EP1301506A1 - Cyclische aminosäurederivate - Google Patents

Cyclische aminosäurederivate

Info

Publication number
EP1301506A1
EP1301506A1 EP01953191A EP01953191A EP1301506A1 EP 1301506 A1 EP1301506 A1 EP 1301506A1 EP 01953191 A EP01953191 A EP 01953191A EP 01953191 A EP01953191 A EP 01953191A EP 1301506 A1 EP1301506 A1 EP 1301506A1
Authority
EP
European Patent Office
Prior art keywords
coo
cooa
conh
coa
phenyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP01953191A
Other languages
English (en)
French (fr)
Inventor
Horst Juraszyk
Dieter Dorsch
Werner Mederski
Christos Tsaklakidis
Christopher Barnes
Johannes Gleitz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Merck Patent GmbH
Original Assignee
Merck Patent GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Merck Patent GmbH filed Critical Merck Patent GmbH
Publication of EP1301506A1 publication Critical patent/EP1301506A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
    • C07D401/04Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P7/00Drugs for disorders of the blood or the extracellular fluid
    • A61P7/02Antithrombotic agents; Anticoagulants; Platelet aggregation inhibitors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P7/00Drugs for disorders of the blood or the extracellular fluid
    • A61P7/04Antihaemorrhagics; Procoagulants; Haemostatic agents; Antifibrinolytic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/10Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D207/00Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D207/02Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D207/04Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members
    • C07D207/10Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D207/16Carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D207/00Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D207/02Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D207/18Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having one double bond between ring members or between a ring member and a non-ring member
    • C07D207/22Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having one double bond between ring members or between a ring member and a non-ring member with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D207/24Oxygen or sulfur atoms
    • C07D207/262-Pyrrolidones
    • C07D207/2732-Pyrrolidones with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to other ring carbon atoms
    • C07D207/277Carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals
    • C07D207/282-Pyrrolidone-5- carboxylic acids; Functional derivatives thereof, e.g. esters, nitriles
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D211/00Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings
    • C07D211/04Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D211/06Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members
    • C07D211/08Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members with hydrocarbon or substituted hydrocarbon radicals directly attached to ring carbon atoms
    • C07D211/18Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members with hydrocarbon or substituted hydrocarbon radicals directly attached to ring carbon atoms with substituted hydrocarbon radicals attached to ring carbon atoms
    • C07D211/34Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members with hydrocarbon or substituted hydrocarbon radicals directly attached to ring carbon atoms with substituted hydrocarbon radicals attached to ring carbon atoms with hydrocarbon radicals, substituted by carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D413/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms
    • C07D413/02Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings
    • C07D413/12Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings linked by a chain containing hetero atoms as chain links

Definitions

  • the invention relates to compounds of the formula
  • R 2 , R 2 ' , R 2 " each independently of one another H, A, CF 3 , Cl, F, COA, COOH, COOA, CONH 2 , CONHA, CONA 2 , CH 2 NH 2 , CH2NHCOA, CH 2 NHCOOA, OH , OA, OCF 3 , N0 2 , S0 2 A, SO2NH 2 or S0 2 NHA,
  • R 3 , R 4 together (CH 2 ) P , CO (CH 2 ) P , COO (CH 2 ) n ,
  • R, R each independently of one another (CH 2 ) n -COOH, (CH 2 ) n -COO- (CH 2 ) n -Ar, Ar, Py or R 2 ,
  • R 7 H A, Ar or Het,
  • R 8 H (CH 2 ) n -COOH, (CH 2 ) m-COOA, (CH 2 ) m -COO- (CH 2 ) n-Ar, (CH 2 ) m-COO- (CH 2 ) n- Het, (CH 2 ) m -CONH 2 ,
  • Y is missing, CH 2 , CO or S0 2 , A unbranched, branched or cyclic alkyl with 1-20 C-
  • Atoms in which one or two CH 2 groups can be replaced by O or S atoms, -CH CH or -C ⁇ C and / or 1-7 H atoms by F, Ar is unsubstituted or mono-, double or triple through A, CF 3> shark, OH, OA, OCF 3 , S0 2 A, S0 2 NH 2> S0 2 NHA, S0 2 NA 2 , NH 2 ,
  • n 1 or 2
  • m 0, 1 or 2
  • p 2, 3 or 4
  • the invention also relates to the optically active forms, the racemates, the diastereomers and the hydrates and solvates, for example alcoholates, of these compounds.
  • the invention was based on the task of finding new compounds with valuable properties, in particular those which can be used for the production of medicaments.
  • the compounds of the formula I and their salts have very valuable pharmacological properties with good tolerability.
  • they show factor Xa inhibitory properties and can therefore be used to combat and prevent thromboembolic disorders such as thrombosis, myocardial infarction, arteriosclerosis, inflammation, apoplexy, angina pectoris, restenosis after angioplasty and intermittent claudication.
  • the compounds of the formula I according to the invention can furthermore be inhibitors of the coagulation factors factor VIIa, factor IXa and thrombin of the blood coagulation cascade.
  • Aromatic amidine derivatives with antithrombotic activity are e.g. from EP 0 540 051 B1, WO 98/28269, WO 00/71508, WO 00/71511, WO 00/71493, WO 00/71507, WO 00/71509, WO 00/71512, WO 00/71515 or WO 00 / 71516 known.
  • Cyclic guanidines for the treatment of thromboembolic diseases are e.g. described in WO 97/08165.
  • Aromatic heterocycles with factor Xa inhibitory activity are e.g. known from WO 96/10022. Substituted N - [(aminoiminomethyl) phenylalkylj-azaheterocyclylamides as factor Xa inhibitors are described in WO 96/40679.
  • the antithrombotic and anticoagulant effect of the compounds according to the invention is attributed to the inhibitory action against the activated coagulation protease, known under the name factor Xa, or to the inhibition of other activated serine proteases such as factor VIIa, factor IXa or thrombin.
  • Factor Xa is one of the proteases involved in the complex process of blood clotting. Factor Xa catalyzes the conversion of prothrombin to thrombin. Thrombin cleaves fibrinogen into fibrin monomers which, after cross-linking, make an elementary contribution to thrombus formation. An ac Activation of thrombin can lead to the occurrence of thromboembolic disorders. However, inhibition of thrombin can inhibit fibrin formation involved in thrombus formation. The inhibition of thrombin can be measured, for example, by the method of GF Cousins et al. in Circulation 1996, 94, 1705-1712.
  • Inhibition of factor Xa can thus prevent thrombin from being formed.
  • the compounds of formula I according to the invention and their salts interfere with the blood coagulation process by inhibiting factor Xa and thus inhibit the formation of thrombi.
  • the inhibition of factor Xa by the compounds according to the invention and the measurement of the anticoagulant and antithrombotic activity can be determined by customary in vitro or in vivo methods.
  • a suitable method is e.g. by J. Hauptmann et al. in Thrombosis and Haemostasis 1990, 63, 220-223.
  • the measurement of the inhibition of factor Xa can e.g. using the method of T. Hara et al. in thromb. Haemostas. 1994, 71, 314-319.
  • the coagulation factor VIa initiates the extrinsic part of the coagulation cascade after binding to the tissue factor and contributes to the activation of factor X to factor Xa. Inhibition of factor VIIa thus prevents the formation of factor Xa and thus the subsequent formation of thrombin.
  • the inhibition of factor VIa by the compounds according to the invention and the measurement of the anticoagulant and antithrombotic activity can be determined by customary in vitro or in vivo methods.
  • a common method for measuring the inhibition of factor VIIa is e.g. by H. F. Ronning et al. in Thrombosis Research 1996, 84, 73-81.
  • Coagulation factor IXa is generated in the intrinsic coagulation cascade and is also due to the activation of factor X to factor Xa tariat. Inhibition of factor IXa can therefore otherwise prevent factor Xa from being formed.
  • the inhibition of factor IXa by the compounds according to the invention and the measurement of the anticoagulant and antithrombotic activity can be determined by customary in vitro or in vivo methods.
  • the compounds according to the invention can furthermore be used for the treatment of tumors, tumor diseases and / or tumor metastases.
  • the compounds of formula I can be used as active pharmaceutical ingredients in human and veterinary medicine, in particular for the treatment and prevention of thromboembolic disorders such as thrombosis, myocardial infarction, arteriosclerosis, inflammation, apoplexy, angina pectoris, restenosis after angioplasty, intermittent claudication, venous Thrombosis, pulmonary embolism, arterial thrombosis, myocardial ischemia, unstable angina and thrombosis-based stroke.
  • the compounds according to the invention are also used for the treatment or prophylaxis of atherosclerotic diseases such as coronary arterial disease, cerebral arterial disease or peripheral arterial disease.
  • the compounds are also used in combination with other thrombolytics for myocardial infarction, as well as for prophylaxis for reocclusion after thrombolysis, percutaneous transluminal angioplasty (PTCA) and coronary bypass surgery.
  • thromboembolic disorders such as thrombosis, myo
  • the compounds according to the invention are also used for the prevention of rethrombosis in microsurgery, and also as anticoagulants in connection with artificial organs or in hemodialysis.
  • the compounds are also used in the cleaning of catheters and medical devices in patients in vivo, or as anticoagulants for the preservation of blood, plasma and other blood products in vitro.
  • the compounds according to the invention are also used in diseases in which blood coagulation makes a decisive contribution to the course of the disease or is a source of secondary pathology, such as, for example, cancer including metastasis, inflammatory diseases including arthritis, and diabetes.
  • the compounds according to the invention are also used in combination with other thrombolytically active compounds, such as e.g. with the "tissue plasminogen activator" t-PA, modified t-PA, streptokinase or urokinase.
  • t-PA tissue plasminogen activator
  • modified t-PA modified t-PA
  • streptokinase or urokinase.
  • the compounds according to the invention are administered with the other substances mentioned either simultaneously or before or after.
  • Simultaneous administration with aspirin is particularly preferred in order to prevent recurrence of thrombus formation.
  • the compounds according to the invention are also used in combination with platelet glycoprotein receptor (Hb / llla) antagonists which inhibit platelet aggregation.
  • Hb / llla platelet glycoprotein receptor
  • the invention relates to the compounds of the formula I and their salts and to a process for the preparation of compounds of the formula I according to claim 1 and their salts, characterized in that they are prepared from one of their functional derivatives by treatment with a solvolysing or hydrogenolysing agent set free by
  • A is also cycloalkyl and preferably means cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl or cycloheptyl.
  • A therefore also means, for example, CF 3 or C 2 F.
  • A very particularly preferably denotes methyl, ethyl, propyl, isopropyl, butyl, tert-butyl or CF 3 .
  • Prodrug compounds are also those compounds of formula I in which R 8 ⁇ H.
  • R 2 , R 2 , R 2 are preferably, for example, H or F.
  • R 3 , R 4 together preferably mean, for example, (CH 2 ) 2 , (CH 2 ) 3 , (CH 2 ) 4 , (CH 2 ) 2 NHCH 2 , (CH 2 ) -N (COOA) -CH 2 , (CH 2 ) -N (CH 2 COOA) -CH 2 , (CH 2 ) -N (CH 2 COOH) -CH 2 , COCH 2 CH 2 , CO-NHCH 2 , COOCH 2> CH 2 OCH 2 ,
  • R 5 preferably means, for example, S0 2 NH 2 , S0 2 NHA, CH 2 COOH, phenyl substituted simply by S0 2 NHA, S0 2 NH 2 or S0 2 A, unsubstituted or simply substituted by CONH 2 4-pyridyl.
  • R 5 is preferably H or F.
  • R, R and R are preferably H.
  • R 6 preferably means, for example, methyl.
  • R 7 preferably denotes, for example, H, methyl, ethyl, propyl, butyl or phenyl, but very particularly preferably H.
  • R 8 preferably denotes, for example, H, CH 2 COOH, CH 2 CH 2 C00H, COOA, CH 2 COOA, CH 2 CH 2 COOA, COOPhenyl, CH 2 COOPhenyl, COOCH 2 phenyl, CH 2 COOCH 2 phenyl or CH 2 CONH 2 , where A is preferably alkyl having 1, 2, 3 or 4 carbon atoms.
  • R 8 very particularly preferably denotes CH 2 COOH, COOA or CH 2 COOA, where A preferably denotes alkyl having 1, 2, 3 or 4 carbon atoms.
  • R 8 also means, for example, S0 2 CH 3 .
  • R 9 preferably denotes, for example, H, methyl, ethyl or benzyl.
  • U preferably means e.g. CO.
  • V preferably means e.g. NH.
  • W is preferably absent.
  • Y is preferably absent.
  • Ar means unsubstituted or mono-, di- or trisubstituted phenyl or naphthyl.
  • Preferred substituents for phenyl or naphthyl are, for example, methyl, ethyl, propyl, butyl, trifluoromethyl, F, Cl, hydroxy, methoxy, ethoxy, propoxy, isopropoxy, trifluoromethoxy, methylsulfonyl, aminosulfonyl, methylaminosulfonyl, dimethylaminosulfonyl, amino, methyl amino, ethylamino, dimethylamino, diethylamino, formanido, acetamido, methoxycarbonylamino, ethoxycarbonylamino, methoxycarbonyl-N-methylamino, methylsulfonylamino, phenylsulfonylamino, carboxy, methoxycarbonyl,
  • Ar ' preferably means e.g. unsubstituted or mono-, di- or trisubstituted phenyl.
  • Preferred substituents are e.g. Methyl, methoxy, trifluoromethoxy, F, Cl, cyan acetamido, methoxycarbonyl, carboxy or methylsulfonyl.
  • Het preferably means e.g. 2- or 3-furyl, 2- or 3-thienyl, 1-, 2- or 3-pyrrolyl, 1-, 2, 4- or 5-imidazolyl, 1-, 3-, 4- or 5-pyrazolyl, 2 -, 4- or 5-oxazolyl, 3-, 4- or 5-isoxazolyl, 2-, 4- or 5-thiazolyl, 3-, 4- or 5-isothiazolyl, 2-, 3- or 4-pyridyl, 2 -, 4-, 5- or 6-pyrimidinyl, further preferably 1, 2,3-triazol-1-, -4- or -5-yl, 1, 2,4-triazol-1-, -3- or 5 -yl, 1- or 5-tetrazolyl, 1, 2,3-oxadiazol-4- or -5-yl, 1, 2,4-oxadiazol-3- or - 5-yl, 1, 3,4-thiadiazol- 2- or -5-yl, 1, 2,4-thiadiazol-3- or -5-yl, 1, 2,3
  • the heterocyclic radicals can also be partially or completely hydrogenated.
  • Het can, for. B. also mean 2,3-dihydro-2-, -3-, -4- or -5-furyl, 2,5-dihydro-2-, -3-, -4- or 5-furyl, tetrahydro-2 - or -3-furyl, 1, 3-dioxolan-4-yl, tetrahydro-2- or -3-thienyl, 2,3-dihydro-1-, -2-, -3-, -4- or -5-pyrrolyl, 2,5-dihydro-1-, -2-, -3-, -4- or -5-pyrrolyl, 1-, 2- or 3-pyrrolidinyl, tetrahydro-1-, -2 - or -4-imidazolyl, 2,3-dihydro-1-, -2-, -3-, -4- or -5-pyrazolyl, tetrahydro-1-, -3- or -4-pyrazolyl, 1, 4
  • Het particularly preferably means e.g. Furyl, thienyl, thiazolyl, imidazolyl, [2,1, 3] -benzothiadiazolyl, oxazolyl, pyridyl, indolyl, 1-methyl-piperidinyl, piperidinyl or pyrrolidinyl, pyridyl, 1-methyl-piperidin-4- is very particularly preferred yl or piperidin-4-yl.
  • Py preferably means e.g. unsubstituted or simply substituted by aminocarbonyl 2-, 3- or 4-pyridyl.
  • the compounds of the formula I can have one or more chiral centers and therefore exist in various stereoisomeric forms.
  • Formula 1 encompasses all of these forms.
  • the invention relates in particular to those compounds of the formula I in which at least one of the radicals mentioned has one of the preferred meanings indicated above.
