EP1304396B1 - Coating process - Google Patents

Coating process Download PDF

Info

Publication number
EP1304396B1
EP1304396B1 EP02019625A EP02019625A EP1304396B1 EP 1304396 B1 EP1304396 B1 EP 1304396B1 EP 02019625 A EP02019625 A EP 02019625A EP 02019625 A EP02019625 A EP 02019625A EP 1304396 B1 EP1304396 B1 EP 1304396B1
Authority
EP
European Patent Office
Prior art keywords
powder
coating
component
alloy powder
laser beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP02019625A
Other languages
German (de)
French (fr)
Other versions
EP1304396A1 (en
Inventor
Markus Wittmann
Götz Mielsch
Nigel Dr. Stothard
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bayerische Motoren Werke AG
Original Assignee
Bayerische Motoren Werke AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayerische Motoren Werke AG filed Critical Bayerische Motoren Werke AG
Publication of EP1304396A1 publication Critical patent/EP1304396A1/en
Application granted granted Critical
Publication of EP1304396B1 publication Critical patent/EP1304396B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/0408Light metal alloys
    • C22C1/0416Aluminium-based alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/08Coating starting from inorganic powder by application of heat or pressure and heat
    • C23C24/10Coating starting from inorganic powder by application of heat or pressure and heat with intermediate formation of a liquid phase in the layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C26/00Coating not provided for in groups C23C2/00 - C23C24/00
    • C23C26/02Coating not provided for in groups C23C2/00 - C23C24/00 applying molten material to the substrate

Definitions

  • the invention relates to a method for coating one of Aluminum alloy existing components, in particular of the Valve seat portion of a cylinder head of an internal combustion engine.
  • valve seat portion of a particular from a Aluminum alloy existing cylinder head in particular in terms
  • correspondingly resilient valve seat rings For example, DE 197 21 406 A1 describes a valve seat, which in a cylinder head made of aluminum or an aluminum alloy inserted and / or associated with them.
  • valve seat rings a direct Coating the seat surface to the cylinder head.
  • EP 843 022 A1 which to a method for forming a valve seat by means of thermal Spray coating refers.
  • the object of the invention is to provide a method for applying a To provide coating material, thereby avoiding the mentioned disadvantages a valve seat area with a special hardness without Tendency for cracking is provided.
  • the generated coating should good wear resistance at high temperatures, high hardness and strength, have good thermal conductivity and lubricity.
  • the object is achieved according to the features of claim 1, wherein using an alloy powder, the 10-70 wt .-%, in particular 20-50 wt .-% silicon (Si) and 5-50 wt .-%, in particular 10 -40% by weight of titanium (Ti), balance aluminum (Al) and optionally up to 25% by weight, in particular 1-15% by weight of nickel (Ni) and / or up to 20% by weight, in particular 1-10 wt .-% copper (Cu), and optionally boron nitride (BN), graphite, B 2 O 3 and / or Co / Cr 2 O 2 by weight with together up to 20%, in particular 5-10%, and optionally SiC and / or B 4 C by weight up to 30%, in particular 5-20% contains, by means of a high energy beam, in particular a laser beam, the alloy powder at least partially converted from the solid to the molten phase and in a molten bath on the Part surface is on / introduced, whereupon in the following solidification process
  • Fig. 1 shows a micrograph of one using an aluminum-silicon powder coated component of an aluminum alloy.
  • this type of coating is used in particular the Wear resistance of an aluminum component by alloying or application of alloying elements in the area of the surface increase.
  • an aluminum-silicon powder which is applied / applied in the molten state is, with a very high Si addition, the cooling formed with Fig. 1 structure.
  • the Aluminum base structure 10 embedded rod / lamellar silicon crystals 12a, 12b, 12c.
  • the aim is a high concentration of these silicon crystals as well as their firm anchoring in the basic aluminum structure 10. In the present high silicon concentration of about 60 wt.
  • the silicon particles form rod / lamellar with a size of up to several 100 microns. This due to a very adverse material behavior.
  • the coated in this way The area is very brittle and tends to crack.
  • a desired high Si content is the disadvantageous education large, rod / lamellar Silicon crystals contrary.
  • Alloy powder contains in the present embodiment in addition to the Base element aluminum a very high silicon content of about 62 wt .-% and about 20 wt .-% titanium.
  • the alloy powder is a Processed metal alloy with the appropriate composition into powder, if necessary, it may also be advantageous to alloy powder different Mix the composition, leaving an alloy powder with the desired Composition arises.
  • Al-Ti phases are formed in the basic matrix.
  • Particularly preferred is the formation of refractory Al-Ti phases, such as Al 3 Ti, whose melting point is about 1340 ° C.
  • Silicon particles 22 are embedded in this very robust base matrix 20, with the alloying element titanium furthermore effecting grain refinement when it is deposited from the melt.
  • the micrograph shown in Fig. 2 shows this base matrix 20 with embedded silicon particles 22, the silicon particles 22 despite the high silicon content of about 60 wt.% Very finely dispersed in a size of only about 20 .mu.m, in particular from 1 to 5 microns.
  • the Si content can be greatly increased without the Si primary crystals forming from the melt becoming too large and bar / lamellar.
  • the alloy powder a High-temperature lubricant such as boron nitride (BN) contribute, whereby the use in high-performance engines and gas / hydrogen engines is favored.
  • the coating powder with a very fine Bornitrit-dust so prepared that the alloy powder grains are completely enveloped by BN.
  • a second powder tower or a second powder nozzle for simultaneous transport of the base alloy powder and the BN and both only briefly to mix before / during application.
  • Further wear resistance of the microstructure matrix can furthermore be achieved by adding hard material particles.
  • SiC and / or B 4 C can be incorporated as a wear-resistant carrier by weight in amounts of up to 30%, in particular 5 to 20%.
  • B 4 C also assumes the role of a solid lubricant due to its oxidation to B 2 O 3 .
  • the coating takes place - as shown in FIG. 3 - by means of a coating lance 32, which includes a supply 37 for the alloy powder and a light guide 33 for coupling a laser beam comprises.
  • a laser is a diode laser or a solid state laser such as Nd: YAG laser with a power of about 3kW used.
  • the alloy powder is fed through the feed 37 of a nozzle 38 supplied, from which a powder jet 36 emerges; the from the light guide 33rd emerging laser beam is transmitted by means of a plurality of optical elements schematically and exemplarily with 34a, 34b indicated - focused.
  • the Coating lance 32 is rotatable relative to the component 30 and / or displaceable, so that a targeted regional coating of the component 30 is possible; if necessary the focus of the laser beam 35 and / or the nozzle 38 adjustable ,.
  • the alloy powder emerging from the nozzle 38 is sprayed in the direction of the component to be coated, wherein it is at least partially melted by the heat of the laser beam.
  • the powder jet 36 is thereby guided in the vicinity of the laser beam 35 or through it.
  • the powder jet emerges from the nozzle 38 in such a way that, when hitting the component surface 31a of the component 30 to be coated, the required area is exposed to the required amount of alloy powder.
  • the focus 35a of the laser beam 35 is adjusted so that it lies exactly on the component surface; if the heating is too strong here, it may also be advantageous to guide the coating lance 32 in such a way that the component surface comes to lie above or below the focus 35a.
  • the energy density in the focal spot of the laser beam is approximately 10 4 W / cm 2 .
  • the component - the cylinder head - expediently cooled This is a compromise between a fast Heat dissipation to prevent over-melting of the Base material, between an ideal gradient for the formation of the desired structure and between a slow cooling and low Temperature differences found to avoid cracks.
  • the entire Coating process under a protective gas atmosphere such as under argon or nitrogen.
  • the powder material is sprayed with inert gas, the Inert gas in the feed 37 carried or in a separate line to Area of the nozzle 38 is passed.
  • the Alloy powder also, for example in the form of a paste on the zu coating area are applied.
  • the coating lance then comprises only the laser device and optionally a protective gas supply device which makes it structurally very simplified.
  • the provided for coating cylinder head blank is total with a made certain allowance, so that may subsequently be in the coating occurring heat distortion in the finishing can be compensated.
  • the Pre-processing of the valve seat areas to be coated is done with a certain undersize, since there is applied a layer.
  • the Coating the valve seat portion 31a, 31b, 31c, 31d moves the Coating lance 32 with a linear speed of up to 3 m / min and is thereby turned accordingly.
  • the coated area is finished by machining.

