EP1311430B1 - Receptacles hydrosolubles - Google Patents

Receptacles hydrosolubles Download PDF

Info

Publication number
EP1311430B1
EP1311430B1 EP01960958A EP01960958A EP1311430B1 EP 1311430 B1 EP1311430 B1 EP 1311430B1 EP 01960958 A EP01960958 A EP 01960958A EP 01960958 A EP01960958 A EP 01960958A EP 1311430 B1 EP1311430 B1 EP 1311430B1
Authority
EP
European Patent Office
Prior art keywords
container
composition
gas
water
process according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP01960958A
Other languages
German (de)
English (en)
Other versions
EP1311430A1 (fr
Inventor
Geoffrey Robert Hammond
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Reckitt Benckiser UK Ltd
Original Assignee
Reckitt Benckiser UK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Reckitt Benckiser UK Ltd filed Critical Reckitt Benckiser UK Ltd
Publication of EP1311430A1 publication Critical patent/EP1311430A1/fr
Application granted granted Critical
Publication of EP1311430B1 publication Critical patent/EP1311430B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D17/00Detergent materials or soaps characterised by their shape or physical properties
    • C11D17/04Detergent materials or soaps characterised by their shape or physical properties combined with or containing other objects
    • C11D17/041Compositions releasably affixed on a substrate or incorporated into a dispensing means
    • C11D17/042Water soluble or water disintegrable containers or substrates containing cleaning compositions or additives for cleaning compositions
    • C11D17/043Liquid or thixotropic (gel) compositions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65BMACHINES, APPARATUS OR DEVICES FOR, OR METHODS OF, PACKAGING ARTICLES OR MATERIALS; UNPACKING
    • B65B31/00Packaging articles or materials under special atmospheric or gaseous conditions; Adding propellants to aerosol containers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65BMACHINES, APPARATUS OR DEVICES FOR, OR METHODS OF, PACKAGING ARTICLES OR MATERIALS; UNPACKING
    • B65B9/00Enclosing successive articles, or quantities of material, e.g. liquids or semiliquids, in flat, folded, or tubular webs of flexible sheet material; Subdividing filled flexible tubes to form packages
    • B65B9/02Enclosing successive articles, or quantities of material between opposed webs
    • B65B9/04Enclosing successive articles, or quantities of material between opposed webs one or both webs being formed with pockets for the reception of the articles, or of the quantities of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65BMACHINES, APPARATUS OR DEVICES FOR, OR METHODS OF, PACKAGING ARTICLES OR MATERIALS; UNPACKING
    • B65B9/00Enclosing successive articles, or quantities of material, e.g. liquids or semiliquids, in flat, folded, or tubular webs of flexible sheet material; Subdividing filled flexible tubes to form packages
    • B65B9/02Enclosing successive articles, or quantities of material between opposed webs
    • B65B9/04Enclosing successive articles, or quantities of material between opposed webs one or both webs being formed with pockets for the reception of the articles, or of the quantities of material
    • B65B9/042Enclosing successive articles, or quantities of material between opposed webs one or both webs being formed with pockets for the reception of the articles, or of the quantities of material for fluent material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D65/00Wrappers or flexible covers; Packaging materials of special type or form
    • B65D65/38Packaging materials of special type or form
    • B65D65/46Applications of disintegrable, dissolvable or edible materials
    • B65D65/466Bio- or photodegradable packaging materials
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D17/00Detergent materials or soaps characterised by their shape or physical properties
    • C11D17/04Detergent materials or soaps characterised by their shape or physical properties combined with or containing other objects
    • C11D17/041Compositions releasably affixed on a substrate or incorporated into a dispensing means
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D17/00Detergent materials or soaps characterised by their shape or physical properties
    • C11D17/04Detergent materials or soaps characterised by their shape or physical properties combined with or containing other objects
    • C11D17/041Compositions releasably affixed on a substrate or incorporated into a dispensing means
    • C11D17/042Water soluble or water disintegrable containers or substrates containing cleaning compositions or additives for cleaning compositions
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/02Inorganic compounds ; Elemental compounds
    • C11D3/04Water-soluble compounds
    • C11D3/06Phosphates, including polyphosphates

