EP1312136B1 - Shortened dipole and monopole loops - Google Patents

Shortened dipole and monopole loops Download PDF

Info

Publication number
EP1312136B1
EP1312136B1 EP00979586A EP00979586A EP1312136B1 EP 1312136 B1 EP1312136 B1 EP 1312136B1 EP 00979586 A EP00979586 A EP 00979586A EP 00979586 A EP00979586 A EP 00979586A EP 1312136 B1 EP1312136 B1 EP 1312136B1
Authority
EP
European Patent Office
Prior art keywords
dipole
arrangement according
monopole
length
lambda
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP00979586A
Other languages
German (de)
French (fr)
Other versions
EP1312136A1 (en
Inventor
Ulrich L. Rohde
Klaus Danzeisen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Synergy Microwave Corp
Original Assignee
Synergy Microwave Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Synergy Microwave Corp filed Critical Synergy Microwave Corp
Publication of EP1312136A1 publication Critical patent/EP1312136A1/en
Application granted granted Critical
Publication of EP1312136B1 publication Critical patent/EP1312136B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/30Resonant antennas with feed to end of elongated active element, e.g. unipole
    • H01Q9/32Vertical arrangement of element
    • H01Q9/36Vertical arrangement of element with top loading
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/16Resonant antennas with feed intermediate between the extremities of the antenna, e.g. centre-fed dipole
    • H01Q9/26Resonant antennas with feed intermediate between the extremities of the antenna, e.g. centre-fed dipole with folded element or elements, the folded parts being spaced apart a small fraction of operating wavelength
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/30Resonant antennas with feed to end of elongated active element, e.g. unipole
    • H01Q9/42Resonant antennas with feed to end of elongated active element, e.g. unipole with folded element, the folded parts being spaced apart a small fraction of the operating wavelength

Definitions

  • the invention relates to a loop dipole (folded dipole) or loop monopole.
  • a loop or Faltdipol consists of two tight adjacent lambda / 2 dipoles connected at the ends are, of which only one is fed. On the Dipoles sets the same current direction. Both Dipoles support their effect. By different thicknesses of the two dipoles can over Transformative effects affects the input impedance become.
  • loop monopole the half loop dipole can be understood on a leading level and of two Lambda / 4 long dipoles exists, which in turn are dense arranged adjacent and at the top with each other are connected.
  • Such loop dipoles or Loop monopoles at a conductive level are called transmit and Receiving antennas in the short and ultra short wave range in various embodiments used.
  • An inventive loop dipole or loop monopole can be extremely shortened, for example to only 5 to 6% the operating wavelength at the lowest operating frequency, so that the mechanical length of a loop dipole for a Operating frequency of 1.5 MHz only a mechanical length of 10 to 12 meters. Nevertheless, that is Radiation resistance still sufficiently large and larger than 10 Ohm.
  • Such an inventive Loop dipole almost the same good properties as a usual lambda / 2 dipole.
  • Experiments have shown that too the efficiency of the radiating antenna part of a antenna according to the invention without losses of Adjustment elements and earth losses at 1.8 MHz more than 50% and at 3.6 MHz more than 80%, so too in this regard, same characteristics as one Lambda / 2 dipole can be achieved.
  • Loop dipole or loop monopole very much simple and inexpensive, since at the ends only a non-radiating line piece of appropriate length is set. Geometrically complicated roof capacities in Shape of stretched wires or complicated Shortening coils in the dipole are avoided. The usage a non-radiating line piece to compensate for Radiator cut is also because of the low losses Such features particularly advantageous.
  • the inventive arrangement is especially suitable for Construction of multi-band antennas that are easy in the Frequency can be switched.
  • An inventive vertical dipole can also because of its small length At relatively low frequencies, a flat radiation produce. The field strength of the antenna is in the near field down relatively low, so that the strict provisions simply satisfied for the operation of such transmitter antennas can be.
  • the principle of the invention can be used in all conventional known forms of loop dipoles and loop monopolies be applied, both in radiating simple dipoles as well as reflectors or directors of more complex ones Antenna arrangements, as well as logarithmic periodic Antennas with such loop dipoles or Loop monopoles are constructed. Also existing antennas can be supplemented according to the principle of the invention or with be rebuilt at low cost. Since the assigned non-radiating line pieces Switching devices are easily remote controlled, can be an antenna consisting of several loop dipoles not only on optimal radiation resistance, but also on optimal reflection factor or direction factor be matched.
  • FIG. 1 shows schematically a device according to the invention Loop dipole, which is operated as a horizontal radiator. He consists of two strong compared to the nominal length lambda / 2 shortened parallel dipole radiators 1 and 2, in the small distance of small lambda / 20 parallel are arranged side by side and of which only one Dipole radiator 1 is fed in the middle.
  • this Dipole radiator 1, 2 is each a non-radiating Line piece turned on, either in the form of a Parallel wire air line 3, as for the right Dipolende is shown, or in the form of a unbalanced coaxial cable 4, as shown on the left end of the Dipole is shown.
  • the length Lx of this non-radiating Line piece 3 or 4 is chosen so that under Consideration of the line piece associated Shortening factor (depending on the dielectric of the line 3 or the coaxial cable 4) of the loop dipole in total again reaches its desired length of lambda / 2.
  • Loop monopoles are applied, which are two opposite the desired length of lambda / 4 strongly shortened parallel Monopolies 5 and 6 exist and at a senior level 7 are arranged. They represent one half of one Loop dipole, which is mirrored at the conductive level 7 becomes.
  • the Monopolstrahler 5, 6 with respect to Wavelength shortens greatly and be passed through to the upper ends connected non-radiating line piece. 8 electrically extended, as shown in Figure 2 again by a Coaxial cable is indicated.
  • the non-radiating line pieces 3, 4 and 8 can be housed mechanically in a small housing 30, that according to FIG. 5 at the dipole ends or in the dipole center is appropriate. After such loop dipoles or Loop monopolies usually for transformer reasons anyway one of the radiators is designed as a hollow tube, Also, the additional non-radiating conductor piece can simply be housed in this hollow tube. At higher Frequencies that cause a short circuit inside the hollow tube require that is accommodated within the hollow tube, non-radiating line piece via an additional Extension line with the outside of the hollow tube attached actual switching device connected to this Extension line is either lambda / 2 or lambda or a multiple of lambda long. This can be the real thing For example, switching in the central housing 30 be carried out while the non-radiative Line piece is mounted in the hollow tube. In some cases, especially when using air ducts, one can additional shielding of the non-radiating line sections be beneficial.
  • FIG. 3 shows a loop dipole according to the invention can be switched to several frequency ranges. Over a suitable switching means can at the ends of the Loop dipoles of different lengths non-radiating Line pieces are turned on.
  • Relay switch 10 and 11 at predetermined intervals in the non-radiative and in this embodiment as Two-wire line shown line piece turned on are.
  • This line piece is in the embodiment from three line pieces of length L1, L2 and L3. If both Switches 10 and 11 shown in the figure 3 Take position a, only the line piece L1 is on turned on the radiating part 1,2 of the loop dipole, which corresponds to an operating frequency f1.
  • Figure 4 shows another possibility for such Frequency switching of the antenna, the relay switches are in This embodiment by filter circuits 13 and 14th replaced, consisting of a series resonant circuit and two Parallel resonant circuits exist and those on the corresponding operating frequencies f1 and f2 are tuned. This is an automatic multi-band operation without switching such an antenna possible.
  • VSWR VSWR
  • the antenna better to the impedance of the source or the It may be advantageous to adapt the consumer fed part 1 or 5 of the loop dipole of Fig. 1st or the loop monopole of FIG. 2 of several parallel emitters, using a relay switching matrix can then be switched so that the Transformation ratio in discrete steps over one wide range and to the source or the Consumer can be adjusted.
  • 3 such parallel radiators can by corresponding switching the transformation ratio be switched between 1: 4 over 1: 9 to 1:16.
  • Feed point to a leading to the transmitter or receiver Feeder cables can be commercially available Antennenanpallonstechnik to be used. It has proved to be particularly advantageous Multi-band operation proved this, a matching circuit after Figure 5 to use, consisting of two cascaded 1: 4 transformers 20, 21 is made, their taps each via series resonant circuits 22 to 25 with the feed points 26, 27 of the loop dipole are connected.
  • the Nominal resonant frequency of these series resonant circuits 22 to 25 corresponds in each case to the middle of the useful bands to which the Loop dipole should be switchable.
  • About one Symmetrierübertrager 28 (Balun) are the transformer 20, 21st connected to the supply cable 29.
  • the impedance of the Transformer to the respective taps is corresponding the real part of the radiation resistance chosen for the first tap, via the series resonant circuit 22 with the For example, this real part is 12.5 Ohm, for the second tap 50 ohms, for the third Tapping 100 ohms and for the total cascade of the two Transformers 200 ohms.
  • the imaginary part of the antenna impedance is due to a slight detuning of the series 22 to 25 compensated. In this way, a desired Comply with VSWR of less than 2.

