EP1309885A1 - Verfahren zur pulsbreitenmodulation eines radarsystems - Google Patents

Verfahren zur pulsbreitenmodulation eines radarsystems

Info

Publication number
EP1309885A1
EP1309885A1 EP01974099A EP01974099A EP1309885A1 EP 1309885 A1 EP1309885 A1 EP 1309885A1 EP 01974099 A EP01974099 A EP 01974099A EP 01974099 A EP01974099 A EP 01974099A EP 1309885 A1 EP1309885 A1 EP 1309885A1
Authority
EP
European Patent Office
Prior art keywords
signal
pulse
average power
radar system
transmission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP01974099A
Other languages
English (en)
French (fr)
Inventor
Jens Kroeger
Ralph Mende
Karsten Schumann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ADC Automotive Distance Control Systems GmbH
Original Assignee
ADC Automotive Distance Control Systems GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ADC Automotive Distance Control Systems GmbH filed Critical ADC Automotive Distance Control Systems GmbH
Publication of EP1309885A1 publication Critical patent/EP1309885A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/50Systems of measurement based on relative movement of target
    • G01S13/52Discriminating between fixed and moving objects or between objects moving at different speeds
    • G01S13/522Discriminating between fixed and moving objects or between objects moving at different speeds using transmissions of interrupted pulse modulated waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/08Systems for measuring distance only
    • G01S13/10Systems for measuring distance only using transmission of interrupted, pulse modulated waves
    • G01S13/22Systems for measuring distance only using transmission of interrupted, pulse modulated waves using irregular pulse repetition frequency