Description

Die Erfindung betrifft ein Verfahren zur Beschichtung eines aus einer Aluminium-Legierung bestehenden Bauteiles, insbesondere des Ventilsitzbereiches eines Zylinderkopfes einer Brennkraftmaschine.The invention relates to a method for coating one of Aluminum alloy existing components, in particular of the Valve seat portion of a cylinder head of an internal combustion engine.

Um den hochbelasteten Ventilsitzbereich eines insbesondere aus einer Aluminium-Legierung bestehenden Zylinderkopfes insbesondere hinsichtlich Festigkeit, Belastbarkeit und Abrieb- und Verschleißfestigkeit zu optimieren, ist es bekannt, entsprechend belastbare Ventilsitzringe einzusetzen. Beispielsweise beschreibt die DE 197 21 406 A1 einen Ventilsitz, welcher in einen Zylinderkopf aus Aluminium oder einer Aluminiumlegierung eingefügt und/oder mit diesen verbunden ist.To the highly loaded valve seat portion of a particular from a Aluminum alloy existing cylinder head in particular in terms To optimize strength, load capacity and abrasion and wear resistance, It is known to use correspondingly resilient valve seat rings. For example, DE 197 21 406 A1 describes a valve seat, which in a cylinder head made of aluminum or an aluminum alloy inserted and / or associated with them.

Es hat sich jedoch herausgestellt, dass die Verbindung zwischen Ventilsitz und Zylinderkopf insbesondere aufgrund großer Temperaturschwankungen über einen weiten Bereich und der damit einher gehenden Wärmeausdehnung sowie der hohen Belastung sehr kritisch ist, sodass man dazu übergegangen ist, anstelle von Ventilsitzringen eine direkte Beschichtung der Sitzfläche am Zylinderkopf vorzunehmen.However, it has been found that the connection between valve seat and cylinder head, in particular due to large temperature fluctuations over a wide range and the associated Thermal expansion and the high load is very critical, so you has gone over, instead of valve seat rings a direct Coating the seat surface to the cylinder head.

In diesem Zusammenhang wird auf die EP 843 022 A1 verwiesen, die sich auf ein Verfahren zur Bildung eines Ventilsitzes mittels thermischem Spritzbeschichten bezieht.In this context, reference is made to EP 843 022 A1, which to a method for forming a valve seat by means of thermal Spray coating refers.

