EP1310746B1 - Dispositif et procédé de regulation d'un chauffe-eau - Google Patents

Dispositif et procédé de regulation d'un chauffe-eau Download PDF

Info

Publication number
EP1310746B1
EP1310746B1 EP02023856A EP02023856A EP1310746B1 EP 1310746 B1 EP1310746 B1 EP 1310746B1 EP 02023856 A EP02023856 A EP 02023856A EP 02023856 A EP02023856 A EP 02023856A EP 1310746 B1 EP1310746 B1 EP 1310746B1
Authority
EP
European Patent Office
Prior art keywords
heat transfer
transfer medium
temperature
burner
controller
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP02023856A
Other languages
German (de)
English (en)
Other versions
EP1310746A1 (fr
Inventor
Harry Gerstner
Dieter Dr. Pfannstiel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens Building Technologies AG
Original Assignee
Siemens Building Technologies AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Building Technologies AG filed Critical Siemens Building Technologies AG
Publication of EP1310746A1 publication Critical patent/EP1310746A1/fr
Application granted granted Critical
Publication of EP1310746B1 publication Critical patent/EP1310746B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N1/00Regulating fuel supply
    • F23N1/08Regulating fuel supply conjointly with another medium, e.g. boiler water
    • F23N1/082Regulating fuel supply conjointly with another medium, e.g. boiler water using electronic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D19/00Details
    • F24D19/10Arrangement or mounting of control or safety devices
    • F24D19/1006Arrangement or mounting of control or safety devices for water heating systems
    • F24D19/1066Arrangement or mounting of control or safety devices for water heating systems for the combination of central heating and domestic hot water
    • F24D19/1069Arrangement or mounting of control or safety devices for water heating systems for the combination of central heating and domestic hot water regulation in function of the temperature of the domestic hot water
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/10Control of fluid heaters characterised by the purpose of the control
    • F24H15/174Supplying heated water with desired temperature or desired range of temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/10Control of fluid heaters characterised by the purpose of the control
    • F24H15/184Preventing harm to users from exposure to heated water, e.g. scalding
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/20Control of fluid heaters characterised by control inputs
    • F24H15/212Temperature of the water
    • F24H15/215Temperature of the water before heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/20Control of fluid heaters characterised by control inputs
    • F24H15/212Temperature of the water
    • F24H15/219Temperature of the water after heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/20Control of fluid heaters characterised by control inputs
    • F24H15/238Flow rate
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/20Control of fluid heaters characterised by control inputs
    • F24H15/269Time, e.g. hour or date
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/30Control of fluid heaters characterised by control outputs; characterised by the components to be controlled
    • F24H15/345Control of fans, e.g. on-off control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/30Control of fluid heaters characterised by control outputs; characterised by the components to be controlled
    • F24H15/355Control of heat-generating means in heaters
    • F24H15/36Control of heat-generating means in heaters of burners
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/40Control of fluid heaters characterised by the type of controllers
    • F24H15/414Control of fluid heaters characterised by the type of controllers using electronic processing, e.g. computer-based
    • F24H15/421Control of fluid heaters characterised by the type of controllers using electronic processing, e.g. computer-based using pre-stored data
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H9/00Details
    • F24H9/20Arrangement or mounting of control or safety devices
    • F24H9/2007Arrangement or mounting of control or safety devices for water heaters
    • F24H9/2035Arrangement or mounting of control or safety devices for water heaters using fluid fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2223/00Signal processing; Details thereof
    • F23N2223/08Microprocessor; Microcomputer
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2223/00Signal processing; Details thereof
    • F23N2223/36PID signal processing

