Cg-Ha- logenalkyl) carbonyloxy, (Ci-Cg-Alkyl) carbamoyloxy,
(Ci-Cg-Halogenalkyl ) carbamoyloxy, (Ci-Cg-Alkyl ) carbonyl- Ci-Cg-alkyl, (Ci-Cg-Alkyl)carbonyl-Ci-Cg-alkoxy, (Ci-Cg-Alkoxy)carbonyl-Cι-C6-alkyl, (Cι-Cg-Alkoxy)carbo- nyl-Ci-Cg-alkoxy, Cι-Cg-Alkylthio-Cι-Cg-alkoxy, Di(Cι-C6-alkyl)amino-Cι-Cg-alkoxy, -N(R26)R27, Phenyl, das seinerseits noch einen zwei oder drei Substituenten tragen kann, jeweils ausgewählt unter Cyano, Nitro, Halogen, Ci-Cg-Alkyl, Ci-Cg-Halogenalkyl, C2-C6-Alkenyl, Cι-C6-Al- koxy und (Cι-C6-Alkoxy)carbonyl;
Phenyl-Ci-Cg-alkoxy, Phenyl-(Ci-Cg-alkyl) , Phe- nyl-C3-Cg-alkenyloxy oder Phenyl-C3-Cg-alkinyloxy, wobei jeweils eine oder zwei Methylengruppen der Kohlenstoffketten in den vier zuletzt genannten Gruppen durch -O-, -S-, oder -N(Ci-Cg-Alkyl)- ersetzt sein können und wobei Phenylringe in den vier zuletzt genannten Gruppen unsub- stituiert oder ihrerseits einen bis drei Substituenten tragen können, ausgewählt unter Cyano, Nitro, Halogen, Ci-Cg-Alkyl, Ci-Cg-Halogenalkyl, C2-C6-Alkenyl, Cι-C6-Al- koxy und (Ci-Cg-Alkoxy)carbonyl;
C3-C7-Heterocyclyl, C3-C7-Heterocyclyl-Cι-C6-alkyl, C3-C7-Heterocyclyl-Cι-Cg-alkoxy, C3-C-Heterocyclyl- C3-Cg-alkenyloxy oder C3-C7-Heterocyclyl-C3-Cg-alkinyloxy, wobei jeweils eine oder zwei Methylengruppen der Kohlenstoffketten in den vier zuletzt genannten Gruppen durch -0-, -S- oder -N(Cι-Cg-Alkyl)- ersetzt sein können und wobei jeder Heterocyclus gesättigt, ungesättigt oder aromatisch sein kann und entweder unsubstituiert ist oder seinerseits einen bis drei Substituenten trägt, ausgewählt unter Cyano, Nitro, Halogen, Ci-Cg-Alkyl, Ci-Cg-Ha- logenalkyl, C2-C6-Alkenyl, Ci-Cg-Alkoxy und (Cι-C6-Al- koxy)carbonyl;
R16, R17 unabhängig voneinander Ci-Cg-Alkyl, Ci-Cg-Halogenalkyl, C3-C6-Alkenyl, C3-Cg-Alkinyl, Cι-Cg-Alkoxy-Cι-Cg-al- kyl bedeuten oder zusammen für eine gesättigte oder ungesättigte, 2- bis 4-gliedrige Kohlenstoffkette stehen, die einen Oxosubstituenten tragen kann, wobei ein den Variablen Z3 und Z4 nicht benachbartes Glied dieser Kette durch -0-, -S-, -N=, -NH- oder -N(Ci-Cg-Alkyl)- ersetzt sein kann, und wobei die Kohlenstoffkette noch ein bis drei Reste tragen kann, ausgewählt unter Cyano, Nitro, Amino, Halogen, Ci-Cg-Alkyl, C2-Cg-Alkenyl, Ci-Cg-Alkoxy, C2-Cg-Alkenyloxy, C2-Cg-Alkinyloxy, Ci-Cg-Halogenalkyl, Cyano-Ci-Cg-alkyl, Hydroxy-Ci-Cg-alkyl, Ci-Cg-Alko- xy-Ci-Cg-alkyl, C3-C6-Alkenyloxy-Cι-C6-alkyl, C3-C6-Alki- nyloxy-Ci-Cg-alkyl, C3-Cg-Cycloalkyl, C3-Cg-Cycloalkoxy, Carboxy, (Ci-Cg-Alkoxy)carbonyl, (Ci-Cg-Alkyl)carbonyloxy- Ci-Cg-alkyl und Phenyl; gegebenenfalls