Definitions

  • the present invention relates to inflated, water-soluble containers and to a process for their preparation.
  • WO 89/12587 discloses a package which comprises an envelope of a water-soluble or water dispersible material which comprises a flexible wall and a water-soluble or water-dispersible heat seal.
  • the package may contain an organic liquid comprising, for example, a pesticide, fungicide, insecticide or herbicide.
  • WO 94/14941 discloses a water-soluble or water-dispersible capsule containing an aqueous dishwasher detergent.
  • the capsule is made of gelatin.
  • CA-A-1,112,534 discloses a packet made of a water-soluble material in film form enclosing within it a paste-form, automatic dishwasher-compatible detergent composition.
  • the water-soluble material may be, for example, poly(vinyl alcohol), polyethylene oxide or methyl cellulose.
  • Example 1 illustrates an embodiment wherein a poly(vinyl alcohol)(PVOH) film is made into a 5cm square packet by heat sealing its edges, and the packet is filled with a composition which contains 8.5 wt.% water.
  • WO 92/17382 discloses a package containing an agrochemical such as a pesticide comprising a first sheet of non-planar water-soluble or water-dispersible material and a second sheet of water-soluble or water-dispersible material superposed on the first sheet and sealed to it by a continuous closed water-soluble or water-dispersible seal along a continuous region of the superposed sheets. It is stated to be advantageous to ensure that the package produced is evacuated of air or the contents are under reduced pressure to provide increased resistance to shock.
  • an agrochemical such as a pesticide
  • EP-A-524,721 describes a water-soluble package which contains a liquid, wherein the package is inflatable to a volume which is greater than the initial volume of the package.
  • the package is filled to less than its complete capacity, and the unused capacity may be partially, but not totally, filled with a gas such as air.
  • the unused capacity which does not contain gas provides the residual inflatability.
  • the packages do not have an attractive appearance.
  • the packages disclosed in WO 92/17382 are likely to have a non-uniform appearance because they are packaged under reduced pressure.
  • a bag is formed from a single sheet of water-soluble film by folding the film and heat-sealing the edges to form the bag, which is then filled, such as described in CA-A-1,112,534, the product obtained can be a rather flat, limp envelope containing the product. Again there may also be lack of uniformity between different bags because of their flexible nature.
  • the present invention seeks to provide a water-soluble container containing a composition, which container has a more attractive appearance.
  • the container should be relatively self-supporting and look full.
  • the container should have an attractive, rounded three-dimensional appearance.
  • EP-A-654,418 describes self-standing flexible pouches which may contain, for example, liquid detergent compositions for refilling other containers.
  • the pouches are cut open and the contents poured into the containers to be refilled. Thus they are not water-soluble.
  • the pouches are inflated by pumping in air before they are sealed.
  • the present invention accordingly provides a process for producing an inflated, water-soluble container which comprises:
  • the present invention also provides an inflated water-soluble container comprising a water-soluble film enclosing a liquid or solid composition and a gas, wherein the gas is enriched with at least one gaseous component as compared with air or comprises at least one gaseous component not normally present in air.
  • the initial step (a) of the process of the invention comprises forming an open container from a water-soluble film.
  • a suitable water-soluble film is a poly(vinyl alcohol) (PVOH) film.
  • the PVOH film may be partially or fully alcoholised or hydrolysed, for example, it may be from 40 to 100%, preferably 70 to 92%, more preferably about 88% or about 92%, alcoholised or hydrolysed, polyvinyl acetate film.
  • the degree of hydrolysis is known to influence the temperature at which the PVOH starts to dissolve in water. 88% hydrolysis corresponds to a film soluble in cold (i.e. room temperature) water whereas 92% hydrolysis corresponds to a film soluble in warm water.
  • An example of a preferred PVOH is ethoxylated PVOH.
  • the film may be cast, blown or extruded. It may also be unorientated, mono-axially oriented or bi-axially oriented.
  • the film may also comprise a cellulose derivative such as hydroxy propyl methyl cellulose (HPMC).
  • HPMC hydroxy propyl methyl cellulose
  • a suitable HPMC is, for example, M900 obtained from Enak Ltd.
  • plasticisers are generally used in an amount of up to 35 wt%, for example from 5 to 35 wt%, preferably from 7 to 20 wt%, more preferably from 10 to 15 wt%.
  • Lubricants are generally used in an amount of 0.5 to 5 wt%.
  • the polymer is therefore generally used in an amount of from 60 to 94.5 wt%, based on the total amount of the composition used to form the film.
  • Suitable plasticisers are, for example, pentaerythritols such as dipentaerythritol, sorbitol, mannitol, glycerine and glycols such as glycerol, ethylene glycol and polyethylene glycol.
  • Solids such as talc, stearic acid, magnesium stearate, silicon dioxide, zinc stearate or colloidal silica may also be used.
  • particulate solids in the films in order to accelerate the rate of dissolution of the container.
  • This solid may also be present in the contents of the container. Dissolution of the solid in water is sufficient to cause an acceleration in the break-up of the container, particularly if a gas is generated, when the physical agitation caused may, for example, result in the virtually immediate release of the contents from the container.
  • solids are alkali or alkaline earth metal, such as sodium, potassium, magnesium or calcium, bicarbonate or carbonate, in conjunction with an acid.
  • Suitable acids are, for example, acidic substances having carboxylic or sulfonic acid groups or salts thereof. Examples are cinnamic, tartaric, mandelic, fumaric, maleic, malic, palmitic, citric and naphthalene disulfonic acids.
  • the film is generally cold water (20°C) soluble, but may be insoluble in cold water at 20°C and only become soluble in warm water or hot water having a temperature of, for example, 30°C, 40°C, 50°C or even 60°C. This parameter is determined in the case of PVOH by its degree of hydrolysis.
  • the open container may be formed by any means.
  • it may be formed by thermoforming a PVOH film to produce a non-planar sheet containing a pocket, such as a recess, which is able to retain the composition.