Definitions

  • the invention relates to a method for operating a radar system according to the preamble of patent claim 1.
  • Such a method is known for example from DE 1 97 54 720 A1.
  • the known method enables the simultaneous or separate determination of the
  • the radar system is switched over several times in a measurement process several times in short time intervals between a transmit mode and a receive mode.
  • a pulse-shaped transmission signal with successive transmission pulses of a specific pulse duration and a specific carrier frequency is emitted by at least one transmission unit of the radar system in each measurement phase of the measurement process in the respective transmission mode.
  • the transmission pulses are emitted at a time interval predetermined by a pulse repetition frequency and are reflected back on the reflection object or objects to the radar system, which receives and evaluates the reflected transmission pulses as a reception signal.
  • the energy reflected on the reflection object or objects depends strongly on the distance to the reflection object or objects, so that the method has a high signal dynamics.
  • high signal dynamics have an unfavorable effect on the price of the circuit parts required for signal processing.
  • the invention is therefore based on the object of improving the method according to the preamble of patent claim 1 in such a way that it can be carried out using inexpensive means.
  • successive transmission pulses of a specific pulse duration with a specific pulse repetition frequency are transmitted as a transmission signal in transmits the observation area and receive transmitted pulses of the transmitted signal as a received signal on the at least one reflection object.
  • the average power of the received signal is determined and limited to a predetermined power range by varying the average power of the transmitted signal.
  • the average power of the transmission signal is preferably varied by varying the pulse repetition frequency and / or pulse duration of the transmission pulses.
  • the pulse repetition frequency and / or pulse duration of the transmit pulses in cases in which the determined value of the average power of the received signal is greater than an upper power value, continuously or in steps, preferably with a predetermined rate of change, so far reduced the resulting mean power of the received signal is less than or equal to the upper power value.
  • the pulse repetition frequency and / or pulse duration of the transmission pulses in cases in which the determined value of the average power of the received signal is less than a lower power value is increased continuously or in stages until the resulting average power of the received signal is greater or is equal to the lower power value.
  • the transmit pulses are preferably transmitted with a specific carrier frequency, which is kept constant during the pulse duration of the respective transmit pulse becomes.
  • the carrier frequency is successively changed from transmit pulse to transmit pulse in at least one measurement phase.
  • the distance and / or speed of the at least one reflection object located in the observation area is preferably determined by evaluating the frequency difference and / or phase difference between the transmitted signal and the received signal.
  • FIG. 1 shows a block diagram of the radar system
  • 2a to 2c are timing diagrams of the transmit and receive signals
  • Figure 3 is a schematic representation of the frequency spectrum of the ins
  • a radar system as a vehicle distance warning system must clearly identify the distance and, if applicable, the speed, in particular the relative speed, of at least one reflection object, i.e. of vehicles traveling ahead, oncoming or following vehicles, people and other reflection objects, usually simultaneously of all reflection objects located in the observation area and determine with high resolution.
  • the desired range uniqueness range is 1 50 m
  • the desired distance resolution is 1 m
  • the desired speed resolution is 1 m / s.
  • an antenna emits a transmission signal with the transmission frequency of 76 GHz, for example. After passing through the transmission path, the antenna detects the reflection signal obtained by reflection on the preceding or following motor vehicles (reflection objects) as an analog reception signal.
  • the same antenna is used both for the transmission mode and for the reception mode, but different antennas can be provided for recording different angular ranges in successive measurement processes.
  • the received signal is further processed by a signal processing unit and evaluated with regard to frequency shift and / or phase shift from this the distance information and possibly the speed information obtained by spectral analysis.
  • the radar system has the following structure:
  • a transceiver unit 1 with an antenna unit 1 1, a transmitting side 1 a, a receiving side 1 b and an oscillator 13, which combines the functions of the transmitting unit and the receiving unit and whose essential components are summarized compactly as a single module.
  • a signal processing unit 2 consisting of a band-limiting preamplifier 21, a digital signal processing unit 22, for example a digital signal processor, a frequency converter 23, a local oscillator 24, an anti-aliasing filter 25 and an analog-digital converter 26.
  • a control unit 3 which controls the two RF switches transmit / receive switches 1 21 and LO switches 1 22 of the RF switching unit 1 2 and modulates the oscillator 13.
  • the control unit 3 is controlled by the digital processing unit 22 in order to synchronize the transceiver unit 1 and the signal processing unit 2.
  • the antenna unit 1 1 of the transceiver unit 1 is provided for emission of the transmit signal and detection of the received signal. It comprises several antennas 1 1 1, 1 1 2, 1 1 3 and an antenna switch 1 21 for selection of the respective antenna 1 1 1 or 1 1 2 or 1 13, each of the antennas 1 1 1, 1 1 2, 1 13 is selected for each measuring process with a different angular range of the transmission signal.
  • the antenna switch 1 14 is switched as a function of the duration of a measurement process.
  • the transmit / receive switch 1 21 and the LO switch 1 22 are in the left position in the transmit mode and in the right position in the receive mode.
  • RF radiation is generated by means of an oscillator 1 3, for example in the form of a VCO generated;
  • the linearly modulable oscillator 13 can be switched linearly in the oscillator frequency, for example with a switching frequency of 500 kHz, ie the carrier frequency of the transmission pulses can be successively varied within a predetermined frequency bandwidth.
  • the carrier frequency is kept constant during a transmission pulse.
  • the pulse repetition frequency is 500 kHz
  • ie the period tP of a pulse cycle consisting of pulse duration tON and pulse pause is, for example, 2 ⁇ s.
  • the pulse duty factor of the transmission signal ie the ratio of pulse duration tON to period tP, is set to 50%, for example, at the beginning of the measuring process.
  • the reflection signals of all reflection objects originating from the last transmission pulse emitted are detected as the reception signal before the emission of the next transmission pulse.
  • a mixer 14 provided in the reception side 1b of the transceiver unit 1 converts the received signal by multiplication with that during a
  • the mixed signal emitted by the mixer 14 is amplified by the band-limiting preamplifier 21 and filtered at the same time. In order to avoid the coupling of interference signals, it is advisable to deactivate the preamplifier 21 via the control unit 3 during transmission.
  • the amplified and filtered mixed signal is then fed to the frequency converter 23 and converted into the baseband by the latter with an intermediate frequency generated with the local oscillator 24.
  • the mixed signal converted into the baseband is then fed via the anti-aliasing filter 25 to the analog-digital converter 23 and sampled by it, and thus digitized.
  • the anti-aliasing filter 25 has a cut-off frequency of approximately 100 kHz, since the frequency shifts between transmit and receive signals occurring in automotive applications are less than 100 kHz and are therefore in the pass band of the anti-aliasing filter 25.
  • the digitized mixed signal is then processed in the digital signal processing unit 24 by means of a spectral analysis.
  • the received signal can already be converted into the baseband in the transceiver unit 1 with the mixer 14; In this case, the second frequency conversion with the frequency converter 23 is omitted and the function of the anti-aliasing filter 25 can be taken over by the preamplifier 12 due to its band-limiting effect.
  • the average power of the received signal is determined in the digital signal processing unit 24 on the basis of the amplitude of the digitized mixed signal, and it is checked whether the determined value of the average power of the received signal is greater than a predetermined upper power value or less than a predetermined lower power value. If the determined value is greater than the upper power value, the average transmission power is reduced by reducing the pulse repetition frequency and / or pulse duration of the transmission pulses until the resulting average power of the transmission signal is below the upper power value. If, on the other hand, the determined value is less than the lower power value, the average transmission power is increased by increasing the pulse repetition frequency and / or pulse duration of the transmission pulses until the resulting average power of the transmission signal is above the lower power value.
  • the mean power of the received signal is thus set to a value between the upper and lower power value.
  • the relationship between the pulse repetition frequency or pulse duration and the average power of the received signal can best be illustrated with the aid of FIGS. 2a to 2c, in which the transmit signal with s, the receive signal with r, the pulse duration of a transmit pulse with tON, the period with tP and the Signal runtime is denoted by tRO. Only the envelopes of the transmit and receive signals are shown.
  • the pulse repetition frequency 1 / tP is selected, for example, as follows: in the time diagram according to FIG. 2a it is 500 kHz, in the time diagram according to FIG. 2b it is 250 kHz and in the time diagram according to FIG. 2c it is again 500 kHz. In the case of FIGS.
  • the reflection object is so close to the radar system that the signal transit time tRO from the radar system to the reflection object and back is shorter than the pulse duration tON. From the Reflected pulses are cut out, since the radar system is only ready to receive from the time tON, the areas shown in dashed lines. Since the average power of the received signal r is equal to the area under the receiving pulse related to the period tP, it can be seen directly from FIGS. 2a to 2c that the average power of the received signal r is lower in the case of FIGS. 2b and 2c than in FIG In the case of FIG. 2a, ie by increasing the period tP, ie by reducing the pulse repetition frequency, and by reducing the pulse duration tON of the transmission signal s, the average power of the reception signal r is reduced.
  • FIG. 3 shows the frequency spectrum of the received signal r according to FIG. 2a after its frequency conversion into the baseband, ie. h the signal supplied to the anti-aliasing filter 25.
  • the line labeled rO corresponds to the main line of the received signal r. Its position is a measure of the frequency shift between the carrier frequency of the transmission signal s and the carrier frequency of the reception signal r, which is determined by the downstream digital signal processing unit 22.
  • the secondary lines of the received signal r are designated r1 and r1 *.
  • the frequency range hO to be evaluated and the pass band h of the anti-aliasing filter 25 also shows the frequency range hO to be evaluated and the pass band h of the anti-aliasing filter 25.
  • the secondary lines r1, r1 * lie outside the pass band h and are thus suppressed by the anti-aliasing filter 25. If the pulse repetition frequency is reduced to half from 500 kHz to reduce the average power of the transmission signal s, for example, the distance between the spectral lines rO, r1, li * is also reduced to half. The secondary lines r1, r1 * remain outside the pass band h and are thus still suppressed by the anti-aliasing filter 25. In addition, the spectral lines are also reduced in height, which corresponds to the desired reduction in the average power of the received signal r.
  • the pulse duration tON of the transmit pulses is reduced as shown in FIG. 2c, starting from a transmit signal s according to FIG. 2a, this has no effect on the position of the spectral lines rO, r1, r1 * of the received signal r while the pulse repetition frequency tP "1 remains the same.
  • the method according to the invention is not limited to use in the radar system according to FIG. 1; Rather, it can be used in any radar system for motor vehicle applications which emits transmission pulses with a specific carrier frequency, receives the reflected transmission pulses as a reception signal and limits the bandwidth before the evaluation.
  • the evaluation of the received signal with regard to the power limitation of the transmission signal can take place in the same signal processing branch in which the distance and / or speed of the reflection object is also determined, but it can also be carried out in a separate circuit part provided specifically for power limitation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