  • Some preferred groups of compounds can be expressed by the following sub-formulas Ia to Ih, which correspond to the formula I and in which the radicals not specified have the meaning given for the formula I, but in which
  • Ar is phenyl
  • R 2 , R 2 , R 2 each independently of one another H or F,
  • Ar is phenyl
  • R 1 F NH 2 , NHCOA, NHCOOA, NH- (CH 2 ) n -Ar, CN, CONH 2 ,
  • R 2 , R 2 ' , R 2 " each independently of one another H or F, Ar phenyl,
  • R 3 , R 4 together preferably mean, for example, (CH 2 ) 2 , (CH 2 ) 3 , (CH 2 ) 4 , (CH 2 ) 2 NHCH 2 , (CH 2 ) -N (COOA) -CH 2 , (CH 2 ) -N (CH 2 COOA) -CH 2 , (CH 2 ) -N (CH 2 COOH) -CH 2 , COCH 2 CH 2 , CO-NHCH 2 , COOCH 2 , CH 2 OCH 2 , -C [( CH 3 ) 2 ] -0-CH 2 , COOCH (A) -, CH 2 -S-CH 2 ,
  • R 2 , R 2 , R 2 ' each independently of one another H or F, Ar phenyl,
  • R 3 , R 4 together preferably mean, for example, (CH 2 ) 2, (CH) 3, (CH 2 ) 4 , (CH 2 ) 2 NHCH 2 , (CH 2 ) -N (COOA) -CH 2 , (CH 2 ) -N (CH 2 COOA) -CH 2 , (CH 2 ) -N (CH 2 COOH) -CH 2) COCH 2 CH 2 , CO-NHCH 2 , COOCH 2 , CH 2 OCH 2 , -C [(CH 3 ) 2 ] -0-CH 2 , COOCH (A) -, CH 2 -S-CH 2 , -C [(CH 3 ) 2 ] -S-CH 2 ,
  • R 5 S0 2 NH 2 , S0 2 NHA, CH 2 COOH, simply substituted by S0 2 NHA, S0 2 NH 2 or S0 2 A, where A is alkyl with 1, 2, 3 or 4 carbon atoms or unsubstituted or simply 4-pyridyl substituted by CONH 2 ,
  • R 5 , R 5 are H
  • R 2 , R 2 , R 2 each independently of one another H or F, R 3 , R 4 together (CH 2 ) P , CO (CH 2 ) p , COO (CH 2 ) n ,
  • P represents 2, 3 or 4;
  • R 8 H (CH 2 ) n -COOH, (CH 2 ) m-COOA, (CH 2 ) m -COO- (CH 2 ) n - Ar, (CH 2 ) m-COO- (CH 2 ) n - Het, (CH 2 ) m-CONH 2 ,
  • P 2 means 3 or 4
  • P 2, 3 or 4 mean ⁇
  • the starting materials can also be formed in situ, so that they are not isolated from the reaction mixture, but instead are immediately reacted further to give the compounds of the formula I.
  • Compounds of formula I can preferably be obtained by liberating compounds of formula I from one of their functional derivatives by treatment with a solvolysing or hydrogenolysing agent.
  • Preferred starting materials for solvolysis or hydrogenolysis are those which otherwise correspond to formula I, but instead of one or more free amino and / or hydroxyl groups contain corresponding protected amino and / or hydroxyl groups, preferably those which instead of an H- Atoms which are connected to an N atom carry an amino protective group, in particular those which bear an R'-N group instead of an HN group, in which R 'denotes an amino protective group and / or those which replace the H atoms of a hydroxyl group carry a hydroxyl protective group, for example those which correspond to the formula I, but instead of a group -COOH carry a group -COOR "in which R" denotes a hydroxyl protective group.
  • Preferred starting materials are also the oxadiazole derivatives, which can be converted into the corresponding amidino compounds.
  • the release of the amidino group from its oxadiazole derivative can e.g. by treatment with hydrogen in the presence of a catalyst (e.g. Raney nickel).
  • a catalyst e.g. Raney nickel
  • Suitable solvents are those specified below, in particular alcohols such as methanol or ethanol, organic acids such as acetic acid or propionic acid or mixtures thereof.
  • the hydrogenolysis is generally carried out at temperatures between about 0 and 100 ° and pressures between about 1 and 200 bar, preferably at 20-30 ° (room temperature) and 1-10 bar.
  • the introduction of the oxadiazole group succeeds e.g. by reaction of the cyan compounds with hydroxylamine and reaction with phosgene, dialkyl carbonate, chloroformate, N, N'-carbonyldiimidazole or acetic anhydride.
  • amino protecting group is generally known and refers to groups which are suitable for protecting (blocking) an amino group from chemical reactions, but which are easily removable after the desired chemical reaction has been carried out at other locations in the molecule. Unsubstituted or substituted acyl, aryl, aralkoxymethyl or aralkyl groups are particularly typical of such groups. Since the amino protective groups are removed after the desired reaction (or sequence of reactions), their type and size is not critical, moreover, "but those with 1-20, in particular 1-8, carbon atoms are preferred.
  • acyl group is related with the present process in the broadest sense, which includes acyl groups derived from aliphatic, araliphatic, aromatic or heterocyclic carboxylic acids or sulfonic acids, and in particular alkoxycarbonyl, aryloxycarbonyl and especially aralkoxycarbonyl groups.
  • acyl groups are alkanoyl such as acetyl, propionyl , Butyryl; aralkanoyl such as phenylacetyl; aroyl such as benzoyl or toluyl; aryloxyalkanoyl such as POA; alkoxycarbonyl such as methoxycarbonyl, ethoxycarbonyl, 2,2,2-trichloroethoxycarbonyl, BOG (tert-butyloxycarbonyl), 2-iodoethoxycarbonyl; aralkyloxycarbonyl such as CBZ ("carbobenzoxy"), 4-methoxybenzyloxycarbonyl, FMOC; arylsulfonyl such as Mtr Groups are BOG and Mtr, as well as CBZ, Fmoc, Benzyl and Acetyl.
  • alkanoyl such as acetyl, propionyl , Butyryl
  • Amides such as DMF, halogenated hydrocarbons such as dichloromethane, ner also alcohols such as methanol, ethanol or isopropanol, and water. Mixtures of the abovementioned solvents are also suitable. TFA is preferably used in excess without the addition of another solvent, perchloric acid in the form of a mixture of acetic acid and 70% perchloric acid in a ratio of 9: 1.
  • the reaction temperatures for the cleavage are advantageously between about 0 and about 50 °, preferably between 15 and 30 ° (room temperature).
  • the groups BOC, OBut and Mtr can e.g. B. preferably with TFA in dichloromethane or with about 3 to 5N HCl in dioxane at 15-30 °, the FMOC group with an about 5 to 50% solution of dimethylamine, diethylamine or piperidine in DMF at 15 -30 °.
  • Hydrogenolytically removable protective groups can, for. B. by treatment with hydrogen in the presence of a catalyst (z. B. a noble metal catalyst such as palladium, advantageously on a support such as coal).
  • a catalyst z. B. a noble metal catalyst such as palladium, advantageously on a support such as coal.
  • Suitable solvents are the above, especially z. B. alcohols such as methanol or ethanol or amides such as DMF.
  • the hydrogenolysis is generally carried out at temperatures between about 0 and 100 ° and pressures between about 1 and 200 bar, preferably at 20-30 ° and 1-10 bar.
  • Hydrogenolysis of the CBZ group succeeds e.g. B. well on 5 to 10% Pd / C in methanol or with ammonium formate (instead of hydrogen) on Pd / C in methanol / DMF at 20-30 °.
  • Suitable inert solvents are e.g. Hydrocarbons such as hexane, petroleum ether, benzene, toluene or xylene; chlorinated hydrocarbons such as trichlorethylene, 1, 2-dichloroethane, carbon tetrachloride, trifluoromethylbenzene, chloroform or dichloromethane; Alcohols such as methanol, ethanol, isopropanol, n-propanol, n-butanol or tert-butanol; Ethers such as diethyl ether, diisopropyl ether, tetrahydrofuran (THF) or dioxane; Glycol ethers such as ethylene glycol monomethyl or monoethyl ether (methyl glycol or ethyl glycol), ethylene glycol dimethyl ether (diglyme); Ketones such as acetone or butanone; Amides such as acetamide, dimethylacetamide
  • NMP dimethylformamide
  • DMF dimethylformamide
  • Nitriles such as acetonitrile
  • Sulfoxides such as Dimethyl sulfoxide (DMSO); Carbon disulphide
  • Carboxylic acids such as formic acid or acetic acid
  • Nitro compounds such as nitromethane or nitrobenzene
  • Esters such as ethyl acetate or mixtures of the solvents mentioned.
  • the biphenyl-SO 2 NH 2 group is preferably used in the form of its tert-butyl derivative.
  • the tert-butyl group is split off, for example, using TFA with or without the addition of an inert solvent, preferably with the addition of a small amount of anisole (1% by volume).
  • ammonia can also be added to a nitrile.
  • the addition is preferably carried out in several stages by, in a manner known per se, a) converting the nitrile with H 2 S into a thioamide, which is converted into the corresponding S-alkylimidothioester using an alkylating agent, for example CH 3 I, which in turn contains NH 3 reacts to form the amidine, b) the nitrile is converted to the corresponding imidoester with an alcohol, for example ethanol in the presence of HCl, and treated with ammonia, or c) the nitrile is reacted with lithium bis (trimethylsilyl) amide and the product then hydrolyzed.
  • an alkylating agent for example CH 3 I
  • NH 3 alkylating agent
  • Esters can e.g. with acetic acid or with NaOH or KOH in water,
  • Water THF or water dioxane can be saponified at temperatures between 0 and 100 °.
  • free amino groups can be acylated in the usual way with an acid chloride or anhydride or alkylated with an unsubstituted or substituted alkyl halide, advantageously in an inert solvent! such as dichloromethane or THF and / or in the presence of a base such as triethylamine or pyridine at temperatures between -60 and + 30 °.
  • a base of the formula I can be converted into the associated acid addition salt using an acid, for example by reacting equivalent amounts of the base and the acid in an inert solvent such as ethanol and subsequent evaporation.
  • acids that provide physiologically acceptable salts are suitable for this implementation.
  • So inorganic acids can be used, for example sulfuric acid, nitric acid, hydrohalic acids such as hydrochloric acid or hydrobromic acid, phosphoric acids such as orthophosphoric acid, sulfamic acid, furthermore organic acids, in particular aliphatic, alicyclic, araliphatic, aromatic or heterocyclic mono- or polycarbonate, sulfonic or Sulfuric acids, e.g.
  • compounds of formula I with bases can be converted into the corresponding metal, in particular alkali metal or alkaline earth metal, or into the corresponding ammonium salts.
  • physiologically harmless organic bases e.g. Ethanolamine can be used.
  • the pharmaceutical activity of the racemates or the stereo isomers of the compounds according to the invention can differ, it may be desirable to use the enantiomers.
  • the end product or even the intermediates can be separated into enantiomeric compounds by chemical or physical measures known to the person skilled in the art or can already be used as such in the synthesis.
  • diastereomers are formed from the mixture by reaction with an optically active release agent.
  • Suitable release agents are e.g. optically active acids, such as the R and S forms of tartaric acid, diacetyltartaric acid, dibenzoyltartaric acid, mandelic acid, malic acid, lactic acid, suitable N-protected amino acids (e.g. N-benzoylproline or N-benzenesulfonylproline) or the various optically active camphorsulfonic acids.
  • Aqueous or alcoholic solvent mixtures such as e.g. Hexane / isopropanol / acetonitrile e.g. in the ratio 82: 15: 3.
  • the invention further relates to the use of the compounds of the formula I and / or their physiologically acceptable salts for the production of pharmaceutical preparations, in particular by a non-chemical route. They can be brought into a suitable dosage form together with at least one solid, liquid and / or semi-liquid carrier or auxiliary and, if appropriate, in combination with one or more further active ingredients.
  • the invention further relates to pharmaceutical preparations containing at least one compound of the formula I and / or one of its physiologically acceptable salts.
  • Suitable carriers are organic or inorganic substances which are suitable for enteral (for example oral), parenteral or topical application and do not react with the new compounds, for example water, vegetable oils, benzyl alcohols, alkylene glycols, polyethylene glycols, glycerol triacetate, gelatin . Carbohydrates such as lactose or starch, magnesium stearate, talc, petroleum jelly.
  • Tablets, pills, coated tablets, capsules, powders, granules, syrups, juices or drops are used for oral use, suppositories for rectal use, solutions for parenteral use, preferably oily or aqueous solutions, furthermore suspensions, emulsions or implants for which topical application ointments, creams or powder.
  • the new compounds can also be lyophilized and the lyophilizates obtained can be used, for example: for the preparation of injection preparations.
  • the specified preparations can be sterilized and / or contain auxiliary substances such as lubricants, preservatives, stabilizers and / or wetting agents, emulsifiers, salts for influencing the osmotic pressure, buffer substances, coloring, flavoring and / or several other active substances, eg one or more vitamins.
  • auxiliary substances such as lubricants, preservatives, stabilizers and / or wetting agents, emulsifiers, salts for influencing the osmotic pressure, buffer substances, coloring, flavoring and / or several other active substances, eg one or more vitamins.
  • the compounds of formula I and their physiologically acceptable salts can be used in the control and prevention of thromboembolic disorders such as thrombosis, myocardial infarction, arteriosclerosis, inflammation, apoplexy, angina pectoris, restenosis after angioplasty and intermittent claudication.
  • thromboembolic disorders such as thrombosis, myocardial infarction, arteriosclerosis, inflammation, apoplexy, angina pectoris, restenosis after angioplasty and intermittent claudication.
  • the substances according to the invention are generally preferably administered in doses between about 1 and 500 mg, in particular between 5 and 100 mg, per dosage unit.
  • the daily dosage is preferably between about 0.02 and 10 mg / kg body weight.
  • the specific dose for each patient depends on a wide variety of factors, for example on the effectiveness of the particular compound used, on the age, body weight, general health, sex, on the diet, on the time and route of administration, on the rate of elimination and combination of drugs and severity of the respective disease to which the therapy applies. Oral application is preferred.
  • 0.70 g of "CA” and 0.93 g of 4'-aminobiphenyl-2-sulfonic acid tert-butylamide are prepared by the Mukaiyama method in the presence of 0.781 g of 2-chloro-1-methylpyridinium iodide and 0.52 ml of N- Ethyl diisopropylamine in
  • Example 2 Analogously to Example 2, starting from 1- (3-cyanophenyl) pyrrolidine-4-OR 0 -2-carboxylic acid and 2'-methanesulfonyl-biphenyl-4-ylamine, the compound 1 - (3-amidinophenyl) - pyrrolidin-4-OR 10 -2-carboxylic acid N- (2'-methanesulfonylbiphenyl-4-yl) -amide, where R 10 is a hydrogen protecting or solvolytically removable hydroxy protecting group.
  • Example 2 Analogously to Example 2, starting from 1- (3-cyanophenyl) piperazin-4-R 11 -2-carboxylic acid and 2'-methanesulfonyl-biphenyl-4-ylamine, the compound 1 - (3-amidinophenyl) piperazin-4- R 11 -2-carboxylic acid-N- (2'-methanesulfonylbiphenyl-4-yl) -amide, where R 11 represents a hydrogen protecting or solvolytically removable amino protecting group. After the protective group has been removed, the compound 1- (3-amidinophenyl) piperazine-2-carboxylic acid N- (2'-methanesulfonylbiphenyl-4-yl) -amide is obtained.
  • the compound 4- (3-amidino-phenyl) is obtained analogously, starting from 4- (3-cyano-phenyl) piperazin-1, 3-dicarboxylic acid 1-ethyl ester and 4'-aminobiphenyl-2-sulfonic acid tert-butylamide ) -3- (2'-sulfamoyl-biphenyl-4-ylcarbamoyl) -piperazine-1-carboxylic acid ethyl ester.
  • Example 2 Analogously to Example 2, the compound is obtained starting from 3- (3-cyano-phenyl) -2,2-dimethyl-oxazolidine-4-carboxylic acid and 4- (4-aminophenyl) pyridine-2-carboxylic acid amide
  • the compound (2R, S) is obtained from (2R, S) -1- (3-cyanophenyl) -5-oxopyrrolidin-2-carboxylic acid N- (2'-methanesulfonylbiphenyl-4-yl) amide -1- [3- (N-Hydroxyamidino) phenyl] -5-oxopyrrolidine-2-carboxylic acid N- (2'-methanesulfonylbiphenyl-4-yl) amide, FAB 494.