substituiertes Phenyl, wobei die Kohlenstoff ette auch durch einen an- kondensierten oder spiroverknüpften 3- bis 7-gliedrigen Ring substituiert sein kann, der ein oder zwei Heteroatome als Ringglieder enthalten kann, ausgewählt unter Sauerstoff, Schwefel, Stickstoff und durch Ci-Cg-Alkyl substituiertem Stickstoff, und der gewünschtenfalls seinerseits einen oder zwei der folgenden Substituenten tragen kann: Cyano, Ci-Cg-Alkyl, C2-Cg-Alkenyl, Ci-Cg-Alkoxy, Cyano-Ci-Cg-alkyl, Ci-Cg-Halogenalkyl und (Ci-Cg-Al- koxy)carbonyl;
R18 Wasserstoff, Cyano, Halogen, Ci-Cg-Alkyl, Ci-Cg-Halogenalkyl, Cι-C6-Alkoxy, (Ci-Cg-Alkyl)carbonyl oder (Ci-Cg-Al- koxy)carbonyl;
R19 Wasserstoff, O-R28, S-R28, Ci-Cg-Alkyl, das noch einen oder zwei Ci-Cg-Alkoxysubstituenten tragen kann, C2-Cg-Al- kenyl, C2-C6-Alkinyl, Ci-Cg-Halogenalkyl, C3-C6-Cycloal- kyl, Ci-Cg-Alkylthio-Ci-Cg-alkyl, Ci-Cg-Alkyliminooxy,
-N(R24)R25 oder Phenyl, das unsubstituiert sein oder ein bis drei Substituenten tragen kann, jeweils ausgewählt aus der Gruppe bestehend aus Cyano, Nitro, Halogen, Ci-Cg-Alkyl, C2-C6-Alkenyl, Ci-Cg-Halogenalkyl, Ci-Cg-Al- koxy und (Ci-Cg-Alkoxy)carbonyl;
R20 Wasserstoff, Cyano, Halogen, Ci-Cg-Alkyl, C3-Cg-Alkenyl, C3-C6-Alkinyl, Ci-Cg-Alkoxy-Ci-Cg-alkyl, (Ci-Cg-Alkyl)carbonyl, (Ci-Cg-Alkoxy)carbonyl, -N(R24)R25 oder Phenyl, das seinerseits noch einen bis drei Substituenten tragen kann, ausgewählt unter Cyano, Nitro, Halogen, Ci-Cg-Al- kyl, Ci-Cg-Halogenalkyl, C3-C6-Alkenyl, Ci-Cg-Alkoxy und (Ci-Cg-Alkoxy)carbonyl;
R21 Wasserstoff, Cyano, Halogen, Ci-Cg-Alkyl, Ci-Cg-Alkoxy,
Ci-Cg-Halogenalkyl, (Ci-Cg-Alkyl)carbonyl oder (Ci-Cg-Al- koxy)carbonyl;
R22 Wasserstoff, Cyano, Ci-Cg-Alkyl oder (Cι-Cg-Alkoxy)carbo- nyl;
R23, R28 unabhängig voneinander Wasserstoff, Ci-Cg-Alkyl,
Ci-Cg-Halogenalkyl, C2-Cg-Alkenyl oder C2-Cg-Alkinyl, wobei die letztgenannten 4 Gruppen jeweils einen oder zwei der folgenden Reste tragen können: Cyano, Halogen, Hydroxy, Hydroxycarbonyl, Ci-Cg-Alkoxy, Ci-Cg-AlkyIthio, (Cι-Cg-Alkyl)carbonyl, (Ci-Cg-Alkoxy)carbonyl, (Ci-Cg-Alkyl) carbonyloxy, (C3-Cg-Alkenyloxy)carbonyl, (C3-Cg-Alki- nyloxy)carbonyl; (Ci-Cg-Halogenalkyl)carbonyl, (Ci-Cg-Alkoxy)carbonyl, Ci-Cg-Alkylaminocarbonyl, Di(Ci-Cg-alkyl) aminocarbonyl, Ci-Cg-Alkyloximino-Ci-Cg-alkyl, C3-C6-Cycloalkyl;
Phenyl oder Phenyl-Ci-Cg-alkyl, worin die Phenylringe unsubstituiert oder ihrerseits ein bis drei Substituenten tragen können, jeweils ausgewählt unter Cyano, Nitro, Halogen, Ci-Cg-Alkyl, Ci-Cg-Halogenalkyl, Ci-Cg-Alkoxy und (Ci-Cg-Alkoxy)carbonyl;
R24, R25, R26, R27 unabhängig voneinander Wasserstoff,