  • the pocket is generally bounded by a flange, which is preferably substantially planar.
  • the pocket may have internal barrier layers as described in, for example, WO 93/08095.
  • the container may be formed, for example, by a process which is similar to that disclosed in WO 92/17382.
  • the container may be prepared by producing an open-top bag by forming a film around a shoulder and then heat-sealing simultaneously the bottom and sides of the bag.
  • Other methods of sealing may be used, for example infra-red, radio frequency, ultrasonic, laser, solvent, vibration, electromagnetic, hot gas, hot plate, insert bonding, friction sealing or spin welding.
  • An adhesive such as water or an aqueous solution of PVOH may also be used.
  • the adhesive can be applied to the film by spraying, transfer coating, roller coating, or the film can be passed through a mist of the adhesive.
  • the seal desirably is also water-soluble. Such a process is described for example in EP-A-728,673.
  • Another method for forming the open container is to seal two films together on three sides of the pocket by superimposing the films on each other and sealing them together as described in WO 95/23099.
  • the films When a single water-soluble film is used, or if two films are used which are not thermoformed, the films generally have a thickness of 20 to 500 ⁇ m, especially 30 to 160 ⁇ m, preferably from 40 to 120 ⁇ m, more preferably from 50 to 100 ⁇ m.
  • the first film will generally have a thickness before thermoforming of 20 to 500 ⁇ m, especially 70 to 400 ⁇ m, for example 70 to 300 ⁇ m, most preferably 70 to 160 ⁇ m, especially 75 to 100 ⁇ m or 90 to 110 to 150 ⁇ m.
  • the thickness of the second film may be less than that of the first film as the second film will not generally be thermoformed so localised thinning of the sheet will not occur.
  • the thickness of the second film will generally be from 20 to 150 ⁇ m or 160 ⁇ m, preferably from 40 or 50 to 90 or 100 ⁇ m, more preferably from 50 to 80 ⁇ m.
  • the films may be chosen, if desired, such that they have the same thickness before the first film is thermoformed, or have the same thickness after the first sheet has been thermoformed in order to provide a composition which is encapsulated by a substantially constant thickness of film.
  • the container is at least partially filled with a composition.
  • the container may be completely filled, or only partially filled, for example to leave an air space from 2 to 20 %, especially from 5 to 10%, of the volume of the container immediately after it is formed.
  • composition is not limited. It may, for example, be a solid or a liquid. If it is in the form of a solid it may, for example, be in the form of a powder, granules, an extruded tablet, a compressed tablet or a solidified gel. If it is in the form of a liquid it may be optionally thickened or gelled with a thickener or a gelling agent. One or more than one phase may be present.
  • the container may be filled with a liquid composition and a separate solid composition, for example in the form of a ball, pill or speckles. Alternatively two or more solid phases, or two or more immiscible liquid phases, may be present.
  • the container could first be filled with a settable composition, for example a gel and then with a different composition.
  • a settable composition for example a gel and then with a different composition.
  • Each of the compositions is independently aqueous.
  • the first composition could dissolve slowly, for example in a washing process, so as to deliver it over a long period. This might be useful, for example, to provide an immediate, delayed or sustained delivery of a component such as a softening agent.
  • the water-soluble container is soluble in cold water at room temperature (20°C) or slightly above, it is important to ensure that the composition itself does not dissolve the container. In general solid compositions will not attack the container, and neither will liquid organic compositions which contain less than around 5% of water as described, for example, in WO 92/17382. If the composition is in the form of a liquid containing more than about 5 wt% water, action must be taken to ensure that the composition does not attack the walls of the container. Steps may be taken to treat the inside surface of the film, for example by coating it with an agent such as PVdC (poly(vinylidene dichloride)) or PTFE (polytetrafluoroethylene).
  • PVdC poly(vinylidene dichloride)
  • PTFE polytetrafluoroethylene
  • a semi-permeable or partial water barrier such as polyethylene or polypropylene or a hydrogel such as a polyacrylate may also be provided as a coating.
  • the coating will simply fall apart or dissolve or disperse into microscopic particles when the container is dissolved in water. Steps may also be taken to adapt the composition to ensure that it does not dissolve the film. For example, it has been found that ensuring the composition has a high ionic strength or contains an agent which minimises water loss through the walls of the container will prevent the composition from dissolving a PVOH film from the inside. This is described in more detail in EP-A-518,689 and WO 97/27743.
  • a component which releases a gas is added to the composition.
  • This component may be added separately or with the remaining components.
  • the component, or one of the components of a multi-component gas releasing system may be added first and the remainder of the composition added afterwards.
  • the components, or one of the components of a multi-component gas releasing system may be added after the remainder of the composition. It is also possible for all of the components to be added together in a single composition.
  • the component which releases a gas may, for example, comprise a component or a mixture of two or more components which react in the presence of the contents of the container to release a gas.
  • a component or a mixture of two or more components which react in the presence of the contents of the container to release a gas may, for example, comprise a component or a mixture of two or more components which react in the presence of the contents of the container to release a gas.
  • two components which do not react when in solid form but which will react in the presence of water can be added, such as an acid and a carbonate or bicarbonate.
  • An example of a suitable acid is citric acid.
  • suitable carbonates and bicarbonates are sodium and potassium carbonate and sodium and potassium bicarbonate.
  • a component is added which is able to react with a component already present in the composition contained in the container.
  • a component for example, an acid may be present within the composition held within the container, and a carbonate or bicarbonate as described above subsequently added.