Radarsysteme werden zur Ermittlung der Entfernung zu mindestens einem in einem Beobachtungsbereich befindlichen Reflexionsobjekt und/oder der Geschwindigkeit des mindestens einen Reflexionsobjekts eingesetzt. Ein derartiges Radarsystem sendet zeitlich aufeinanderfolgende Sendepulse einer bestimmten Pulsdauer mit einer bestimmten Pulswiederholfrequenz als Sendesignal in den Beobachtungsbereich aus und empfängt an dem mindestens einen Reflexionsobjekt reflektierte Sendepulse des Sendesignals als Empfangssignal. Als nachteilig erweist sich hierbei, daß das Verfahren eine hohe Signaldynamik aufweist, was sich ungünstig auf den Preis der zur Signalverarbeitung erforderlichen Schaltungsteile auswirkt. Das neue Verfahren zum Betreiben des Radarsystems soll mit kostengünstigen Mitteln durchführbar sein. Beim neuen Verfahren wird die Signaldynamik reduziert, indem die mittlere Leistung des Empfangssignals ermittelt und durch Variation der mittleren Leistung des Sendesignals, vorzugsweise durch Variation der Pulswiederholfrequenz und/oder Pulsdauer der Sendepulse, auf einen vorgegebenen Leistungsbereich begrenzt wird. Das Verfahren eignet sich bestens zum Betreiben eines Kraftfahrzeug-Abstandswarnsystems.