Ci-Cg-Alkyl, C3-C6-Alkenyl, C2-C6-Alkinyl, C3-C6-Cycloal- kyl, Ci-Cg-Halogenalkyl, Ci-Cg-Alkoxy-Ci-Cg-alkyl, (Ci-Cg-Alkyl)carbonyl, (Ci-Cg-Alkoxy)carbonyl, (Ci-Cg-Al- koxy)carbonyl-Cι-Cg-alkyl,
(Ci-Cg-Alkoxy)carbonyl-C2-Cg-alkenyl, worin die Alkenyl- kette zusätzlich ein bis drei Halogen- und/oder Cyano-Re- ste tragen kann, Ci-Cg-Alkylsulfonyl, (Cι-Cg-Alkoxy)carbo- nyl-Ci-Cg-alkylsulfonyl, Phenyl oder Phenylsulfonyl, wobei die Phenylringe der beiden letztgenannten Reste unsubstituiert sein oder ihrerseits einen bis drei Substituenten tragen können, jeweils ausgewählt unter Cyano, Nitro, Halogen, Ci-Cg-Alkyl, Ci-Cg-Halogenalkyl, C3-C6-Al- kenyl, Ci-Cg-Alkoxy und (Ci-Cg-Alkoxy)carbonyl; oder
R24 und R25 und/oder
R26 und R27 zusammen mit dem jeweils gemeinsamen Stickstoffa- tom für einen gesättigten oder ungesättigten 4- bis
7-gliedrigen Azaheterocyclus, der neben Kohlenstoffringgliedern gewünschtenfalls eines der folgenden Glieder enthalten kann: -0-, -S-, -N=, -NH- oder - (Ci-Cg-Alkyl) -;
R30 Wasserstoff, Ci-Cg-Alkyl, C3-C8-Cycloalkyl, CH20-Cι-C6-Al- kyl, CH20-C2-C4-Alkenyl, CH20-C2-C-Alkinyl, CH2CH20-Cι-C4-Alkyl, CH2CH20-C2-C4-Alkenyl, CH2CH20- C2-C -Alkinyl, (Ci-Cg-Alkoxy)carbonyl, (C3-C4-Alkeny- loxy) carbonyl, (C3-C -Alkinyloxy)carbonyl,
C3-Cg-Cycloalkyloxycarbonyl, (Ci-Cg-AlkyIthio)carbonyl, (Cι-C4-Alkoxy)carbonyl-Cι-C -alkyl, (C3-C-Alkenyloxy)car- bonyl-Cι-C-alkyl, (C3-C-Alkinyloxy)carbonyl, (Cι-C-Al- kylamino) carbonyl, (Cι-C4-Dialkylamino)carbonyl, (C3-C4- Alkenylamino)carbonyl, (C3-C4-Alkinylamino)carbonyl,
(C3-C4-Dialkenylamino)carbonyl, (C3-C -Dialkinylamino)carbonyl, (C3-C-Alkenyloxy)carbonyl-Ci-C4-alkyl, (C3-C-Alkinyloxy)carbonyl-Cι-C-alkyl, Cι-C -Alkylsulfo- nylamidocarbonyl, CH(0-Cι-C4-Alkyl)2, CH[0(CH2)30] , CH[0(CH2)40] , Phenyl, das unsubstituiert sein oder seinerseits einen bis drei Substituenten tragen kann, je- weils ausgewählt unter Cyano, Nitro, Halogen, Ci-Cg-Alkyl, Ci-Cg-Halogenalkyl, Ci-Cg-Alkoxy, (Cι-Cg-Alkoxy)car- bonyl und Cι-C -Alkoxycarbonyl-Cι-C-alkyl, wobei jeder Alkylrest unsubstituiert sein kann oder einen, zwei oder drei Substituenten tragen kann, die unter Halogen, Cyano, Nitro, Cι-C4-Alkoxy und Cι-C4-Alkylthio ausgewählt sind und jeder Cycloalkylrest unsubstituiert sein kann, oder einen, zwei oder drei Substituenten tragen kann, die unter Halogen, Cyano, Nitro, Cι-C-Alkylf Cι-C -Alkoxy und Cι-C -AlkyIthio ausgewählt sind.
8. Verfahren nach Anspruch 7, dadurch gekennzeichnet, dass Q in den Formeln I und II für Q-1 steht und
9. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass Z in Formel I und II für ein gegebenenfalls durch Ra substituiertes Methylen steht.