  • a carbonate or bicarbonate may be present in the composition, and an acid subsequently added.
  • the component which releases a gas may be added in solid form or in a solvent such as water or an organic solvent. The rate of release of the gas may be controlled. For example, a finely divided powder will release the gas quicker than a compressed tablet.
  • the component may be encapsulated by a substance which delays the release of the gas.
  • a further possibility is to add a component to the composition which is a gas at room temperature (20° C) but which, at the time which it is added, is in the form of a solid or liquid because it has been cooled to less than its melting or boiling point.
  • a component for example, solid carbon dioxide (dry ice) may be added.
  • dry ice may be added.
  • a compound which is thermally unstable for example sodium bicarbonate will release carbon dioxide when it is heated to about 60°C.
  • the component which releases a gas may, for example, be a component which gradually releases a gas such as a bleach, in particular an oxygen bleach or a chlorine bleach. Such bleaches gradually releases a gas such as oxygen or a chlorine containing compound when they contact water.
  • the water may itself be contained in the composition, be contained in another compartment and diffuse through the dividing wall into the compartment holding the bleach, or may diffuse into the composition from outside the container.
  • Any component or combination of components can be used which will produce a gas.
  • the gas should be non-toxic or produced in small quantities. It is most convenient, however, to produce carbon dioxide gas since this will not cause any environmental concerns.
  • the container is sealed in step (c). If the component which releases a gas starts to release a gas immediately, as it generally will, the container should be sealed immediately to ensure that at least some of the gas produced is retained within the container. Sealing can be carried out by any means as described above.
  • the container may be sealed by heat-sealing or by any of the remaining sealing methods discussed above.
  • the films may be sealed together, for example by heat sealing, across the flange.
  • a suitable heat sealing temperature is, for example, 120 to 195°C, for example 140 to 150°C.
  • a suitable sealing pressure is, for example, from 250 to 800 kPa.
  • sealing pressures are 276 to 552 kPa (40 to 80 p.s.i.), especially 345 to 483 kPa (50 to 70 p.s.i.) or 400 to 800 kPa (4 to 8 bar) , especially 500 to 700 kPa (5 to 7 bar) depending on the heat sealing machine used.
  • Suitable sealing dwell times are at least 0.4 seconds, for example 0.4 to 2.5 seconds.
  • Other methods of sealing the films together may be used, for example infra-red, radio frequency, ultrasonic, laser, solvent, vibration, electromagnetic, hot gas, hot plate, insert bonding, fraction sealing or spin welding.
  • An adhesive such as water or an aqueous solution of PVOH may also be used.
  • the adhesive can be applied to the films by spraying, transfer coating, roller coating or otherwise coating, or the films can be passed through a mist of the adhesive.
  • the seal desirably is also water-soluble.
  • the second film may, for example, comprise PVOH.
  • the packaged compositions may then be separated from each other. Alternatively, they may be left conjoined and, for example, perforations provided between the individual containers so that they can be easily separated at a later stage, for example by a consumer. If the containers are separated, the flanges may be left in place. However, desirably the flanges are partially removed in order to provide an even more attractive, three-dimensional appearance. Generally the flange remaining should be as small as possible for aesthetic purposes while bearing in mind that some flange is required to ensure the two films remain adhered to each other.
  • a flange of 1 mm to 10 mm is desirable, preferably 2 mm to 7 mm, more preferably 4 mm to 6 mm, most preferably about 5 mm.
  • the containers are then allowed to inflate in step (d).
  • the containers may be allowed to inflate, for example, at rest, or they may be packaged into boxes for retail sale, and left to inflate in the boxes.
  • the containers may themselves be packaged in outer containers if desired, for example, non-water-soluble containers which are removed before the water-soluble containers are used.
  • the containers of the present invention generally contain from 5 to 100 g of composition, such as an aqueous composition, especially from 15 to 40 g, depending on their intended use.
  • a dishwashing composition may weigh from 15 to 20 g
  • a water-softening composition may weigh from 25 to 35 g
  • a laundry composition may weigh from 10 to 40 g, especially 20 to 30 g or 30 to 40 g.
  • the containers may have any shape.
  • they can take the form of an envelope, sachet, sphere, cylinder, cube or cuboid, i.e. a rectangular parallelepiped whose faces are not all equal.
  • the sides are not planar, but rather are convex.
  • the container is formed from a thermoformed film and a planar film, the seam between the two films will appear nearer one face of the container rather than the other.
  • deformation may also occur at the stage of manufacture if desired. For example, if the pocket is filled with a gelled composition having a height greater than that of the pocket, the second film will be deformed when placed on top of the pocket.
  • a rounded cuboid container may have a length of 1 to 5 cm, especially 3.5 to 4.5 cm, a width of 1.5 to 3.5 cm, especially 2 to 3 cm, and a height of 1 to 2.5 cm, especially 1 to 2 cm, for example 1.25 to 1.75 cm.
  • the composition filling the containers is not particularly limited. It can be any composition which is to be added to an aqueous system or used in an aqueous environment. Suitable compositions are fabric care, surface care and dishwashing compositions.
  • the composition may comprise a dishwashing, water-softening, laundry or detergent composition or a rinse aid. In this case it is especially suitable for use in a domestic washing machine such as a laundry washing machine or a dishwashing machine.
  • the container may also comprise a disinfectant, antibacterial or antiseptic composition intended to be diluted with water before use, or a concentrated refill composition, for example for a trigger-type spray used in domestic situations. Such a composition can simply be added to water already held in the spray container.
  • surface care compositions are those used to clean, treat or polish a surface. Suitable surfaces are, for example, household surfaces, such as worktops, as well as surfaces of sanitary ware, such as sinks, basins and lavatories.