Description

Beschreibung
VERFAHREN ZUR PULSBREITENMODULATION EINES RADARSYSTEMS
Die Erfindung betrifft ein Verfahren zum Betreiben eines Radarsystems gemäß dem Oberbegriff des Patentanspruchs 1 .
Ein derartiges Verfahren ist beispielsweise aus der DE 1 97 54 720 A1 bekannt. Das bekannte Verfahren ermöglicht die gleichzeitige oder getrennte Bestimmung der
Entfernung und/oder der Geschwindigkeit, insbesondere der Relativgeschwindigkeit, zu einem oder mehreren in einem Beobachtungsbereich befindlichen Reflexionsobjekten. Hierzu ist vorgesehen, daß das Radarsystem in mehreren Meßphasen eines Meßvorgangs mehrfach in kurzen zeitlichen Abständen zwischen einem Sen- debetrieb und einem Empfangsbetrieb umgeschaltet wird. Dabei wird in jeder Meßphase des Meßvorgangs im jeweiligen Sendebetrieb von mindestens einer Sendeeinheit des Radarsystems ein pulsförmiges Sendesignal mit aufeinanderfolgenden Sendepulsen einer bestimmten Pulsdauer und einer bestimmten Trägerfrequenz ausgesendet. Die Sendepulse werden dabei in einem durch eine Pulswiederholfre- quenz vorgegebenen zeitlichen Abstand emittiert und an dem oder den Reflexionsobjekten zum Radarsystem zu rück reflektiert, welches die reflektierten Sendeimpulse als Empfangssignal empfängt und auswertet.
Als nachteilig erweist sich hierbei, daß die an dem Reflexionsobjekt oder den Reflexionsobjekten reflektierte Energie, d. h. mittlere Leistung des Empfangssignals, stark von der Entfernung zu dem Reflexionsobjekt oder den Reflexionsobjekten abhängt, so daß das Verfahren eine hohe Signaldynamik aufweist. Eine hohe Signaldynamik wirkt sich jedoch ungünstig auf den Preis der zur Signalverarbeitung erforderlichen Schaltungsteile aus. Der Erfindung liegt daher die Aufgabe zugrunde, das Verfahren gemäß dem Oberbegriff des Patentanspruchs 1 dahingehend zu verbessern, daß es mit kostengünstigen Mitteln durchführbar ist.
Die Aufgabe wird durch die Merkmale des Patentanspruchs 1 gelöst. Vorteilhafte Ausgestaltungen und Weiterbildungen ergeben sich aus den Unteransprüchen.
Beim erfindungsgemäßen Verfahren zum Betreiben eines Radarsystems zur Ermittlung der Entfernung zu mindestens einem in einem Beobachtungsbereich befindlichen Reflexionsobjekt und/oder der Geschwindigkeit, insbesondere der Relativgeschwindigkeit, des mindestens einen Reflexionsobjekts, werden zeitlich aufeinan- derfolgende Sendepulse einer bestimmten Pulsdauer mit einer bestimmten Pulswiederholfrequenz als Sendesignal in den Beobachtungsbereich aussendet und an dem mindestens einen Reflexionsobjekt reflektierte Sendepulse des Sendesignals als Empfangssignal empfangen. Des weiteren wird die mittlere Leistung des Empfangssignals ermittelt und durch Variation der mittleren Leistung des Sendesignals auf einen vorgegebenen Leistungsbereich begrenzt. Die mittlere Leistung des Sendesignals wird dabei vorzugsweise durch Variation der Pulswiderholfrequenz und/oder Pulsdauer der Sendepulse variiert.
In einer vorteilhaften Ausgestaltung des Verfahrens wird die Pulswiederholfrequenz und/oder Pulsdauer der Sendepulse in Fällen, in denen der ermittelte Wert der mittleren Leistung des Empfangssignals größer ist als ein oberer Leistungswert, kontinuierlich oder in Stufen, vorzugsweise mit einer vorgegebenen Änderungsgeschwindigkeit, soweit reduziert, bis die sich danach ergebende mittlere Leistung des Empfangssignals kleiner oder gleich dem oberen Leistungswert ist.
Vorteilhafterweise wird die Pulswiederholfrequenz und/oder Pulsdauer der Sende- pulse in Fällen, in denen der ermittelte Wert der mittleren Leistung des Empfangssignals kleiner ist als ein unterer Leistungswert, kontinuierlich oder in Stufen soweit erhöht, bis die sich danach ergebende mittlere Leistung des Empfangssignals größer oder gleich dem unteren Leistungswert ist.
Vorzugsweise werden die Sendepulse mit einer bestimmten Trägerfrequenz ausge- sendet, die während der Pulsdauer des jeweiligen Sendepulses konstant gehalten wird. In einer vorteilhaften Weiterbildung des Verfahrens wird die Trägerfrequenz in mindestens einer Meßphase von Sendepuls zu Sendepuls sukzessiv geändert.
Vorzugsweise wird des weiteren die Entfernung und/oder Geschwindigkeit des mindestens einen im Beobachtungsbereich befindlichen Reflexionsobjekts durch Aus- wertung der Frequenzdifferenz und/oder Phasendifferenz zwischen dem Sendesignal und Empfangssignal ermittelt.
Ein Kraftfahrzeug-Abstandswarnsystem wird nachfolgend als Ausführungsbeispiel der Erfindung anhand der Figuren näher erläutert. Es zeigen:
Figur 1 ein Blockschaltbild des. Radarsystems,
Figur 2a bis 2c Zeitdiagramme des Sende- und Empfangssignals,
Figur 3 eine schematische Darstellung des Frequenzspektrums des ins
Basisband frequenzumgesetzten Empfangssignals.