10. Verfahren nach Anspruch 9, dadurch gekennzeichnet, dass man zunächst eine Verbindung der allgemeinen Formel Ila her- stellt,
indem man ein Perhydrodiazin der allgemeinen Formel lila, (Ra)n
worin jeweils R, Ra, Z1 und n die in Anspruch 1 genannten Bedeutungen aufweisen, mit einem Isocycanat oder einem Isothio- cycanat der allgemeinen Formel IV, Q-N=C=W ( IV)
worin Q und W die zuvor genannten Bedeutungen aufweisen, umsetzt.
11. Verfahren nach Anspruch 10, dadurch gekennzeichnet, dass man zunächst ein Perhydrodiazin der allgemeinen Formel lila herstellt, indem man in einem ersten Reaktionsschritt ein substituiertes Hydrazin der Formel V,
(Ra)n
worin Ra und n die zuvor genannte Bedeutung haben und Z1 für Sauerstoff oder Schwefel steht, mit einer Verbindung der allgemeinen Formel R2-0-C(X)-A oder der Formel R2-S-C(X)-A, worin R2 und X die zuvor genannten Bedeutungen aufweisen und A für eine nucleophil verdrängbare Abgangsgruppe steht, umsetzt, wobei man ein HydrazInderivat der allgemeinen Formel VI erhält,
(Ra)n
worin Z1, R, R und n die zuvor genannte Bedeutung haben,
in einem zweiten Schritt die Verbindung VI mit Formaldehyd in Gegenwart einer Säure zu den substituierten Perhydrodiazinen der allgemeinen Formel lila mit Z1 = 0 oder S cyclisiert, und gegebenenfalls in einem weiteren Reaktionsschritt für Z = S zu den Sulfoxiden mit Z1 = SO oder Sulfonen mit Z1 = S02 oxidiert.
12. Anellierte Tetrahydro-[lH]-triazole der allgemeinen Formel Ia worin die Variablen Ra, Z1, X, n die in Anspruch 1 angegebenen Bedeutungen aufweisen, W für Schwefel steht und Q einen der 10 in Anspruch 7 definierten Reste Q-1, Q-4, Q-5 oder Q-6 bedeutet, und deren landwirtschaftlich brauchbaren Salze oder
worin die Variablen Ra, Z1, X, W und n die in Anspruch 1 angegebenen Bedeutungen aufweisen Q für einen der in Anspruch 7 15 definierten Reste Q-2, Q-3 oder Q-7 steht, und deren landwirtschaftlich brauchbaren Salze.
13. Mittel, enthaltend mindestens ein anelliertes Tetrahy- dro-[lH]-triazol der allgemeinen Formel Ia gemäss Anspruch 12
20 oder ein landwirtschaftlich brauchbares Salz von Ia und übliche Hilfsmittel.
14. Verfahren zur Bekämpfung von unerwünschtem Pflanzenwuchs, dadurch gekennzeichnet, daß man eine herbizid wirksame Menge
25 mindestens eines anellierten Tetrahydro-[ lH]-triazols der allgemeinen Formel Ia gemäss Anspruch 12 oder ein landwirtschaftlich brauchbares Salz von Ia auf Pflanzen, deren Lebensraum und/oder auf Samen einwirken läßt.