  • Example A Injection glasses
  • a solution of 100 g of an active ingredient of the formula I and 5 g of disodium hydrogenphosphate is adjusted to pH 6.5 in 3 l of double-distilled water with 2N hydrochloric acid, sterile filtered, filled into injection glasses, lyophilized under sterile conditions and sealed sterile. Each injection jar contains 5 mg of active ingredient.
  • a mixture of 20 g of an active ingredient of the formula I is melted with 100 g of soy lecithin and 1400 g of cocoa butter, poured into molds and allowed to cool. Each suppository contains 20 mg of active ingredient.
  • a solution of 1 g of an active ingredient is prepared of the formula I, 9.38 g of NaH 2 P0 4 • 2 H 2 0, 28.48 g Na 2 HP0 4 • 12 H 2 0 and 0.1 g of benzalkonium chloride in 940 ml of double distilled water. It is adjusted to pH 6.8, made up to 1 f and sterilized by irradiation. This solution can be used in the form of eye drops.
  • Example D ointment
  • 500 mg of an active ingredient of the formula I are mixed with 99.5 g of petroleum jelly under aseptic conditions.
  • Example F coated tablets
  • Example E tablets are pressed, which are then coated in a conventional manner with a coating of sucrose, potato starch, talc, tragacanth and colorant.
  • Example G capsules
  • each capsule contains 20 mg of the active ingredient.
  • a solution of 1 kg of active ingredient of the formula I in 60 l of double-distilled water is sterile filtered, filled into ampoules, lyophilized under sterile conditions and sealed under sterile conditions. Each ampoule contains 10 mg of active ingredient.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Cardiology (AREA)
  • Diabetes (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Hematology (AREA)
  • Neurology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Pain & Pain Management (AREA)
  • Rheumatology (AREA)
  • Biomedical Technology (AREA)
  • Urology & Nephrology (AREA)
  • Neurosurgery (AREA)
  • Vascular Medicine (AREA)
  • Thiazole And Isothizaole Compounds (AREA)
  • Hydrogenated Pyridines (AREA)
  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Nitrogen And Oxygen As The Only Ring Hetero Atoms (AREA)
  • Plural Heterocyclic Compounds (AREA)
  • Pyrrole Compounds (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

Neue Verbindungen der Formel I worin R<1>, R<2>, R<2'>, R<2''>, R<3>, R<4>, R<5>, R<5'>, R<5''>, R<5'''>, R<5''''>, X, Y, U, V und W die in Patentanspruch 1 angegebene Bedeutung haben, sind Inhibitoren des Koagulationsfaktors Xa und VIIa und können zu Behandlung von Thrombosen, myocardialem Infarkt, Arteriosklerose, Entzündunden, Apoplexie, Angina pectoris, Restenose nach Angioplstie, Claudicatio intermittens, Tumoren, Tumorerkrankungen und/oder Tumormetastasen eingesetzt werden.

Description

Cyclische Aminosäurederivate
Die Erfindung betrifft Verbindungen der Formel
R worin R1 H, Cl, F, OH, OA, O-(CH2)π-Ar, NH2, NHCOA, NHCOOA, NH-(CH2)n-Ar, CN, CONH2, CSNH2, C(=NH)SA, C(=NH)NH2, C(=NH-OH)-NH2, C(=NH-0-COA)-NH2, C(=NH-0-COAr)-NH2, C(=NH-0-COHet)-NH2, C(=NH)-OA, C(=NH)NHNH2, C(=NH)NHNHA, C(=NH)NH-COOA, C(=NH)NH-COA, C(=NH)NH-COO-(CH2)m-Ar, C(=NH)NH-COO-(CH2)m-Het, NH-C(=NH)NH2, NH-C(=NH)NH-COOA, NHC(=NH)NH-COO-(CH2)m-Ar,
R2, R2', R2" jeweils unabhängig voneinander H, A, CF3, Cl, F, COA, COOH, COOA, CONH2, CONHA, CONA2, CH2NH2, CH2NHCOA, CH2NHCOOA, OH, OA, OCF3, N02, S02A, SO2NH2 oder S02NHA,
R3, R4 zusammen (CH2)P, CO(CH2)P, COO(CH2)n,
COOCH(A)-, COOCH(Ar)-, CONH(CH2)n, CH2CH(OR7)-(CH2)n-, CH2-0-(CH2)π, CH2-S-(CH2)n, CA2-0-(CH2)n, CA2-S-(CH2)n, CHAr-S-(CH2)n, (CH2)2NHCH2 oder (CH2)2-N(R8)-CH2, R5, R5', R5"
R , R jeweils unabhängig voneinander (CH2)n-COOH, (CH2)n-COO-(CH2)n-Ar, Ar, Py oder R2,
R6 OH, A oder Ar,
R7 H. A, Ar oder Het,
R8 H, (CH2)n-COOH, (CH2)m-COOA, (CH2)m-COO-(CH2)n-Ar, (CH2)m-COO-(CH2)n-Het, (CH2)m-CONH2,
(CH2)m-CONHA, (CH2)m-CONA2, A, COA, S02A oder S03H, R9 H, A oder Benzyl,
U CO oder CH2,
V NH oder CO, W fehlt oder CO, X CH oder N,
Y fehlt , CH2, CO oder S02, A un verzweigtes, verzweigtes oder cyclisches Alkyl mit 1-20 C-
Atomen, worin eine oder zwei CH2-Gruppen durch O- oder S- Atome, -CH=CH- oder -C≡C- und/oder 1-7 H-Atome durch F ersetzt sein können, Ar unsubstituiertes oder ein-, zwei- oder dreifach durch A, CF3> Hai, OH, OA, OCF3, S02A, S02NH2> S02NHA, S02NA2, NH2,
NHA, NA2, NHCHO, NHCOA, NHCOOA, NACOOA, NHS02A, NHS02Ar, COOH, COOA, COO-(CH2)m-Ar\ COO-(CH2)m-Het, CONH2) CONHA, CONA2, CONHAr', CHO, COA, COAr', CH2Ar\ (CH2)mNH2, (CH2)mNHA,
(CH2)mNA2) (CH2)mNHCHO, (CH2)mNHCOA, (CH2)mNHCOOA, (CH2)mNHCOO-(CH2)rτlAr, ) (CH2)mNHCOO-(CH2)mHet, N02, CN, CSNH2, C(=NH)SA, C(=NH)OA, C(=NH)NH2, C(=NH)NHOH, C(=NH)NHCOOA oder C(=NH)NHCOOAr' substituiertes Phenyl oder Naphthyl, Ar' unsubstituiertes oder ein-, zwei- oder dreifach durch A, OR9,
N(R9)2) N02, CN, Hai, NHCOA, COOR9, CON(R9)2> COR9, oder S(0)2A substituiertes Phenyl oder Naphthyl,
Het ein- oder zweikerniger gesättigter, ungesättigter oder aromati- scher Heterocyclus mit 1-4 N-, O- und/oder S-Atomen, über N oder C gebunden, der unsubstituiert oder ein-, zwei-, drei- oder vierfach durch A, CF3, Hai, OH, OA, OCF3, S02A, S02-(CH2)m-
Ar, S02NH2, S02NHA, S02NA2, NH2, NHA, NA2, NHCHO, NHCOA, NHCOOA, NACOOA, NHS02A, NHS02Ar, COOH,
COOA, COO-(CH2)m-Ar, l CONH2, CONHA, COA, COAr',
CH2NH2, CH2NHA, CH2NHCHO, CH2NHCOA, CH2NHCOOA,
N02, CN, CSNH2,C(=NH)SA, C(=NH)OA, C(=NH)NH2, C(=NH)NHOH, C(=NH)NHCOOA, C(=NH)COOAr' und/oder
Carbonylsauerstoff substituiert ist,
Py unsubstituiertes oder ein- oder mehrfach durch A, Hai, CN,
CONH2, CONHA, COOH, COOA, CH2NH2, CH2NHA,
CH2NHCHO, CH2NHCOA, CH2NHCOOA, CH2OH, CH2OA, CH2OAr, CH2OCOA, N02, NH2, NHA oder NA2 substituiertes
2-, 3- oder 4-Pyridyl,
Hai F, Cl, Br oder I, n 1 oder 2, m 0, 1 oder 2, p 2, 3 oder 4 bedeutet,
sowie ihre pharmazeutisch verträglichen Salze, Solvate und Stereoisomeren.
Gegenstand der Erfindung sind auch die optisch aktiven Formen, die Ra- cemate, die Diastereomeren sowie die Hydrate und Solvate, z.B. Alkoho- late, dieser Verbindungen. Der Erfindung lag die Aufgabe zugrunde, neue Verbindungen mit wertvollen Eigenschaften aufzufinden, insbesondere solche, die zur Herstellung von Arzneimitteln verwendet werden können.
Es wurde gefunden, daß die Verbindungen der Formel I und ihre Salze bei guter Verträglichkeit sehr wertvolle pharmakologische Eigenschaften besitzen. Insbesondere zeigen sie Faktor Xa inhibierende Eigenschaften und können daher zur Bekämpfung und Verhütung von thromboembolischen Erkrankungen wie Thrombose, myocardialem Infarkt, Arteriosklerose, Ent- Zündungen, Apoplexie, Angina pectoris, Restenose nach Angioplastie und Claudicatio intermittens eingesetzt werden.
Die erfindungsgemäßen Verbindungen der Formel I können weiterhin Inhibitoren der Gerinnungsfaktoren Faktor Vlla, Faktor IXa und Thrombin der Blutgerinnungskaskade sein.
Aromatische Amidinderivate mit antithrombotischer Wirkung sind z.B. aus der EP 0 540 051 B1 , WO 98/28269, WO 00/71508, WO 00/71511 , WO 00/71493, WO 00/71507, WO 00/71509, WO 00/71512, WO 00/71515 oder WO 00/71516 bekannt. Cyclische Guanidine zur Behandlung throm- boembolischer Erkrankungen sind z.B. in der WO 97/08165 beschrieben. Aromatische Heterocyclen mit Faktor Xa inhibitorischer Aktivität sind z.B. aus der WO 96/10022 bekannt. Substituierte N-[(Aminoiminomethyl)- phenylalkylj-azaheterocyclylamide als Faktor Xa Inhibitoren sind in WO 96/40679 beschrieben.
Der antithrombotische und antikoagulierende Effekt der erfindungsgemäßen Verbindungen wird auf die inhibierende Wirkung gegenüber der aktivierten Gerinnungsprotease, bekannt unter dem Namen Faktor Xa, oder auf die Hemmung anderer aktivierter Serinproteasen wie Faktor Vlla, Faktor IXa oder Thrombin zurückgeführt.
Faktor Xa ist eine der Proteasen, die in den komplexen Vorgang der Blutgerinnung involviert ist. Faktor Xa katalysiert die Umwandlung von Pro- thrombin in Thrombin. Thrombin spaltet Fibrinogen in Fibrinmonomere, die nach Quervernetzung elementar zur Thrombusbildung beitragen. Eine Ak- tivierung von Thrombin kann zum Auftreten von thromboembolischen Erkrankungen führen. Eine Hemmung von Thrombin kann jedoch die in die Thrombusbildung involvierte Fibrinbildung inhibieren. Die Messung der Inhibierung von Thrombin kann z.B. nach der Methode von G. F. Cousins et al. in Circulation 1996, 94, 1705-1712 erfolgen.
Eine Inhibierung des Faktors Xa kann somit verhindern, daß Thrombin gebildet wird.
Die erfindungsgemäßen Verbindungen der Formel I sowie ihre Salze grei- fen durch Inhibierung des Faktors Xa in den Blutgerinnungsprozeß ein und hemmen so die Entstehung von Thromben.
Die Inhibierung des Faktors Xa durch die erfindungsgemäßen Verbindungen und die Messung der antikoagulierenden und antithrombotischen Akti- vität kann nach üblichen in vitro- oder in vivo-Methoden ermittelt werden. Ein geeignetes Verfahren wird z.B. von J. Hauptmann et al. in Thrombosis and Haemostasis 1990, 63, 220-223 beschrieben.
Die Messung der Inhibierung von Faktor Xa kann z.B. nach der Methode von T. Hara et al. in Thromb. Haemostas. 1994, 71, 314-319 erfolgen.
Der Gerinnungsfaktor Vlla initiiert nach Bindung an Tissue Faktor den ex- trinsischen Teil der Gerinnungskaskade und trägt zur Aktivierung des Faktors X zu Faktor Xa bei. Eine Inhibierung von Faktor Vlla verhindert somit die Entstehung des Faktors Xa und damit eine nachfolgende Thrombinbildung.
Die Inhibierung des Faktors Vlla durch die erfindungsgemäßen Verbindungen und die Messung der antikoagulierenden und antithrombotischen Aktivität kann nach üblichen in vitro- oder in vivo-Methoden ermittelt wer- den. Ein übliches Verfahren zur Messung der Inhibierung von Faktor Vlla wird z.B. von H. F. Ronning et al. in Thrombosis Research 1996, 84, 73-81 beschrieben.
Der Gerinnungsfaktor IXa wird in der intrinsischen Gerinnungskaskade ge- neriert und ist ebenfalls an der Aktivierung von Faktor X zu Faktor Xa be- teiligt. Eine Inhibierung von Faktor IXa kann daher auf andere Weise verhindern, daß Faktor Xa gebildet wird.
Die Inhibierung von Faktor IXa durch die erfindungsgemäßen Verbindungen und die Messung der antikoagulierenden und antithrombotischen Akti- vität kann nach üblichen in vitro- oder in vivo-Methoden ermittelt werden.
Ein geeignetes Verfahren wird z.B. von J. Chang et al. in Journal of Biolo- gical Chemistry 1998, 273, 12089-12094 beschrieben.
Die erfindungsgemäßen Verbindungen können weiterhin zur Behandlung von Tumoren, Tumorerkrankungen und/oder Tumormetastasen verwendet werden.
Ein Zusammenhang zwischen dem Tissuefaktor TF / Faktor Vlla und der Entwicklung verschiedener Krebsarten wurde von T.Taniguchi und N.R.Lemoine in Biomed. Health Res. (2000), 41 (Molecular Pathogenesis of Pancreatic Cancer), 57-59, aufgezeigt.
Die Verbindungen der Formel I können als Arzneimittelwirkstoffe in der Human- und Veterinärmedizin eingesetzt werden, insbesondere zur Behandlung und Verhütung von thromboembolischen Erkrankungen wie Thrombose, myocardialem Infarkt, Arteriosklerose, Entzündungen, Apoplexie, Angina pectoris, Restenose nach Angioplastie, Claudicatio inter- mittens, venöse Thrombose, pulmonale Embolie, arterielle Thrombose, myocardiale Ischämie, instabile Angina und auf Thrombose basierender Schlaganfall. Die erfindungsgemäßen Verbindungen werden auch zur Behandlung oder Prophylaxe von atherosklerotischen Erkrankungen wie koronarer arterieller Erkrankung, cerebraler arterieller Erkrankung oder peripherer arterieller Erkrankung eingesetzt. Die Verbindungen werden auch in Kombination mit anderen Thrombolytika bei myocardialem Infarkt eingesetzt, ferner zur Prophylaxe zur Reocclusi- on nach Thrombolyse, percutaner transluminaler Angioplastie (PTCA) und koronaren Bypass-Operationen.
Die erfindungsgemäßen Verbindungen werden femer verwendet zur Prävention von Rethrombose in der Mikrochirurgie, ferner als Antikoagulantien im Zusammenhang mit künstlichen Organen oder in der Hämodialyse. Die Verbindungen finden ferner Verwendung bei der Reinigung von Kathetern und medizinischen Hilfsmitteln bei Patienten in vivo, oder als Antikoagulantien zur Konservierung von Blut, Plasma und anderen Blutprodukten in vitro. Die erfindungsgemäßen Verbindungen finden weiterhin Verwendung bei solchen Erkrankungen, bei denen die Blutkoagulation entscheidend zum Erkrankungsverlauf beiträgt oder eine Quelle der sekundären Pathologie darstellt, wie z.B. bei Krebs einschließlich Metastasis, entzündlichen Erkrankungen einschließlich Arthritis, sowie Diabetes.
Bei der Behandlung der beschriebenen Erkrankungen werden die erfindungsgemäßen Verbindungen auch in Kombination mit anderen thrombo- lytisch wirksamen Verbindungen eingesetzt, wie z.B. mit dem "tissue plasminogen activator" t-PA, modifiziertem t-PA, Streptokinase oder Uroki- nase. Die erfindungsgemäßen Verbindungen werden mit den anderen ge- nannten Substanzen entweder gleichzeitig oder vorher oder nachher gegeben.