Description

Die Erfindung betrifft einen Schleifen-Dipol (Faltdipol) bzw. Schleifenmonopol.The invention relates to a loop dipole (folded dipole) or loop monopole.

Ein Schleifen- bzw. Faltdipol besteht aus zwei dicht benachbarten Lambda/2-Dipolen, die an den Enden verbunden sind, von denen aber nur einer gespeist wird. Auf den Dipolen stellt sich die gleiche Stromrichtung ein. Beide Dipole unterstützen sich in ihrer Wirkung. Durch unterschiedliche Dicken der beiden Dipole kann über transformatorische Effekte die Eingangsimpedanz beeinflußt werden. Nach dem gleichen physikalischen Prinzip wirkt ein sogenannter Schleifenmonopol, der als halber Schleifendipol auf einer leitenden Ebene aufgefaßt werden kann und aus zwei Lambda/4 langen Dipolen besteht, die wiederum dicht benachbart angeordnet und am oberen Ende miteinander verbunden sind. Solche Schleifendipole bzw. Schleifenmonopole auf leitender Ebene werden als Sende- und Empfangsantennen im Kurz- und Ultrakurzwellenbereich in verschiedenen Ausführungsformen benutzt.A loop or Faltdipol consists of two tight adjacent lambda / 2 dipoles connected at the ends are, of which only one is fed. On the Dipoles sets the same current direction. Both Dipoles support their effect. By different thicknesses of the two dipoles can over Transformative effects affects the input impedance become. Following the same physical principle works so-called loop monopole, the half loop dipole can be understood on a leading level and of two Lambda / 4 long dipoles exists, which in turn are dense arranged adjacent and at the top with each other are connected. Such loop dipoles or Loop monopoles at a conductive level are called transmit and Receiving antennas in the short and ultra short wave range in various embodiments used.