Nach wie vor ist insbesondere der Wärmeübergang zwischen Zylinderkopf und Ventilsitz in bezug auf die Hochtemperaturbetriebsfestigkeit sehr kritisch. Hinzu kommt eine sehr hohe Neigung der eingesetzten Ventilsitzmaterialien zur Rissbildung. Besonders schwer wiegen diese Nachteile bei Hochleistungsmotoren sowie bei Fahrzeugen, denen die Schmierwirkung des flüssigen Treibstoffes fehlt - wie beispielsweise bei Gas-/Wasserstofffahrzeugen- da hier besondere, extreme Belastungen bezüglich Temperatur und Verschleiß vorherrschen.As before, in particular, the heat transfer between the cylinder head and valve seat with respect to the high temperature operating stability very critical. In addition, there is a very high tendency of the valve seat materials used for cracking. Especially heavy weigh these disadvantages High-performance engines as well as vehicles that have the lubricating effect of the liquid fuel is missing - such as in gas / hydrogen vehicles- because here are special, extreme loads in terms of temperature and wear prevail.

Aufgabe der Erfindung ist es, ein Verfahren zur Aufbringung eines Beschichtungswerkstoffs bereitzustellen, wodurch unter Vermeidung der genannten Nachteile ein Ventilsitzbereich mit einer besonderen Härte ohne Neigung zur Rissbildung bereitgestellt wird. Die erzeugte Beschichtung soll eine gute Verschleißbeständigkeit bei hohen Temperaturen, eine hohe Härte und Festigkeit, eine gute Wärmeleitfähigkeit und Schmierwirkung aufweisen.The object of the invention is to provide a method for applying a To provide coating material, thereby avoiding the mentioned disadvantages a valve seat area with a special hardness without Tendency for cracking is provided. The generated coating should good wear resistance at high temperatures, high hardness and strength, have good thermal conductivity and lubricity.

Die Lösung der Aufgabe erfolgt gemäß den Merkmalen des Patentanspruchs 1, wobei unter Verwendung eines Legierungspulvers, das 10-70 gew.-%, insbesondere 20-50 gew.-% Silizium (Si) sowie 5-50 gew.-%, insbesondere 10-40 gew.-% Titan (Ti), Rest Aluminium (Al) und gegebenenfalls bis zu 25 gew.-%, insbesondere 1-15 gew.-% Nickel (Ni) und/oder bis zu 20 gew.-%, insbesondere 1-10 gew.-% Kupfer (Cu), und gegebenenfalls Bornitrit (BN), Graphit, B2O3 und/oder Co/Cr2O2 gewichtsanteilig mit zusammen bis zu 20 %, insbesondere mit 5-10 %, und gegebenenfalls SiC und/oder B4C gewichtsanteilig mit zusammen bis zu 30 %, insbesondere 5-20 %, enthält, mittels eines Hochenergiestrahls, insbesondere eines Laserstrahls, das Legierungspulver zumindest teilweise von der festen in die schmelzflüssige Phase umgewandelt und in einem Schmelzbad auf die Bauteiloberfläche auf-/eingebracht wird, worauf sich beim folgenden Erstarrungsprozess in der Gefügegrundmatrix eine hochschmelzende intermetallische Al-Ti Phase mit eingelagerten Si-Partikeln ausbildet.The object is achieved according to the features of claim 1, wherein using an alloy powder, the 10-70 wt .-%, in particular 20-50 wt .-% silicon (Si) and 5-50 wt .-%, in particular 10 -40% by weight of titanium (Ti), balance aluminum (Al) and optionally up to 25% by weight, in particular 1-15% by weight of nickel (Ni) and / or up to 20% by weight, in particular 1-10 wt .-% copper (Cu), and optionally boron nitride (BN), graphite, B 2 O 3 and / or Co / Cr 2 O 2 by weight with together up to 20%, in particular 5-10%, and optionally SiC and / or B 4 C by weight up to 30%, in particular 5-20% contains, by means of a high energy beam, in particular a laser beam, the alloy powder at least partially converted from the solid to the molten phase and in a molten bath on the Part surface is on / introduced, whereupon in the following solidification process in the matrix matrix a high-melting intermetallic Al-Ti phase is formed with embedded Si particles.

Vorteilhafte Weiterbildungen des erfindungsgemäßen Verfahrens sind Gegenstand der Unteransprüche 2 bis 4.Advantageous developments of the method according to the invention are Subject matter of the subclaims 2 to 4.

Als besonders günstig hat es sich herausgestellt, wenn das Legierungspulver mittels einer geeigneten eine Düse umfassenden Pulverfördereinrichtung, welche mit dem Laserstrahl zusammenwirkt, auf die Bauteiloberfläche aufgebracht wird, indem das Pulver im Laserstrahl oder zumindest in dessen Nähe wenigstens teilweise aufgeschmolzen wird. Zweckmäßigerweise wird das Bauteil während des Beschichtens gekühlt und die Beschichtung erfolgt unter Schutzgasatmosphäre.As particularly favorable, it has been found, if the Alloy powder by means of a suitable nozzle comprising a Powder conveyor, which cooperates with the laser beam, on the Component surface is applied by the powder in the laser beam or at least partially melted at least in its vicinity. Conveniently, the component is cooled during the coating and the coating takes place under a protective gas atmosphere.