Ein Radarsystem als KFZ-Abstandswamsystemen muß die Entfernung und ggf. die Geschwindigkeit, insbesondere die Relativgeschwindigkeit, von mindestens einem Reflexionsobjekt, d. h. von vorausfahrenden, entgegenkommenden oder nachfolgenden Fahrzeugen, Personen und sonstigen Reflexionsobjekten, in der Regel gleichzeitig von sämtlichen im Beobachtungsbereich befindlichen Reflexionsobjekten, eindeutig und mit hoher Auflösung bestimmen. Beispielsweise beträgt der gewünschte Entfernungseindeutigkeitsbereich 1 50 m, die gewünschte Entfemungs- auflösung 1 m und die gewünschte Geschwindigkeitsauflösung 1 m/s. In mindestens einer Meßphase des Meßvorgangs wird hierzu von einer Antenne des ein Sendesignal mit der Sendefrequenz von beispielsweise 76 GHz emittiert. Nach Durchlaufen der Übertragungsstrecke wird von der Antenne das durch Reflexion an den vorausfahrenden oder nachfolgenden Kraftfahrzeugen (Reflexionsobjekten) erhalte- ne Reflexionssignal als analoges Empfangssignal detektiert. Hierbei wird jedoch sowohl für den Sendebetrieb als auch für den Empfangsbetrieb die gleiche Antenne verwendet, wobei aber zur Erfassung unterschiedlicher Winkelbereiche bei sukzessiven Meßvorgängen unterschiedliche Antennen vorgesehen werden können. Von einer Signalverarbeitungseinheit wird das Empfangssignal weiterverarbeitet und hin- sichtlich Frequenzverschiebung und/oder Phasenverschiebung ausgewertet und hieraus die Entfernungsinformation und ggf. die Geschwindigkeitsinformation durch Spektralanalyse gewonnen.
Gemäß der Figur 1 weist das Radarsystem hierzu folgenden Aufbau auf:
• Eine Sende-Empfangs-Einheit 1 mit einer Antenneneinheit 1 1 , einer Sendeseite 1 a, einer Empfangsseite 1 b und einem Oszillator 13, die die Funktionen der Sendeeinheit und der Empfangseinheit kombiniert und deren wesentliche Komponenten als einheitliches Modul kompakt zusammengefaßt sind.
• Eine Signalverarbeitungseinheit 2 aus einem bandbegrenzenden Vorverstärker 21 , einer beispielsweise als Digitalsignalprozessor ausgeführten Digitalsignalver- arbeitungseinheit 22, einem Frequenzumsetzer 23, einem Lokaloszillator 24, einem Antialiasing-Filter 25 und einem Analog-Digital-Wandler 26.
• Eine Steuereinheit 3, die die Ansteuerung der beiden HF-Schalter Sende- Empfangs-Schalter 1 21 und LO-Schalter 1 22 der HF-Schalteinheit 1 2 und die Modulation des Oszillators 13 übernimmt. Zur Synchronisation der Sende- Empfangs-Einheit 1 und der Signalverarbeitungseinheit 2 wird die Steuereinheit 3 von der Digitalverarbeitungseinheit 22 angesteuert.
Die Antenneneinheit 1 1 der Sende-Empfangs-Einheit 1 ist zur Emission des Sendesignals und Detektion des Empfangssignals vorgesehen. Sie umfaßt mehrere Antennen 1 1 1 , 1 1 2, 1 1 3 und einen Antennenschalter 1 21 zur Selektion der jeweiligen Antenne 1 1 1 bzw. 1 1 2 bzw. 1 13, wobei jede der Antennen 1 1 1 , 1 1 2, 1 13 für jeweils einen Meßvorgang mit jeweils unterschiedlichem Winkelbereich des Sendesignals selektiert wird. Das Umschalten des Antennenschalters 1 14 erfolgt in Abhängigkeit der Zeitdauer eines Meßvorgangs. Mittels der HF-Schalteinheit 1 2 mit den beiden HF-Schaltern Sende-Empfangs-Schalter 1 21 und LO-Schalter 1 22 kann zwi- sehen der Sendeseite 1 a und der Empfangsseite 1 b der Sende-Empfangs-Einheit 1 , d. h. zwischen dem Sendebetrieb und dem Empfangsbetrieb umgeschaltet werden. Der Sende-Empfangs-Schalter 1 21 und der LO-Schalter 1 22 befinden sich im Sendebetrieb in der linken Stellung und im Empfangbetriebs in der rechten Stellung. Mittels eines beispielsweise als VCO ausgebildeten Oszillators 1 3 wird HF-Strahlung erzeugt; zusätzlich kann der linear modulierbare Oszillator 13 linear in der Oszillatorfrequenz umgeschaltet werden, beispielsweise mit einer Umschaltfrequenz von 500 kHz, d. h. die Trägerfrequenz der Sendepulse kann innerhalb einer vorgegebenen Frequenzbandbreite sukzessive variiert werden. Die Trägerfrequenz wird dabei während eines Sendepulses konstantgehalten. In den Meßphasen des Meßvorgangs wird eine wiederholte Umschaltung vom Sendebetrieb zum Empfangsbetrieb vorgenommen: beispielsweise beträgt die Pulswiederholfrequenz 500 kHz, d. h. die Periodendauer tP eines Pulszyklus aus Pulsdauer tON und Pulspause beträgt beispielsweise 2 μs. Das Tastverhältnis des Sendesignals, d. h. das Verhältnis Pulsdauer tON zu Periodendauer tP wird zu Beginn des Meßvorgangs beispielsweise auf 50% eingestellt. Von der Empfangsseite 1 b der Sende-Empfangs-Einheit 1 werden als Empfangssignal die vom letztmalig emittierten Sendepuls herrührenden Reflexionssignale aller Reflexionsobjekte vor der Emission des nächsten Sendepulses detek- tiert. Ein in der Empfangsseite 1 b der Sende-Empfangs-Einheit 1 vorgesehener Mi- scher 14 überführt das Empfangssignal durch Multiplikation mit der während eines
Sendepulses konstanten Oszillatorfrequenz als Mischsignal in ein Zwischenfrequenzband.
Das vom Mischer 14 abgegebene Mischsignal wird vom bandbegrenzenden Vorverstärker 21 verstärkt und gleichzeitig gefiltert. Um die Einkopplung von Störsignalen zur vermeiden, empfiehlt es sich, den Vorverstärker 21 während des Sendebetriebs über die Steuereinheit 3 zu deaktivieren. Das verstärkte und gefilterte Mischsignal wird dann dem Frequenzumsetzer 23 zugeführt und von diesem mit einer mit dem Lokaloszillator 24 erzeugten Zwischenfrequenz ins Basisband umgesetzt. Das ins Basisband umgesetzte Mischsignal wird dann über das Antialiasing-Filter 25 dem Analog-Digital-Wandler 23 zugeführt und von diesem abgetastet und damit digitalisiert. Das Antialiasing-Filter 25 weist eine Grenzfrequenz von ca. 100 kHz auf, da die bei KFZ-Anwendungen auftretenden Frequenzverschiebungen zwischen Sende- und Empfangssignal kleiner als 100 kHz sind und somit im Durchlaßbereich des Antialia- sing-Filters 25 liegen. In der Digitalsignalverarbeitungseinheit 24 erfolgt dann die Verarbeitung des digitalisierten Mischsignals durch eine Spektralanalyse. Altemativ kann das Empfangssignal bereits in der Sende-Empfangseinheit 1 mit dem Mischer 14 ins Basisband umgesetzt werden; in diesem Fall entfällt die zweite Frequenzumsetzung mit dem Frequenzumsetzer 23 und die Funktion des Antialiasing- Filters 25 kann vom Vorverstärker 1 2 aufgrund seiner bandbegrenzenden Wirkung übernommen werden.