Beim Amateur- und auch Militärfunk wird auch im sogenannten Grenzwellenbereich Funkbetrieb durchgeführt. Die tiefste nutzbare Frequenz liegt bei etwa 1,5 MHz, was einer Wellenlänge von knapp 200 Metern entspricht. Eine gebräuchliche Lambda/2-Antenne hätte demzufolge eine Länge von etwa 100 Metern, deren Realisierung als horizontale oder vertikale Antenne erheblichen mechanischen Aufwand bedeutet. Es ist bekannt, solche Antennen gegenüber ihrer Soll-Länge mechanisch zu verkürzen und den damit verbundenen Nachteil an Effizienz durch geeignete Maßnahmen wie Dachkapazitäten und/oder Serieninduktivitäten auszugleichen, auch diese bekannte Lösungen erfordern vor allem bei einer Antenne im Mehrbandbetrieb weiterhin einen erheblichen Aufwand.In amateur and military radio is also in the so-called Boundary wave range radio operation carried out. The deepest usable frequency is about 1.5 MHz, which is one Wavelength of just under 200 meters corresponds. A conventional lambda / 2 antenna would therefore have a length of about 100 meters, their realization as horizontal or vertical antenna means considerable mechanical effort. It is known such antennas with respect to their nominal length mechanically shorten and the associated disadvantage in efficiency through suitable measures such as roof capacities and / or series inductances, even these known solutions require especially in an antenna in the Multi-band operation continues to be a considerable effort.

Es ist daher Aufgabe der Erfindung, einen Schleifendipol (Faltdipol) bzw. Schleifenmonopol zu schaffen, der trotz starker Verkürzung auf beispielsweise nur 5 bis 10% der Betriebswellenlänge einen ausreichend großen Strahlungswiderstand von mehr als 10 Ohm aufweist und zwar ohne Verwendung von diskreten Transformationselementen wie Dachkapazitäten oder Induktivitäten.It is therefore an object of the invention to provide a loop dipole (Faltdipol) or loop monopoly to create, despite strong reduction to, for example, only 5 to 10% of Operating wavelength a sufficiently large Radiation resistance of more than 10 ohms and that without using discrete transformation elements like Roof capacities or inductances.

Diese Aufgabe wird für einen Schleifendipol bzw. Schleifenmonopol durch die Maßnahmen nach den nebengeordneten Ansprüchen 1 und 2 gelöst. Vorteilhafte Weiterbildungen ergeben sich aus den Unteransprüchen.This task is for a loop dipole or Loop monopoly by the measures after the independent claims 1 and 2 solved. advantageous Further developments emerge from the subclaims.

Ein erfindungsgemäßer Schleifendipol bzw. Schleifenmonopol kann extrem verkürzt werden, beispielsweise auf nur 5 bis 6% der Betriebswellenlänge bei der tiefsten Betriebsfrequenz, so daß die mechanische Länge eines Schleifendipols für eine Betriebsfrequenz von 1,5 MHz nur eine mechanische Länge von 10 bis 12 Metern beträgt. Trotzdem ist der Strahlungswiderstand noch ausreichend groß und größer als 10 Ohm. Damit besitzt ein solcher erfindungsgemäßer Schleifendipol nahezu gleichgute Eigenschaften wie ein üblicher Lambda/2-Dipol. Versuche haben gezeigt, daß auch der Wirkungsgrad des strahlenden Antennenteiles einer erfindungsgemäßen Antenne ohne Verluste von Anpassungselementen und Erdverlusten bei 1,8 MHz mehr als 50% und bei 3,6 MHz mehr als 80% beträgt, also auch diesbezüglich gleichgute Eigenschaften wie bei einem Lambda/2-Dipol erreicht werden. Trotzdem kann der erfindungsgemäße Schleifendipol bzw. Schleifenmonopol sehr einfach und preiswert aufgebaut werden, da an den Enden nur ein nichtstrahlendes Leitungsstück entsprechender Länge angesetzt wird. Geometrisch komplizierte Dachkapazitäten in Form von ausgespannten Drähten bzw. komplizierte Verkürzungsspulen im Dipol werden vermieden. Die Verwendung eines nichtstrahlenden Leitungsstückes zur Kompensation der Strahlerverkürzung ist auch wegen der geringen Verluste solcher Leistungsstücke besonders vorteilhaft. Die erfindungsgemäße Anordnung eignet sich vor allem auch zum Aufbau von Mehrband-Antennen, die auf einfache Weise in der Frequenz umgeschaltet werden können. Eine erfindungsgemäßer vertikaler Dipol kann wegen seiner geringen Länge auch noch bei relativ tiefen Frequenzen eine flache Abstrahlung erzeugen. Dabei ist die Feldstärke der Antenne im Nahfeld nach unten relativ gering, so daß die strengen Bestimmungen für den Betrieb solcher Senderantennen einfach erfüllt werden können.An inventive loop dipole or loop monopole can be extremely shortened, for example to only 5 to 6% the operating wavelength at the lowest operating frequency, so that the mechanical length of a loop dipole for a Operating frequency of 1.5 MHz only a mechanical length of 10 to 12 meters. Nevertheless, that is Radiation resistance still sufficiently large and larger than 10 Ohm. Thus, such an inventive Loop dipole almost the same good properties as a usual lambda / 2 dipole. Experiments have shown that too the efficiency of the radiating antenna part of a antenna according to the invention without losses of Adjustment elements and earth losses at 1.8 MHz more than 50% and at 3.6 MHz more than 80%, so too in this regard, same characteristics as one Lambda / 2 dipole can be achieved. Nevertheless, the Loop dipole or loop monopole according to the invention very much simple and inexpensive, since at the ends only a non-radiating line piece of appropriate length is set. Geometrically complicated roof capacities in Shape of stretched wires or complicated Shortening coils in the dipole are avoided. The usage a non-radiating line piece to compensate for Radiator cut is also because of the low losses Such features particularly advantageous. The inventive arrangement is especially suitable for Construction of multi-band antennas that are easy in the Frequency can be switched. An inventive vertical dipole can also because of its small length At relatively low frequencies, a flat radiation produce. The field strength of the antenna is in the near field down relatively low, so that the strict provisions simply satisfied for the operation of such transmitter antennas can be.