Nachfolgend wird ein besonders bevorzugtes Ausführungsbeispiel der Erfindung unter Bezugnahme auf Figuren näher beschrieben. Dabei zeigen

Fig. 1
ein Schliffbild eines Gefüges mit hohem Si-Anteil unter Verwendung eines herkömmlichen Legierungspulvers,
Fig. 2
ein Schliffbild eines Gefüges mit hohem Si-Anteil unter Verwendung des erfindungsgemäßen Verfahrens,
Fig. 3
schematisch und beispielhaft die Aufbringung des Legierungspulvers auf den Ventilsitzbereich eines Zylinderkopfes.
Hereinafter, a particularly preferred embodiment of the invention will be described with reference to figures. Show
Fig. 1
a micrograph of a high Si-content microstructure using a conventional alloy powder,
Fig. 2
a microsection of a structure with a high Si content using the method according to the invention,
Fig. 3
schematically and exemplarily the application of the alloy powder on the valve seat portion of a cylinder head.

Fig. 1 zeigt ein Schliffbild eines unter Verwendung eines Aluminium-Silizium-Pulvers beschichteten Bauteils aus einer Aluminiumlegierung. Gemäß dem Stand der Technik wird diese Art der Beschichtung verwendet, um insbesondere die Verschleißfestigkeit eines Aluminium-Bauteiles durch Einlegierung bzw. Aufbringung von Legierungselementen im Bereich der Oberfläche zu erhöhen. Verwendet wurde vorliegend ein Aluminium-Silizium-Pulver, welches in schmelzflüssigem Zustand ein-/aufgebracht wird, wobei bei einer sehr hohen Si-Beigabe sich bei Abkühlung das mit Fig. 1 gezeigte Gefüge ausbildet. Deutlich erkennbar sind die im Aluminiumgrundgefüge 10 eingebetteten stangen-/lamellenartigen Siliziumkristalle 12a, 12b, 12c. Angestrebt wird eine hohe Konzentration dieser Siliziumkristalle sowie deren feste Verankerung im Aluminiumgrundgefüge 10. Bei der vorliegenden hohen Siliziumkonzentration von ca. 60 gew. % bilden sich die Siliziumpartikel stangen-/lamellenartig mit einer Größe von bis zu mehreren 100 µm aus. Dies bedingt ein sehr nachteiliges Werkstoffverhalten. Der auf diese Weise beschichtete Bereich ist sehr spröde und neigt zur Rissbildung. Einem gewünschten hohen Si-Anteil steht die nachteilige Ausbildung großer, stangen-/lamellenartiger Siliziumkristalle entgegen.Fig. 1 shows a micrograph of one using an aluminum-silicon powder coated component of an aluminum alloy. According to the state of Technique, this type of coating is used in particular the Wear resistance of an aluminum component by alloying or application of alloying elements in the area of the surface increase. Has been used in the present case, an aluminum-silicon powder which is applied / applied in the molten state is, with a very high Si addition, the cooling formed with Fig. 1 structure. Clearly visible in the Aluminum base structure 10 embedded rod / lamellar silicon crystals 12a, 12b, 12c. The aim is a high concentration of these silicon crystals as well as their firm anchoring in the basic aluminum structure 10. In the present high silicon concentration of about 60 wt. %, the silicon particles form rod / lamellar with a size of up to several 100 microns. This due to a very adverse material behavior. The coated in this way The area is very brittle and tends to crack. A desired high Si content is the disadvantageous education large, rod / lamellar Silicon crystals contrary.

Ein Schliffbild eines mittels des erfindungsgemäßen Verfahrens erzeugten Gefüges zeigt Fig. 2. Das Legierungspulver enthält im vorliegenden Ausführungsbeispiel neben dem Basiselement Aluminium einen sehr hohen Siliziumanteil von ca. 62 gew.-% sowie ca. 20 gew.-% Titan. Zur Herstellung des Legierungspulvers wird eine Metalllegierung mit der entsprechenden Zusammensetzung zu Pulver verarbeitet, ggf. kann es auch vorteilhaft sein, Legierungspulver verschiedener Zusammensetzung zu mischen, so dass ein Legierungspulver mit der gewünschten Zusammensetzung entsteht.A micrograph of a means of the method according to the invention Fig. 2 shows the structure produced Alloy powder contains in the present embodiment in addition to the Base element aluminum a very high silicon content of about 62 wt .-% and about 20 wt .-% titanium. For the preparation of the alloy powder is a Processed metal alloy with the appropriate composition into powder, if necessary, it may also be advantageous to alloy powder different Mix the composition, leaving an alloy powder with the desired Composition arises.