Definitions

  • the present invention relates to an apparatus and a method for controlling Spas according to the preambles of claims 1 and 11, a preferred Use of the device and the method according to claim 25 and a Regulator for carrying out the method according to claim 26.
  • the heat transfer medium either directly via a primary exchanger or indirectly by means of the heated water the heating is heated via a secondary exchanger and at suitable tapping points, for example, in the kitchen or in the bathroom, taken.
  • the regulation of the burner such spas takes place in the known prior art by the measurement of Outlet temperature at the outlet of the primary exchanger or the secondary exchanger, the compared with a predetermined target temperature and the controller, such as a PI controller, is supplied to the output of a manipulated variable, the manipulated variable, for example may be a signal to adjust the power of the burner.
  • Such controlled baths are known, for example, from DE-A-37 16 798, JP-A-61 14 9761 or EP-A-0 226 246.
  • the unmeasured amount of discharged heat transfer medium is a disturbance in the control circuit and has great influence on the dynamics of the control loop.
  • the object of the present invention is to provide the known devices and methods for the control of spas to improve that temperature fluctuations avoided on the outlet side of the heat exchanger and a reliable Regulation of the burner of the spa for different principles can be achieved can.
  • the aim of the invention is therefore, a constant outlet temperature at different To achieve disturbance variables.
  • the volume flow on the outlet side of the heat exchanger but not measured by expensive volumetric flow meters, but the invention is based on the object here, the volume flow indirectly too in order to use it for a feedforward control.
  • the present invention is intended not only for systems with direct heating be used in the primary heat exchanger of the heat transfer medium, but also in all other systems such as e.g. in systems with secondary heat exchanger, in all Usually only a small buffer (in the order of about 1 l), the must be kept ready to bridge the time needed enough energy to the secondary heat exchanger via a primary heat exchanger to provide, i. in addition to an outlet temperature control (primary heat exchanger) should the invention also in a comfort temperature control (with secondary exchanger) be usable.
  • the invention solves the underlying task by the characterizing Features of the independent claims 1 and 11 and 26, wherein advantageous Embodiments and variants of the invention in the dependent claims are marked and described.
  • An advantageous use of the method or the device is claimed in claim 25.
  • One for an inventive Device or controller suitable for the method according to the invention is in the claims 26 and 27 characterized.
  • the device according to the invention for regulating thermal baths has a burner for heating a heat transfer medium, an inlet for supplying the Heat transfer medium, which has a certain inlet temperature at the inlet, a Outlet for the discharge of the heat transfer medium, which at the outlet a certain Outlet temperature has, and a regulator, the heating of the heat transfer medium by means of a primary exchanger or a secondary exchanger, at least in dependence a set temperature and the outlet temperature controls.
  • the controller measures a rate of increase the outlet temperature at a predeterminable burner capacity, based on the Rate of increase calculates the dissipated amount of heat transfer medium becomes.
  • the mathematical basis for this calculation is the fact that the slew rate the outlet temperature at a constant burner power indirectly proportional to the amount of discharged heat transfer medium, that is, a larger amount of heat transfer medium removed to a lower rate of increase the outlet temperature of the heat transfer medium leads and vice versa.
  • the slew rate the outlet temperature in each case at a predeterminable, but at least be measured for the duration of the measurement constant burner power.
  • the controller parameters i. for example the controller gain, based on the calculated amount of discharged Heat transfer medium can be changed accordingly. For example, set the controller determines that a large amount of heat transfer medium is removed, it does not have to - as in the prior art - to a corresponding decrease in the outlet temperature "wait", but can directly control the output of the burner to the to request the requested quantity of heat transfer medium.
  • the controller has a memory for storing the smallest and largest Rise velocities of outlet temperature for each adjustable setpoint temperature on. Once the controller has the appropriate rate of increase of Outlet temperature has measured, he compares this with the stored smallest or highest slew rate and stores the measured slew rate then as minimum or maximum slew rate in memory, when the measured slew rate is less than the smallest saved one Rate of increase or if this is greater than the largest stored Slew rate. This ensures that so the smallest and largest discharged amounts of heat transfer medium (Zapfmengen) and can be adapted during operation.
  • Zapfmengen heat transfer medium
  • the regulation thus orders at a set desired temperature and at the predeterminable Burner output the smallest rate of increase of the outlet temperature the largest amount of heat transfer medium that can be removed (largest dispensing quantity) and the largest rate of increase of the outlet temperature of the smallest dischargeable Quantity of heat transfer medium (smallest dispensing amount) too and calculated by the measured rising speeds, the discharged amount of heat transfer medium linear in relation to it.
  • This can be done in the simplest case by laying down the two points (maximum bleed, minimum slew rate and minimum Tap quantity, highest rate of increase) in the x-y coordinate system, which are connected by a straight line, so that all other taps at a measured slew rate between the lowest and highest slew rates can be read directly.
  • the controller selects for calculating the amount of discharged heat transfer medium, i.e. for measuring the rate of increase, as predeterminable burner power about 60% to 100%, preferably about 80% of the required burner power at maximum dischargeable amount of the heat transfer medium at a set Target temperature off.
  • predeterminable burner power for example, 80% of the required Burner capacity at maximum dispensing rate, in this case 80% of 77.8% of that burner power at a maximum setpoint temperature of, for example 60 ° C and at maximum dispensing volume would be necessary (maximum operation of the burner).
  • the controller starts measuring the slew rate at a minimum outlet temperature and ends the measurement when the setpoint temperature is reached.
  • This has the advantage that at modulating burners anyway the burner is started when falling below a minimum outlet temperature and subsequently at this burner start immediately with the measurement of the slew rate can be started to immediately measure the amount of discharged heat transfer medium to obtain.
  • the controller starts the controller measures the rate of increase at a predeterminable temperature difference below the target temperature and ends this again when it reaches the target temperature. This is useful, for example, when the heat exchanger is heated from the cold state, since then a minimum outlet temperature does not exist yet and the heat exchangers are only heated up from below got to.