Besonders bevorzugt ist die gleichzeitige Gabe mit Aspirin, um ein Neuauftreten der Thrombenbildung zu verhindern. Die erfindungsgemäßen Verbindungen werden auch verwendet in Kombi- nation mit Blutplättchen-Glycoprotein-Rezeptor (Hb/llla)-Antagonisten, die die Blutplättchenaggregation inhibieren.
Gegenstand der Erfindung sind die Verbindungen der Formel I und ihre Salze sowie ein Verfahren zur Herstellung von Verbindungen der Formel I nach Anspruch 1 sowie ihrer Salze, dadurch gekennzeichnet, daß man sie aus einem ihrer funktionellen Derivate durch Behandeln mit einem sol- volysierenden oder hydrogenolysierenden Mittel in Freiheit setzt, indem man
i) eine Amidinogruppe aus ihrem Oxadiazolderivat oder Oxazolidinon- derivat durch Hydrogenolyse und/oder Solvolyse freisetzt,
ii) eine konventionelle Aminoschutzgruppe durch Behandeln mit einem solvolysierenden oder hydrogenolysierenden Mittel durch Wasserstoff er- setzt oder eine durch eine konventionelle Schutzgruppe geschützte Aminogruppe in Freiheit setzt,
und/oder
eine Base oder Säure der Formel I in eines ihrer Salze umwandelt.
Für alle Reste, die mehrfach auftreten, gilt, daß deren Bedeutungen unabhängig voneinander sind.
Vor- und nachstehend haben die Reste bzw. Parameter R , R , R , R , R3, R4, R5, X, Y, U, V und W die bei der Formel I angegebenen Bedeutu gen, falls nicht ausdrücklich etwas anderes angegeben ist.
A bedeutet Alkyl, ist unverzweigt (linear) oder verzweigt, und hat 1 bis 20, vorzugsweise 1 , 2, 3, 4, 5, 6, 7, 8, 9 oder 10, besonders bevorzugt 1 , 2, 3, 4, 5, oder 6 C-Atome. A bedeutet daher besonders bevorzugt Methyl, weiterhin Ethyl, Propyl, Isopropyl, Butyl, Isobutyl, sek.-Butyl oder tert.- Butyl, ferner auch Pentyl, 1-, 2- oder 3-Methylbutyl, 1 ,1- , 1 ,2- oder 2,2- Dimethylpropyl, 1-Ethylpropyl, Hexyl, 1- , 2- , 3- oder 4-Methylpentyl, 1 ,1- , 1 ,2- , 1 ,3- , 2,2- , 2,3- oder 3,3-Dimethylbutyl, 1- oder 2-Ethylbutyl, 1-Ethyl- 1-methylpropyl, 1-Ethyl-2-methylpropyl, 1 ,1 ,2- oder 1 ,2,2-Trimethylpropyl. A ist auch Cycloalkyl und bedeutet vorzugsweise Cyclopropyl, Cyclobutyl, Cylopentyl, Cyclohexyl oder Cycloheptyl. Es können auch eine oder zwei CH2-Gruppen durch O- oder S-Atome, -CH=CH- oder -C≡C- und/oder 1-7 H-Atome durch F ersetzt sein. A bedeutet daher auch z.B. CF3 oder C2F . A bedeutet ganz besonders bevorzugt Methyl, Ethyl, Propyl, Isopropyl, Butyl, tert.-Butyl oder CF3.
Hai bedeutet vorzugsweise F, Cl oder Br, aber auch I.
Die Verbindungen der Formel I, in denen R1 z.B. eine Amidino-, Amino- oder Guanidinogruppe bedeutet, und diese Gruppen substituiert vorliegen, sind sogenannte Prodrug-Verbindungen. Die ungeschützten Verbindungen werden aus diesen im Organismus leicht durch Hydrolyse freigesetzt. Bevorzugt sind hier Prodrug-Verbindungen der Formel I, in denen
R1 NHCOA, NHCOOA, NH-(CH2)n-Ar, C(=NH-OH)-NH2, C(=NH-0-COA)-NH2, C(=NH-0-COAr)-NH2,
C(=NH-0-COHet)-NH2, C(=NH)NH-COOA, C(=NH)NH-COA,
C(=NH)NH-COO-(CH2)m-Ar,
C(=NH)NH-COO-(CH2)m-Het, NH-C(=NH)NH-COOA, NHC(=NH)NH-COO-(CH2)m-Ar,
bedeutet, und die anderen Reste in den Verbindungen der Formel I, die in Anspruch 1 angegebenen Bedeutungen haben. Prodrug-Verbindungen sind auch solche Verbindungen der Formel I, in denen R8 ≠ H ist.
R2, R2, R2" bedeuten vorzugsweise z.B. H oder F.
R3, R4 bedeuten zusammen vorzugsweise z.B. (CH2)2, (CH2)3, (CH2)4, (CH2)2NHCH2, (CH2)-N(COOA)-CH2, (CH2)-N(CH2COOA)-CH2, (CH2)-N(CH2COOH)-CH2, COCH2CH2, CO-NHCH2, COOCH2> CH2OCH2,
-C[(CH3)2]-0-CH2, COOCH(A)-, CH2-S-CH2, -C[(CH3)2]-S-CH2, -CH(Ar)-S-CH2, CH2-CH(OH)-CH2, wobei A vorzugsweise Alkyl mit 1 , 2, 3 oder 4 C-Atomen und Ar vorzugsweise Phenyl bedeutet.
R5 bedeutet vorzugsweise z.B. S02NH2, S02NHA, CH2COOH, einfach durch S02NHA, S02NH2 oder S02A substituiertes Phenyl, unsubstituiertes oder einfach durch CONH2 substituiertes 4-Pyridyl.
R5 bedeutet vorzugsweise H oder F. R , R und R bedeuten vorzugsweise H. R6 bedeutet vorzugsweise z.B. Methyl.
R7 bedeutet vorzugsweise z.B. H, Methyl, Ethyl, Propyl, Butyl oder Phenyl, ganz besonders bevorzugt jedoch H.
R8 bedeutet vorzugsweise z.B. H, CH2COOH, CH2CH2C00H, COOA, CH2COOA, CH2CH2COOA, COOPhenyl, CH2COOPhenyl, COOCH2Phenyl, CH2COOCH2Phenyl oder CH2CONH2, wobei A vorzugsweise Alkyl mit 1 , 2, 3 oder 4 C-Atomen bedeutet. R8 bedeutet ganz be- sonders bevorzugt CH2COOH, COOA oder CH2COOA, wobei A vorzugsweise Alkyl mit 1 , 2, 3 oder 4 C-Atomen bedeutet. R8 bedeutet ferner z.B. S02CH3.
R9 bedeutet bevorzugt z.B. H, Methyl, Ethyl oder Benzyl.
U bedeutet bevorzugt z.B. CO.
V bedeutet bevorzugt z.B. NH. W fehlt vorzugsweise.
Y fehlt vorzugsweise.
Ar bedeutet unsubstituiertes oder ein-, zwei- oder dreifach substituiertes Phenyl oder Naphthyl. Bevorzugte Substituenten für Phenyl oder Naphthyl sind z.B. Methyl, Ethyl, Propyl, Butyl, Trifluormethyl, F, Cl, Hydroxy, Meth- oxy, Ethoxy, Propoxy, Isopropoxy, Trifluormethoxy, Methylsulfonyl, Amino- sulfonyl, Methylaminosulfonyl, Dimethylaminosulfonyl, Amino, Methyl- amino, Ethylamino, Dimethylamino, Diethylamino, Formanido, Acetamido, Methoxycarbonylamino, Ethoxycarbonylamino, Methoxycarbonyl-N-methyl- amino, Methylsulfonylamino, Phenylsulfonylamino, Carboxy, Methoxycar- bonyl, Ethoxycarbonyl, Benzyloxycarbonyl, 1-Methyl-piperidin-4-yl-oxy- carbonyl, Aminocarbonyl, Methylaminocarbonyl, Dimethylaminocarbonyl, Anilinocarbonyl, Formyl, Acetyl, Propionyl, Benzoyl, Benzyl, Aminomethyl, Aminoethyl, Methylaminomethyl, Dimethylaminomethyl, Formylamino, Formylaminomethyl, Acetamido, Acetamidomethyl, Methoxycarbonylamino, Methoxycarbonylaminomethyl, Phenoxycarbonylamino, Benzyloxycar- bonylamino, Phenoxycarbonylaminomethyl, Benzyloxycarbonylaminome- thyl, Furyloxycarbonylamino, Nitro, Cyan, Thiocarbamyl, Amidino, N- Hydroxyamidino oder N-Methoxycarbonyl-amidino.
Ar' bedeutet vorzugsweise z.B. unsubstituiertes oder ein-, zwei- oder dreifach substituiertes Phenyl. Bevorzugte Substituenten sind z.B. Methyl, Methoxy, Trifluormethoxy, F, Cl, Cyan Acetamido, Methoxycarbonyl, Car- boxy oder Methylsulfonyl. Ar' bedeutet ganz besonders bevorzugt Phenyl.
Het bedeutet vorzugsweise z.B. 2- oder 3-Furyl, 2- oder 3-Thienyl, 1-, 2- oder 3-Pyrrolyl, 1-, 2, 4- oder 5-lmidazolyl, 1-, 3-, 4- oder 5-Pyrazolyl, 2-, 4- oder 5-Oxazolyl, 3-, 4- oder 5-lsoxazolyl, 2-, 4- oder 5-Thiazolyl, 3-, 4- oder 5-lsothiazolyl, 2-, 3- oder 4-Pyridyl, 2-, 4-, 5- oder 6-Pyrimidinyl, weiterhin bevorzugt 1 ,2,3-Triazol-1-, -4- oder -5-yl, 1 ,2,4-Triazol-1-, -3- oder 5-yl, 1- oder 5-Tetrazolyl, 1 ,2,3-Oxadiazol-4- oder -5-yl, 1 ,2,4-Oxadiazol-3- oder - 5-yl, 1 ,3,4-Thiadiazol-2- oder -5-yl, 1 ,2,4-Thiadiazol-3- oder -5-yl, 1 ,2,3- Thiadiazol-4- oder -5-yl, 3- oder 4-Pyridazinyl, Pyrazinyl, 1-, 2-, 3-, 4-, 5-, 6- oder 7-lndolyl, 4- oder 5-lsoindolyl, 1-, 2-, 4- oder 5-Benzimidazolyl, 1-, 3-, 4-, 5-, 6- oder 7-Benzopyrazolyl, 2-, 4-, 5-, 6- oder 7-Benzoxazolyl, 3-, 4-, 5-, 6- oder 7- Benzisoxazolyl, 2-, 4-, 5-, 6- oder 7-Benzothiazolyl, 2-, 4-, 5-, 6- oder 7-Benzisothiazolyl, 4-, 5-, 6- oder 7-Benz-2,1 ,3-oxadiazolyl, 2-, 3-, 4-, 5-, 6-, 7- oder 8-Chinolyl, 1-, 3-, 4-, 5-, 6-, 7- oder 8-lsochinolyl, 3-, 4-, 5-, 6-, 7- oder 8-Cinnolinyl, 2-, 4-, 5-, 6-, 7- oder 8-Chinazolinyl, 5- oder 6- Chinoxalinyl, 2-, 3-, 5-, 6-, 7- oder 8-2H-Benzo[1 ,4]oxazinyl, weiter bevorzugt 1 ,3-Benzodioxol-5-yl, 1 ,4-Benzodioxan-6-yl, 2,1 ,3-Benzothiadiazol-4- oder -5-yl oder 2,1 ,3-Benzoxadiazol-5-yl.
Die heterocyclischen Reste können auch teilweise oder vollständig hydriert sein.
Het kann also z. B. auch bedeuten 2,3-Dihydro-2-, -3-, -4- oder -5-furyl, 2,5-Dihydro-2-, -3-, -4- oder 5-furyl, Tetrahydro-2- oder -3-furyl, 1 ,3-Dioxo- lan-4-yl, Tetrahydro-2- oder -3-thienyl, 2,3-Dihydro-1-, -2-, -3-, -4- oder -5- pyrrolyl, 2,5-Dihydro-1-, -2-, -3-, -4- oder -5-pyrrolyl, 1-, 2- oder 3-Pyrroli- dinyl, Tetrahydro-1-, -2- oder -4-imidazolyl, 2,3-Dihydro-1-, -2-, -3-, -4- oder -5-pyrazolyl, Tetrahydro-1-, -3- oder -4-pyrazolyl, 1 ,4-Dihydro-1-, -2-, -3- oder -4-pyridyl, 1 ,2,3,4-Tetrahydro-1-, -2-, -3-, -4-, -5- oder -6-pyridyl, 1-, 2- , 3- oder 4-Piperidinyl, 2-, 3- oder 4-Morpholinyl, Tetrahydro-2-, -3- oder -4- pyranyl, 1 ,4-Dioxanyl, 1 ,3-Dioxan-2-, -4- oder -5-yl, Hexahydro-1-, -3- oder -4-pyridazinyl, Hexahydro-1-, -2-, -4- oder -5-pyrimidinyl, 1-, 2- oder 3- Piperazinyl, 1 ,2,3,4-Tetrahydro-1-, -2-, -3-, -4-, -5-, -6-, -7- oder -8-chinolyl, 1 ,2,3,4-Tetrahydro-1-,-2-,-3-, -4-, -5-, -6-, -7- oder -8-isochinolyl, 2-, 3-, 5-, 6-, 7- oder 8- 3,4-Dihydro-2H-benzo[1 ,4]oxazinyl, weiter bevorzugt 2,3-
Methylendioxyphenyl, 3,4-Methylendioxyphenyl, 2,3-Ethylendioxyphenyl, 3,4-Ethylendioxyphenyl, 3,4-(Difluormethylendioxy)phenyl, 2,3-Dihydro- benzofuran-5- oder 6-yl, 2,3-(2-Oxo-methylendioxy)-phenyl oder auch 3,4- Dihydro-2H-1 ,5-benzodioxepin-6- oder -7-yl, ferner bevorzugt 2,3-Dihydro- benzofuranyl oder 2,3-Dihydro-2-oxo-furanyl.
Het bedeutet besonders bevorzugt z.B. Furyl, Thienyl, Thiazolyl, Imidazo- lyl, [2,1 ,3]-Benzothiadiazolyl, Oxazolyl, Pyridyl, Indolyl, 1-Methyl-piperidinyl, Piperidinyl oder Pyrrolidinyl, ganz besonders bevorzugt ist Pyridyl, 1- Methyl-piperidin-4-yl oder Piperidin-4-yl.
Py bedeutet vorzugsweise z.B. unsubstituiertes oder einfach durch Amino- carbonyl substituiertes 2-, 3- oder 4-Pyridyl.
Die Verbindungen der Formel I können ein oder mehrere chirale Zentren besitzen und daher in verschiedenen stereoisomeren Formen vorkommen. Die Formel l umschließt alle diese Formen.