Unter Einfluss des Legierungselementes Titan (Ti) bilden sich in der Grundmatrix 20 Al-Ti-Phasen. Besonders bevorzugt wird die Ausbildung hochschmelzender Al-Ti-Phasen, wie beispielsweise Al3Ti, deren Schmelzpunkt bei ca. 1.340°C liegt. In dieser sehr robusten Grundmatrix 20 sind Siliziumpartikel 22 eingelagert, wobei das Legierungselement Titan weiterhin bei deren Abscheidung aus der Schmelze eine Kornverfeinerung bewirkt. Das in Fig. 2 gezeigte Schliffbild zeigt diese Grundmatrix 20 mit eingelagerten Siliziumpartikeln 22, wobei die Siliziumpartikel 22 trotz des hohen Siliziumanteils von ca. 60 Gew. % feinst dispersiert in einer Größe von nur ca. 20 µm insbesondere von 1 bis 5 µm vorliegen. Der Si-Anteil kann stark angehoben werden, ohne dass die sich aus der Schmelze bildenden Si-Primärkristalle zu groß und stangen-/lamellenartiger werden.Under the influence of the alloying element titanium (Ti), 20 Al-Ti phases are formed in the basic matrix. Particularly preferred is the formation of refractory Al-Ti phases, such as Al 3 Ti, whose melting point is about 1340 ° C. Silicon particles 22 are embedded in this very robust base matrix 20, with the alloying element titanium furthermore effecting grain refinement when it is deposited from the melt. The micrograph shown in Fig. 2 shows this base matrix 20 with embedded silicon particles 22, the silicon particles 22 despite the high silicon content of about 60 wt.% Very finely dispersed in a size of only about 20 .mu.m, in particular from 1 to 5 microns. The Si content can be greatly increased without the Si primary crystals forming from the melt becoming too large and bar / lamellar.

Je nach Anteil Titan (Ti) und/oder Silizium (Si) lässt sich in breiten Grenzen die Macrohärte - beispielsweise bis über 550 HV bei AlSi50Ti30 - steuern, wobei dennoch eine verstärkte Neigung zur Rissbildung vermieden wird. Gegebenenfalls vorteilhaft wirkt sich Beigabe kleiner Mengen Nicken (Ni) im Bereich 1 bis 15 Gew. % und/oder Kupfer (Cu) im Bereich 1 bis 10 Gew. % aus.Depending on the proportion of titanium (Ti) and / or silicon (Si) can be within wide limits the Macrohärte - for example, to over 550 HV at AlSi50Ti30 - steer, where Nevertheless, an increased tendency to cracking is avoided. Possibly advantageous addition of small amounts of pitch (Ni) in the range 1 to 15 wt. % and / or copper (Cu) in the range 1 to 10% by weight.

Als sehr vorteilhaft hat es sich weiterhin herausgestellt, dem Legierungspulver einen Hochtemperaturschmierstoff wie beispielsweise Bornitrit (BN) beizugeben, wodurch der Einsatz in Hochleistungsmotoren und Gas-/Wasserstoffmotoren begünstigt wird. Dabei wird das Beschichtungspulver mit einem sehr feinen Bornitrit-Staub so aufbereitet, dass die Legierungspulverkörner vollständig von BN umhüllt werden. Zweckmäßig kann es gemäß eines weiteren Ausführungsbeispieles auch sein, einen zweiten Pulverturm bzw. eine zweite Pulverdüse zur gleichzeitigen Beförderung des Basislegierungspulvers und des BN vorzusehen und beide erst kurz vor/bei Aufbringung zu mischen.As very beneficial, it has also been found, the alloy powder a High-temperature lubricant such as boron nitride (BN) contribute, whereby the use in high-performance engines and gas / hydrogen engines is favored. In this case, the coating powder with a very fine Bornitrit-dust so prepared that the alloy powder grains are completely enveloped by BN. It may be expedient according to another embodiment, a second powder tower or a second powder nozzle for simultaneous transport of the base alloy powder and the BN and both only briefly to mix before / during application.

Beim Erstarren der Schmelze nach dem Beschichten bilden sich in der Schicht kleine, als Schmiertaschen wirkende, aus Bornnitrit bestehende Inseln, welche bei betriebsbedingtem Verschleiß immer wieder freigelegt werden. Über die Lebensdauer der beschichteten Fläche wird so eine ständige Schmierwirkung erreicht. Ein Anteil von 5 bis 10 gew.-% ist in der Regel ausreichend, wobei ggf. bis zu 20 gew.-% BN beigemischt werden können. Auf gleiche Art und Weise können andere Hochtemperaturschmierstoffe - wie beispielsweise Graphit, B2O3 und/oder Co/Cr2O3 - dem Pulverwerkstoff zugegeben werden. During the solidification of the melt after coating, small islands of boron nitrite, which act as lubricating pockets, are formed in the layer, which islands are exposed again and again during operational wear. Over the life of the coated surface so a permanent lubricating effect is achieved. A proportion of 5 to 10 wt .-% is usually sufficient, with possibly up to 20 wt .-% BN can be added. In the same way other high-temperature lubricants - such as graphite, B 2 O 3 and / or Co / Cr 2 O 3 - can be added to the powder material.

Eine weitere Verschleißbeständigkeit der Gefügematrix kann weiterhin durch Zugabe von Hartstoffpartikeln erreicht werden. Beispielsweise lässt sich SiC und/oder B4C als Verschleißschutzträger gewichtsanteilig bis zu 30 %, insbesondere 5 bis 20 %, einlagern. In Verbindung mit einem Kraftstoff wie Gas oder Wasserstoff bzw. bei Hochleistungsmotoren übernimmt B4C durch seine Oxidation zu B2O3 auch die Rolle eines Festschmierstoffes.Further wear resistance of the microstructure matrix can furthermore be achieved by adding hard material particles. For example, SiC and / or B 4 C can be incorporated as a wear-resistant carrier by weight in amounts of up to 30%, in particular 5 to 20%. In conjunction with a fuel such as gas or hydrogen or in high-performance engines, B 4 C also assumes the role of a solid lubricant due to its oxidation to B 2 O 3 .