  • the controller measures the rate of increase each time the desired temperature is changed the outlet temperature at one of these setpoint temperature associated and predeterminable burner performance.
  • the assigned and predeterminable Burner power for measuring slew rate can also be used as identification burner power be designated.
  • the inventive method for controlling thermals in particular for control a domestic water flow heater, according to the aforementioned principles.
  • the heat transfer medium is at the inlet of the heat exchanger to the heat exchanger fed and discharged via the outlet.
  • the outlet temperature detectable at the outlet is combined with a temperature set by the operator of the spa supplied to the controller, the corresponding control difference from these forms two temperatures.
  • the controller in addition, the outlet temperature supplied. Based on the slew rate the outlet temperature can thus at a predeterminable burner power (identification burner power) the dissipated amount of the heat transfer medium is calculated and the heating of the heat transfer medium can be controlled by this amount.
  • the burner power is then at larger amounts of discharged heat transfer medium stronger and smaller amounts of the discharged heat transfer medium changed more weakly.
  • the burner performance depending on the set target temperature to a predefinable Maximum value limited to a fraction of the burner output at maximum setpoint temperature equivalent.
  • This limited burner power will be following the calculation the amount of discharged heat transfer medium as the upper limit for the used modulating control, for example, when using a Pl-controller to prevent overshoot of the outlet temperature and to the modulation of the burner closer to the currently required power.
  • the limit of the setting range can be active both in the comfort mode and in the shutdown mode and if necessary, is set up by a certain burner output (for example 5%), to compensate for tolerances.
  • the Control of the heating of the heat transfer medium not the user of the spa specifiable target temperature directly, but the sum of this target temperature and a desired correction temperature used.
  • the exact target temperatures are obtained in the context of a calibration process at two different measuring points of the outlet and comfort temperature and calculates the target correction temperature at these at least two different ones Values of the setpoint temperature, while all other values are based on the setpoint temperature a line lying between these two different values of the target temperature be linearly interpolated.
  • the inlet temperature of the heat transfer medium at the inlet of the heat exchanger be, without this, an inlet temperature sensor is necessary.
  • the heat transfer medium is heated by means of a secondary exchanger, so can be used as inlet temperature, the measured buffer medium temperature in the buffer medium storage (DHW tank or boiler) plus a correction temperature used when the sensor is mounted on the cold water side of the heat exchanger is and the time of discharge exceeds a predeterminable maximum time.
  • DHW tank or boiler buffer medium storage
  • the buffer medium storage (DHW tank) is sufficient removed a lot of heat transfer medium, so that the temperature in the buffer medium storage corresponds approximately to the inlet temperature.
  • a predeterminable criterion Time of discharge of heat transfer medium can be used.
  • this measured buffer medium temperature plus a correction temperature used only if they are within a predeterminable range (permissible) temperature range around a preferred average around. With Advantage is this in about 15 ° C with a fluctuation of about +/- 5 K.
  • According to another preferred embodiment of the invention is in the heating the heat transfer medium in the clock mode, i. at very low levels of discharged heat transfer medium, after starting the burner of a firing performance as directly as possible to a predeterminable and storable clock power switched.
  • a clock power is with advantage the last performance before the shutdown of the burner or the minimum adjustable power of the burner used.
  • the problem is that after a renewed activation of the burner, the modulation controller, the burner output from a firing rate (starting power) down must, if the withdrawn Quantity of heat transfer medium is very low. If not fast enough takes place, then enters the state that the temperature in the heat exchanger quickly Burner switch-off reached and the burner is switched off again. This leads to to a large Brennerschaltphaseuftechnik.
  • the burner of the method according to the invention is not in the modulation mode "started", but first switched to the "remembered” burner power, at the same time for measuring the slew rate and thus for detection the tap quantity can be used.
  • the blower the burner is not turned off, but preferably continue at an ignition speed operated. This makes it possible to start the burner faster, which is a "Sagging" of the outlet temperature reduced.
  • the invention is in the regulation of a domestic hot water heater. This is explained in more detail in the following figures.
  • a controller for carrying out a method according to the present invention Invention has at least one input for reading in or a processor for Calculation of the difference between an adjustable setpoint temperature and the outlet temperature a heatable by a burner heat transfer medium and at least one output for controlling the power of the burner, the regulator has at least one further input for reading in the outlet temperature, the controller then determines the rate of increase of the outlet temperature at a predeterminable burner power and based on the rate of increase the dissipated amount of the heat transfer medium calculated. With the help of the calculated Quantity of discharged heat transfer medium, the controller can then control the Optimize heating of the heat transfer medium.
  • the controller changes the burner output following the calculation modulating the amount of discharged heat transfer medium, wherein the controller parameters changeable on the basis of the calculated amount of discharged heat transfer medium are.
  • FIG 1 shows the schematic representation of a water heater with primary exchanger 7 (primary heat exchanger), that of a burner 2 (shown only schematically) is heated.
  • the cold water KW is the primary exchanger via a cold water inlet 5 7 fed and heated there.
  • the heated water is at a tapping point 6 as Hot water WW taken.
  • Outlet temperature sensor B3 temperature sensor 9
  • Via a pressure switch (flow switch) FS is the tap of hot water WW detected.
  • the burner 2 is used at the same time for heating a heating medium, such as water, for example Heat supply of a house. Only schematically shown is a heat exchanger 8 with flow temperature sensor B2, return temperature sensor B7, flow pump or heating circuit pump Q1, consumer 3 (radiator) and water pipe 4.
  • FIG. 2 shows the schematic representation of a continuous flow heater with secondary heat exchanger, where the cold water KW is not directly from the burner 2, but over a Secondary exchanger 10 (secondary heat exchanger) is heated.