Dementsprechend sind Gegenstand der Erfindung insbesondere diejenigen Verbindungen der Formel I, in denen mindestens einer der genannten Reste eine der vorstehend angegebenen bevorzugten Bedeutungen hat. Einige bevorzugte Gruppen von Verbindungen können durch die folgenden Teilformeln la bis Ih ausgedrückt werden, die der Formel I entsprechen und worin die nicht näher bezeichneten Reste die bei der Formel I angegebene Bedeutung haben, worin jedoch
in la R1 Cl, F, NH2, NHCOA, NHCOOA, NH-(CH2)π-Ar, CN,
CONH2, CSNH2, C(=NH)SA, C(=NH)NH2, C(=NH-OH)-NH2) C(=NH-0-COA)-NH2,
C(=NH-0-COAr)-NH2, C(=NH-0-COHet)-NH2, C(=NH)NH-COOA, C(=NH)NH-COA,
C(=NH)NH-COO-(CH2)m-Ar,
C(=NH)NH-COO-(CH2)m-Het,
NH-C(=NH)NH-COOA, NHC(=NH)NH-COO-(CH2)m-Ar,
bedeutet;
in Ib R1 F, NH2l NHCOA, NHCOOA, NH-(CH2)n-Ar, CN, C0NH2,
CSNH2, C(=NH)SA, C(=NH)NH2, C(=NH-OH)-NH2, C(=NH-0-COA)-NH2,
C(=NH-0-COAr)-NH2,
C(=NH)NH-COOA, C(=NH)NH-COA,
C(=NH)NH-COO-(CH2)m-Ar, NH-C(=NH)NH-COOA, NHC(=NH)NH-COO-(CH2)m-Ar,
Ar Phenyl bedeuten;
in Ic R1 F, NH2, NHCOA, NHCOOA, NH-(CH2)n-Ar, CN, CONH2,
CSNH2, C(=NH)SA, C(=NH)NH2, C(=NH-OH)-NH2, C(=NH-0-COA)-NH2, C(=NH-0-COAr)-NH2, C(=NH)NH-COOA, C(=NH)NH-COA, C(=NH)NH-COO-(CH2)m-Ar, NH-C(=NH)NH-COOA, NHC(=NH)NH-COO-(CH2)m-Ar,
R2, R2, R2" jeweils unabhängig voneinander H oder F,
Ar Phenyl bedeuten;
R1 F, NH2, NHCOA, NHCOOA, NH-(CH2)n-Ar, CN, CONH2,
CSNH2, C(=NH)SA, C(=NH)NH2, C(=NH-OH)-NH2, C(=NH-0-COA)-NH2, C(=NH-0-COAr)-NH2, C(=NH)NH-COOA, C(=NH)NH-COA,
C(=NH)NH-COO-(CH2)m-Ar, NH-C(=NH)NH-COOA, NHC(=NH)NH-COO-(CH2)m-Ar,
R2, R2', R2" jeweils unabhängig voneinander H oder F, Ar Phenyl,
R3, R4 bedeuten zusammen vorzugsweise z.B. (CH2)2, (CH2)3, (CH2)4, (CH2)2NHCH2, (CH2)-N(COOA)-CH2, (CH2)-N(CH2COOA)-CH2, (CH2)-N(CH2COOH)-CH2, COCH2CH2, CO-NHCH2, COOCH2, CH2OCH2, -C[(CH3)2]-0-CH2, COOCH(A)-, CH2-S-CH2,
-C[(CH3)2]-S-CH2,
-CH(Ar)-S-CH2, CH2-CH(OH)-CH2, wobei A Alkyl mit 1 , 2, 3 oder 4 C-Atomen und Ar Phenyl bedeutet,
bedeuten; in le R1 F, NH2, NHCOA, NHCOOA, NH-(CH2)n-Ar, CN, CONH2,
CSNH2, C(=NH)SA, C(=NH)NH2, C(=NH-OH)-NH2, C(=NH-0-COA)-NH2, C(=NH-0-COAr)-NH2) C(=NH)NH-COOA, C(=NH)NH-COA,
C(=NH)NH-COO-(CH2)m-Ar, NH-C(=NH)NH-COOA, NHC(=NH)NH-COO-(CH2)m-Ar,
R2, R2, R2' jeweils unabhängig voneinander H oder F, Ar Phenyl,
R3, R4 bedeuten zusammen vorzugsweise z.B. (CH2)2, (CH )3, (CH2)4, (CH2)2NHCH2, (CH2)-N(COOA)-CH2, (CH2)-N(CH2COOA)-CH2, (CH2)-N(CH2COOH)-CH2) COCH2CH2, CO-NHCH2, COOCH2, CH2OCH2, -C[(CH3)2]-0-CH2, COOCH(A)-, CH2-S-CH2, -C[(CH3)2]-S-CH2,
-CH(Ar)-S-CH2, CH2-CH(OH)-CH2, wobei A Alkyl mit 1 , 2, 3 oder 4 C-Atomen und Ar Phenyl bedeutet,
R5 S02NH2, S02NHA, CH2COOH, einfach durch S02NHA, S02NH2 oder S02A substituiertes Phenyl, wobei A Alkyl mit 1 , 2, 3 oder 4 C-Atomen bedeutet oder unsubstituiertes oder einfach durch CONH2 substituiertes 4-Pyridyl,
R5', R5",
R5 , R5 H bedeuten;
in If R1 H, Cl, F, NH2, NHCOA, NHCOOA,
NH-(CH2)n-Ar, CN, CONH2, CSNH2, C(=NH)SA, C(=NH)NH2, C(=NH-OH)-NH2, C(=NH-0-COA)-NH2,
C(=NH-0-COAr)-NH2, C(=NH)-OA, C(=NH)NHNH2,
C(=NH)NHNHA, C(=NH)NH-COOA, C(=NH)NH-COA,
C(=NH)NH-COO-(CH2)m-Ar,
NH-C(=NH)NH2,
NH-C(=NH)NH-COOA, NHC(=NH)NH-COO-(CH2)m-Ar,
R2, R2, R2 jeweils unabhängig voneinander H oder F, R3, R4 zusammen (CH2)P, CO(CH2)p, COO(CH2)n,
COOCH(A)-, COOCH(Ar)-, CONH(CH2)n,
CH2CH(OR7)-(CH2)n-, CH2-0-(CH2)n, CH2-S-(CH2)n,
CA2-0-(CH2)n, CA2-S-(CH2)n, CHAr-S-(CH2)n, (CH2)2NHCH2 oder (CH2)2-N(R8)-CH2,
R5 S02NH2, S02NHA, CH2COOH, einfach durch S02NHA, S02NH2 oder S02A substituiertes
Phenyl oder unsubstituiertes oder einfach durch CONH2 substituiertes
4-Pyridyl,
R5', R5" , R5 ' H,
R6 OH, A oder Ar,
R7 H, A oder Ar,
R8 (CH2)n-COOH, (CH2)m -COOA, (CH2)m -COO' -(CH2)n -Ar,
(CH2)m-CONH2,
(CH2)m-CONHA oder (CH2)m -CONA2,
R9 H, A oder Benzyl,
U CO,
V NH,
W fehlt,
X CH oder N,
Y fehlt,
A Alkyl mit 1 , 2, 3, 4, 5, 6, 7, 8, 9 oder 10 C-Atomen oder
CF3,
Ar Phenyl, n 1 oder 2, m 0, 1 oder 2,
P 2, 3 oder 4 bedeuten;
in Ig R1 F, NH2, NH-(CH2)n-Ar, CN, CSNH2, C(=NH)SA,
C(=NH)NH2 oder C(=NH-OH)-NH2, R2, R2, R2" jeweils unabhängig voneinander H oder F, R3, R4 zusammen (CH2)P, CO(CH2)p, COO(CH2)n,
COOCH(A)-, COOCH(Ar)-, CONH(CH2)n, CH2CH(OR7)-(CH2)n-, CH2-0-(CH2)n, CH2-S-(CH2)n, CA2-0-(CH2)n, CA2-S-(CH2)n, CHAr-S-(CH2)n, (CH2)2NHCH2 oder (CH2)2-N(R8)-CH2, R5 S02NH2, S02NHA, CH2COOH, einfach durch S02NHA, S02NH2 oder S02A substituiertes Phenyl oder unsubstituiertes oder einfach durch CONH2 substituiertes 4-Pyridyl,
5' R° F,
R5",
R5 , R5 H,
R7 H, A oder Ar,
R8 H, (CH2)n-COOH, (CH2)m-COOA, (CH2)m-COO-(CH2)n- Ar, (CH2)m-COO-(CH2)n-Het, (CH2)m-CONH2,
(CH2)m-CONHA oder (CH2)m-CONA2, 18 -
R9 H, A oder Benzyl,
U CO,
V NH, w fehlt,
X CH oder N,
Y fehlt,
A Alkyl mit 1 , 2, 3, 4, 5 oder 6 C-Atomen oder CF3,
Ar Phenyl, n 1 oder 2, m 0, 1 oder 2,
P 2 3 oder 4 bedeuten
in Ih R1 H,
R2 CH2NH2, CH2NHCOA oder CH2NHCOOA,
R2 , R2" jeweils unabhängig voneinander H, R3, R4 zusammen (CH2)P, CO(CH2)p, COO(CH2)n, COOCH(A)-, COOCH(Ar)-, CONH(CH2)n, CH2CH(OR7)-(CH2)n-, CH2-0-(CH2)n, CH2-S-(CH2)n, CA2-0-(CH2)n, CA2-S-(CH2)n, CHAr-S-(CH2)n, (CH2)2NHCH2 oder (CH2)2-N(R8)-CH2, R5 S02NH2, S02NHA, CH2COOH, einfach durch S02NHA, S02NH2 oder S02A substituiertes Phenyl oder unsubstituiertes oder einfach durch CONH2 substituier- tes 4-Pyridyl,
R5' F,
R5", R5'", R5"' H,
R7 H, A oder Ar, R8 H, (CH2)n-COOH, (CH2)m-COOA, (CH2)m-COO-(CH2)n.
Ar, (CH2)m-COO-(CH2)n-Het, (CH2)m-CONH2,
(CH2)m-CONHA oder (CH2)m-CONA2,
R9 H, A oder Benzyl,
U CO,
V NH, w fehlt,
X CH,
Y fehlt,
A Alkyl mit 1 , 2, 3, 4, 5 oder 6 C-Atomen oder CF3,
Ar Phenyl, n 1 oder 2, m 0, 1 oder 2,
P 2, 3 oder 4 bedeuten ι;
sowie ihre pharmazeutisch verträglichen Salze, Solvate und Stereoisomeren.
Die Verbindungen der Formel I und auch die Ausgangsstoffe zu ihrer Herstellung werden im übrigen nach an sich bekannten Methoden hergestellt, wie sie in der Literatur (z.B. in den Standardwerken wie Houben-Weyl,
Methoden der organischen Chemie, Georg-Thieme-Verlag, Stuttgart) beschrieben sind, und zwar unter Reaktionsbedingungen, die für die genannten Umsetzungen bekannt und geeignet sind. Dabei kann man auch von an sich bekannten, hier nicht näher erwähnten Varianten Gebrauch ma- cneπ-
Die Ausgangsstoffe können, falls erwünscht, auch in situ gebildet werden, so daß man sie aus dem Reaktionsgemisch nicht isoliert, sondern sofort weiter zu den Verbindungen der Formel I umsetzt. Verbindungen der Formel I können vorzugsweise erhalten werden, indem man Verbindungen der Formel I aus einem ihrer funktionellen Derivate durch Behandeln mit einem solvolysierenden oder hydrogenolysierenden Mittel in Freiheit setzt.
Bevorzugte Ausgangsstoffe für die Solvolyse bzw. Hydrogenolyse sind solche, die sonst der Formel I entsprechen, aber anstelle einer oder mehrerer freier Amino- und/oder Hydroxygruppen entsprechende geschützte Amino- und/oder Hydroxygruppen enthalten, vorzugsweise solche, die an- stelle eines H-Atoms, das mit einem N-Atom verbunden ist, eine Ami- noschutzgruppe tragen, insbesondere solche, die anstelle einer HN- Gruppe eine R'-N-Grύppe tragen, worin R' eine Aminoschutzgruppe bedeutet, und/oder solche, die anstelle des H-Atoms einer Hydroxygruppe eine Hydroxyschutzgruppe tragen, z.B. solche, die der Formel I entspre- chen, jedoch anstelle einer Gruppe -COOH eine Gruppe -COOR" tragen, worin R" eine Hydroxyschutzgruppe bedeutet. Bevorzugte Ausgangsstoffe sind auch die Oxadiazolderivate, die in die entsprechenden Amidinoverbindungen überführt werden können.
Die Freisetzung der Amidinogruppe aus ihrem Oxadiazolderivat kann z.B. durch Behandeln mit Wasserstoff in Gegenwart eines Katalysators (z.B. Raney-Nickel) abgespalten werden. Als Lösungsmittel eignen sich die nachfolgend angegebenen, insbesondere Alkohole wie Methanol oder Et- hanol, organische Säuren wie Essigsäure oder Propionsäure oder Mi- schungen daraus. Die Hydrogenolyse wird in der Regel bei Temperaturen zwischen etwa 0 und 100° und Drucken zwischen etwa 1 und 200 bar, bevorzugt bei 20-30° (Raumtemperatur) und 1-10 bar durchgeführt.
Die Einführung der Oxadiazolgruppe gelingt z.B. durch Umsetzung der Cyanverbindungen mit Hydroxylamin und Reaktion mit Phosgen, Dialkyla- carbonat, Chlorameisensäureester, N,N'-Carbonyldiimidazol oder Acetan- hydrid.
Es können auch mehrere - gleiche oder verschiedene - geschützte Amino- und/oder Hydroxygruppen im Molekül des Ausgangsstoffes vorhanden sein. Falls die vorhandenen Schutzgruppen voneinander verschieden sind, können sie in vielen Fällen selektiv abgespalten werden.
Der Ausdruck "Aminoschutzgruppe" ist allgemein bekannt und bezieht sich auf Gruppen, die geeignet sind, eine Aminogruppe vor chemischen Umsetzungen zu schützen (zu blockieren), die aber leicht entfernbar sind, nachdem die gewünschte chemische Reaktion an anderen Stellen des Moleküls durchgeführt worden ist. Typisch für solche Gruppen sind insbesondere unsubstituierte oder substituierte Acyl-, Aryl-, Aralkoxymethyl- oder Aralkylgruppen. Da die Aminoschutzgruppen nach der gewünschten Reaktion (oder Reaktionsfolge) entfernt werden, ist ihre Art und Größe im übrigen nicht kritisch," bevorzugt werden jedoch solche mit 1-20, insbesondere 1-8 C-Atomen. Der Ausdruck "Acylgruppe" ist im Zusammenhang mit dem vorliegenden Verfahren in weitestem Sinne aufzufassen. Er um- schließt von aliphatischen, araliphatischen, aromatischen oder heterocyclischen Carbonsäuren oder Sulfonsäuren abgeleitete Acylgruppen sowie insbesondere Alkoxycarbonyl-, Aryloxycarbonyl- und vor allem Aral- koxycarbonylgruppen. Beispiele für derartige Acylgruppen sind Alkanoyl wie Acetyl, Propionyl, Butyryl; Aralkanoyl wie Phenylacetyl; Aroyl wie Ben- zoyl oder Toluyl; Aryloxyalkanoyl wie POA; Alkoxycarbonyl wie Methoxy- carbonyl, Ethoxycarbonyl, 2,2,2-Trichlorethoxycarbonyl, BOG (tert.-Butyl- oxycarbonyl), 2-lodethoxycarbonyl; Aralkyloxycarbonyl wie CBZ ("Carbo- benzoxy"), 4-Methoxybenzyloxycarbonyl, FMOC; Arylsulfonyl wie Mtr. Bevorzugte Aminoschutzgruppen sind BOG und Mtr, ferner CBZ, Fmoc, Ben- zyl und Acetyl.
Das In-Freiheit-Setzen der Verbindungen der Formel I aus ihren funktioneilen Derivaten gelingt - je nach der benutzten Schutzgruppe - z. B. mit starken Säuren, zweckmäßig mit TFA oder Perchlorsäure, aber auch mit an- deren starken anorganischen Säuren wie Salzsäure oder Schwefelsäure, starken organischen Carbonsäuren wie Trichloressigsäure oder Sulfonsäuren wie Benzol- oder p-Toluolsulfonsäure. Die Anwesenheit eines zusätzlichen inerten Lösungsmittels ist möglich, aber nicht immer erforderlich. Als inerte Lösungsmittel eignen sich vorzugsweise organische, beispielsweise Carbonsäuren wie Essigsäure, Ether wie Tetrahydrofuran oder Dioxan,
Amide wie DMF, halogenierte Kohlenwasserstoffe wie Dichlormethan, fer- ner auch Alkohole wie Methanol, Ethanol oder Isopropanol, sowie Wasser. Ferner kommen Gemische der vorgenannten Lösungsmittel in Frage. TFA wird vorzugsweise im Überschuß ohne Zusatz eines weiteren Lösungsmittels verwendet, Perchlorsäure in Form eines Gemisches aus Essigsäu- re und 70 %iger Perchlorsäure im Verhältnis 9:1. Die Reaktionstemperaturen für die Spaltung liegen zweckmäßig zwischen etwa 0 und etwa 50°, vorzugsweise arbeitet man zwischen 15 und 30° (Raumtemperatur).
Die Gruppen BOC, OBut und Mtr können z. B. bevorzugt mit TFA in Di- chlormethan oder mit etwa 3 bis 5n HCI in Dioxan bei 15-30° abgespalten werden, die FMOC-Gruppe mit einer etwa 5- bis 50 %igen Lösung von Dimethylamin, Diethylamin oder Piperidin in DMF bei 15-30°.