  • anionic surfactants are straight-chained or branched alkyl sulfates and alkyl polyalkoxylated sulfates, also known as alkyl ether sulfates. Such surfactants may be produced by the sulfation of higher C 8 -C 20 fatty alcohols.
  • Examples of primary alkyl sulfate surfactants are those of formula: ROSO 3 - M + wherein R is a linear C 8 -C 20 hydrocarbyl group and M is a water-solubilising cation.
  • R is C 10 -C 16 alkyl, for example C 12 -C 14
  • M is alkali metal such as lithium, sodium or potassium.
  • secondary alkyl sulfate surfactants are those which have the sulfate moiety on a "backbone" of the molecule, for example those of formula: CH 2 (CH 2 ) n (CHOSO 3 - M + )(CH 2 ) m CH 3 wherein m and n are independently 2 or more, the sum of m+n typically being 6 to 20, for example 9 to 15, and M is a water-solubilising cation such as lithium, sodium or potassium.
  • Especially preferred secondary alkyl sulfates are the (2,3) alkyl sulfate surfactants of formulae: CH 2 (CH 2 ) x (CHOSO 3 - M + )CH 3 and CH 3 (CH 2 ) x (CHOSO 3 - M + )CH 2 CH 3 for the 2-sulfate and 3-sulfate, respectively.
  • x is at least 4, for example 6 to 20, preferably 10 to 16.
  • M is cation, such as an alkali metal, for example lithium, sodium or potassium.
  • alkoxylated alkyl sulfates are ethoxylated alkyl sulfates of the formula: RO(C 2 H 4 O) n SO 3 - M + wherein R is a C 8 -C 20 alkyl group, preferably C 10 -C 18 such as a C 12 -C 16 , n is at least 1, for example from 1 to 20, preferably 1 to 15, especially 1 to 6, and M is a salt-forming cation such as lithium, sodium, potassium, ammonium, alkylammonium or alkanolammonium. These compounds can provide especially desirable fabric cleaning performance benefits when used in combination with alkyl sulfates.
  • alkyl sulfates and alkyl ether sulfates will generally be used in the form of mixtures comprising varying alkyl chain lengths and, if present, varying degrees of alkoxylation.
  • anionic surfactants which may be employed are salts of fatty acids, for example C 8 -C 18 fatty acids, especially the sodium, potassium or alkanolammonium salts, and alkyl, for example C 8 -C 18 , benzene sulfonates.
  • nonionic surfactants are fatty acid alkoxylates, such as fatty acid ethoxylates, especially those of formula: R(C 2 H 4 O) n OH wherein R is a straight or branched C 8 -C 16 alkyl group, preferably a C 9 -C 15 , for example C 10 -C 14 or C 12 -C 14 , alkyl group and n is at least 1, for example from 1 to 16, preferably 2 to 12, more preferably 3 to 10.
  • R is a straight or branched C 8 -C 16 alkyl group, preferably a C 9 -C 15 , for example C 10 -C 14 or C 12 -C 14 , alkyl group and n is at least 1, for example from 1 to 16, preferably 2 to 12, more preferably 3 to 10.
  • the alkoxylated fatty alcohol nonionic surfactant will frequently have a hydrophilic-lipophilic balance (HLB) which ranges from 3 to 17, more preferably from 6 to 15, most preferably from 10 to 15.
  • HLB hydrophilic-lipophilic balance
  • fatty alcohol ethoxylates are those made from alcohols of 12 to 15 carbon atoms and which contain about 7 moles of ethylene oxide. Such materials are commercially marketed under the trademarks Neodol 25-7 and Neodol 23-6.5 by Shell Chemical Company.
  • Other useful Neodols include Neodol 1-5, an ethoxylated fatty alcohol averaging 11 carbon atoms in its alkyl chain with about 5 moles of ethylene oxide; Neodol 23-9, an ethoxylated primary C 12 -C 13 alcohol having about 9 moles of ethylene oxide; and Neodol 91-10, an ethoxylated C 9 -C 11 primary alcohol having about 10 moles of ethylene oxide.
  • Dobanol 91-5 is an ethoxylated C 9 -C 11 fatty alcohol with an average of 5 moles ethylene oxide
  • Dobanol 25-7 is an ethoxylated C 12 -C 15 fatty alcohol with an average of 7 moles of ethylene oxide per mole of fatty alcohol.
  • Suitable ethoxylated alcohol nonionic surfactants include Tergitol 15-S-7 and Tergitol 15-S-9, both of which are linear secondary alcohol ethoxylates available from Union Carbide Corporation.
  • Tergitol 15-S-7 is a mixed ethoxylated product of a C 11 -C 15 linear secondary alkanol with 7 moles of ethylene oxide and Tergitol 15-S-9 is the same but with 9 moles of ethylene oxide.
  • Neodol 45-11 is a similar ethylene oxide condensation products of a fatty alcohol having 14-15 carbon atoms and the number of ethylene oxide groups per mole being about 11. Such products are also available from Shell Chemical Company.
  • nonionic surfactants are, for example, C 10 -C 18 alkyl polyglycosides, such as C 12 -C 16 alkyl polyglycosides, especially the polyglucosides. These are especially useful when high foaming compositions are desired.
  • Further surfactants are polyhydroxy fatty acid amides, such as C 10 -C 18 N-(3-methoxypropyl) glycamides and ethylene oxide-propylene oxide block polymers of the Pluronic type.
  • cationic surfactants are those of the quaternary ammonium type.
  • amphoteric surfactants are C 10 -C 18 amine oxides and the C 12 -C 18 betaines and sulfobetaines.
  • the total content of surfactants in the composition is desirably 0.1 to 95 wt%, especially 60 or 75 to 90 wt%.
  • the total content of surfactants in a laundry or detergent composition is desirably 60 to 95 wt%, especially 70 to 90 wt%.
  • an anionic surfactant is present in an amount of 50 to 75 wt%
  • a nonionic surfactant is present in an amount of 5 to 20 wt%
  • a cationic surfactant is present in an amount of from 0 to 10 wt% and/or an amphoteric surfactant is present in an amount from 0 to 10 wt%.
  • the anionic surfactant is present in an amount of from 0.1 to 50 wt%, a non-ionic surfactant is present in an amount of 0.5 to 20 wt% and/or a cationic surfactant is present in an amount of from 1 to 15 wt%.
  • these amounts are based on the total solids content of the composition, i.e. excluding any water or solvent which may be present.
  • compositions particularly when used as laundry washing or dishwashing compositions, may also comprise enzymes, such as protease, lipase, amylase, cellulase and peroxidase enzymes.
  • enzymes such as protease, lipase, amylase, cellulase and peroxidase enzymes.
  • Such enzymes are commercially available and sold, for example, under the registered trade marks Esperase, Alcalase, Savinase, Termanyl, Lipolase and Celluzyme by Novo Industries A/S and Maxatasc by International Biosynthetics, Inc.
  • the enzymes are present in the composition in an amount of from 0.5 to 3 wt%, especially 1 to 2 wt%.
  • compositions may, if desired, comprise a thickening agent or gelling agent.
  • Suitable thickeners are polyacrylate polymers such as those sold under the trade mark CARBOPOL, or the trade mark ACUSOL by Rohm and Haas Company.
  • Other suitable thickeners are xanthan gums.
  • the thickener if present, is generally present in an amount of from 0.2 to 4 wt%, especially 0.5 to 2 wt%.