  • the secondary exchanger 10 is supplied by the heating medium via a three-way valve UV with heat, the the cold water is heated.
  • an outlet temperature sensor B3 is used for the measurement the outlet temperature ⁇ Off.
  • An inlet temperature sensor B5 and a buffer medium temperature sensor B4 is also indicated schematically.
  • a pressure switch FS is here on the output side at the tapping point 6 for measuring a tap of hot water WW arranged.
  • the heating circuit pump Q1 is in this case on the return side of Boiler 8 in front of the return temperature sensor B7 and at the same time ensures circulation of the heating medium in the secondary exchanger 10.
  • the three-way valve UV can also its own hot water circuit pump can be used.
  • FIG 3 shows - greatly simplified - the control structure.
  • the controller 1 controls the burner 2 by means of a manipulated variable, ie with advantage a signal for the performance of the burner.
  • the burner 2 is in the control scheme of Figure 3 representative of the route to be controlled, of course, in addition to the burner 2 also includes the heat exchanger, the cold water to be heated and all other disturbances and parts of the route.
  • the outlet temperature ⁇ out is - as known from the prior art - recycled and added to the target temperature ⁇ target with a negative sign, so that a temperature difference ⁇ can be supplied to the controller 1.
  • the regulator 1 is also supplied with the outlet temperature ⁇ out .
  • the basis for the detection of the extracted amount of heat transfer medium is now the fact that for each bleed a certain energy must be supplied to the heat exchanger in order to keep the outlet temperature ⁇ out at a certain inlet temperature ⁇ Ein a constant. If more energy is supplied, the outlet temperature ⁇ out increases at a certain rate of increase v A. Therefore, if more energy is supplied to the heat exchanger than is required on the basis of the tap quantity, the return or outlet temperature ⁇ Aus will increase.
  • the rate of increase v A is determined by the unneeded energy (excess energy). The higher the rate of increase v A , the lower the amount of hot water WW withdrawn, that is, the rate of increase v A and the amount of tapping are indirectly inversely dependent on one another.
  • the identification burner performance is thus always dependent on the performance at the maximum dispensing amount calculated. This ensures that you can with this burner performance after calculating the dispensing amount, i. after identification always in near the actual required power. At very low dispensing amount is on the other hand, you are too high in performance.
  • SdBwAusMax stands for the upper limit of the switching difference for switching off the burner
  • SdBwAusMin for the lower limit of the switching differential for switching off the burner
  • SdOn stands for the lower switching differential for switching on the burner.
  • the burner output for identification is activated when a hot water tap is detected and when the burner 2 is switched on.
  • the outlet temperature ⁇ out (or the return temperature for eg heaters) will initially drop and then rise again (see FIG. The increase of the outlet temperature ⁇ out (waste or rising gradient) is detected and thus the minimum of the outlet temperature ⁇ minimum is determined. This minimum of the outlet temperature ⁇ Minimum is noted and from this time the time is detected (time t 0 ).
  • the time is then measured until the discharge temperature ⁇ from the set temperature ⁇ has reached target (time t 1). Thereafter, the differential temperature ⁇ between the target temperature ⁇ target and the minimum temperature ⁇ minimum and the difference ⁇ t between the times t 1 and t 0 is formed.
  • the ratio ⁇ to .DELTA.t is the rising gradient, the rising speed v A ie at the outlet temperature ⁇ off at a constant burner power and is thus an indirect measure of the amount corresponding pin.
  • the measured slope gradient is compared with the stored minimum and maximum values. If the measured value is less than the stored minimum value (minimum slew rate v Amin ), then this value is stored as a new minimum value. Each measured slew rate v A that is greater than the stored value indicates a smaller bleed amount. Furthermore, the largest rising speed vAmax (smallest dispensing amount) is stored. If there are now smaller or greater slew rates than the previously stored values, these are then stored as minimum or maximum values.
  • hot water DH is tapped after the initial start-up with maximum dispensing amount.
  • the smallest slew rate can be determined.
  • twice the smallest slew rate v Amin may be set as the new start value. During operation, these values are then further adapted.
  • the ascertained gradient of gradient ie the measured rate of increase vA between the stored minimum value v Amin and the maximum value v Amax , is then converted between these limit values to the intermediate bleed amount. From this tap quantity can then be switched to the required burner power and the modulation controller with respect to the power adjustment are released (see time t 1 in Figure 4). Depending on the determined tap quantity then the controller parameters of the controller 1 can be switched accordingly.
  • the modulation controller 1 must be released prematurely.
  • the modulation controller is the following: If the outlet temperature ⁇ out below the temperature setpoint ⁇ target less a turn-on difference ⁇ and the run time is greater than, for example, 1 minute from this time t 0 , the modulation controller is enabled.
  • Figure 5 shows the schematic representation of setting the starting power in the cyclic operation of the burner 2, ie at small bleed amounts. While it has been applied in the upper part of FIG 5 as shown in Fig. 4, the outlet temperature ⁇ from versus time, in the lower part of the figure 5 is shown the power of the burner 2 with respect to the time corresponding to the overlying outlet temperature ⁇ Aus. Once a clock mode has been detected, ie the tap particularly small amounts of hot water WW and the burner 2 turns off, the last related power of the burner 2 is stored in a memory of the controller 1.
  • the burner 2 While the burner 2 remains switched off, it is possible to keep the fan of the burner running in order to get into the appropriate speed range as quickly as possible when the burner is switched on again. As soon as the outlet temperature ⁇ out crosses the lower limit of the switching difference SdIn, the burner 2 switches on again, in which case the previously "remembered” power, ie the power stored in the controller 1, is used, which can then also be used, for example, to measure the slew rate vA. if this has not been done before. After the identification phase (power constant), the modulation controller is enabled.
  • the burner output becomes after switching on the burner according to FIG. 5 then set to minimum power when the last set burner power is smaller is the minimum burner output.
  • Figures 6a and 6b show correction values for the comfort temperature control and the outlet temperature control, which can be used to correct the temperature setpoint ⁇ Soll to compensate for a deviation from the realistic temperature values.
  • a hot water instantaneous water heater can be controlled much more accurately and reliably, without causing large fluctuations in the outlet temperature ⁇ out .