30 15. Verwendung von anellierten Tetrahydro-[ lH]-triazolen der allgemeinen Formel Ia gemäss Anspruch 12 oder von deren landwirtschaftlich brauchbaren Salzen als Herbizide.
16. Verfahren zur Herstellung von anellierten Tetrahy- 35 dro-[ lH]-triazolen der allgemeinen Formel Ia'',
45 worin die Variablen Ra, W, n und Q die in Anspruch 1 angegebenen Bedeutungen aufweisen und Z1 für O, S, S=0 oder S02 steht, dadurch gekennzeichnet, dass man eine Verbindung der allgemeinen Formel Vlla,
(Ra)n
worin die Variablen Ra, Z1, W, n und Q die zuvor angegebenen Bedeutungen aufweisen, mit Phosgen oder einem Phosgenäquivalent umsetzt.
17. Verfahren zur Herstellung von anellierten Tetrahy- dro-[ lH]-triazolen der allgemeinen Formel Ia',
worin die Variablen Ra, n und Q die in Anspruch 1 angegebenen Bedeutungen aufweisen und Z1 für 0, S, S=0 oder S02 steht, dadurch gekennzeichnet, dass man ein Perhydrodiazin der allge- meinen Formel lila' ,
worin Ra, n, Z1 und R2 die in Anspruch 1 angegebenen Bedeutungen hat, mit einem Isothiocycanat der allgemeinen Formel iVa,
Q-N=C=S (IVa)
worin Q die zuvor genannten Bedeutungen aufweist, in einem aprotisch polaren Lösungsmittel umsetzt.
18. Verfahren zur Herstellung von Isothiocyanaten der allgemeinen Formel IVb,
worin R3 Halogen und Y ' ' Hydroxy oder Mercapto bedeutet, dadurch gekennzeichnet, dass man Aniline der allgemeinen Formel IXa,
worin R3 Halogen und Y'' die vorgenannten Bedeutungen haben, mit Thiophosgen gegebenenfalls in Gegenwart einer basischen Verbindung und gegebenenfalls in Gegenwart eines Lösungsmittels umsetzt.
19. Isothiocyanate der allgemeinen Formel IVb nach Anspruch 18,
worin R3 Halogen und Y ' ' Hydroxy oder Mercapto bedeute .
20. Verfahren zur Herstellung von Isothiocyanaten der allgemeinen Formel IVc,
worin R3 für Wasserstoff oder Halogen steht und R30 die in Anspruch 7 angegebenen Bedeutungen aufweist, dadurch gekennzeichnet, dass man 6-Aminobenzoisothiazole der Formel IXb,
worin R3 und R30 die vorgenannten Bedeutungen haben, mit Thiophosgen gegebenenfalls in Gegenwart einer basischen Verbin- düng und gegebenenfalls in Gegenwart eines Lösungsmittels umsetzt.
21. Isothiocyanate der allgemeinen Formel IVc,
worin R3 Wasserstoff oder Halogen bedeutet und R30 die in Anspruch 7 angegebenen Bedeutungen aufweist.
./.
EP01972023A 2000-09-08 2001-09-07 Verfahren zur herstellung anellierter tetrahydro-[1h]-triazole Withdrawn EP1315733A2 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10044457 2000-09-08
DE10044457 2000-09-08
PCT/EP2001/010352 WO2002020531A2 (de) 2000-09-08 2001-09-07 Verfahren zur herstellung anellierter tetrahydro-[1h]-triazole