Hydrogenolytisch entfernbare Schutzgruppen (z. B. CBZ, Benzyl oder die Freisetzung der Amidinogruppe aus ihrem Oxadiazolderivat)) können z. B. durch Behandeln mit Wasserstoff in Gegenwart eines Katalysators (z. B. eines Edelmetallkatalysators wie Palladium, zweckmäßig auf einem Träger wie Kohle) abgespalten werden. Als Lösungsmittel eignen sich dabei die oben angegebenen, insbesondere z. B. Alkohole wie Methanol oder Etha- nol oder Amide wie DMF. Die Hydrogenolyse wird in der Regel bei Temperaturen zwischen etwa 0 und 100° und Drucken zwischen etwa 1 und 200 bar, bevorzugt bei 20-30° und 1-10 bar durchgeführt. Eine Hydrogenolyse der CBZ-Gruppe gelingt z. B. gut an 5 bis 10 %igem Pd/C in Methanol oder mit Ammomiumformiat (anstelle von Wasserstoff) an Pd/C in Metha- noI/DMF bei 20-30°.
Als inerte Lösungsmittel eignen sich z.B. Kohlenwasserstoffe wie Hexan, Petrolether, Benzol, Toluol oder Xylol; chlorierte Kohlenwasserstoffe wie Trichlorethylen, 1 ,2-Dichlorethan,Tetrachlorkohlenstoff, Trifluormethylben- zol, Chloroform oder Dichlormethan; Alkohole wie Methanol, Ethanol, Isopropanol, n-Propanol, n-Butanol oder tert.-Butanol; Ether wie Diethylether, Diisopropylether, Tetrahydrofuran (THF) oder Dioxan; Glykolether wie Ethylenglykolmonomethyl- oder -monoethylether (Methylglykol oder Ethyl- glykol), Ethylenglykoldimethylether (Diglyme); Ketone wie Aceton oder Butanon; Amide wie Acetamid, Dimethylacetamid, N-Methylpyrrolidon
(NMP) oder Dimethylformamid (DMF); Nitrile wie Acetonitril; Sulfoxide wie Dimethylsulfoxid (DMSO); Schwefelkohlenstoff; Carbonsäuren wie Ameisensäure oder Essigsäure; Nitroverbindungen wie Nitromethan oder Nitro- benzol; Ester wie Ethylacetat oder Gemische der genannten Lösungsmittel.
Die Biphenyl-S02NH2-Gruppe wird vorzugsweise in Form ihres tert.- Butylderivates eingesetzt. Die Abspaltung der tert.-Butylgruppe erfolgt z.B. mit TFA mit oder ohne Zusatz eines inerten Lösungsmittels, vorzugsweise unter Zusatz einer geringen Menge an Anisol (1 Vol %).
Die Umwandlung einer Cyangruppe in eine Amidinogruppe erfolgt durch Umsetzung mit z.B. Hydroxylamin und anschließender Reduktion des N- Hydroxyamidins mit Wasserstoff in Anwesenheit eines Katalysators wie z.B. Pd/C. Zur Herstellung eines Amidins der Formel I kann man an ein Nitril auch Ammoniak anlagern. Die Anlagerung erfolgt bevorzugt mehrstufig, indem man in an sich bekannter Weise a) das Nitril mit H2S in ein Thioamid umwandelt, das mit einem Alkylierungsmittel, z.B. CH3I, in den entsprechenden S-Alkyl-imidothioester übergeführt wird, welcher seinerseits mit NH3 zum Amidin reagiert, b) das Nitril mit einem Alkohol, z.B. Ethanol in Gegenwart von HCl in den entsprechenden Imidoester umwandelt und diesen mit Ammoniak behandelt, oder c) das Nitril mit Lithium-bis-(trimethylsilyl)- amid umsetzt und das Produkt anschließend hydrolysiert.
Ester können z.B. mit Essigsäure oder mit NaOH oder KOH in Wasser,
Wasser-THF oder Wasser-Dioxan bei Temperaturen zwischen 0 und 100° verseift werden.
Ferner kann man freie Aminogruppen in üblicher Weise mit einem Säure- chlorid oder -anhydrid acylieren oder mit einem unsubstituierten oder substituierten Alkylhalogenid alkylieren, zweckmäßig in einem inerten Lösungsmitte! wie Dichlormethan oder THF und /oder in Gegenwart einer Base wie Triethylamin oder Pyridin bei Temperaturen zwischen -60 und +30°. Eine Base der Formel I kann mit einer Säure in das zugehörige Säureadditionssalz übergeführt werden, beispielsweise durch Umsetzung äquivalenter Mengen der Base und der Säure in einem inerten Lösungsmittel wie Ethanol und anschließendes Eindampfen. Für diese Umsetzung kom- men insbesondere Säuren in Frage, die physiologisch unbedenkliche Salze liefern. So können anorganische Säuren verwendet werden, z.B. Schwefelsäure, Salpetersäure, Halogenwasserstoffsäuren wie Chlorwasserstoffsäure oder Bromwasserstoffsäure, Phosphorsäuren wie Ortho- phosphorsäure, Sulfaminsäure, ferner organische Säuren, insbesondere aliphatische, alicyclische, araliphatische, aromatische oder heterocyclische ein- oder mehrbasige Carbon-, Sulfon- oder Schwefelsäuren, z.B. Ameisensäure, Essigsäure, Propionsäure, Pivalinsäure, Diethylessigsäure, Malonsäure, Bernsteinsäure, Pimelinsäure, Fumarsäure, Maleinsäure, Milchsäure, Weinsäure, Äpfelsäure, Citronensäure, Gluconsäure, Ascor- binsäure, Nicotinsäure, Isonicotinsäure, Methan- oder Ethansulfonsäure, Ethandisulfonsäure, 2-Hydroxyethansulfonsäure, Benzolsulfonsäure, p- Toluolsulfonsäure, Naphthalin-mono- und -disulfonsäuren, Laurylschwefel- säure. Salze mit physiologisch nicht unbedenklichen Säuren, z.B. Pikrate, können zur Isolierung und /oder Aufreinigung der Verbindungen der For- mel I verwendet werden.
Andererseits können Verbindungen der Formel I mit Basen (z.B. Natriumoder Kaliumhydroxid oder -carbonat) in die entsprechenden Metall-, insbesondere Alkalimetall- oder Erdalkalimetall-, oder in die entsprechenden Ammoniumsalze umgewandelt werden.
Auch physiologisch unbedenkliche organische Basen, wie z.B. Ethanol- amin können verwendet werden.
Erfindungsgemäße Verbindungen der Formel I können aufgrund ihrer Mo- lekülstruktur chiral sein und können dementsprechend in verschiedenen enantiomeren Formen auftreten. Sie können daher in racemischer oder in optisch aktiver Form vorliegen.
Da sich die pharmazeutische Wirksamkeit der Racemate bzw. der Stereo- isomeren der erfindungsgemäßen Verbindungen unterscheiden kann, kann es wünschenswert sein, die Enantiomere zu verwenden. In diesen Fällen kann das Endprodukt oder aber bereits die Zwischenprodukte in enantiomere Verbindungen, durch dem Fachmann bekannte chemische oder physikalische Maßnahmen, aufgetrennt oder bereits als solche bei der Synthese eingesetzt werden.
Im Falle racemischer Amine werden aus dem Gemisch durch Umsetzung mit einem optisch aktiven Trennmittel Diastereomere gebildet. Als Trennmittel eignen sich z.B. optisch aktiven Säuren, wie die R- und S-Formen von Weinsäure, Diacetylweinsäure, Dibenzoylweinsäure, Mandelsäure, Äpfelsäure, Milchsäure, geeignet N-geschützte Aminosäuren (z.B. N-Ben- zoylprolin oder N-Benzolsulfonylprolin) oder die verschiedenen optisch aktiven Camphersulfonsäuren. Vorteilhaft ist auch eine chromatographische Enantiomerentrennung mit Hilfe eines optisch aktiven Trennmittels (z.B. Dinitrobenzoylphenylglycin, Cellulosetriacetat oder andere Derivate von Kohlenhydraten oder auf Kieselgel fixierte chiral derivatisierte Methacrylat- polymere). Als Laufmittel eignen sich hierfür wäßrige oder alkoholische Lösungsmittelgemische wie z.B. Hexan/Isopropanol/ Acetonitril z.B. im Verhältnis 82:15:3.
Gegenstand der Erfindung ist ferner die Verwendung der Verbindungen der Formel I und/oder ihrer physiologisch unbedenklichen Salze zur Herstellung pharmazeutischer Zubereitungen, insbesondere auf nicht-chemischem Wege. Hierbei können sie zusammen mit mindestens einem festen, flüssigen und/oder halbflüssigen Träger- oder Hilfsstoff und gegebenenfalls in Kombination mit einem oder mehreren weiteren Wirkstoffen in eine geeignete Dosierungsform gebracht werden.
Gegenstand der Erfindung sind ferner pharmazeutische Zubereitungen, enthaltend mindestens eine Verbindung der Formel I und/oder eines ihrer physiologisch unbedenklichen Salze.
Diese Zubereitungen können als Arzneimittel in der Human- oder Veterinärmedizin verwendet werden. Als Trägerstoffe kommen organische oder anorganische Substanzen in Frage, die sich für die enterale (z.B. orale), parenterale oder topische Applikation eignen und mit den neuen Verbindungen nicht reagieren, beispielsweise Wasser, pflanzliche Öle, Benzyl- alkohole, Alkylenglykole, Polyethylenglykole, Glycerintriacetat, Gelatine, Kohlehydrate wie Lactose oder Stärke, Magnesiumstearat, Talk, Vaseline. Zur oralen Anwendung dienen insbesondere Tabletten, Pillen, Dragees, Kapseln, Pulver, Granulate, Sirupe, Säfte oder Tropfen, zur rektalen Anwendung Suppositorien, zur parenteralen Anwendung Lösungen, vorzugs- weise ölige oder wässrige Lösungen, ferner Suspensionen, Emulsionen oder Implantate, für die topische Anwendung Salben, Cremes oder Puder. Die neuen Verbindungen können auch lyophilisiert und die erhaltenen Lyo- philisate z.B: zur Herstellung von Injektionspräparaten verwendet werden. Die angegebenen Zubereitungen können sterilisiert sein und/oder Hilfs- Stoffe wie Gleit-, Konservierungs-, Stabilisierungs- und/oder Netzmittel, Emulgatoren, Salze zur Beeinflussung des osmotischen Druckes, Puffersubstanzen, Färb-, Geschmacks- und /oder mehrere weitere Wirkstoffe enthalten, z.B. ein oder mehrere Vitamine.
Die Verbindungen der Formel I und ihre physiologisch unbedenklichen Salze können bei der Bekämpfung und Verhütung von thromboemboli- schen Erkrankungen wie Thrombose, myocardialem Infarkt, Arteriosklero- se, Entzündungen, Apoplexie, Angina pectoris, Restenose nach Angioplastie und Claudicatio intermittens verwendet werden.
Dabei werden die erfindungsgemäßen Substanzen in der Regel vorzugsweise in Dosierungen zwischen etwa 1 und 500 mg, insbesondere zwischen 5 und 100 mg pro Dosierungseinheit verabreicht. Die tägliche Dosierung liegt vorzugsweise zwischen etwa 0,02 und 10 mg/kg Körperge- wicht. Die spezielle Dosis für jeden Patienten hängt jedoch von den verschiedensten Faktoren ab, beispielsweise von der Wirksamkeit der eingesetzten speziellen Verbindung, vom Alter, Körpergewicht, allgemeinen Gesundheitszustand, Geschlecht, von der Kost, vom Verabreichungszeitpunkt und -weg, von der Ausscheidungsgeschwindigkeit, Arzneistoffkom- bination und Schwere der jeweiligen Erkrankung, welcher die Therapie gilt. Die orale Applikation ist bevorzugt.
Vor- und nachstehend sind alle Temperaturen in °C angegeben. In den nachfolgenden Beispielen bedeutet "übliche Aufarbeitung": Man gibt, falls erforderlich, Wasser hinzu, stellt, falls erforderlich, je nach Konstitution des Endprodukts auf pH-Werte zwischen 2 und 10 ein, extrahiert mit Ethyla- cetat oder Dichlormethan, trennt ab, trocknet die organische Phase über Natriumsulfat, dampft ein und reinigt durch Chromatographie an Kieselgel und /oder durch Kristallisation. Rf-Werte an Kieselgel; Laufmittel: Ethyla- cetat/Methanol 9:1. Massenspektrometrie (MS): El (Elektronenstoß-Ionisation) M+
FAB (Fast Atom Bombardment) (M+H)+ Beispiel 1
1.0 Eine Lösung von 2,153 g BOC-L-Prolin, 3,349 g 4'-Aminobiphenyl-2- sulfonsäure-tert.-butylamid, 2,247 g 1-Hydroxybenzotriazolhydrat, 14,665 ml 4-Methylmorpholin und 2,812 N-(3-Dimethylaminopropyl)-N'- ethylcarbodiimid, Hydrochlorid in 100 ml Dimethylformamid (DMF) wird 12 Stunden bei Raumtemperatur gerührt. Es wird wie üblich aufgearbeitet und man erhält 1 ,96 (2S)-2-(2'-tert.-Butylsulfamoylbiphenyl-4-ylcarbamoyl)- pyrrolidin-1-carbonsäure-tert.-butylester ("AA"), FAB 502; F. 188-191°.
1.1
Eine Lösung von 1 ,87 g "AA" und 30 ml Trifluoressigsäure (TFA) in 90 ml Dichlormethan wird 2 Stunden bei Raumtemperatur gerührt, nach üblicher Aufarbeitung erhält man 2,32 g (2S)-Pyrrolidin-2-carbonsäure-N-[(2'-tert.- butylsulfamoylbiphenyl-4-yl)]-amid, Trifluoracetat ("AB"), als Öl, FAB 402.
1.2 Eine Lösung von 2,26 g "AB", 0,741 g Pentafluorpyridin und 6.077 ml Triethylamin in 20 ml Dimethylsulfoxid (DMSO) wird 10 Stunden bei Raumtemperatur gerührt. Man arbeitet wie üblich auf und erhält 3,18 g (2S)-1-(2,3,5,6-Tetrafluorphenyl)pyrrolidin-2-carbonsäure-N-[(2'-tert.- butylsulfamoylbiphenyl-4-yl)]-amid ("AC") als Öl, FAB 495.
1.3
Eine Lösung von 3,09 g "AC", 1 ,69 ml Benzylamin und 1 ,254 ml 1 ,8- Diazabicyclo[5.4.0]undec-7-en in 20 ml DMSO wird 5 Stunden bei 80° gerührt. Nach üblicher Aufarbeitung und Chromatographie an Kieselgel erhält man 1 ,32 g (2S)-1-(2-Benzylamino-3,5,6-trifluoropyridin-4-yl)-pyrrolidin-2- carbonsäure-N-[2'-tert.-butylsulfamoylbiphenyl-4-yl)]-amid ("AD"), amorph, FAB 638; F. 99° (Zersetzung).
1.4 Eine Lösung von 0,41 g "AD" und 0,7 ml Anisol in 10 ml Trifluoressigsäure
2 Stunden bei Raumtemperatur gerührt. Das Lösungsmittel wird entfernt und der Rückstand an Kieselgel chromatographiert. Man erhält 0,28 g (2S)-1-(2-Benzylamino-3,5,6-trifluoropyridin-4-yl)-pyrrolidin-2-carbonsäure- N-(2'-sulfamoylbiphenyl-4-yl)-amid, Trifluoracetat ("AE"), amorph , FAB 582; F. 114° (Zersetzung).