Das erfindungsgemäße Prinzip kann bei allen üblichen bekannten Formen von Schleifendipolen und Schleifenmonopolen angewendet werden, sowohl bei strahlenden einfachen Dipolen als auch bei Reflektoren bzw. Direktoren von komplexeren Antennenanordnungen, ebenso bei logarithmisch-periodischen Antennen, die mit solchen Schleifendipolen bzw. Schleifenmonopolen aufgebaut sind. Auch vorhandene Antennen können nach dem erfindungsgemäßen Prinzip ergänzt bzw. mit geringem Aufwand umgebaut werden. Da die den nichtstrahlenden Leitungsstücken zugeordneten Umschalteinrichtungen auf einfache Weise fernbedienbar sind, kann eine aus mehreren Schleifendipolen bestehende Antenne nicht nur auf optimalen Strahlungswiderstand, sondern auch auf optimalen Reflexionsfaktor bzw. Direktionsfaktor abgestimmt werden.The principle of the invention can be used in all conventional known forms of loop dipoles and loop monopolies be applied, both in radiating simple dipoles as well as reflectors or directors of more complex ones Antenna arrangements, as well as logarithmic periodic Antennas with such loop dipoles or Loop monopoles are constructed. Also existing antennas can be supplemented according to the principle of the invention or with be rebuilt at low cost. Since the the assigned non-radiating line pieces Switching devices are easily remote controlled, can be an antenna consisting of several loop dipoles not only on optimal radiation resistance, but also on optimal reflection factor or direction factor be matched.

Die Erfindung wird im Folgenden anhand schematischer Zeichnungen an Ausführungsbeispielen näher erläutert.The invention is described below with reference to schematic Drawings explained in more detail on exemplary embodiments.

Figur 1 zeigt schematisch einen erfindungsgemäßen Schleifendipol, der als Horizontalstrahler betrieben ist. Er besteht aus zwei gegenüber der Soll-Länge Lambda/2 stark verkürzten parallelen Dipolstrahlern 1 und 2, die im geringen Abstand von kleiner Lambda/20 parallel nebeneinander angeordnet sind und von denen nur der eine Dipolstrahler 1 in der Mitte gespeist ist. Die mechanische Länge L dieser beiden Dipolstrahler 1, 2 beträgt beispielsweise nur 6% der Betriebswellenlänge Lambda, für die untere Grenzfrequenz von 1,5 MHz des Grenzwellenbereiches bedeutet dies eine mechanische Länge von nur L = 12 Meter. An den beiden Enden dieser Dipolstrahler 1, 2 ist jeweils ein nichtstrahlendes Leitungsstück angeschaltet und zwar entweder in Form einer Paralleldraht-Luftleitung 3, wie dies für das rechte Dipolende dargestellt ist, oder in Form eines unsymmetrischen Koaxialkabels 4, wie dies am linken Ende des Dipols dargestellt ist. Die Länge Lx dieses nichtstrahlenden Leitungsstückes 3 bzw. 4 ist so gewählt, daß unter Berücksichtigung des dem Leitungsstück zugehörigen Verkürzungsfaktors (abhängig vom Dielektrikum der Leitung 3 bzw. des Koaxialkabels 4) der Schleifendipol insgesamt wieder seine Soll-Länge von Lambda/2 erreicht. Durch dieses nichtstrahlende Leitungsstück an den Enden der stark verkürzten Dipolstrahler 1,2 wird der Strahlungswiderstand gegenüber dem unverlängerten Dipol beträchtlich erhöht und so der ungünstige Rahmenantenneneffekt vermieden, so daß trotz starker Verkürzung des strahlenden Antennenteiles ein nahezu gleichhoher Wirkungsgrad wie bei einem Lambda/2-Dipol erreicht wird und dies bei eine problemlosen Strahlungswiderstand in der Größenordnung der Impedanz der Quelle bzw. des Verbrauchers.FIG. 1 shows schematically a device according to the invention Loop dipole, which is operated as a horizontal radiator. He consists of two strong compared to the nominal length lambda / 2 shortened parallel dipole radiators 1 and 2, in the small distance of small lambda / 20 parallel are arranged side by side and of which only one Dipole radiator 1 is fed in the middle. The mechanical Length L of these two dipole radiators 1, 2 amounts to For example, only 6% of the operating wavelength lambda, for the lower limit frequency of 1.5 MHz of Grenzwellenbereiches this means a mechanical length from only L = 12 meters. At the two ends of this Dipole radiator 1, 2 is each a non-radiating Line piece turned on, either in the form of a Parallel wire air line 3, as for the right Dipolende is shown, or in the form of a unbalanced coaxial cable 4, as shown on the left end of the Dipole is shown. The length Lx of this non-radiating Line piece 3 or 4 is chosen so that under Consideration of the line piece associated Shortening factor (depending on the dielectric of the line 3 or the coaxial cable 4) of the loop dipole in total again reaches its desired length of lambda / 2. Because of this non-radiating line piece at the ends of the strong shortened dipole radiator 1,2 becomes the radiation resistance considerably increased compared to the non-elongated dipole and so avoided the unfavorable loop antenna effect, so that despite strong shortening of the radiating antenna part almost the same high efficiency as a lambda / 2 dipole is achieved and this at a hassle-free Radiation resistance in the order of magnitude of the impedance Source or the consumer.

Das gleiche Prinzip kann gemäß Figur 2 auch bei sogenannten Schleifenmonopolen angewendet werden, die aus zwei gegenüber der Soll-Länge von Lambda/4 stark verkürzten parallelen Monopolen 5 und 6 bestehen und auf einer leitenden Ebene 7 angeordnet sind. Sie stellen die eine Hälfte eines Schleifendipols dar, der an der leitenden Ebene 7 gespiegelt wird. Auch hier sind die Monopolstrahler 5, 6 gegenüber der Wellenlänge stark verkürzt und werden durch ein an den oberen Enden angeschaltetes nichtstrahlendes Leitungsstück 8 elektrisch verlängert, wie dies in Figur 2 wieder durch ein Koaxialkabel angedeutet ist.The same principle can according to Figure 2 in so-called Loop monopoles are applied, which are two opposite the desired length of lambda / 4 strongly shortened parallel Monopolies 5 and 6 exist and at a senior level 7 are arranged. They represent one half of one Loop dipole, which is mirrored at the conductive level 7 becomes. Again, the Monopolstrahler 5, 6 with respect to Wavelength shortens greatly and be passed through to the upper ends connected non-radiating line piece. 8 electrically extended, as shown in Figure 2 again by a Coaxial cable is indicated.