Die Beschichtung erfolgt - wie in Fig. 3 dargestellt - mittels einer Beschichtungslanze 32, welche eine Zuführung 37 für das Legierungspulver sowie einen Lichtleiter 33 zur Einkopplung eines Laserstrahles umfasst. Als Laser wird ein Diodenlaser oder ein Festkörperlaser wie Nd:YAG-Laser mit einer Leistung von ca. 3kW verwendet. Das Legierungspulver wird durch die Zuführung 37 einer Düse 38 zugeführt, aus der ein Pulverstrahl 36 austritt; der aus dem Lichtleiter 33 austretende Laserstrahl wird mittels einer mehrere optische Elemente - schematisch und beispielhaft mit 34a, 34b angedeutet - fokussiert. Die Beschichtungslanze 32 ist relativ zum Bauteil 30 drehbar und/oder verschieblich, so dass eine gezielte bereichsweise Beschichtung des Bauteiles 30 möglich ist; ggf. ist der Fokus des Laserstrahls 35 und/oder die Düse 38 verstellbar,.The coating takes place - as shown in FIG. 3 - by means of a coating lance 32, which includes a supply 37 for the alloy powder and a light guide 33 for coupling a laser beam comprises. As a laser is a diode laser or a solid state laser such as Nd: YAG laser with a power of about 3kW used. The alloy powder is fed through the feed 37 of a nozzle 38 supplied, from which a powder jet 36 emerges; the from the light guide 33rd emerging laser beam is transmitted by means of a plurality of optical elements schematically and exemplarily with 34a, 34b indicated - focused. The Coating lance 32 is rotatable relative to the component 30 and / or displaceable, so that a targeted regional coating of the component 30 is possible; if necessary the focus of the laser beam 35 and / or the nozzle 38 adjustable ,.

Das aus der Düse 38 austretende Legierungspulver wird in Richtung des zu beschichtenden Bauteiles versprüht, wobei es zumindest teilweise durch die Hitze des Laserstrahles aufgeschmolzen wird. Der Pulverstrahl 36 wird dabei in die Nähe des Laserstrahles 35 oder durch diesen hindurch geführt. Der Pulverstrahl tritt derart aus der Düse 38 aus, dass beim Auftreffen auf die zu beschichtende Bauteiloberfläche 31a des Bauteiles 30 der erforderliche Bereich mit der gewünschten Menge Legierungspulver beaufschlagt wird. Der Fokus 35a des Laserstrahles 35 wird dabei so eingestellt, dass er genau auf der Bauteiloberfläche liegt; falls die Erhitzung hier zu stark ist, kann es auch vorteilhaft sein, die Beschichtungslanze 32 derart zu führen, dass die Bauteiloberfläche oberhalb oder unterhalb des Fokus 35a zu liegen kommt. Die Energiedichte im Brennfleck des Laserstahles beträgt dabei ca. 104 W/cm2.The alloy powder emerging from the nozzle 38 is sprayed in the direction of the component to be coated, wherein it is at least partially melted by the heat of the laser beam. The powder jet 36 is thereby guided in the vicinity of the laser beam 35 or through it. The powder jet emerges from the nozzle 38 in such a way that, when hitting the component surface 31a of the component 30 to be coated, the required area is exposed to the required amount of alloy powder. The focus 35a of the laser beam 35 is adjusted so that it lies exactly on the component surface; if the heating is too strong here, it may also be advantageous to guide the coating lance 32 in such a way that the component surface comes to lie above or below the focus 35a. The energy density in the focal spot of the laser beam is approximately 10 4 W / cm 2 .

Es erfolgt ein kombiniertes Auf-/Einbringen des Legierungspulvers im zu beschichtenden Bereich - dem Ventilsitzbereich. Vorliegend erfolgt ein Einlegieren im 1/10 mm-Bereich verbunden mit einem Aufbringen einer einige Millimeter, ca. 2-3 mm, dicken Schicht; die mit Figur 2 gezeigte und beschriebene Verschleißschutzschicht ist auf diese Weise fest im Grundmaterial verankert.There is a combined application / introduction of the alloy powder in the Coating area - the valve seat area. In the present case an alloying takes place in the 1/10 mm range connected with an application of a few millimeters, approx. 2-3 mm, thick layer; that shown and described with FIG Wear protection layer is firmly anchored in the base material in this way.

Während des Beschichtungsvorganges wird das Bauteil - der Zylinderkopf - zweckmäßigerweise gekühlt. Dabei wird ein Kompromiss zwischen einer schnellen Wärmeabfuhr zur Verhinderung eines zu weiten Aufschmelzens des Grundwerkstoffes, zwischen einem idealen Gradientenverlauf zur Ausbildung des gewünschten Gefüges und zwischen einem langsamen Abkühlen und geringen Temperaturdifferenzen zur Vermeidung von Rissen gefunden.During the coating process, the component - the cylinder head - expediently cooled. This is a compromise between a fast Heat dissipation to prevent over-melting of the Base material, between an ideal gradient for the formation of the desired structure and between a slow cooling and low Temperature differences found to avoid cracks.

Um die Bildung unerwünschter Oxide zu vermeiden, erfolgt der gesamte Beschichtungsvorgang unter Schutzgasatmosphäre wie beispielsweise unter Argon oder Stickstoff. Der Pulverwerkstoff wird mit Schutzgas verdüst, wobei das Schutzgas in der Zuführung 37 mitgeführt oder in einer separaten Leitung zum Bereich der Düse 38 geleitet wird.To avoid the formation of unwanted oxides, the entire Coating process under a protective gas atmosphere such as under argon or nitrogen. The powder material is sprayed with inert gas, the Inert gas in the feed 37 carried or in a separate line to Area of the nozzle 38 is passed.