1.5
0,16 g "AE" werden in 30 ml Methanol in Gegenwart von 0,5 g Pd-Kohle hydriert. Das Filtrat wird eingeengt und der Rückstand mit Ether verrieben. Man erhält 32 mg (2S)-1-(2-Amino-3,5,6-trifluoropyridin-4-yl)-pyrrolidin-2- carbonsäure-N-(2'-sulfamoylbiphenyl-4-yl)-amid, Trifluoracetat ("AF"), amorph , FAB 492; F. 180° (Zersetzung)
Beispiel 2
2.0 Eine Lösung von 0,3 g L-Prolin, 0,6 g 3-lodbenzonitril, 0,15 g Tetrakis- (triphenylphosphin)-palladium(O), 0,025 g Kupfer(l)-iodid, 0,36 g Kalium- carbonat, 0,16 g Tetrabutylam oniumiodid, 5 ml 1 -Methyl-2-pyrrolidon (NMP), 2 ml Pyridin und 0,5 ml Wasser wird 4 Stunden bei 100° erhitzt. Man arbeitet wie üblich auf und erhält 0,6 g (2S)-1-(3-Cyanphenyl)- pyrrolidin-2-carbonsäure ("BA"), FAB 217. 2.1
0,5 g "BA" und 0,72 g 4'-Aminobiphenyl-2-sulfonsäure-tert.-butylamid werden analog Beispiel 1.0 umgesetzt. Nach Chromatographie an Kieselgel erhält man 0,27 g (2S)-1-(3-Cyanphenyl)-pyrrolidin-2-carbonsäure-N-(2'- tert.-butylsulfamoylbiphenyl-4-yl)-amid ("BB"), amorph, FAB 503.
2.2
In eine Lösung von 0,081 g "BB" und 0,8 ml Triethylamin in 8 ml Pyridin wird bei 0° 5 Stunden Schwefelwasserstoff eingeleitet. Nach Entfernung der Lösungsmittel erhält man (2S)-1-(3-Thiocarbamoylphenyl)-pyrrolidin-2- carbonsäure-N-(2'-tert.-butylsulfamoylbiphenyl-4-yl)-amid ("BC"), Öl, FAB 537.
2.3 Eine Lösung von 0,11 g "BC" und 0,13 ml lodmethan in 10 ml Aceton wird
2 Stunden unter Rückfluß erhitzt. Nach Entfernen des Lösungsmittels wird der Rückstand mit Ether verrieben. Man erhält 0,1 g (2S)-3-[2-(2'-tert.- Butylsulfamoylbiphenyl-4-ylcarbamoyl)-pyrrolidin-1-yl]- thiobenzimidinsäuremethylester, Hydroiodid ("BD"), FAB 551
2.4
Eine Lösung von 0,1 g "BD" und 0,06 g Ammoniumacetat in 10 ml Ethanol wird 2 Stunden unter Rückfluß erhitzt. Nach üblicher Aufarbeitung erhält man 53 mg (2S)-1-(3-Amidinophenyl)-pyrrolidino-2-carbonsäure-N-(2'-tert.- butylsulfamoylbiphenyl-4-yl)-amid ("BE"), FAB 520.
2.5 42 mg "BE" werden analog Beispiel 1.4 umgesetzt. Man erhält (2S)-1-(3- Amidinophenyl)-pyrrolidino-2-carbonsäure-N-(2'-sulfamoylbiphenyl-4-yl)- amid, Trifluoracetat ("BF"), FAB 464; F. 167° (Zersetzung).
Beispiel 3
3.0
3,4 g D,L-Piperidincarbonsäure und 6,0 g lodbenzonitril werden analog Beispiel 2.0 umgesetzt. Man erhält 4,34 g (2R,S)-1-Cyanphenyl-piperidin- 2-carbonsäure ("CA").
3.1
0,70 g "CA" und 0,93 g 4'-Aminobiphenyl-2-sulfonsäure-tert.-butylamid werden nach der Methode von Mukaiyama in Gegenwart von 0,781 g 2- Chlor-1-methylpyridiniumiodid und 0,52 ml N-Ethyl-diisopropylamin in
Ethylacetat umgesetzt. Nach üblicher Aufarbeitung und Chromatographie an Kieselgel erhält man 0,58 g (2R,S)-1-(3-Cyanphenyl)-piperidin-2- carbonsäure-N-(2'-tert.-butylsulfamoylbiphenyl-4-yl)-amid ("CB") als Harz, FAB 517.
3.2
Eine Lösung von 0,54 g "CB", 0,726 g Hydroxylamin, Hydrochlorid, und 1 ,66 g Natriumcarbonat in 50 ml Methanol und 0,5 ml Wasser wird 3 Stunden unter Rückfluß erhitzt. Nach üblicher Aufarbeitung erhält man 0,53 g (2R,S)-1-[3-(N-Hydroxyamidino)phenyl]-piperidin-2-carbonsäure-N-(2'-tert.- butylsulfamoylbiphenyl-4-yl)-amid ("CC"), amorph, FAB 550; F. 98° (Zersetzung).
3.3 0,22 g "CC" werden in 30 ml Methanol unter Zusatz von 0,5 ml Wasser und 0,5 ml Eisessig an Raney-Nickel hydriert. Nach Filtration, Entfernen der Lösungsmittel und Verreiben in Ether/Petrolether erhält man 0,21 g (2R,S)-1-(3-Amidinophenyl)-piperidin-2-carbonsäure-N-(2'-tert.-butyl- sulfamoylbiphenyl-4-yl)-amid, Acetat ("CD"), amorph, FAB 534; F. 107° (Zersetzung). 3.4
Eine Lösung von 0,1 g "CD" und 1 ,05 ml Anisol in 15 ml Trifluoressigsäure wird 2 Stunden bei Raumtemperatur gerührt. Nach Entfernen des Lösungsmittels wird der Rückstand mit Ether verrieben. Man erhält 0,1 g (2R,S)- 1-(3-Amidinophenyl)-piperidin-2-carbonsäure-N-(2'-sulfamoylbiphenyl-4-yl)- amid, Trifluoracetat ("CE"), amorph, FAB 478; F. 128° (Zersetzung).
Beispiel 4
4.0
0,14 g "CC" wird mit Trifluoressigsäure/Anisol analog Beispiel 1.4 behandelt. Man erhält 0,146 g (2R,S)-1-[3-(N-Hydroxyamidino)phenyl]-piperidin- 2-carbonsäure-N-(2'-sulfamoylbiphenyl-4-yl)-amid ("DA"), amorph, FAB 494; F. 98° (Zersetzung).
Affinität zu Rezeptoren:
ICso-Werte [μM/üter] IC50 (Faktor Xa, human) = 0.34
IC50 (TF/Vlla) = 0.44
Beispiel 5
Analog den Beispielen 3.1 , 3.2 und 3.3 erhält man ausgehend von "CA" und 2'-Methansulfonyl-biphenyl-4-ylamin die Verbindung 1-(3-Amidino- phenyl)-piperidin-2-carbonsäure-N-(2'-methansulfonylbiphenyl-4-yl)-amid.
Beispiel 6
Analog Beispiel 2 erhält man ausgehend von 1-(3-Cyanphenyl)-pyrrolidin- 4-OR 0-2-carbonsäure und 2'-Methansu!fonyl-biphenyl-4-ylamin die Ver- bindung 1 -(3-Amidinophenyl)-pyrrolidin-4-OR10-2-carbonsäure-N-(2'- methansulfonylbiphenyl-4-yl)-amid, wobei R10 eine hydrogenolytisch oder solvolytisch abspaltbare Hydroxyschutzgruppe darstellt.
Nach Abspaltung der Schutzgruppe erhält man die Verbindung 1-(3-
Amidinophenyl)-pyrrolidin-4-hydroxy-2-carbonsäure-N-(2'-methansulfonyl- biphenyl-4-yl)-amid. Analog erhält man die Verbindungen
1-(3-Amidinophenyl)-piperidin-4-hydroxy-2-carbonsäure-N-(2'- sulfamoylbiphenyl-4-yl)-amid und
ausgehend von 4-(4-Amino-phenyl)-pyridin-2-carbonsäure-amid die Verbindung
1-(3-Amidino-phenyl)-pyrrolidin-4-hydroxy-2-carbonsäure-N-[4-(2- aminocarbonyl-pyridin-4-yl)-phenyl]-amid.
Analog erhält man die Verbindung (2R,S)-1-(3-Amidinophenyl)-5-oxo- pyrrolidin-2-carbonsäure-N-(2'-methansulfonylbiphenyl-4-yl)-amid, FAB 477.
Beispiel 7
Analog Beispiel 2 erhält man ausgehend von 1-(3-Cyanphenyl)-piperazin- 4-R11-2-carbonsäure und 2'-Methansulfonyl-biphenyl-4-ylamin die Verbindung 1 -(3-Amidinophenyl)-piperazin-4-R11-2-carbonsäure-N-(2'- methansulfonylbiphenyl-4-yl)-amid, wobei R11 eine hydrogenolytisch oder solvolytisch abspaltbare Aminoschutzgruppe darstellt. Nach Abspaltung der Schutzgruppe erhält man die Verbindung 1-(3- Amidinophenyl)-piperazin-2-carbonsäure-N-(2'-methansulfonylbiphenyl-4- yl)-amid.
Analog erhält man die Verbindung 1-(3-Amidinophenyl)-piperazin-2- carbonsäure-N-(2'-sulfamoylbiphenyl-4-yl)-amid.
Analog erhält man ausgehend von 4-(3-Cyan-phenyl)-piperazin-1 ,3- dicarbonsäure-1-ethylester und 4'-Aminobiphenyl-2-sulfonsäure-tert.- butylamid die Verbindung 4-(3-Amidino-phenyl)-3-(2'-sulfamoyl-biphenyl-4- ylcarbamoyl)-piperazin-1-carbonsäure-ethylester.
Analog erhält man ausgehend von 4-(3-Cyan-phenyl)-piperazin-1 ,3- dicarbonsäure-1-ethylesterund 2'-Methansulfonyl-biphenyl-4-ylamin die Verbindung 4-(3-Amidino-phenyl)-3-(2'-methansulfonylbiphenyl-4- ylcarbamoyl)-piperazin-1-carbonsäure-ethylester
Analog erhält man ausgehend von 1-(3-Cyan-phenyl)-4-ethoxycarbonyl- methyl-piperazin-2-carbonsäure und 4'-Aminobiphenyl-2-sulfonsäure-tert. butylamid die Verbindung [4-(3-Amidino-phenyl)-3-(2'-sulfamoyl-biphenyl- 4-ylcarbamoyl)-piperazin-1-yl]-essigsäurethylester.
Analog erhält man ausgehend von 1-(3-Cyan-phenyl)-4-ethoxycarbonyl- methyl-piperazin-2-carbonsäure und 2'-Methansulfonyl-biphenyl-4-ylamin die Verbindung [4-(3-Amidino-phenyl)-3-(2'-methansulfonyl-biphenyl-4- ylcarbamoyl)-piperazin-1-yl]-essigsäurethylester.
Beispiel 8
Analog Beispiel 2 erhält man ausgehend von
1-(3-Cyan-phenyl)-azetidin-2-carbonsäure,
1-(3-Cyanphenyl)-5-oxo-pyrrolidin-2-carbonsäure,
3-(3-Cyan-phenyl)-2-oxo-imidazolidin-4-carbonsäure,
3-(3-Cyan-phenyl)-2-oxo-oxazolidin-4-carbonsäure,
3-(3-Cyan-phenyl)-oxazolidin-4-carbonsäure,
3-(3-Cyan-phenyl)-2,2-dimethyl-oxazolidin-4-carbonsäure,
3-(3-Cyan-phenyl)-5-methyl-2-oxo-oxazolidin-4-carbonsäure,
3-(3-Cyan-phenyl)-thiazolidin-4-carbonsäure,
3-(3-Cyan-phenyl)-2,2-dimethyl-thiazolidin-4-carbonsäure,
3-(3-Cyan-phenyl)-2-phenyl-thiazolidin-4-carbonsäure, mit 2'-Methansulfonyl-biphenyl-4-ylamin die Verbindungen
1-(3-Amidinophenyl)-azetidin-2-carbonsäure-N-(2'-methansulfonyl- biphenyl-4-yl)-amid,
1-(3-Amidinophenyl)-5-oxo-pyrrolidin-2-carbonsäure-N-(2'- methansulfonylbiphenyl-4-yl)-amid,
3-(3-Amidinophenyl)-2-oxo-imidazolidin-4-carbonsäure-N-(2'- methansulfonylbiphenyl-4-yl)-amid, 3-(3-Amidinophenyl)-2-oxo-oxazolidin-4-carbonsäure-N-(2'- methansulfonylbiphenyl-4-yl)-amid,
3-(3-Amidinophenyl)-oxazolidin-4-carbonsäure-N-(2'-methansulfonyl- biphenyl-4-yl)-amid,
3-(3-Amidinophenyl)-2,2,-dimethyl-oxazolidin-4-carbonsäure-N-(2'- methansulfonylbiphenyl-4-yl)-amid,
3-(3-Amidinophenyl)-5-methyl-2-oxo-oxazolidin-4-carbonsäure-N-(2'- methansulfonylbiphenyl-4-yl)-amid,
3-(3-Amidinophenyl)-thiazolidin-4-carbonsäure-N-(2'-methansulfonyl- biphenyl-4-yl)-amid, 3-(3-Amidinophenyl)-2,2-dimethyl-thiazolidin-4-carbonsäure-N-(2'- methansulfonylbiphenyl-4-yl)-amid,
3-(3-Amidinophenyl)-2-phenyl-thiazolidin-4-carbonsäure-N-(2'- methansulfonylbiphenyl-4-yl)-amid,
und mit 4'-Aminobiphenyl-2-sulfonsäure-tert.-butylamid die Verbindungen
1-(3-Amidinophenyl)-azetidin-2-carbonsäure-N-(2'-sulfamoylbiphenyl- 4-yl)-amid,
1-(3-Amidinophenyl)-5-oxo-pyrrolidin-2-carbonsäure-N-(2'-sulfamoyl- biphenyl-4-yI)-amid,
3-(3-Amidinophenyl)-2-oxo-imidazolidin-4-carbonsäure-N-(2'- sulfamoylbiphenyl-4-yl)-amid ,
3-(3-Amidinophenyl)-2-oxo-oxazolidin-4-carbonsäure-N-(2'- sulfamoylbiphenyl-4-yl)-amid, 3-(3-Amidinophenyl)-oxazolidin-4-carbonsäure-N-(2'- sulfamoylbiphenyl-4-yl)-amid, 3-(3-Amidinophenyl)-2,2-dimethyl-oxazolidin-4-carbonsäure-N-(2'- sulfamoylbiphenyl-4-yl)-amid,
3-(3-Amidinophenyl)-5-methyl-2-oxo-oxazolidin-4-carbonsäure-N-(2'- sulfamoylbiphenyl-4-yl)-amid, 3-(3-Amidinophenyl)-thiazolidin-4-carbonsäure-N-(2'- sulfamoylbiphenyl-4-yl)-amid,
3-(3-Amidinophenyl)-2,2-dimethyl-thiazolidin-4-carbonsäure-N-(2'- sulfamoylbiphenyl-4-yl)-amid,
3-(3-Amidinophenyl)-2-phenyl-thiazolidin-4-carbonsäure-N-(2'- sulfamoylbiphenyl-4-yl)-amid,
Beispiel 9
Analog Beispiel 2 erhält man ausgehend von 3-(3-Cyan-phenyl)-2,2- dimethyl-oxazolidin-4-carbonsäure und 4-(4-Amino-phenyl)-pyridin-2- carbonsäure-amid die Verbindung
1-(3-Amidino-phenyl)-2,2-dimethyl-oxazolidin-4-carbonsäure-N-[4-(2- aminocarbonyl-pyridin-4-yl)-phenyl]-amid.
Beispiel 10
Analog 3.2 erhält man aus (2R,S)-1-(3-Cyanphenyl)-5-oxo-pyrrolidin-2- carbonsäure-N-(2'-methansuIfonylbiphenyl-4-yl)-amid die Verbindung (2R,S)-1-[3-(N-Hydroxyamidino)-phenyl]-5-oxo-pyrrolidin-2-carbonsäure-N- (2'-methansulfonylbiphenyl-4-yl)-amid, FAB 494.
Die nachfolgenden Beispiele betreffen pharmazeutische Zubereitungen:
Beispiel A: Injektionsgläser
Eine Lösung von 100 g eines Wirkstoffes der Formel I und 5 g Dinatrium- hydrogenphosphat wird in 3 I zweifach destilliertem Wasser mit 2 n Salzsäure auf pH 6,5 eingestellt, steril filtriert, in Injektionsgläser abgefüllt, unter sterilen Bedingungen lyophilisiert und steril verschlossen. Jedes Injektionsglas enthält 5 mg Wirkstoff.