Die nichtstrahlenden Leitungsstücke 3, 4 und 8 können mechanisch in einem kleinen Gehäuse 30 untergebracht werden, das gemäß Fig. 5 an den Dipolenden oder in der Dipolmitte angebracht ist. Nachdem bei solchen Schleifendipolen bzw. Schleifenmonopolen aus transformatorischen Gründen meist sowieso einer der Strahler als Hohlrohr ausgebildet ist, kann das zusätzliche nichtstrahlende Leitungsstück auch einfach in diesem Hohlrohr untergebracht werden. Bei höheren Frequenzen, die einen Kurzschluß innerhalb des Hohlrohres erfordern, wird das innerhalb des Hohlrohres untergebrachte, nichtstrahlende Leitungsstück über eine zusätzliche Verlängerungsleitung mit der außerhalb des Hohlrohres angebrachten eigentlichen Schalteinrichtung verbunden, diese Verlängerungsleitung ist entweder Lambda/2 oder Lambda bzw. einem Vielfachen von Lambda lang. Damit kann das eigentliche Schalten beispielsweise in dem zentralen Gehäuse 30 durchgeführt werden, während das nichtstrahlende Leitungsstück im Hohlrohr angebracht ist. In manchen Fällen, vor allem bei Verwendung von Luftleitungen, kann eine zusätzliche Abschirmung der nichtstrahlenden Leitungsstücke vorteilhaft sein.The non-radiating line pieces 3, 4 and 8 can be housed mechanically in a small housing 30, that according to FIG. 5 at the dipole ends or in the dipole center is appropriate. After such loop dipoles or Loop monopolies usually for transformer reasons anyway one of the radiators is designed as a hollow tube, Also, the additional non-radiating conductor piece can simply be housed in this hollow tube. At higher Frequencies that cause a short circuit inside the hollow tube require that is accommodated within the hollow tube, non-radiating line piece via an additional Extension line with the outside of the hollow tube attached actual switching device connected to this Extension line is either lambda / 2 or lambda or a multiple of lambda long. This can be the real thing For example, switching in the central housing 30 be carried out while the non-radiative Line piece is mounted in the hollow tube. In some cases, especially when using air ducts, one can additional shielding of the non-radiating line sections be beneficial.

Figur 3 zeigt einen erfindungsgemäßen Schleifendipol, der auf mehrere Frequenzbereiche umschaltbar ist. Über eine geeignete Umschalteinrichtung können an den Enden des Schleifendipols unterschiedlich lange nichtstrahlende Leitungsstücke angeschaltet werden. In dem Ausführungsbeispiel nach Figur 3 geschieht dies durch Relaisumschalter 10 und 11, die in vorbestimmten Abständen in das nichtstrahlende und in diesem Ausführungsbeispiel als Zweidrahtleitung dargestellte Leitungsstück eingeschaltet sind. Dieses Leitungsstück besteht im Ausführungsbeispiel aus drei Leitungsstücken der Länge L1, L2 und L3. Wenn beide Schalter 10 und 11 die in der Figur 3 dargestellte Schaltstellung a einnehmen, ist nur das Leitungsstück L1 an den strahlenden Teil 1,2 des Schleifendipols angeschaltet, was einer Betriebsfrequenz f1 entspricht. Wenn der Schalter 10 die Schaltstellung b einnimmt, wird zusätzlich noch das Leitungsstück L2 zugeschaltet, was einer Betriebsfrequenz f2 entspricht. Wenn schließlich auch noch der Schalter 11 die andere Schaltstellung b einnimmt, wird auch noch das Leitungsstück L3 zugeschaltet, was der tiefsten Betriebsfrequenz f3 entspricht.FIG. 3 shows a loop dipole according to the invention can be switched to several frequency ranges. Over a suitable switching means can at the ends of the Loop dipoles of different lengths non-radiating Line pieces are turned on. By doing Embodiment of Figure 3, this is done by Relay switch 10 and 11, at predetermined intervals in the non-radiative and in this embodiment as Two-wire line shown line piece turned on are. This line piece is in the embodiment from three line pieces of length L1, L2 and L3. If both Switches 10 and 11 shown in the figure 3 Take position a, only the line piece L1 is on turned on the radiating part 1,2 of the loop dipole, which corresponds to an operating frequency f1. When the switch 10 assumes the switching position b, is additionally the Line section L2 is switched on, which corresponds to an operating frequency f2 equivalent. Finally, if the switch 11 the Other switching position occupies b, is still the Line section L3 switched on, which is the deepest Operating frequency f3 corresponds.

Figur 4 zeigt eine andere Möglichkeit für eine solche Frequenzumschaltung der Antenne, die Relaisschalter sind in diesem Ausführungsbeispiel durch Filterschaltungen 13 und 14 ersetzt, die aus einem Serienresonanzkreis und zwei Parallelresonanzkreisen bestehen und die auf die entsprechenden Betriebsfrequenzen f1 und f2 abgestimmt sind. Damit ist ohne Umschaltung ein automatischer Mehrbandbetrieb einer solchen Antenne möglich.Figure 4 shows another possibility for such Frequency switching of the antenna, the relay switches are in This embodiment by filter circuits 13 and 14th replaced, consisting of a series resonant circuit and two Parallel resonant circuits exist and those on the corresponding operating frequencies f1 and f2 are tuned. This is an automatic multi-band operation without switching such an antenna possible.