  • Dishwasher compositions usually comprise a detergency builder.
  • Suitable builders are alkali metal or ammonium phosphates, polyphosphates, phosphonates, polyphosphonates, carbonates, bicarbonates, borates, polyhydroxysulfonates, polyacetates, carboxylates and polycarboxylates such as citrates.
  • the builder is desirably present in an amount of up to 90 wt%, preferably 15 to 90 wt%, more preferably 15 to 75 wt%, relative to the total content of the composition. Further details of suitable components are given in, for example, EP-A-694,059, EP-A-518,720 and WO 99/06522.
  • compositions can also optionally comprise one or more additional ingredients.
  • additional ingredients include conventional detergent composition components such as further surfactants, bleaches, bleach enhancing agents, builders, suds boosters or suds suppressors, anti-tarnish and anti-corrosion agents, organic solvents, co-solvents, phase stabilisers, emulsifying agents, preservatives, soil suspending agents, soil release agents, germicides, phosphates such as sodium tripolyphosphate or potassium tripolyphosphate, pH adjusting agents or buffers, non-builder alkalinity sources, chelating agents, clays such as smectite clays, enzyme stabilizers, anti-limescale agents, colourants, dyes, hydrotropes, dye transfer inhibiting agents, brighteners and perfumes.
  • such optional ingredients will generally constitute no more than 10 wt%, for example from 1 to 6 wt%, of the total weight of the compositions.
  • the builders counteract the effects of calcium, or other ion, water hardness encountered during laundering or bleaching use of the compositions herein.
  • examples of such materials are citrate, succinate, malonate, carboxymethyl succinate, carboxylate, polycarboxylate and polyacetyl carboxylate salts, for example with alkali metal or alkaline earth metal cations, or the corresponding free acids.
  • Specific examples are sodium, potassium and lithium salts of oxydisuccinic acid, mellitic acid, benzene polycarboxylic acids, C 10 -C 22 fatty acids and citric acid.
  • Other examples are organic phosphonate type sequestering agents such as those sold by Monsanto under the trade mark Dequest and alkylhydroxy phosphonates. Citrate salts and C 12 -C 18 fatty acid soaps are preferred.
  • Suitable builders are polymers and copolymers known to have builder properties.
  • such materials include appropriate polyacrylic acid, polymaleic acid, and polyacrylic/polymaleic and copolymers and their salts, such as those sold by BASF under the trade mark Sokalan.
  • the builders generally constitute from 0 to 3 wt%, more preferably from 0.1 to 1 wt%, by weight of the compositions.
  • compositions which comprise an enzyme may optionally contain materials which maintain the stability of the enzyme.
  • enzyme stabilizers include, for example, polyols such as propylene glycol, boric acid and borax. Combinations of these enzyme stabilizers may also be employed. If utilized, the enzyme stabilizers generally constitute from 0.1 to 1 wt% of the compositions.
  • bleaches are, for example, listed in WO 99/06522. These include oxygen releasing bleaching agents such as a hydrogen peroxide source and an organic peroxyacid bleach precursor compound or a preformed organic peroxyacid.
  • hydrogen peroxide sources are inorganic perhydrate bleaches such as the alkali metal salts of perborate, percarbonate, perphosphate, persulfate and persilicates.
  • organic peroxyacid bleach precursors are listed in WO 99/06522.
  • the bleaches also include chlorine releasing agents such as hydantoins, for example 1,3-dichloro-5,5-dimethyl hydantoin, hypochlorites such as sodium hypochlorite or dichloroisocyanurates such as sodium dichloroisocyanurate.
  • compositions may optionally comprise materials which serve as phase stabilizers and/or co-solvents.
  • Example are C 1 -C 3 alcohols or diols such as methanol, ethanol, propanol, and 1, 2-propanediol.
  • C 1 -C 3 alkanolamines such as mono-, di- and triethanolamines and monoisopropanolamine can also be used, by themselves or in combination with the alcohols.
  • the phase stabilizers and/or co-solvents can, for example, constitute 0 to 1 wt%, preferably 0.1 to 0.5 wt% of the composition.
  • compositions may be anhydrous, or, for example, contain up to 5 wt% water.
  • Aqueous compositions generally contain greater than 8 wt% water based on the weight of the aqueous composition. Desirably the aqueous compositions contain more than 10 wt%, 15 wt%, 20 wt%, 25 wt% or 30 wt% water, but desirably less than 80 wt% water, more desirably less than 70 wt%, 60 wt%, 50 wt% or 40 wt% water. They may, for example, contain from 30 to 55 or 65 wt% water.
  • compositions may optionally comprise components which adjust or maintain the pH of the compositions at optimum levels.
  • pH adjusting agents are NaOH and citric acid.
  • the pH may be from, for example, 1 to 13, such as 8 to 11 depending on the nature of the composition.
  • a dishwashing composition desirably has a pH of 8 to 11
  • a laundry composition desirably has a pH of 7 to 9
  • a water-softening composition desirably has a pH of 7 to 9.
  • a dishwashing composition was prepared by mixing together the following components in the weight proportions indicated: Potassium tripolyphosphate powder 12% Sodium tripolyphosphate powder 30% Isothiazolinone 0.1% Polyacrylate thickener (Carbopol) 1% Nonionic surfactant 0.5% Sodium citrate 10% Citric acid 0.2% Sodium bicarbonate 0.2% Dehardened water 46%
  • a Multivac thermoforming machine operating at 6 cycles/min and at ambient conditions of 25°C and 35% RH ( ⁇ 5% RH) was used to thermoform a PVOH film.
  • the PVOH film was thermoformed into a rectangular mould of 39 mm length, 29 mm width and 16 mm depth, with the bottom edges being rounded to a radius of 10 mm, at 115-118°C.
  • the thus formed pocket was filled with 10 ml of the dishwashing composition, and a 75 ⁇ m thick Monosol M8534 PVOH film was placed on top and heat sealed at 144-148°C.
  • the thus produced containers were separated from each other by cutting the flanges. Each container attained a rounded appearance due to the generation of carbon dioxide gas.
  • a laundry detergenwt composition Sodium carbonate 20% Nonylphenol ethoxylate 10% Accusol 820 obtainable from Rohm and Hass Company 3.3% Sodium citrate 5% Citric acid 0.2% Sodium bicarbonate 0.2% Dehardened water 61.3%
  • An automatic dishwasher detergent Sodium citrate 8% Van Gel ES thickener obtainable from R.T.Vanderbilt Company 4% Tetrapotassium pyrophosphate 10% Sodium tripolyphosphate 30% Anhydrous sodium metasilicate 2% Sodium xylene sulfonate 2.25% Deceth-4-phosphate 0.75% Citric acid 0.2% Sodium bicarbonate 0.2% Dehardened water 42.6%
  • a slurry type heavy duty laundry liquid Neodol 25-7 C 12-15 linear alcohol 18% Biosoft D-62 sodium