In der Digitalsignalverarbeitungseinheit 24 wird anhand der Amplitude des digitalisierten Mischsignals die mittlere Leistung des Empfangssignals ermittelt und es wird geprüft, ob der ermittelte Wert der mittleren Leistung des Empfangssignals größer als ein vorgegebener oberer Leistungswert oder kleiner als ein vorgegebener unterer Leistungswert ist. Falls der ermittelte Wert größer als der obere Leistungswert ist, wird die mittlere Sendeleistung reduziert, indem die Pulswiederholfrequenz und/oder Pulsdauer der Sendepulse soweit reduziert wird, bis die sich danach ergebende mittlere Leistung des Sendesignals unterhalb des oberen Leistungswerts liegt. Falls der ermittelte Wert hingegen kleiner als der untere Leistungswert ist, wird die mittlere Sendeleistung erhöht, indem die Pulswiederholfrequenz und/oder Pulsdauer der Sendepulse soweit erhöht wird, bis die sich danach ergebende mittlere Leistung des Sendesignals oberhalb des unteren Leistungswerts liegt. Somit wird die mittlere Leistung des Empfangssignals auf einen zwischen dem oberen und unteren Leistungswert liegenden Wert eingestellt.
Der Zusammenhang zwischen der Pulswiederholfrequenz oder Pulsdauer und der mittleren Leistung des Empfangssignals läßt sich am besten anhand der Figuren 2a bis 2c darstellen, in denen das Sendesignal mit s, das Empfangssignal mit r, die Pulsdauer eines Sendepulses mit tON, die Periodendauer mit tP und die Signallaufzeit mit tRO bezeichnet ist. Dargestellt sind dabei lediglich die Hüllkurven der Sende- und Empfangssignale. Die Pulswiederholfrequenz 1 /tP ist beispielsweise wie folgt gewählt: beim Zeitdiagramm gemäß Figur 2a beträgt sie 500 kHz, beim Zeitdiagramm gemäß Figur 2b beträgt sie 250 kHz und beim Zeitdiagramm gemäß Figur 2c beträgt sie wiederum 500 kHz. Das Reflexionsobjekt befindet sich im Falle der Figuren 2a und 2b so nahe am Radarsystem, daß die Signallaufzeit tRO vom Radarsy- stem zum Reflexionsobjekt und zurück kürzer als die Pulsdauer tON ist. Aus den reflektierten Pulsen werden, da das Radarsystem erst ab dem Zeitpunkt tON empfangsbereit ist, die gestrichelt eingezeichneten Bereiche ausgeschnitten. Da die mittlere Leistung des Empfangssignals r gleich der auf die Periodendauer tP bezogenen Fläche unter dem empfangenden Puls ist, kann man aus den Figuren 2a bis 2c unmittelbar entnehmen, daß die mittlere Leistung des Empfangssignals r im Falle der Figuren 2b und 2c geringer ist als im Falle der Figur 2a, d. h. durch die Erhöhung der Periodendauer tP, also durch die Reduzierung der Pulswiederholfrequenz, und durch die Reduzierung der Pulsdauer tON des Sendesignals s wird die mittlere Leistung des Empfangssignals r reduziert.
Durch die Relativbewegung zwischen dem Reflexionsobjekt und dem Radarsystem erhält man eine Frequenzverschiebung zwischen der Trägerfrequenz des Sendesignals s und der Trägerfrequenz des Empfangssignals r, die aus Figur 3 ersichtlich wird. Figur 3 zeigt das Frequenzspektrum des Empfangssignals r gemäß Figur 2a nach seiner Frequenzumsetzung ins Basisband, d. h das dem Antialiasing-Filter 25 zugeführte Signal. Die mit rO bezeichnete Linie entspricht dabei der Hauptlinie des Empfangssignals r. Ihre Lage ist ein Maß der Frequenzverschiebung zwischen der Trägerfrequenz des Sendesignals s und der Trägerfrequenz des Empfangssignals r, die von der nachgeschalteten Digitalsignalverarbeitungseinheit 22 ermittelt wird. Die Nebenlinien des Empfangssignals r sind mit r1 und r1 * bezeichnet. In Figur 3 ist noch der auszuwertende Frequenzbereich hO und den Durchlaßbereich h des Antia- liasing-Filters 25 dargestellt. Die Nebenlinien r1 , r1 * liegen außerhalb des Durchlaßbereichs h und werden somit durch das Antialiasing-Filter 25 unterdrückt. Wird die Pulswiederholfrequenz zur Reduktion der mittleren Leistung des Sendesignals s beispielsweise von 500 kHz auf die Hälfte reduziert, so wird der Abstand zwischen den Spektrallinien rO, r1 , li * ebenfalls auf die Hälfte reduziert. Die Nebenlinien r1 , r1 * bleiben dabei weiterhin außerhalb des Durchlaßbereichs h und werden somit auch weiterhin durch das Antialiasing-Filter 25 unterdrückt. Zusätzlich werden die Spektrallinien auch in ihrer Höhe reduziert, was der gewünschten- Reduzierung der mittleren Leistung des Empfangssignals r entspricht. Wird hingegen ausgehend von einem Sendesignal s gemäß Figur 2a die Pulsdauer tON der Sendepulse wie in Figur 2c gezeigt reduziert, so hat dies bei gleichbleibender Pulswiederholfrequenz tP"1 keinen Einfluß auf die Lage der Spektrallinien rO, r1 , r1 * des Empfangssignals r.
Durch die Reduzierung der Signaldynamik ist es möglich, Analog-Digital-Wandler und
Digitalsignalverarbeitungseinheiten zu verwenden, die Signale geringer Bitbreite verarbeiten und somit kostengünstig herstellbar sind.
Das erfindungsgemäße Verfahren ist nicht auf den Einsatz in dem Radarsystem gemäß Figur 1 beschränkt; es ist vielmehr in jedem Radarsystem für KFZ- Anwendungen einsetzbar, das Sendepulse mit einer bestimmten Trägerfrequenz aussendet, die reflektierten Sendepulse als Empfangssignal empfängt und vor der Auswertung in der Bandbreite begrenzt. Die Auswertung des Empfangssignals hinsichtlich der Leistungsbegrenzung des Sendesignals kann dabei im gleichen Signalverarbeitungszweig erfolgen, in dem auch die Entfernung und/oder Geschwindigkeit des Reflexionsobjekts ermittelt wird, sie kann aber auch in einem separaten speziell zur Leistungsbegrenzung vorgesehenen Schaltungsteil erfolgen.