Die Anordnung nach Figur 3 mit Relaisschaltern eignet sich für Sendeantennen hoher Leistung mit mehr als 100 Watt, die Anordnung nach Figur 4 mit Resonanzkreisen ist für mittlere Leistungen bis 100 Watt geeignet, Auch eine Kombination von mechanischen Schaltern und Filterschaltungen kann in manchen Anwendungsfällen vorteilhaft sein.The arrangement of Figure 3 with relay switches is suitable for transmit antennas of high power with more than 100 watts, the Arrangement of Figure 4 with resonant circuits is for medium Power up to 100 watts suitable, also a combination of mechanical switches and filter circuits can be used in some Use cases advantageous.

Durch eine binäre Stufung der unterschiedlich langen Leitungsstücke L1, L2 und L3 kann eine quasikontinuierliche Durchstimmung erreicht werden, indem das erste Leitungsstück L1 beispielsweise 2° = 1 Einheit, das zweite Leitungsstück L2 21 = 2 Einheiten, das dritte Leitungsstück L3 22 = 4 Einheiten usw. lang gewählt wird, so daß damit alle möglichen Längen eingestellt werden können. Dabei ist es vorteilhaft, die Abstimmschrittweite in Relation zur VSWR (Stehwellenverhältnis)-Bandbreite zu bringen, also beispielsweise im Grenzwellenbereich für ein VSWR kleiner 2 eine Schrittweite von 50 bis 100 kHz zu wählen. Auch eine Kombination von bandabhängig geschalteten Leitungsstücken und quasikontinuierlich geschalteten Leitungsstücken kann in manchen Anwendungsfällen sinnvoll sein.By a binary graduation of the different lengths of pipe L1, L2 and L3 a quasi-continuous tuning can be achieved by the first line segment L1, for example, 2 ° = 1 unit, the second line segment L2 2 1 = 2 units, the third line section L3 2 2 = 4th Units, etc. is long, so that all possible lengths can be adjusted. It is advantageous to bring the tuning step in relation to the VSWR (VSWR) bandwidth, so for example, in the cut-off wave range for a VSWR less than 2 to select a step size of 50 to 100 kHz. A combination of band-dependent switched line sections and quasi-continuously switched line sections may be useful in some applications.

Um den meist zu niederohmigen reellen Strahlungswiderstand der Antenne besser an die Impedanz der Quelle bzw. des Verbrauchers anzupassen, kann es vorteilhaft sein, den gespeisten Teil 1 bzw. 5 des Schleifendipols nach Fig. 1 bzw. des Schleifenmonopols nach Fig. 2 aus mehreren parallelen Strahlern aufzubauen, die mit Hilfe einer Relais-Schaltmatrix dann so umgeschaltet werden können, daß das Transformationsverhältnis in diskreten Stufen über einen weiten Bereich geändert und an die Quelle bzw. den Verbraucher angepaßt werden kann. Bei Verwendung von beispielsweise 3 solchen parallelen Strahlern kann durch entsprechendes Umschalten das Transformationsverhältnis zwischen 1:4 über 1:9 bis 1:16 umgeschaltet werden.To the mostly low-resistance real radiation resistance the antenna better to the impedance of the source or the It may be advantageous to adapt the consumer fed part 1 or 5 of the loop dipole of Fig. 1st or the loop monopole of FIG. 2 of several parallel emitters, using a relay switching matrix can then be switched so that the Transformation ratio in discrete steps over one wide range and to the source or the Consumer can be adjusted. When using For example, 3 such parallel radiators can by corresponding switching the transformation ratio be switched between 1: 4 over 1: 9 to 1:16.

Zur Anpassung eines erfindungsgemäßen Schleifendipols am Speisepunkt an ein zum Sender bzw. Empfänger führendes Speisekabel können handelsübliche Antennenanpaßgeräte benutzt werden. Als besonders vorteilhaft hat es sich bei Mehrbandbetrieb erwiesen, hierfür eine Anpaßschaltung nach Figur 5 zu benutzen, die aus zwei in Kaskade geschalteten 1:4-Übertragern 20, 21 besteht, deren Anzapfungen jeweils über Serienresonanzkreise 22 bis 25 mit den Speisepunkten 26, 27 des Schleifendipols verbunden sind. Die Nennresonanzfrequenz dieser Serienresonanzkreise 22 bis 25 entspricht jeweils der Mitte der Nutzbänder, auf welche der Schleifendipol umschaltbar sein soll. Über einen Symmetrierübertrager 28 (Balun) sind die Übertrager 20, 21 mit dem Speisekabel 29 verbunden. Die Impedanz der Übertrager an den jeweiligen Anzapfungen ist entsprechend dem Realteil des Strahlungswiderstandes gewählt, für die erste Anzapfung, die über den Serienresonanzkreis 22 mit dem Dipol verbunden ist, ist dieser Realteil beispielsweise 12,5 Ohm, für die zweite Anzapfung 50 Ohm, für die dritte Anzapfung 100 Ohm und für die Gesamtkaskade der beiden Übertrager 200 Ohm. Der Imaginärteil der Antennenimpedanz wird durch eine geringe Verstimmung der Serienkreise 22 bis 25 kompensiert. Auf diese Weise läßt sich ein gewünschtes VSWR von kleiner 2 einhalten.For adapting a loop dipole according to the invention Feed point to a leading to the transmitter or receiver Feeder cables can be commercially available Antennenanpaßgeräte to be used. It has proved to be particularly advantageous Multi-band operation proved this, a matching circuit after Figure 5 to use, consisting of two cascaded 1: 4 transformers 20, 21 is made, their taps each via series resonant circuits 22 to 25 with the feed points 26, 27 of the loop dipole are connected. The Nominal resonant frequency of these series resonant circuits 22 to 25 corresponds in each case to the middle of the useful bands to which the Loop dipole should be switchable. About one Symmetrierübertrager 28 (Balun) are the transformer 20, 21st connected to the supply cable 29. The impedance of the Transformer to the respective taps is corresponding the real part of the radiation resistance chosen for the first tap, via the series resonant circuit 22 with the For example, this real part is 12.5 Ohm, for the second tap 50 ohms, for the third Tapping 100 ohms and for the total cascade of the two Transformers 200 ohms. The imaginary part of the antenna impedance is due to a slight detuning of the series 22 to 25 compensated. In this way, a desired Comply with VSWR of less than 2.