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Thermal Sciences (AREA)
  • Computer Hardware Design (AREA)
  • Fluid Mechanics (AREA)
  • Control Of Combustion (AREA)
  • Regulation And Control Of Combustion (AREA)
  • Control Of Steam Boilers And Waste-Gas Boilers (AREA)
  • Instantaneous Water Boilers, Portable Hot-Water Supply Apparatuses, And Control Of Portable Hot-Water Supply Apparatuses (AREA)
  • Paper (AREA)
  • Diaphragms For Electromechanical Transducers (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Claims (26)

  1. Dispositif de régulation de chauffe-eau, en particulier pour la régulation d'un chauffe-eau instantané d'eau d'usage, comprenant un brûleur (2) pour chauffer un médium caloporteur, une entrée pour amener le médium caloporteur qui présente une température déterminée (ϑEin) à l'entrée, une sortie d'évacuation du médium caloporteur qui présente une température de sortie (ϑAus) déterminée à la sortie et un régulateur (1) qui règle le chauffage du médium caloporteur au moins en fonction d'une température de consigne (ϑSoll) et de la température de sortie (ϑAus), caractérisé en ce que le régulateur (1) mesure une vitesse d'augmentation (VA) de la température de sortie (ϑAus) à une puissance prédéterminable du brûleur, la quantité de médium caloporteur évacuée étant calculée à l'aide de la vitesse d'augmentation (VA), et en ce que le régulateur (1) règle le chauffage du médium caloporteur y compris à l'aide de la quantité calculée de médium caloporteur évacué.
  2. Dispositif selon la revendication 1, caractérisé en ce que le régulateur (1) modifie, en modulant, la puissance du brûleur suite au calcul de la quantité de médium caloporteur évacué, les paramètres de réglage étant modifiables à l'aide de la quantité calculée de médium caloporteur évacué.
  3. Dispositif selon l'une des revendications 1 ou 2, caractérisé en ce que le régulateur (1) comporte une mémoire pour mettre en mémoire la plus petite et la plus grande vitesse d'augmentation (VAmin; VAmax) de la température de sortie (ϑAus) pour chaque température de consigne (ϑSoll) réglable, en ce que le régulateur (1) compare la vitesse d'augmentation (VA) mesurée avec la plus petite et la plus grande vitesse d'augmentation (VAmin; VAmax) et en ce que le régulateur (1) met en mémoire la vitesse d'augmentation mesurée en tant que la plus petite resp. la plus grande vitesse d'augmentation (VAmin; VAmax) dans la mémoire dans le cas où la vitesse d'augmentation (VA) mesurée est inférieure à la plus petite vitesse d'augmentation (VAmin) resp. supérieure à la plus grande vitesse d'augmentation (VAmax).
  4. Dispositif selon l'une des revendications précédentes, caractérisé en ce que le régulateur (1), à une température de consigne (ϑSoll) réglée et la puissance prédéterminable du brûleur, affecte la plus petite vitesse d'augmentation (VAmin) à la plus grande quantité évacuable de médium caloporteur et la plus grande vitesse d'augmentation (VAmax) à la plus petite quantité évacuable de médium caloporteur et calcule, à l'aide de la vitesse d'augmentation (VA) mesurée, la quantité évacuée de médium caloporteur linérairement en rapport avec celle-ci.
  5. Dispositif selon l'une des revendications précédentes, caractérisé en ce que le régulateur règle, en tant que puissance prédéterminable du brûleur, 60 % à 100 % et de préférence à peu près 80 % de la puissance du brûleur requise, à la quantité maximale évacuable de médium caloporteur à une température de consigne (ϑSoll) réglée.
  6. Dispositif selon l'une des revendications précédentes, caractérisé en ce que le régulateur (1) lance la mesure de la vitesse d'augmentation (VA) à une température de sortie (ϑAusmin) minimale et la termine à l'obtention de la température de consigne (ϑSoll).
  7. Dispositif selon l'une des revendications 1 à 5, caractérisé en ce que le régulateur (1) lance la mesure de la vitesse d'augmentation (VA) à une différence de température prédéterminable en dessous de la température de consigne (ϑSoll) et la termine à l'obtention de la température de consigne (ϑSoll).
  8. Dispositif selon l'une des revendications précédentes, caractérisé en ce que, à la puissance prédéterminable du brûleur et la non-obtention de la température de consigne (ϑSoll) à l'expiration d'une durée de temps prédéterminable, le régulateur (1) modifie, en modulant, la puissance du brûleur sans tenir compte de la quantité de médium caloporteur.
  9. Dispositif selon l'une des revendications précédentes, caractérisé en ce que, à chaque modification de la température de consigne (ϑSoll), le régulateur (1) mesure de nouveau la vitesse d'augmentation (VA) de la température de sortie (ϑAus) à une puissance du brûleur prédéterminable et affectée à la température de consigne.
  10. Dispositif selon l'une des revendications précédentes, caractérisé en ce qu'un échangeur secondaire (10) peut être utilisé pour chauffer le médium caloporteur, en ce que le régulateur (1) utilise, en tant que température d'entrée (ϑEin), la température du médium tampon mesurée à l'aide d'un capteur de température du médium tampon (B4) majorée d'une température de correction en l'absence de capteur de température d'entrée (B5) et lorsque la quantité de médium caloporteur évacuée dépasse une quantité maximale prédéterminable et/ou le temps d'évacuation dépasse un temps maximal prédéterminable.
  11. Procédé de régulation de chauffe-eau, en particulier pour la régulation d'un chauffe-eau instantané d'eau d'usage, pour chauffer un médium caloporteur au moyen d'un brûleur (2), le médium caloporteur étant amené par l'intermédiaire d'une entrée à un échangeur thermique (7, 10) et étant de nouveau évacué par l'intermédiaire d'une sortie, le médium caloporteur présentant une température d'entrée (ϑEin) déterminée à l'entrée et une température de sortie (ϑAus) déterminée à la sortie et le chauffage du médium caloporteur dans l'échangeur thermique (7, 10) étant réglé au moins en fonction d'une température de consigne (ϑSoll) et de la température de sortie (ϑAus), caractérisé en ce qu'une vitesse d'augmentation (VA) de la température de sortie (ϑAus) à une puissance prédéterminable du brûleur est mesurée, en ce que la quantité de médium caloporteur évacuée est calculée à l'aide de la vitesse d'augmentation (VA) et en ce que le chauffage du médium caloporteur est également réglé à l'aide de la quantité calculée de médium caloporteur évacué.