Alternativ zur beschriebenen Aufbringung des Legierungspulvers kann das Legierungspulver auch beispielsweise in Form einer Paste auf den zu beschichtenden Bereich aufgebracht werden. Die Beschichtungslanze umfasst dann lediglich die Lasereinrichtung und gegebenenfalls eine Schutzgaszuführungseinrichtung wodurch sie baulich stark vereinfacht ist.Alternatively to the described application of the alloy powder, the Alloy powder also, for example in the form of a paste on the zu coating area are applied. The coating lance then comprises only the laser device and optionally a protective gas supply device which makes it structurally very simplified.

Der zu Beschichtung vorgesehene Zylinderkopfrohling wird insgesamt mit einem gewissen Aufmaß gefertigt, so dass nachfolgend eventuell bei der Beschichtung auftretender Wärmeverzug in der Endbearbeitung ausgeglichen werden kann. Die Vorbearbeitung der zu beschichtenden Ventilsitzbereiche erfolgt mit einem gewissen Untermaß, da dort eine Schicht aufgebracht wird. Während der Beschichtung des Ventilsitzbereiches 31a, 31b, 31c, 31d verfährt die Beschichtungslanze 32 mit einer Lineargeschwindigkeit von bis zu 3 m/min und wird dabei entsprechend gedreht. Es werden mehrere aneinanderliegende Raupen - je nach breite ein bis zwei - mit einem Überlappungsgrad von ca. 30-50% aufgetragen. Abschließend wird der beschichtete Bereich spanend endbearbeitet.The provided for coating cylinder head blank is total with a made certain allowance, so that may subsequently be in the coating occurring heat distortion in the finishing can be compensated. The Pre-processing of the valve seat areas to be coated is done with a certain undersize, since there is applied a layer. During the Coating the valve seat portion 31a, 31b, 31c, 31d moves the Coating lance 32 with a linear speed of up to 3 m / min and is thereby turned accordingly. There are several adjacent caterpillars - ever wide one to two - with a degree of overlap of approx. 30-50% applied. Finally, the coated area is finished by machining.

Claims (4)

  1. A method of coating an aluminium-alloy component, especially the valve seat region (31a, 31b, 31c, 31d) of a cylinder head (30) of an internal combustion engine, using an alloy powder which contains
    10-70 wt.%, especially 20-50 wt.% of silicon (Si) and 5-50 wt.%, especially 10-40 wt.% titanium (Ti), remainder aluminium (Al), and if required
    up to 25 wt.%, especially 1-15 wt.% nickel (Ni) and/or up to 20 wt.%, especially 1-10 wt.% copper (Cu) and if required
    boron nitrite (BN), graphite, B2O3 and/or Co/Cr2O2 in proportions by weight totalling up to 20%, especially 5-10% and optionally
    SiC and/or B4C in proportions by weight totalling up to 30%, especially 5-20%, the alloy powder being applied by a high-energy beam, especially a laser beam (35), wherein the powder (36) is at least partly converted from the solid to the molten phase and is deposited or incorporated in a molten pool on the surface of the component, so that during the subsequent solidification process a high-melting intermetallic Al-Ti phase (20) with incorporated Si particles (22) forms in the primary structural matrix.
  2. A method according to claim 1, characterised in that the alloy powder is applied to the component surface by a suitable powder-conveying device comprising a nozzle (38) and co-operating with the laser beam (35), in that the powder is at least partly melted in or at least near the laser beam (35).
  3. A method according to claim 1 or 2, characterised in that the component (30) is cooled during the coating process.
  4. A method according to claim 1 or 2, characterised in that coating is effected in an inert atmosphere.
EP02019625A 2001-10-19 2002-09-03 Coating process Expired - Lifetime EP1304396B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10151716A DE10151716A1 (en) 2001-10-19 2001-10-19 Alloy powder for coating in particular the valve seat area of a cylinder head of an internal combustion engine and coating method
DE10151716 2001-10-19

Publications (2)

Publication Number Publication Date
EP1304396A1 EP1304396A1 (en) 2003-04-23
EP1304396B1 true EP1304396B1 (en) 2005-04-06

Family

ID=7703089

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02019625A Expired - Lifetime EP1304396B1 (en) 2001-10-19 2002-09-03 Coating process

Country Status (2)

Country Link
EP (1) EP1304396B1 (en)
DE (2) DE10151716A1 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL2001869C2 (en) 2008-08-01 2010-02-02 Stichting Materials Innovation Cylinder head with valve seat and method for manufacturing them.
CN103302285B (en) * 2013-06-18 2015-05-20 江苏和昊激光科技有限公司 Nickel-based metal ceramic alloy powder exclusively used in laser cladding of surface of punch
CN104250811B (en) * 2013-06-28 2016-12-28 丹阳宏图激光科技有限公司 The laser melting and coating process of copper alloy surface
CN104018892B (en) * 2014-05-28 2015-10-28 中广核核电运营有限公司 The restorative procedure of turbine high-pressure steam valve valve bonnet seal face pit
CN106757013B (en) * 2017-01-20 2019-09-24 青岛滨海学院 Polynary high-temperature alloy layer of a kind of titanium alloy laser surface silicide enhancing and preparation method thereof
DE102017218580A1 (en) 2017-10-18 2019-04-18 Christian Maier GmbH & Co. KG Method for applying a layer to a component and component produced by the method
CN109763125B (en) * 2019-01-18 2020-12-11 青岛滨海学院 High-entropy alloy coating resistant to high-temperature abrasion and preparation process and application thereof
FR3097561B1 (en) * 2019-06-19 2023-05-19 Renault Sas Device for depositing a coating for the manufacture of a valve seat
CN110373668B (en) * 2019-07-31 2021-01-15 江西科技学院 Aluminum alloy composite material and preparation method thereof
CN112522546B (en) * 2020-10-26 2022-02-08 中北大学 Preparation of B by using SLM technology4Method for C reinforced aluminium base composite material