Claims (17)

  1. Loop dipole arrangement with two dipole radiators (1,2) considerably shortened by comparison with the setpoint length (lambda/2), which are electrically extended at both ends by an non-radiating conductor element (3,4).
  2. Loop monopole arrangement on a conductive plane with two monopole radiators (5,6) considerably shortened by comparison with the setpoint length (lambda/4), which are electrically extended at their ends facing away from the conductive plane (7) by a non-radiating conductor element (8).
  3. Arrangement according to claim 1 or 2,
    characterised in that
    the length (L) of the dipole and/or monopole radiators (1,2; 5,6) is selected to be respectively only 5 to 10%, preferably only 6% of the wavelength (lambda) of the lowest operating frequency.
  4. Arrangement according to any one of the preceding claims,
    characterised in that
    the non-radiating conductor element (3,4,8,) is accommodated in an electromagnetic shield.
  5. Arrangement according to any one of the preceding claims,
    characterised in that,
    the non-radiating conductor element is a parallel-wire conductor (3) short-circuited at the end.
  6. Arrangement according to any one of the preceding claims 1 to 4,
    characterised in that
    the non-radiating conductor element is a coaxial cable (4, 8) short-circuited at the end, of which the internal conductor is connected to the one (1 or 5 respectively) dipole and/or monopole radiator, and of which the exterior conductor is connected to the other (2 or 6 respectively) dipole and/or monopole radiator.
  7. Arrangement according to any one of the preceding claims,
    characterised in that
    the non-radiating conductor elements (3,4,8) can be switched to two or more different lengths (L1, L2, L3).
  8. Arrangement according to claim 7,
    characterised in that
    the lengths are switched by means of relay switches (10, 11) allocated to the conductor element.
  9. Arrangement according to claim 7 or 8,
    characterised in that
    the length is switched by means of interposed filter circuits (13, 14) tuned to different resonant frequencies.
  10. Arrangement according to claim 7 to 9,
    characterised in that
    the different lengths of the conductor elements (L1, L2, L3) are stepped in a binary manner.
  11. Arrangement according to claim 7 to 10,
    characterised in that
    the tuning step-width of the conductor elements is selected to correspond to the desired standing-wave-ratio bandwidth of the antenna.
  12. Arrangement according to any one of the preceding claims,
    characterised in that
    it is used as a transmission and/or reception antenna, reflector or director.
  13. Arrangement according to any one of the preceding claims,
    characterised in that
    the length-switching devices are integrated in a housing (30) attached to the dipole and/or monopole.
  14. Arrangement according to any one of the preceding claims, wherein at least one dipole and/or monopole radiator is designed as a hollow tube,
    characterised in that
    the non-radiating conductor element is accommodated in the hollow tube.
  15. Arrangement according to claim 13 and 14,
    characterised in that
    the non-radiating conductor element accommodated in the hollow tube is connected to the length-switching device via an extension conductor of length lambda/2 and/or n x lambda.
  16. Arrangement according to any one of the preceding claims 7 to 15,
    characterised by
    an adaptor circuit with a transformer (20, 21), which provides several tappings, each of which are connected via series resonance circuits (22 to 25) to the connections (26, 27) of the dipole and/or monopole, the resonance frequencies of which are selected to correspond to the successive useful bands, and which are otherwise dimensioned in such a manner that the imaginary component of each active dipole and/or monopole impedance is compensated.
  17. Arrangement according to any one of the preceding claims,
    characterised in that
    the supplied dipole and/or monopole radiator (1) and/or (5) consists of several parallel radiators and the transformation ratio at the supply point can be switched via a switching device allocated to these parallel radiators.
EP00979586A 2000-08-21 2000-11-16 Shortened dipole and monopole loops Expired - Lifetime EP1312136B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10040794A DE10040794A1 (en) 2000-08-21 2000-08-21 Loop dipole or monopole
DE10040794 2000-08-21
PCT/EP2000/011402 WO2002017433A1 (en) 2000-08-21 2000-11-16 Shortened dipole and monopole loops

Publications (2)

Publication Number Publication Date
EP1312136A1 EP1312136A1 (en) 2003-05-21
EP1312136B1 true EP1312136B1 (en) 2005-02-23

Family

ID=7653131

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00979586A Expired - Lifetime EP1312136B1 (en) 2000-08-21 2000-11-16 Shortened dipole and monopole loops

Country Status (5)

Country Link
US (1) US6947007B1 (en)
EP (1) EP1312136B1 (en)
JP (1) JP4719404B2 (en)
DE (2) DE10040794A1 (en)
WO (1) WO2002017433A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006034559A1 (en) * 2006-07-26 2008-02-14 Infineon Technologies Ag An antenna arrangement and method for receiving and transmitting signals in a first frequency range and in a second frequency range