  12. Procédé selon la revendication 11, caractérisé en ce que, à une température de consigne (ϑSoll) réglée et la puissance prédéterminable du brûleur, la plus petite vitesse d'augmentation (VAmin) est affectée à la plus grande quantité évacuable de médium caloporteur et la plus grande vitesse d'augmentation (VAmax) est affectée à la plus petite quantité évacuable de médium caloporteur et, à l'aide de la vitesse d'augmentation (VA) mesurée, la quantité de médium caloporteur évacuée est affectée linérairement en rapport avec celle-ci et en ce que les paramètres de réglage sont modifiés de manière telle que, à l'aide de la quantité calculée de médium caloporteur évacué, la puissance du brûleur se modifie plus fortement en cas de plus grandes quantités de médium caloporteur évacué et moins fort en cas de quantités moindres de médium caloporteur évacué.
  13. Procédé selon l'une des revendications 11 ou 12, caractérisé en ce que 60 % à 100 % et de préférence à peu près 80 % de la puissance requise du brûleur à la quantité maximale évacuable de médium caloporteur à une température de consigne (ϑSoll) réglée sont sélectionnés en tant que puissance prédéterminable du brûleur.
  14. Procédé selon l'une des revendications 11 à 13, caractérisé en ce que la puissance du brûleur est limitée, en fonction de la température de consigne (ϑSoll) réglée, à une valeur maximale qui correspond à une fraction de la puissance du brûleur à la température de consigne maximale (ϑSollmax) et pour la plus grande quantité évacuable de médium caloporteur.
  15. Procédé selon la revendication 14, caractérisé en ce que la puissance limitée du brûleur est utilisée suite au calcul de la quantité de médium caloporteur évacué pour la régulation modulante.
  16. Procédé selon l'une des revendications 14 ou 15, caractérisé en ce que la limitation de la puissance du brûleur se fonde sur la valeur maximale lorsque le régulateur (1) se trouve au niveau de la limite de puissance pendant un temps plus prolongé qu'une durée de temps prédéterminable et/ou si la température de sortie (ϑAus) n'atteint pas la température de consigne (ϑSoll) moins une différence de température et/ou si la vitesse d'augmentation (VA) de la température de sortie (ϑAus) se trouve en dessous d'une limite prédéterminable.
  17. Procédé selon l'une des revendications 11 à 16, caractérisé en ce que, pour la régulation du chauffage du médium caloporteur, on utilise la somme de la température de consigne (ϑSoll) et une température de correction de consigne (ϑKorr).
  18. Procédé selon la revendication 17, caractérisé en ce que la température de correction de consigne (ϑKorr) est calculée en au moins deux valeurs différentes de la température de consigne (ϑSoll) par mesure des températures de consigne exactes et est interpolée linéairement pour toutes les autres valeurs de la température de consigne (ϑSoll) à l'aide d'une droite située entre les deux valeurs différentes de la température de consigne (ϑSoll).
  19. Procédé selon l'une des revendications 11 à 18, caractérisé en ce que le médium caloporteur est chauffé au moyen d'un échangeur secondaire (10), en ce qu'est utilisée, en tant que température d'entrée (ϑEin), la température mesurée du médium tampon majorée d'une température de correction en l'absence de capteur de température d'entrée (B5) et lorsque la quantité de médium caloporteur évacuée dépasse une quantité maximale prédéterminable et/ou le temps d'évacuation dépasse un temps maximal prédéterminable.
  20. Procédé selon la revendication 19, caractérisé en ce qu'est utilisée, en tant que température d'entrée (ϑEin), la température mesurée du médium tampon majorée d'une température de correction uniquement si celle-ci se situe à l'intérieur d'une plage de température prédéterminable autour d'une valeur moyenne préférentielle.
  21. Procédé selon l'une des revendications 11 à 20, caractérisé en ce que, après le démarrage du brûleur (2), on commute pour passer d'une puissance d'allumage à une puissance cyclique du brûleur, laquelle est prédéterminable et peut être mise en mémoire.
  22. Procédé selon la revendication 21, caractérisé en ce que la puissance cyclique du brûleur est la dernière puissance avant l'arrêt du brûleur (2) ou la puissance minimale du brûleur (2) pouvant être réglée.
  23. Procédé selon l'une des revendications 21 ou 22, caractérisé en ce que le ventilateur du brûleur (2) n'est pas arrêté en mode cyclique, c'est-à-dire dans le cas de petites quantités évacuées de médium caloporteur, et est exploité de préférence avec un régime d'allumage.
  24. Utilisation du dispositif selon l'une des revendications 1 à 10 et/ou d'un procédé selon l'une des revendications 11 à 23 pour la régulation d'un chauffe-eau instantané d'eau d'usage.
  25. Régulateur (1) pour l'exécution d'un procédé selon l'une des revendications 11 à 23, en particulier pour la régulation d'un chauffe-eau instantané d'eau d'usage, comportant au moins une entrée de lecture ou un processeur pour le calcul de la différence entre une température de consigne (ϑSoll) réglable et la température de sortie (ϑAus) d'un médium caloporteur chauffable par un brûleur (2) et au moins une sortie de régulation de la puissance du brûleur (2), caractérisé en ce que le régulateur (1) comporte au moins une entrée de lecture de la température de sortie (ϑAus), en ce que le régulateur (1) mesure une vitesse d'augmentation (VA) de la température de, sortie (ϑAus) à une puissance prédéterminable du brûleur, la quantité de médium caloporteur évacuée étant calculée à l'aide de la vitesse d'augmentation (VA), et en ce que le régulateur (1) règle également le chauffage du médium caloporteur à l'aide de la quantité calculée de médium caloporteur évacué.
  26. Régulateur selon la revendication 25, caractérisé en ce que le régulateur (1) modifie, en modulant, la puissance du brûleur suite au calcul de la quantité de médium caloporteur évacué, les paramètres de réglage étant modifiables à l'aide de la quantité calculée de médium caloporteur évacué.
EP02023856A 2001-11-07 2002-10-24 Dispositif et procédé de regulation d'un chauffe-eau Expired - Lifetime EP1310746B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10154198 2001-11-07
DE10154198A DE10154198A1 (de) 2001-11-07 2001-11-07 Vorrichtung und Verfahren zur Regelung von Thermen