Claims

Patentansprüche
1 . Verfahren zum Betreiben eines Radarsystems zur Ermittlung der Entfernung zu mindestens einem in einem Beobachtungsbereich befindlichen Reflexionsobjekt und/oder der Geschwindigkeit des mindestens einen Reflexionsobjekts, bei dem das Radarsystem zeitlich aufeinanderfolgende Sendepulse einer bestimmten Pulsdauer (tON) mit einer bestimmten Pulswiederholfrequenz (tP"1) als Sendesignal (s) in den Beobachtungsbereich aussendet und bei dem das Radarsystem an dem minde- stens einen Reflexionsobjekt reflektierte Sendepulse des Sendesignals (s) als Empfangssignal (r) empfängt, dadurch gekennzeichnet, daß die mittlere Leistung des Empfangssignals (r) ermittelt wird und durch Variation der mittleren Leistung des Sendesignals (s) auf einen vorgegebenen Leistungsbereich begrenzt wird.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, daß die mittlere Leistung des Sendesignals (s) im Falle einer einen oberen Leistungswert überschreitenden mittleren Leistung des Empfangssignals (r) durch Reduktion der Pulswiederholfrequenz (tP"1) und/oder der Pulsdauer (tON) der Sendepulse soweit reduziert wird, bis die mittlere Leistung des Empfangssignals (r) kleiner oder gleich dem oberen Leistungswert ist.
3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, daß die mittlere Leistung des Sendesignals im Falle einer einen unteren Leistungswert unterschreitenden mittleren Leistung des Empfangssignals (r) durch Erhöhung der Pulswiederholfrequenz (tP"1) und/oder Pulsdauer (tON) der Sendepulse soweit erhöht wird, bis die mittlere Leistung des Empfangssignals (r) größer oder gleich dem unteren Lei- stungswert ist.
4. Verfahren nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, daß die Sendepulse jeweils mit einer bestimmten, während der Pulsdauer (tON) konstanten Trägerfrequenz ausgesendet werden.
5. Verfahren nach Anspruch 4, dadurch gekennzeichnet, daß in mindestens einer Meßphase die Trägerfrequenz von Sendepuls zu Sendepuls sukzessiv geändert wird.
6. Verfahren nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, daß die Entfernung und/oder Geschwindigkeit des mindestens einen Reflexionsobjekts durch Auswertung der Frequenzdifferenz und/oder Phasendifferenz zwischen dem
Sendesignal (s) und Empfangssignal (r) ermittelten wird.
EP01974099A 2000-08-16 2001-08-02 Verfahren zur pulsbreitenmodulation eines radarsystems Withdrawn EP1309885A1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10039943A DE10039943A1 (de) 2000-08-16 2000-08-16 Verfahren zum Betreiben eines Radarsystems
DE10039943 2000-08-16
PCT/EP2001/008963 WO2002014902A1 (de) 2000-08-16 2001-08-02 Verfahren zur pulsbreitenmodulation eines radarsystems

Publications (1)

Publication Number Publication Date
EP1309885A1 true EP1309885A1 (de) 2003-05-14

Family

ID=7652559

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01974099A Withdrawn EP1309885A1 (de) 2000-08-16 2001-08-02 Verfahren zur pulsbreitenmodulation eines radarsystems

Country Status (4)

Country Link
US (1) US6844842B2 (de)
EP (1) EP1309885A1 (de)
DE (1) DE10039943A1 (de)
WO (1) WO2002014902A1 (de)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10039943A1 (de) * 2000-08-16 2002-02-28 Adc Automotive Dist Control Verfahren zum Betreiben eines Radarsystems
DE10360890A1 (de) * 2003-12-19 2005-07-21 Robert Bosch Gmbh Radarsensor und Verfahren zu dessen Betrieb
US7363812B2 (en) * 2005-11-09 2008-04-29 Rosemount Tank Radar Ab Radar level gauge with variable transmission power
KR101171015B1 (ko) * 2006-02-03 2012-08-08 삼성전자주식회사 신호 변환 장치 및 이를 구비한 위치 인식 시스템
JP2008145236A (ja) * 2006-12-08 2008-06-26 Fuji Heavy Ind Ltd 等価時間サンプリング方式レーダ
US7895889B2 (en) * 2007-05-16 2011-03-01 Rosemount Tank Radar Ab Radar level gauge system with adaptive transmission power control
EP1992923B1 (de) * 2007-05-16 2012-07-11 Rosemount Tank Radar AB Radarpegelmesssystem mit adaptiver Sendeleistungssteuerung
JP2009025959A (ja) * 2007-07-18 2009-02-05 Mazda Motor Corp 車両の障害物検知装置
JP2009031165A (ja) * 2007-07-27 2009-02-12 Toyota Motor Corp パルスレーダ装置
GB0717031D0 (en) 2007-08-31 2007-10-10 Raymarine Uk Ltd Digital radar or sonar apparatus
EP2051098A1 (de) * 2007-10-19 2009-04-22 Ford Global Technologies, LLC Verfahren und System für Anwesenheitsdetektion
EP2051100A1 (de) * 2007-10-19 2009-04-22 Ford Global Technologies, LLC Verfahren und System für Anwesenheitsdetektion
JP4564041B2 (ja) * 2007-11-27 2010-10-20 本田技研工業株式会社 車両の走行制御装置
US7605744B1 (en) * 2008-06-03 2009-10-20 Vaisala Oyj Method for extension of unambiguous range and velocity of a weather radar
DE102008002220B4 (de) * 2008-06-04 2016-09-22 Endress + Hauser Gmbh + Co. Kg Füllstandsmesssensor mit pulsweitenmoduliertem Radarsignal
HUE029405T2 (en) 2008-09-04 2017-02-28 Grieshaber Vega Kg Variable output performance for battery level gauges
DE102009057191A1 (de) * 2009-12-05 2011-06-09 Valeo Schalter Und Sensoren Gmbh Verfahren zum eindeutigen Bestimmen einer Entfernung und/oder einer relativen Geschwindigkeit eines Objektes, Fahrerassistenzeinrichtung und Kraftfahrzeug
JP5307068B2 (ja) * 2010-03-31 2013-10-02 古河電気工業株式会社 レーダ装置
US8902103B2 (en) * 2011-03-16 2014-12-02 Electronics And Telecommunications Research Institute Radar apparatus supporting short and long range radar operation
US9618605B2 (en) * 2011-12-30 2017-04-11 Flir Systems, Inc. Radar system providing multiple waveforms for long range and short range target detection
EP3211445B1 (de) * 2016-02-29 2019-06-12 Nxp B.V. Radarsystem
WO2018024343A1 (en) * 2016-08-05 2018-02-08 Wärtsilä SAM Electronics GmbH Adaptive pulse train layout
US11189472B2 (en) * 2017-07-17 2021-11-30 Applied Materials, Inc. Cathode assembly having a dual position magnetron and centrally fed coolant
CN110958121B (zh) * 2019-11-29 2021-07-20 安徽江淮汽车集团股份有限公司 通讯接口电路及主机