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3081256B2 (en) * 1990-12-28 2000-08-28 太平洋セメント株式会社 Alloy for metallizing ceramics and metallizing method
JPH0565572A (en) * 1991-09-10 1993-03-19 Honda Motor Co Ltd Structural member having oxidation resistance at high temperature
US5833772A (en) * 1992-11-18 1998-11-10 Elkem Asa Silicon alloy, method for producing the alloy and method for production of consolidated products from silicon
US5545487A (en) * 1994-02-12 1996-08-13 Hitachi Powdered Metals Co., Ltd. Wear-resistant sintered aluminum alloy and method for producing the same
DE4443147A1 (en) * 1994-12-05 1996-06-27 Dechema Corrosion-resistant material for high-temperature applications in sulfidizing process gases
DE19802298C2 (en) * 1998-01-22 2000-11-23 Daimler Chrysler Ag Process for achieving functional metal, ceramic or ceramic / metal layers on the inner wall of hollow bodies
DE19941562A1 (en) * 1999-02-19 2000-08-31 Volkswagen Ag Method and arrangement for producing wear-resistant surfaces
DE10009133A1 (en) * 2000-02-26 2001-08-30 Volkswagen Ag Process for laser coating a surface comprises melting the base material of the surface using a laser beam to form a melt bath, and inserting an alloy powder into the bath

Also Published As

Publication number Publication date
EP1304396A1 (en) 2003-04-23
DE10151716A1 (en) 2003-05-08
DE50202698D1 (en) 2005-05-12

Similar Documents

Publication Publication Date Title
DE3813802C2 (en)
EP0622476B1 (en) Metal substrates with laser-induced MMC coating
EP0899354B1 (en) Hyper-eutectic al-si alloy coating respectively an al-si composite
EP1124660B1 (en) A cylinder crank case, method for the manufacture of a cylinder liner therefor and method for the production of the cylinder crank case with said cylinder liners
EP0896073B1 (en) Coating for cylinder friction surface part of a piston engine
DE2829369B2 (en) Process for forming hard, wear-resistant coatings containing metallic carbides
DE2813707A1 (en) THE MODIFICATION OF METAL SURFACES
DE2926879A1 (en) METHOD FOR COATING THE SURFACE OF METAL SUBSTRATES WITH WEAR-RESISTANT MATERIALS
DE3506302C2 (en)
EP1304396B1 (en) Coating process
DE102005008569A1 (en) Method for creating brake disk made of gray cast iron core with fusion coating involves measuring axial ring surfaces on a lathe, sandblasting, applying coating by plasma spraying, heating disk and removing irregularities by face grinding
EP0837152B1 (en) Process for coating an aluminium alloy device of an internal combustion engine with silicon
DE102020203412A1 (en) Method for producing a protective coating on a brake side of a brake disk base body and method for producing a brake disk
DE3344450A1 (en) ENGINE FASTENERS BASED ON ALUMINUM ALLOYS AND INTERMETALLIC COMPOUNDS AND METHOD FOR THE PRODUCTION THEREOF
DE3415050A1 (en) METHOD FOR PRODUCING A CONTINUOUS CASTING CHILL WITH A WEAR-RESISTANT LAYER
WO2019076677A1 (en) Method for producing a sliding bearing and a sliding bearing produced by the method
DE10002570B4 (en) Thermal spray material, structure and method of making the same
DE10124250C2 (en) Method of forming a high strength and wear resistant composite layer
WO2007071542A1 (en) Coating for a die for a continuous casting plant and method for coating
EP2830806B1 (en) Method for producing an aluminum piston
EP1173689B1 (en) Surface-alloyed cylindrical, partially cylindrical or hollow cylindrical component
DE10059903B4 (en) Piston with wear protection layer
DE102011120989B3 (en) Spraying material, useful for preparing a coating on a working surface e.g. a friction surface of a cast-iron base body, comprises a ceramic powder, and a metallic powder mixture comprising a first powder and a second powder
DE10308561B4 (en) Wear protection coating, its use on a piston or piston ring and its manufacturing process
EP0604836B1 (en) Method for making wear-resistant surface coatings on steel pieces and steel pieces with such coatings

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

17P Request for examination filed

Effective date: 20030506

AKX Designation fees paid

Designated state(s): DE FR GB IT

17Q First examination report despatched

Effective date: 20040326

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RTI1 Title (correction)

Free format text: COATING PROCESS

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20050406

REF Corresponds to:

Ref document number: 50202698

Country of ref document: DE

Date of ref document: 20050512

Kind code of ref document: P

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20060110

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20140919

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20140926

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20140924

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20140929

Year of fee payment: 13

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50202698

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150903

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20150903

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20160531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160401

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150903

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150930