Publications (2)

Publication Number Publication Date
EP1310746A1 EP1310746A1 (fr) 2003-05-14
EP1310746B1 true EP1310746B1 (fr) 2005-04-06

Family

ID=7704623

Family Applications (2)

Application Number Title Priority Date Filing Date
EP02023855A Expired - Lifetime EP1310736B1 (fr) 2001-11-07 2002-10-24 Régulateur et méthode de régulation pour un brûleur
EP02023856A Expired - Lifetime EP1310746B1 (fr) 2001-11-07 2002-10-24 Dispositif et procédé de regulation d'un chauffe-eau

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP02023855A Expired - Lifetime EP1310736B1 (fr) 2001-11-07 2002-10-24 Régulateur et méthode de régulation pour un brûleur

Country Status (3)

Country Link
EP (2) EP1310736B1 (fr)
AT (1) ATE335169T1 (fr)
DE (3) DE10154198A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019123030A1 (de) * 2019-08-28 2021-03-04 Viessmann Werke Gmbh & Co Kg Verfahren zum Betrieb eines Heizgeräts
WO2023235393A1 (fr) * 2022-06-01 2023-12-07 Laars Heating Systems Company Système et procédé de détermination de capacité de transfert thermique d'un chauffe-eau indirect

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0413304D0 (en) * 2004-06-15 2004-07-14 Taran Systems Ltd Heating control system
IT1393216B1 (it) * 2009-03-05 2012-04-11 Eberle Dispositivo per il miglioramento del bilancio energetico, particolarmente per caldaie per riscaldamento.
DE102021108035A1 (de) 2021-03-30 2022-10-06 Stiebel Eltron Gmbh & Co. Kg Warmwassergerät und Verfahren zum Steuern des Warmwassergerätes
CN114251831B (zh) * 2021-08-24 2023-04-11 佛山市顺德区美的饮水机制造有限公司 即热式加热装置及其调控方法和装置、用水设备和介质

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH667516A5 (de) * 1984-05-29 1988-10-14 Vaillant Gmbh 2-punkt-regelverfahren fuer eine waermequelle.
JPS61149761A (ja) * 1984-12-24 1986-07-08 Matsushita Electric Ind Co Ltd ガス瞬間給湯器
NL8503345A (nl) * 1985-12-04 1987-07-01 Nefit Nv Inrichting voor het sturen van een warmwatervoorziening.
IT1188694B (it) * 1986-05-23 1988-01-20 Nuovo Pignone Ind Meccaniche & Sistema di regolazione della temperatura dell'acqua sanitaria in caldaie murali istantanee miste a gas
CH682185A5 (fr) * 1991-07-17 1993-07-30 Landis & Gyr Business Support
GB2265027A (en) * 1992-03-12 1993-09-15 Worcester Heat Systems Ltd Controlling operation of a gas boiler
DE4305870C2 (de) * 1993-02-25 1997-07-03 Sandler Energietechnik Brauchwasser-Temperaturregelung
DE4438881A1 (de) * 1994-10-31 1996-05-02 Buderus Heiztechnik Gmbh Verfahren zum bedarfsangepaßten Betreiben einer Heizungsanlage
DE19512025C2 (de) * 1995-03-31 1999-01-28 Stiebel Eltron Gmbh & Co Kg Gasheizgerät
DE19804565C2 (de) * 1998-02-05 2000-01-27 Christoph Kummerer Selbstlernendes Regelverfahren
DE19841256C2 (de) * 1998-09-09 2000-10-26 Viessmann Werke Kg Verfahren und Vorrichtung zur Erwärmung bzw. Abkühlung eines Fluids in einem Wärmeaustauscher bzw. Kälteaustauscher und Regelung hierfür
DE19844856C1 (de) * 1998-09-30 2000-05-18 Honeywell Bv Warmwasser-Heizgerät