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Inorganic Chemistry (AREA)
  • Detergent Compositions (AREA)
  • Distillation Of Fermentation Liquor, Processing Of Alcohols, Vinegar And Beer (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Packages (AREA)
  • Toys (AREA)
  • Orthopedics, Nursing, And Contraception (AREA)
  • External Artificial Organs (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)
  • Wrappers (AREA)

Claims (42)

  1. Récipient hydrosoluble gonflé, comprenant un film hydrosoluble englobant une composition liquide ou solide et un gaz, dans lequel le gaz est enrichi en au moins un constituant gazeux comparativement à l'air ou bien comprend au moins un constituant gazeux non présent normalement dans l'air.
  2. Récipient suivant la revendication 1, dans lequel le constituant gazeux est le dioxyde de carbone.
  3. Récipient suivant la revendication 1, dans lequel le constituant gazeux est l'oxygène ou un constituant contenant du chlore.
  4. Récipient suivant l'une quelconque des revendications 1 à 3, dans lequel le film hydrosoluble est un film de poly(alcool vinylique).
  5. Récipient suivant l'une quelconque des revendications 1 à 4, dans lequel le film hydrosoluble a été thermoformé pour former une poche et la poche a été soudée en plaçant un second film hydrosoluble sur la poche et en soudant les films l'un à l'autre.
  6. Récipient suivant l'une quelconque des revendications 1 à 5, dans lequel le film hydrosoluble a été thermoformé.
  7. Récipient suivant l'une quelconque des revendications 1 à 6, dans lequel la composition est une composition pour l'entretien des étoffes, une composition d'entretien de surfaces ou une composition pour le lavage de la vaisselle.
  8. Récipient suivant l'une quelconque des revendications 1 à 7, dans lequel la composition est une composition pour le lavage de la vaisselle, une composition d'adoucissement de l'eau, une composition de blanchisserie ou une composition détergente ou bien est un auxiliaire de rinçage.
  9. Récipient suivant la revendication 8, qui est apte à l'utilisation dans une machine à laver domestique.
  10. Récipient suivant l'une quelconque des revendications 1 à 9, dans lequel la composition est une composition désinfectante,antibactérienne ou antiseptique.
  11. Récipient suivant l'une quelconque des revendications 1 à 6, dans lequel la composition est une composition de recharge pour un pulvérisateur du type à déclencheur.
  12. Récipient suivant l'une quelconque des revendications précédentes, dans lequel le gaz est libéré de la composition solide ou liquide.
  13. Récipient suivant la revendication 12, dans lequel la composition est une matière solide.
  14. Récipient suivant la revendication 13, dans lequel la composition solide est une poudre finement divisée ou une tablette produite par compression.
  15. Récipient suivant l'une quelconque des revendications 12 à 14, dans lequel la composition solide est un agent de blanchiment.
  16. Récipient suivant la revendication 15, dans lequel l'agent de blanchiment est un agent de blanchiment contenant de l'oxygène ou du chlore.
  17. Récipient suivant l'une quelconque des revendications 12 à 16, dans lequel la composition solide est encapsulée par une substance qui retarde la libération du gaz.
  18. Procédé pour la production d'un récipient hydrosoluble gonflé, qui comprend les étapes consistant :
    a) à former un récipient ouvert à partir d'un film hydrosoluble ;
    b) à remplir au moins partiellement le récipient avec une composition qui comprend un constituant qui libère un gaz ;
    c) à souder le récipient ; et
    d) à laisser le récipient se gonfler.
  19. Procédé suivant la revendication 18, dans lequel le récipient est rempli au moins partiellement avec une composition et un constituant qui libère un gaz est ensuite ajouté.
  20. Procédé suivant la revendication 18, dans lequel le récipient est rempli avec une composition qui comprend un constituant qui libère un gaz en une seule étape.
  21. Procédé suivant l'une quelconque des revendications 18 à 20, dans lequel l'étape (a) comprend le thermoformage du film pour produire une poche.
  22. Procédé suivant la revendication 21, dans lequel l'étape (c) comprend la mise en place d'un second film hydrosoluble sur la poche remplie et le soudage des films l'un à l'autre.
  23. Procédé suivant l'une quelconque des revendications 18 à 22, dans lequel le film hydrosoluble est un film de poly(alcool vinylique).
  24. Procédé suivant l'une quelconque des revendications 18 à 23, dans lequel la composition dans l'étape (b) est un liquide aqueux ou non aqueux.
  25. Procédé suivant la revendication 24, dans lequel le liquide aqueux contient plus de 8% en poids d'eau sur la base du poids total du liquide aqueux et d'un constituant qui libère un gaz.
  26. Procédé suivant la revendication 25, dans lequel le constituant qui libère un gaz comprend un mélange de composés qui réagissent en présence d'eau pour produire le gaz.
  27. Procédé suivant la revendication 25, dans lequel le constituant qui libère un gaz comprend un composé qui réagit avec un composé présent dans le liquide aqueux pour produire le gaz.
  28. Procédé suivant la revendication 27, dans lequel le constituant qui libère un gaz est un agent de blanchiment.
  29. Procédé suivant la revendication 18, dans lequel le constituant qui libère un gaz est un constituant qui est un gaz à température ambiante (20°C) mais qui est ajouté dans l'étape (b) sous forme d'une matière solide ou liquide refroidie.
  30. Procédé suivant l'une quelconque des revendications 18 à 29, dans lequel le gaz qui gonfle le récipient est le dioxyde de carbone.
  31. Procédé suivant l'une quelconque des revendications 18 à 30, dans lequel le récipient est rempli au moins partiellement avec une composition pour l'entretien des étoffes, une composition d'entretien de surfaces ou une composition pour le lavage de la vaisselle.
  32. Procédé suivant l'une quelconque des revendications 18 à 31, dans lequel le récipient est rempli au moins partiellement avec une composition pour le lavage de la vaisselle, une composition d'adoucissement de l'eau, une composition de blanchisserie ou une composition détergente ou bien une composition d'auxiliaire de rinçage.
  33. Procédé suivant la revendication 32, dans lequel le récipient est apte à l'utilisation dans une machine à laver domestique.
  34. Procédé suivant l'une quelconque des revendications 18 à 30, dans lequel le récipient est rempli au moins partiellement avec une composition désinfectante, antibactérienne ou antiseptique.
  35. Procédé suivant l'une quelconque des revendications 18 à 30, dans lequel le récipient est rempli au moins partiellement avec une composition de recharge pour un pulvérisateur du type à déclencheur.
  36. Procédé suivant l'une quelconque des revendications 18 à 35, dans lequel le constituant qui libère un gaz est une matière solide.
  37. Procédé suivant la revendication 36, dans lequel la composition solide est une poudre finement divisée ou une tablette produite par compression.
  38. Procédé suivant la revendication 36 ou 37, dans lequel le constituant qui libère un gaz est encapsulé par une substance qui retarde la libération du gaz.
  39. Procédé suivant la revendication 28, dans lequel l'agent de blanchiment est un agent de blanchiment contenant de l'oxygène.
  40. Procédé suivant l'une quelconque des revendications 18 à 39, dans lequel le gaz libéré est l'oxygène.
  41. Procédé suivant la revendication 28, dans lequel l'agent de blanchiment est un agent de blanchiment contenant du chlore.
  42. Procédé suivant l'une quelconque des revendications 18 à 39, dans lequel le gaz libéré est le chlore.
EP01960958A 2000-08-25 2001-08-23 Receptacles hydrosolubles Expired - Lifetime EP1311430B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
GBGB0021112.8A GB0021112D0 (en) 2000-08-25 2000-08-25 Improvements in or relating to containers
GB0021112 2000-08-25
PCT/GB2001/003825 WO2002016206A1 (fr) 2000-08-25 2001-08-23 Receptacles hydrosolubles

Publications (2)

Publication Number Publication Date
EP1311430A1 EP1311430A1 (fr) 2003-05-21
EP1311430B1 true EP1311430B1 (fr) 2004-11-03

Family

ID=9898394

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01960958A Expired - Lifetime EP1311430B1 (fr) 2000-08-25 2001-08-23 Receptacles hydrosolubles

Country Status (9)

Country Link
US (1) US20040035739A1 (fr)
EP (1) EP1311430B1 (fr)
AT (1) ATE281351T1 (fr)
AU (2) AU8234401A (fr)
CA (1) CA2420380C (fr)
DE (3) DE20121785U1 (fr)
ES (1) ES2227251T3 (fr)
GB (3) GB0021112D0 (fr)
WO (1) WO2002016206A1 (fr)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8658585B2 (en) 2000-11-27 2014-02-25 Tanguy Marie Louise Alexandre Catlin Detergent products, methods and manufacture
US7125828B2 (en) 2000-11-27 2006-10-24 The Procter & Gamble Company Detergent products, methods and manufacture
PL362605A1 (en) 2000-11-27 2004-11-02 The Procter & Gamble Company Dishwashing method
GB2387598A (en) * 2002-04-20 2003-10-22 Reckitt Benckiser Nv Water-soluble container and a process for its preparation
DE10237200A1 (de) 2002-08-14 2004-03-04 Henkel Kgaa Portionierte Wasch- oder Reinigungsmittelzusammensetzung
DE10244803B4 (de) * 2002-09-26 2012-03-22 Henkel Ag & Co. Kgaa Geschrumpfte Waschmittelformkörper
DE10244802B4 (de) 2002-09-26 2011-12-22 Henkel Ag & Co. Kgaa Pralle Waschmittelformkörper
DE10356824A1 (de) * 2003-12-05 2005-07-07 Henkel Kgaa Verpackungsverfahren mit Tragplatte
DE10350931B4 (de) * 2003-10-31 2007-06-14 Henkel Kgaa Verpackungsverfahren
PL1678037T3 (pl) 2003-10-31 2010-04-30 Henkel Ag & Co Kgaa Sposób pakowania
DE10356769B4 (de) * 2003-12-05 2007-06-14 Henkel Kgaa Verpackungsverfahren
EP1679362A1 (fr) * 2005-01-10 2006-07-12 The Procter & Gamble Company Composition de nettoyage pour machines de vaisselle ou de lavage
EP1679363B1 (fr) * 2005-01-10 2008-07-09 The Procter and Gamble Company Composition de nettoyage pour machines de vaisselle ou de lavage
US8772220B2 (en) 2007-08-24 2014-07-08 Sekisui Specialty Chemicals America, Llc Chemical delivery product and process for making the same
JPWO2012008145A1 (ja) * 2010-07-16 2013-09-05 三井・デュポンポリケミカル株式会社 充填方法、液体小袋包装体の製造方法、および液体小袋包装体
JP2016520483A (ja) 2013-04-19 2016-07-14 リデュー マシーナリー インク 水溶性パウチの作成
AU2014275124B2 (en) 2013-06-04 2017-01-12 Monosol Llc Water-soluble film sealing solutions, related methods, and related articles
EP3415601A1 (fr) * 2017-06-15 2018-12-19 The Procter & Gamble Company Article de dose unitaire soluble dans l'eau comprenant une composition détergente solide pour linge
WO2019238730A1 (fr) 2018-06-14 2019-12-19 Basf Se Procédé pour la production de contenants hydrosolubles pour l'ajout dosé de détergent