Publications (1)

Publication Number Publication Date
EP1315733A2 true EP1315733A2 (de) 2003-06-04

Family

ID=7655517

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01972023A Withdrawn EP1315733A2 (de) 2000-09-08 2001-09-07 Verfahren zur herstellung anellierter tetrahydro-[1h]-triazole

Country Status (6)

Country Link
US (1) US20040097728A1 (de)
EP (1) EP1315733A2 (de)
JP (1) JP2004508377A (de)
AU (1) AU2001291836A1 (de)
CA (1) CA2421839A1 (de)
WO (1) WO2002020531A2 (de)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
UA89941C2 (ru) 2002-10-30 2010-03-25 Басф Акциенгезелльшафт Фенилизо(тио)цианаты и промежуточные соенинения, способы их получения
JP2005239602A (ja) * 2004-02-25 2005-09-08 Sumitomo Chemical Co Ltd 2−オキサゾリジノン類の製造方法
JP2017214289A (ja) * 2014-09-12 2017-12-07 公益財団法人相模中央化学研究所 ピラゾリノン誘導体、その製造方法及びそれを有効成分として含有する除草剤

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2526358A1 (de) * 1974-06-19 1976-01-08 Mitsubishi Chem Ind 1,2-alkylenurazolderivate, ihre herstellung und verwendung als herbizid
EP0211805A3 (de) * 1985-07-24 1988-01-13 Ciba-Geigy Ag Neue N-(2-Fluorphenyl)-azolidine
US4947535A (en) * 1988-03-29 1990-08-14 Joy Technologies, Inc. Method which provides for the placement of a bit point of a bit at a predetermined position
DE4236220A1 (de) * 1992-10-27 1994-04-28 Degussa Anellierte Triazolverbindungen
DE4335438A1 (de) * 1993-10-18 1995-04-20 Bayer Ag 4-Cyanophenyliminoheterocyclen
US5484763A (en) * 1995-02-10 1996-01-16 American Cyanamid Company Substituted benzisoxazole and benzisothiazole herbicidal agents
IL125947A0 (en) * 1997-09-17 1999-04-11 American Cyanamid Co 3-(1,2-benzisothiazol- and isoxazol-5-yl)-2,4(1h,3h)-pyrimidinedione or thione and 3-(1,2-benzisothiazol- and isoxazol-5-yl)-4(3)-pyrimidinone or thione herbicidal agents
DE59904051D1 (de) * 1998-07-03 2003-02-20 Basf Ag Verfahren zur herstellung von anellierten triazolen und neue anellierte triazole und deren verwendung
EP1111993A4 (de) * 1998-09-09 2002-12-04 Ishihara Sangyo Kaisha Als herbizide verwendbare kondensierte benzen-derivate

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO0220531A2 *

Also Published As

Publication number Publication date
CA2421839A1 (en) 2003-03-07
WO2002020531A3 (de) 2003-01-03
WO2002020531A2 (de) 2002-03-14
AU2001291836A1 (en) 2002-03-22
JP2004508377A (ja) 2004-03-18
US20040097728A1 (en) 2004-05-20

Similar Documents

Publication Publication Date Title
WO2003022831A1 (de) 4-alkylsubstituierte thienyloxy-pyridine als herbizide
WO1999005130A1 (de) Substituierte 3-phenylisoxazoline
WO2000028822A2 (de) Herbizide 3-[benz(ox/thi)azol-7-yl]-1h-pyrimidin-2,4-dione
WO1997035845A1 (de) Substituierte 1-methyl-3-benzyluracile
EP1187819B1 (de) N-substituierte perhydrodiazine
EP0835248B1 (de) 1-amino-3-benzyluracile
WO2002020531A2 (de) Verfahren zur herstellung anellierter tetrahydro-[1h]-triazole
EP0920415A1 (de) Substituierte 2-phenylpyridine als herbizide
WO2000026194A1 (de) Neue 1-aryl-4-thiouracile
EP1187820A1 (de) Substituierte harnstoffe
EP0777658B1 (de) Substituierte triazolinone als pflanzenschutzmittel
WO1999006394A1 (de) Substituierte 2-(benzaryl)pyridine
WO2000001700A1 (de) Verfahren zur herstellung von anellierten triazolen und neue anellierte triazole und deren verwendung
WO2001025216A1 (de) 1-aryl-1,3-dihydro-imidazol-2-(thi)on derivate, deren herstellung und deren verwendung als herbizide oder zur desikkation/defoliation von pflanzen
WO1999018082A1 (de) Neue substituierte pyridazinone
WO1998042682A1 (de) Neue 1-amino-3-benzyluracile
DE19924805A1 (de) Neue 5-(Benz(o)yl/Anilino)triazindionthione, Verfahren zu deren Herstellung und deren Verwendung als Herbizide
EP1181297A1 (de) Cyclohexenondioxothiochromanoyl-derivate
WO2001044204A1 (de) Phenoxy- und thiophenoxyacrylsäureverbindungen als herbizide

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20030307

AK Designated contracting states

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20040401

RTI1 Title (correction)

Free format text: METHOD FOR PRODUCING ANELLATED TETRAHYDRO-??1H -TRIAZOLES