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3451059A (en) * 1950-06-08 1969-06-17 Robert M Page Echo ranging system of variable sensitivity and variable range resolution
US3102263A (en) * 1956-09-10 1963-08-27 Lab For Electronics Inc Doppler radar system
US3333266A (en) * 1966-03-23 1967-07-25 Motorola Inc Dual spectrum radar ranging
US3579238A (en) * 1971-02-20 1971-05-18 Andrew V Haeff Automatic power control of a pulse modulator
AT307762B (de) * 1971-04-28 1973-06-12 Eumig Verfahren und Einrichtung zur Entfernungsmessung
US6225943B1 (en) * 1978-05-01 2001-05-01 Raytheon Company Method of operating pulse radar
US4450445A (en) * 1981-09-25 1984-05-22 Motorola Inc. Range rate dependent pulse control apparatus and method therefor
US5559516A (en) * 1981-11-27 1996-09-24 Northrop Grumman Corporation Dual cancellation interferometric AMTI radar
GB2281164B (en) 1986-04-17 1995-06-21 Plessey Company The Radar systems for altitude determination
DE3716858A1 (de) * 1987-05-20 1988-12-15 Licentia Gmbh Flugzeug-radarantenne
US4940988A (en) * 1988-11-02 1990-07-10 Westinghouse Electric Corp. Two parameter clutter map
US5276453A (en) * 1993-02-02 1994-01-04 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Method for ambiguity resolution in range-Doppler measurements
JPH1123695A (ja) 1997-07-01 1999-01-29 Nissan Motor Co Ltd レーダ装置
DE19754720C2 (de) * 1997-12-10 2000-12-07 Adc Automotive Dist Control Verfahren zum Betrieb eines Radarsystems
DE19803660C2 (de) * 1998-01-30 2001-07-05 Siemens Ag Kraftfahrzeugradar
JP2000171548A (ja) 1998-12-02 2000-06-23 Nec Corp パルスレーダ装置
JP3750102B2 (ja) * 1999-11-24 2006-03-01 富士通テン株式会社 車載レーダ装置
DE10039943A1 (de) * 2000-08-16 2002-02-28 Adc Automotive Dist Control Verfahren zum Betreiben eines Radarsystems

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO0214902A1 *

Also Published As

Publication number Publication date
US6844842B2 (en) 2005-01-18
US20040004567A1 (en) 2004-01-08
WO2002014902A1 (de) 2002-02-21
DE10039943A1 (de) 2002-02-28

Similar Documents

Publication Publication Date Title
EP1309885A1 (de) Verfahren zur pulsbreitenmodulation eines radarsystems
EP0922967B1 (de) Verfahren zum Betrieb eines Radarsystems
DE102004006519B4 (de) Antennenanordnungsverfahren und Radarvorrichtung
DE19803660C2 (de) Kraftfahrzeugradar
EP0727051B1 (de) Radargerät und verfahren zu seinem betrieb
EP1864155B1 (de) Verfahren und vorrichtung zur abstands- und relativgeschwindigkeitsmessung mehrerer objekte
DE2514868C3 (de) FM-Schwebungs-Rückstrahlortungsgerät zur gleichzeitigen Entfernungs- und Geschwindigkeitsmessung
DE60132934T2 (de) FMCW-Radarsystem
EP1325350B1 (de) Verfahren und vorrichtung zur bestimmung von abstand und relativgeschwindigkeit eines entfernten objektes
DE102006016776A1 (de) Interferenzbestimmungsverfahren und FMCW-Radar der das Gleiche verwendet
DE10243115A1 (de) Zum Minimieren eines Fehlers im Erfassen eines Ziels ausgelegter Radar
DE2410500B2 (de) Pulsradarsystem linear zeitverknüpfter Trägerfrequenz mit hohem Entfernungsauflösungsvermögen
EP1002239A1 (de) Radar-entfernungsmesseinrichtung
EP1324067A2 (de) Verfahren und Schaltungsanordnung zum Messen der Entfernung eines Gegenstandes
DE10100414A1 (de) Radareinrichtung und Verfahren zum Unterdrücken von Störungen einer Radareinrichtung
EP0355336B1 (de) Radarsystem zur Positionsbestimmung von zwei oder mehreren Objekten
DE102013216461A1 (de) Synthetik-Apertur-Radarverfahren
DE3041459C2 (de)
EP0730166A1 (de) Verfahren und Anordnung zur Verkehrserfassung mit einem Radargerät
DE10163653A1 (de) Vorrichtung für ein Radarsystem
DE10142171A1 (de) Radaranordnung
EP3418698A1 (de) Füllstandreflektometer mit referenzreflexion
EP0447874B2 (de) Signalverarbeitungsverfahren und Signalverarbeitunsanordnung für eine Pulsradaranlage
DE102004044330A1 (de) Verfahren und Vorrichtung zur Entfernungs- und Geschwindigkeitsmessung
DE2433203B2 (de) Frequenzumtast-Doppler-Radarsystem zur Entfernungs- und Geschwindigkeitsmessung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20030207

AK Designated contracting states

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

RBV Designated contracting states (corrected)

Designated state(s): AT BE CH DE FR IT LI

17Q First examination report despatched

Effective date: 20050506

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20051118