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA813298A (en) * 1966-07-08 1969-05-20 W. Gray Frederick Bleaching packets
CA1112534A (fr) 1976-11-03 1981-11-17 John Pardo Detergent pour lave-vaisselle automatique
US4621483A (en) * 1981-08-05 1986-11-11 Enviro-Spray Systems, Inc. Inflatable pouch and method of manufacture
US4793416A (en) * 1987-06-30 1988-12-27 Mobile Oil Corporation Organic crosslinking of polymers for CO2 flooding profile control
IL90587A (en) 1988-06-15 1996-05-14 May & Baker Ltd Package releases software by touching with water
US4973416A (en) * 1988-10-14 1990-11-27 The Procter & Gamble Company Liquid laundry detergent in water-soluble package
TR27730A (tr) * 1991-04-05 1995-06-28 Rhone Poulenc Agrochimie Agrokemikal maddeler icin ambalajlar.
AU664996B2 (en) * 1991-06-11 1995-12-14 Rhone-Poulenc Agrochimie New packaging/containerization system
AU664998B2 (en) * 1991-06-11 1995-12-14 Rhone-Poulenc Agrochimie New packaging/containerization system
AU655282B2 (en) 1991-06-14 1994-12-15 Rhone-Poulenc Agro New aqueous formulations
NZ244818A (en) * 1991-10-24 1994-09-27 Rhone Poulenc Agrochimie Package containing a toxic composition which comprises two compartments formed by two sheets of water-soluble dispersible material by means of a water-soluble/dispersible heat seal and a third sheet
SE9203818L (sv) * 1992-12-18 1994-06-19 Berol Nobel Ab Maskindiskmedel och dess användning
EP0654418A1 (fr) 1993-11-15 1995-05-24 The Procter & Gamble Company Poche flexible tenant debout gonflée
EP0746514B1 (fr) 1994-02-24 1999-04-14 Novartis AG Procede pour la fabrication d'un recipient pour produits chimiques
ES2187749T3 (es) 1996-01-30 2003-06-16 Syngenta Ltd Composicion agroquimica envasada.
DE59605732D1 (de) * 1996-03-22 2000-09-14 Kaercher Gmbh & Co Alfred Reinigungsmittelkonzentrat

Also Published As

Publication number Publication date
GB0021112D0 (en) 2000-10-11
GB2368570A (en) 2002-05-08
ES2227251T3 (es) 2005-04-01
US20040035739A1 (en) 2004-02-26
AU2001282344B2 (en) 2006-02-16
GB0303107D0 (en) 2003-03-19
DE10196553T1 (de) 2003-08-07
GB2383320B (en) 2004-05-19
AU8234401A (en) 2002-03-04
ATE281351T1 (de) 2004-11-15
GB2368570B (en) 2003-05-28
CA2420380A1 (fr) 2002-02-28
DE60106939T2 (de) 2005-11-10
DE60106939D1 (de) 2004-12-09
DE20121785U1 (de) 2003-10-23
GB2383320A (en) 2003-06-25
GB0120483D0 (en) 2001-10-17
CA2420380C (fr) 2009-03-31
WO2002016206A1 (fr) 2002-02-28
EP1311430A1 (fr) 2003-05-21

Similar Documents

Publication Publication Date Title
EP1311429B1 (fr) Recipients thermoformes hydrosolubles comprenant des compositions aqueuses
EP1311430B1 (fr) Receptacles hydrosolubles
AU2001282322A1 (en) Water-soluble thermoformed containers comprising aqueous compositions
AU2001284175B2 (en) Water-soluble thermoformed containers comprising aqueous compositions
GB2374581A (en) Water-soluble containers
EP1539605B1 (fr) Recipient hydrosoluble
AU2001282344A1 (en) Water-soluble containers
AU2001284175A1 (en) Water-soluble thermoformed containers comprising aqueous compositions
WO2004014753A1 (fr) Ameliorations apportees a des recipients
GB2375516A (en) Water soluble injection moulded container
EP1387797B1 (fr) Conteneurs solubles dans l'eau comprenant un systeme de liberation de gaz
GB2375517A (en) A water-soluble injection moulded container
GB2374830A (en) Improvements in or relating to compositions/components including a thermoforming step
GB2367828A (en) Water-soluble containers containing aqueous compositions
US20060293447A1 (en) Water soluble package and for producing it
GB2405828A (en) Improvements in or relating to containers using a thermoforming process

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20030222

AK Designated contracting states

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20041103

Ref country code: BE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20041103

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20041103

Ref country code: LI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20041103

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20041103

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20041103

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20041103

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 60106939

Country of ref document: DE

Date of ref document: 20041209

Kind code of ref document: P

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050203

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050203

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050203

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2227251

Country of ref document: ES

Kind code of ref document: T3

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050823

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050823

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050823

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050831

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

ET Fr: translation filed
26N No opposition filed

Effective date: 20050804

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050403

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 16

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 17

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20180830

Year of fee payment: 17

Ref country code: ES

Payment date: 20180903

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20190813

Year of fee payment: 19

Ref country code: FR

Payment date: 20190711

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20190822

Year of fee payment: 19

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190823

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20210107

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190824

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 60106939

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20200823

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200831

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210302

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200823