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019123030A1 (de) * 2019-08-28 2021-03-04 Viessmann Werke Gmbh & Co Kg Verfahren zum Betrieb eines Heizgeräts
WO2021037311A1 (fr) 2019-08-28 2021-03-04 Viessmann Werke Gmbh & Co Kg Procédé de fonctionnement d'un dispositif de chauffage
WO2023235393A1 (fr) * 2022-06-01 2023-12-07 Laars Heating Systems Company Système et procédé de détermination de capacité de transfert thermique d'un chauffe-eau indirect

Also Published As

Publication number Publication date
EP1310736B1 (fr) 2006-08-02
EP1310736A2 (fr) 2003-05-14
EP1310746A1 (fr) 2003-05-14
EP1310736A3 (fr) 2004-05-19
DE50202701D1 (de) 2005-05-12
DE50207704D1 (de) 2006-09-14
DE10154198A1 (de) 2003-05-15
ATE335169T1 (de) 2006-08-15

Similar Documents

Publication Publication Date Title
EP2187136A2 (fr) Procédé de fonctionnement d'un système de transport d'énergie thermique sur un support fluide
EP0892223B1 (fr) Dispositif de commande et de régulation pour système de chauffage
EP1310746B1 (fr) Dispositif et procédé de regulation d'un chauffe-eau
EP3101352B1 (fr) Procede de fonctionnement d'une installation de chauffage et dispositif de regulation comprenant un capteur de difference de pression
EP0736826A2 (fr) Commande de puissance en fonction de la température pour un groupe de pompe électrique
EP0445310A1 (fr) Procédé et dispositif de régulation de la température "aller" d'un système de chauffage à plusieures chaudières
CH682345A5 (en) Controlling heating of rooms for economy
DE102005040792B3 (de) Selbstlernender Temperaturregler
DE10144595B4 (de) Zentralheizungsanlage
EP1160515B1 (fr) Installation de chauffage avec au moins deux circuits de chauffage
EP0337922B1 (fr) Installation de chauffage
DE3838005C2 (fr)
EP1148302B1 (fr) Procédé de réglage de la temperature de la prélèvement de l'eau sanitaire
DE2529858C2 (de) Verfahren und Vorrichtung zum Regeln einer Wärmeübertragungsanlage
EP0898119A2 (fr) Dispositif et procédé de chauffage d'eau sanitaire
EP2218967B1 (fr) Procédé et dispositif de réglage de la durée de fonctionnement d'un brûleur
EP0642069B1 (fr) Dispositif de régulation
DE10033910B4 (de) Schichtenspeicher
DE10154196A1 (de) Regelverfahren und Regler zur Regelung eines Brenners
EP1450111B1 (fr) Procédé pour determiner une demande de chaleur et dispositif de chauffage pour mettre ledit procédé en oeuvre
DE2434223A1 (de) Umlaufwasserheizer
AT397854B (de) Verfahren zur steuerung eines kessels
DE3702080A1 (de) Verfahren zum steuern der umschaltung eines waermeaufnehmenden verbrauchers zwischen einer brennstoff- oder strombeheizten waermequelle und einer waermepumpe und einrichtung zur durchfuehrung des verfahrens
DE9405531U1 (de) Regeleinrichtung für Warmwasser-Zentralheizungsanlagen
DE10054546A1 (de) Verfahren zur Regelung der thermischen Leistung eines Brennstoffzellen-Systems

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

17P Request for examination filed

Effective date: 20031103

AKX Designation fees paid

Designated state(s): CH DE FR GB IT LI NL

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE FR GB IT LI NL

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 50202701

Country of ref document: DE

Date of ref document: 20050512

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20050613

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

ET Fr: translation filed
26N No opposition filed

Effective date: 20060110

REG Reference to a national code

Ref country code: CH

Ref legal event code: PFA

Owner name: SIEMENS BUILDING TECHNOLOGIES AG C-IPR

Free format text: SIEMENS BUILDING TECHNOLOGIES AG#BELLERIVESTRASSE 36#8008 ZUERICH (CH) -TRANSFER TO- SIEMENS BUILDING TECHNOLOGIES AG C-IPR#GUBELSTRASSE 22#6300 ZUG (CH)

REG Reference to a national code

Ref country code: CH

Ref legal event code: PFUS

Owner name: SIEMENS SCHWEIZ AG, CH

Free format text: FORMER OWNER: SIEMENS BUILDING TECHNOLOGIES AG C-IPR, CH

REG Reference to a national code

Ref country code: CH

Ref legal event code: PFUS

Owner name: SIEMENS SCHWEIZ AG, CH

Free format text: FORMER OWNER: SIEMENS BUILDING TECHNOLOGIES AG C-IPR, CH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 50202701

Country of ref document: DE

Owner name: SIEMENS SCHWEIZ AG, CH

Free format text: FORMER OWNER: SIEMENS BUILDING TECHNOLOGIES AG, ZUERICH, CH

Effective date: 20130516

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20130620 AND 20130626

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

Owner name: SIEMENS SCHWEIZ AG, CH

Effective date: 20131029

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 16

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20211011

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20211109

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20211022

Year of fee payment: 20

Ref country code: FR

Payment date: 20211020

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20211220

Year of fee payment: 20

Ref country code: CH

Payment date: 20220117

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 50202701

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MK

Effective date: 20221023

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20221023

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20221023