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4871516B2 (en) * 2004-05-18 2012-02-08 パナソニック株式会社 ANTENNA DEVICE AND RADIO DEVICE USING ANTENNA DEVICE
JP4711692B2 (en) * 2005-02-01 2011-06-29 富士通株式会社 Meander line antenna
JP4645351B2 (en) * 2005-03-18 2011-03-09 株式会社豊田中央研究所 Antenna with periodic structure
JP2007104413A (en) * 2005-10-05 2007-04-19 Toshiba Tec Corp Antenna system for neighborhood communication
US8294631B2 (en) * 2009-07-08 2012-10-23 Lockheed Martin Corporation Antenna with a bent portion
WO2011024961A1 (en) * 2009-08-28 2011-03-03 株式会社エヌエイチケイアイテック Antenna
JP2012085092A (en) * 2010-10-12 2012-04-26 Panasonic Corp Wireless device
US8860617B1 (en) * 2011-07-08 2014-10-14 Trivec-Avant Corporation Multiband embedded antenna
JP6387984B2 (en) * 2016-02-24 2018-09-12 三菱電機株式会社 Antenna device

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE220358A (en) * 1940-07-20
US2417793A (en) * 1944-08-01 1947-03-18 Rca Corp Antenna
DE864707C (en) * 1950-11-28 1953-01-26 Hans Schieren Ultra-short wave folding dipole antenna
DE1667293U (en) * 1952-08-25 1953-11-19 Anton Kathrein Fabrik Elektrot FOLDED DIPOLE.
FR2279233A1 (en) * 1974-07-18 1976-02-13 France Etat DOUBLET FOLDED THICK SHORTCUT
US4235271A (en) * 1979-07-13 1980-11-25 The Goodyear Tire & Rubber Company Tire sidewall protector shield assembly
JPS5614730A (en) * 1979-07-16 1981-02-13 Matsushita Electric Ind Co Ltd Receiver
JPS6085603A (en) * 1983-10-17 1985-05-15 Dx Antenna Co Ltd Antenna in common use for uhf and vhf
EP0630069B1 (en) * 1992-12-07 2002-06-05 Ntt Mobile Communications Network Inc. Antenna apparatus
US5886669A (en) * 1995-05-10 1999-03-23 Casio Computer Co., Ltd. Antenna for use with a portable radio apparatus
JP3173711B2 (en) * 1995-09-01 2001-06-04 株式会社ヨコオ Transmission line type antenna and wireless terminal
JPH10135761A (en) * 1996-10-24 1998-05-22 Taiyo Musen Kk Dipole antenna matching device
US6028564A (en) * 1997-01-29 2000-02-22 Intermec Ip Corp. Wire antenna with optimized impedance for connecting to a circuit
US6097347A (en) * 1997-01-29 2000-08-01 Intermec Ip Corp. Wire antenna with stubs to optimize impedance for connecting to a circuit
US6204824B1 (en) * 1998-09-22 2001-03-20 Recoton Corporation Collapsible folded dipole antenna

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006034559A1 (en) * 2006-07-26 2008-02-14 Infineon Technologies Ag An antenna arrangement and method for receiving and transmitting signals in a first frequency range and in a second frequency range

Also Published As

Publication number Publication date
WO2002017433A1 (en) 2002-02-28
DE50009609D1 (en) 2005-03-31
US6947007B1 (en) 2005-09-20
DE10040794A1 (en) 2002-03-07
JP4719404B2 (en) 2011-07-06
EP1312136A1 (en) 2003-05-21
JP2004507193A (en) 2004-03-04

Similar Documents

Publication Publication Date Title
DE10247543B4 (en) loop antenna
DE69928732T2 (en) LOOP ANTENNA
DE60109608T2 (en) ANTENNA AND RADIO UNIT WITH ANY SUCH ANTENNA
DE60102052T2 (en) Double-acting antenna
DE19912465C2 (en) Multi-area antenna system
DE2656729C3 (en) Broadband dipole antenna
DE10029733A1 (en) Antenna arrangement for mobile phones
DE1964601A1 (en) High frequency antenna
DE3709163C2 (en)
DE10022107A1 (en) Integrated antenna for mobile phones
EP1312136B1 (en) Shortened dipole and monopole loops
DE2918055A1 (en) BROADBAND RECEIVING ANTENNA SYSTEM
DE2136759C2 (en) Car radio windscreen aerial - comprises rectangular metal frame with an electrical width of approximately half signal wavelength and a unipole
DE3339278C2 (en)
DE4007824C2 (en) Vehicle antenna for radio services with a rod-shaped antenna element
DE3046255A1 (en) BROADBAND AERIAL SMALL DIMENSIONS FOR THE RADIO FREQUENCY BAND
EP1134840B1 (en) Antenna
WO2004102742A1 (en) Multiband antenna
EP3483983A1 (en) Receiving antenna for satellite navigation on a vehicle
DE10050902A1 (en) Antenna arrangement for mobile phones
DE102013211541A1 (en) Duplex antenna arrangement used for transmitting and receiving in different frequency bands, has helical monopole antennas that are capacitively coupled with electrical antenna conductor by alternating arrangement of windings
EP0044909B1 (en) High-frequency multiple-distribution circuit arrangement
EP0065973B1 (en) Directional antenna with a plurality of elements
AT392173B (en) Multiband directional antenna having a switchable beam direction
DE3140724C2 (en)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20020619

AK Designated contracting states

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

RBV Designated contracting states (corrected)

Designated state(s): AT BE CH CY DE FI FR GB LI SE

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RBV Designated contracting states (corrected)

Designated state(s): DE FI FR GB SE

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FI FR GB SE

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20050223

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

REF Corresponds to:

Ref document number: 50009609

Country of ref document: DE

Date of ref document: 20050331

Kind code of ref document: P

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20051124

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FI

Payment date: 20121122

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20121122

Year of fee payment: 13

Ref country code: GB

Payment date: 20121122

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20121217

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20130129

Year of fee payment: 13

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20131116

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20140731

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50009609

Country of ref document: DE

Effective date: 20140603

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131117

Ref country code: FI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131116

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140603

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131116

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131202