Beispiel B: Suppositorien
Man schmilzt ein Gemisch von 20 g eines Wirkstoffes der Formel I mit 100 g Sojalecithin und 1400 g Kakaobutter, gießt in Formen und läßt er- kalten. Jedes Suppositorium enthält 20 mg Wirkstoff.
Beispiel C: Lösung
Man bereitet eine Lösung aus 1 g eines Wirkstoffes der Formel I, 9,38 g NaH2P04 • 2 H20, 28,48 g Na2HP04 • 12 H20 und 0,1 g Benzalkonium- chlorid in 940 ml zweifach destilliertem Wasser. Man stellt auf pH 6,8 ein, füllt auf 1 f auf und sterilisiert durch Bestrahlung. Diese Lösung kann in Form von Augentropfen verwendet werden.
Beispiel D: Salbe
Man mischt 500 mg eines Wirkstoffes der Formel I mit 99,5 g Vaseline unter aseptischen Bedingungen.
Beispiel E: Tabletten
Ein Gemisch von 1 kg Wirkstoff der Formel I, 4 kg Lactose, 1 ,2 kg Kartoffelstärke, 0,2 kg Talk und 0,1 kg Magnesiumstearat wird in üblicher Weise zu Tabletten verpreßt, derart, daß jede Tablette 10 mg Wirkstoff enthält. Beispiel F: Dragees
Analog Beispiel E werden Tabletten gepreßt, die anschließend in üblicher Weise mit einem Überzug aus Saccharose, Kartoffelstärke, Talk, Tragant und Farbstoff überzogen werden.
Beispiel G: Kapseln
2 kg Wirkstoff der Formel I werden in üblicher Weise in Hartgelatine- kapseln gefüllt, so daß jede Kapsel 20 mg des Wirkstoffs enthält.
Beispiel H: Ampullen
Eine Lösung von 1 kg Wirkstoff der Formel I in 60 I zweifach destilliertem Wasser wird steril filtriert, in Ampullen abgefüllt, unter sterilen Bedingungen lyophilisiert und steril verschlossen. Jede Ampulle enthält 10 mg Wirkstoff.

Claims

Patentansprüche
1. Verbindungen der Formel I
R2 woπn R1 H, Cl, F, OH, OA, 0-(CH2)n-Ar, NH2, NHCOA, NHCOOA, NH-(CH2)n-Ar, CN, CONH2, CSNH2, C(=NH)SA, C(=NH)NH2, C(=NH-OH)-NH2, C(=NH-0- COA)-NH2, C(=NH-0-COAr)-NH2, C(=NH-0-COHet)-NH2, C(=NH)-OA, C(=NH)NHNH2, C(=NH)NHNHA, C(=NH)NH-COOA, C(=NH)NH-COA, C(=NH)NH-COO-(CH2)m-Ar, C(=NH)NH-COO-(CH2)m-Het, NH-C(=NH)NH2, NH-C(=NH)NH-COOA, NHC(=NH)NH-COO-(CH2)m-Ar,
R2, R2', R2" jeweils unabhängig voneinander H, A, CF3, Cl, F, COA, COOH, COOA, CONH2, CONHA, CONA2, CH2NH2, CH2NHCOA, CH2NHCOOA, OH, OA, OCF3, N02, S02A, S02NH2 oder S02NHA,
R3, R4 zusammen (CH2)P, CO(CH2)p, COO(CH2)n,
COOCH(A)-, COOCH(Ar)-, CONH(CH2)n, CH2CH(OR7)-(CH2)n-, CH2-0-(CH2)n, CH2-S-(CH2)n, CA2-0-(CH2)n, CA2-S-(CH2)n, CHAr-S-(CH2)n,
(CH2)2NHCH2 oder (CH2)2-N(R8)-CH2,
R5, R5', R5",
R , R jeweils unabhängig voneinander (CH2)n-COOH,
(CH2)n-COO-(CH2)n-Ar, Ar, Py oder R2, R6 OH, A oder Ar,
R7 H, A, Ar oder Het,
R8 H, (CH2)n-COOH, (CH2)m-COOA, (CH2)m-COO-(CH2)n- Ar, (CH2)m-COO-(CH2)n-Het, (CH2)m-CONH2,
(CH2)m-CONHA, (CH2)m-CONA2, A, COA, S02A oder
3H, R9 H, A oder Benzyl,
U CO oder CH2,
V NH oder CO, W fehlt oder CO, X CH oder N,
Y fehlt , CH2, CO oder S02, A unverzweigtes, verzweigtes oder cyclisches Alkyl mit 1-
20 C-Atomen, worin eine oder zwei CH2-Gruppen durch O- oder S-Atome, -CH=CH- oder -C≡C- und/oder 1-7 H- Atome durch F ersetzt sein können, Ar unsubstituiertes oder ein-, zwei- oder dreifach durch A,
CF3, Hai, OH, OA, OCF3, S02A, S02NH2, S02NHA, S02NA2, NH2, NHA, NA2, NHCHO, NHCOA, NHCOOA, NACOOA, NHS02A, NHS02Ar, COOH, COOA, COO-(CH2)m-Ar', COO-(CH2)m-Het, CONH2, CONHA,
CONA2, CONHAr', CHO, COA, COAr', CH2Ar', (CH2)mNH2, (CH2)mNHA, (CH2)mNA2, (CH2)mNHCHO, (CH2)mNHCOA, (CH2)mNHCOOA, (CH2)mNHCOO-(CH2)mAr', (CH2)mNHCOO-(CH2)mHet, N02, CN, CSNH2, C(=NH)SA, C(=NH)OA, C(=NH)NH2, C(=NH)NHOH, C(=NH)NHCOOA oder C(=NH)NHCOOAr' substituiertes Phenyl oder Naphthyl, Ar' unsubstituiertes oder ein-, zwei- oder dreifach durch A,
OR9, N(R9)2, N02, CN, Hai, NHCOA, COOR9, CON(R9)2, q
COR , oder S(0)2A substituiertes Phenyl oder Naphthyl,
Het ein- oder zweikerniger gesättigter, ungesättigter oder aromatischer Heterocyclus mit 1-4 N-, O- und/oder S- Atomen, über N oder C gebunden, der unsubstituiert oder ein-, zwei-, drei- oder vierfach durch A, CF3, Hai, OH, OA, OCF3, S02A, S02-(CH2)m-Ar, S02NH2, S02NHA, S02NA2, NH2, NHA, NA2, NHCHO, NHCOA, NHCOOA, NACOOA, NHS02A, NHS02Ar, COOH,
COOA, COO-(CH2)m-Ar', CONH2, CONHA, COA, COAr', CH2NH2, CH2NHA, CH2NHCHO, CH2NHCOA, CH2NHCOOA, N02, CN, CSNH2,C(=NH)SA, C(=NH)OA, C(=NH)NH2, C(=NH)NHOH, C(=NH)NHCOOA, C(=NH)COOAr' und/oder Carbonyl- sauerstoff substituiert ist,
Py unsubstituiertes oder ein- oder mehrfach durch A, Hai,
CN, CONH2, CONHA, COOH, COOA, CH2NH2, CH2NHA, CH2NHCHO, CH2NHCOA, CH2NHCOOA,
CH2OH, CH2OA, CH2OAr, CH2OCOA, N02, NH2, NHA oder NA2 substituiertes 2-, 3- oder 4-Pyridyl,
Hai F, Cl, Br oder I, n 1 oder 2, m 0, 1 oder 2, p 2, 3 oder 4 bedeutet,
sowie ihre pharmazeutisch verträglichen Salze, Solvate und Stereoisomeren.
2. Verbindungen nach Anspruch 1 , worin
R1 Cl, F, NH2, NHCOA, NHCOOA, NH-(CH2)n-Ar, CN, CONH2, CSNH2, C(=NH)SA, C(=NH)NH2, C(=NH-OH)-NH2, C(=NH-0-COA)-NH2,
C(=NH-0-COAr)-NH2, C(=NH-0-COHet)-NH2, C(=NH)NH-COOA, C(=NH)NH-COA, C(=NH)NH-COO-(CH2)m-Ar,
10 C(=NH)NH-COO-(CH2)m-Het,
NH-C(=NH)NH-COOA, NHC(=NH)NH-COO-(CH2)m-Ar,
bedeutet, sowie ihre pharmazeutisch verträglichen Salze, Solvate und Stereo- ?0 isomeren.
3. Verbindungen nach Anspruch , worin
R1 F, NH2, NHCOA, NHCOOA, NH-(CH2)n-Ar, CN, CONH2,
CSNH2, C(=NH)SA, C(=NH)NH2,
25 C(=NH-OH)-NH2, C(=NH-0-COA)-NH2) C(=NH-0-COAr)-NH2, C(=NH)NH-COOA, C(=NH)NH-COA, C(=NH)NH-COO-(CH2)m-Ar, 30 NH-C(=NH)NH-COOA, NHC(=NH)NH-COO-(CH2)m-Ar,
Ar Phenyl bedeuten, sowie ihre pharmazeutisch verträglichen Salze, Solvate und Stereoisomeren.
4. Verbindungen nach Anspruch 1 , worin
R1 F, NH2, NHCOA, NHCOOA, NH-(CH2)π-Ar, CN, CONH2,
CSNH2, C(=NH)SA, C(=NH)NH2, C(=NH-OH)-NH2, C(=NH-0-COA)-NH2,
C(=NH-0-COAr)-NH2, C(=NH)NH-COOA, C(=NH)NH-COA, C(=NH)NH-COO-(CH2)m-Ar, NH-C(=NH)NH-COOA, NHC(=NH)NH-COO-(CH2)m-Ar,
R2, R2', R2" jeweils unabhängig voneinander H oder F, Ar Phenyl bedeuten, sowie ihre pharmazeutisch verträglichen Salze, Solvate und Stereoisomeren.
5. Verbindungen nach Anspruch 1 , worin
R1 F, NH2, NHCOA, NHCOOA, NH-(CH2)n-Ar, CN, CONH2, CSNH2, C(=NH)SA, C(=NH)NH2,
C(=NH-OH)-NH2, C(=NH-0-COA)-NH2) C(=NH-0-COAr)-NH2, C(=NH)NH-COOA, C(=NH)NH-COA, C(=NH)NH-COO-(CH2)m-Ar,
NH-C(=NH)NH-COOA, NHC(=NH)NH-COO-(CH2)m-Ar,
R2, R2', R2" jeweils unabhängig voneinander H oder F,
Ar Phenyl,
R3, R4 bedeuten zusammen vorzugsweise z.B. (CH2)2, (CH2)3,
(CH2)4, (CH2)2NHCH2, (CH2)-N(COOA)-CH2, (CH2)-N(CH2COOA)-CH2, (CH2)-N(CH2COOH)-CH2, COCH2CH2, CO-NHCH2l COOCH2, CH2OCH2, -C[(CH3)2]-0-CH2, COOCH(A)-, CH2-S-CH2, -C[(CH3)2]-S-CH2, 5 -CH(Ar)-S-CH2, CH2-CH(OH)-CH2, wobei A Alkyl mit 1 ,
2, 3 oder 4 C-Atomen und Ar Phenyl bedeutet, bedeuten, sowie ihre pharmazeutisch verträglichen Salze, Solvate und Stereo- o isomeren.
6. Verbindungen nach Anspruch 1 , worin
R1 F, NH2, NHCOA, NHCOOA, NH-(CH2)n-Ar, CN, CONH2,
CSNH2, C(=NH)SA, C(=NH)NH2, 5 C(=NH-OH)-NH2, C(=NH-0-COA)-NH2, C(=NH-0-COAr)-NH2, C(=NH)NH-COOA, C(=NH)NH-COA, C(=NH)NH-COO-(CH2)m-Ar, 0 NH-C(=NH)NH-COOA, NHC(=NH)NH-COO-(CH2)m-Ar,
R2, R2', R2 jeweils unabhängig voneinander H oder F, Ar Phenyl,
R3, R4 bedeuten zusammen vorzugsweise z.B. (CH2)2, (CH2)3,
(CH2)4, (CH2)2NHCH2, (CH2)-N(COOA)-CH2, (CH2)-N(CH2COOA)-CH2, (CH2)-N(CH2COOH)-CH2, COCH2CH2, CO-NHCH2, COOCH2, CH2OCH2,
-C[(CH3)2]-0-CH2, COOCH(A)-, CH2-S-CH2, -C[(CH3)2]-S-CH2, -CH(Ar)-S-CH2, CH2-CH(OH)-CH2, wobei A Alkyl mit 1 , 2, 3 oder 4 C-Atomen und Ar Phenyl bedeutet,
R5 S02NH2, S02NHA, CH2COOH, einfach durch S02NHA, S02NH2 oder S02A substituiertes Phenyl, wobei A Alkyl mit 1 , 2, 3 oder 4 C-Atomen bedeutet oder unsubstituiertes oder einfach durch CONH2 substituiertes 4-Pyridyl,
R5', R5", cm cm
R5 , R5 H bedeuten, sowie ihre pharmazeutisch verträglichen Salze, Solvate und Stereoisomeren.
Verbindungen nach Anspruch 1 , worin
R1 H, Cl, F, NH2, NHCOA, NHCOOA,
NH-(CH2)n-Ar, CN, CONH2, CSNH2, C(=NH)SA,
C(=NH)NH2, C(=NH-OH)-NH2, C(=NH-0-COA)-NH2, C(=NH-0-COAr)-NH2, C(=NH)-OA, C(=NH)NHNH2,
C(=NH)NHNHA, C(=NH)NH-COOA, C(=NH)NH-COA,
C(=NH)NH-COO-(CH2)m-Ar,
NH-C(=NH)NH2,
NH-C(=NH)NH-COOA, NHC(=NH)NH-COO-(CH2)m-Ar,
R , R2 , R jeweils unabhängig voneinander H oder F, R3, R4 zusammen (CH2)P, CO(CH2)p, COO(CH2)n,
COOCH(A)-, COOCH(Ar)-, CONH(CH2)n, CH2CH(OR7)-(CH2)n-, CH2-0-(CH2)n, CH2-S-(CH2)n, CA2-0-(CH2)n, CA2-S-(CH2)n, CHAr-S-(CH2)n, ,(CH2)2NHCH2 oder (CH2)2-N(R8)-CH2, R5 S02NH2, S02NHA, CH2COOH, einfach durch S02NHA, S02NH2 oder S02A substitu- iertes Phenyl oder unsubstituiertes oder einfach durch CONH2 substituiertes 4-Pyridyl,
R5', R5",
R5 , R5 H,
R6 OH, A oder Ar,
R7 H, A oder Ar,
R8 (CH2)n-COOH, (CH2)m-COOA, (CH^m-COO-^H^n-Ar,
(CH2)m-CONH2,
(CH2)m-CONHA oder (CH2)m-CONA2,
R9 H, A oder Benzyl,
U CO,
V NH, w fehlt,
X CH oder N,
Y fehlt,
A Alkyl mit 1 , 2, 3, 4, 5, 6, 7, 8, 9 oder 10 C-Atomen oder
CF3,
Ar Phenyl, n 1 oder 2, m 0, 1 oder 2, p 2, 3 oder 4 bedeuten, sowie ihre pharmazeutisch verträglichen Salze, Solvate und Stereoisomeren.
8. Verbindungen nach Anspruch 1 , worin R1 F, NH2, NH-(CH2)n-Ar, CN, CSNH2, C(=NH)SA,
C(=NH)NH2 oder C(=NH-OH)-NH2, R2, R2', R2" jeweils unabhängig voneinander H oder F, R3, R4 zusammen (CH2)P, CO(CH2)p, COO(CH2)n, COOCH(A)-, COOCH(Ar)-, CONH(CH2)n,
CH2CH(OR7)-(CH2)n-, CH2-0-(CH2)n, CH2-S-(CH2)n, CA2-0-(CH2) CA2-S-(CH2)n, CHAr-S-(CH2)n, (CH2)2NHCH2 oder (CH2)2-N(R8)-CH2,
R5 S02NH2, S02NHA, CH2COOH, einfach durch S02NHA, S02NH2 oder S02A substituiertes Phenyl oder unsubstituiertes oder einfach durch CONH2 substituiertes 4-Pyridyl,
R5' F,
R5", R5'", R5'" H,
R7 H, A oder Ar,
R8 H, (CH2)n-COOH, (CH2)m-COOA, (CH2)m-C00-(CH2)n'
Ar, (CH2)m-COO-(CH2)n-Het, (CH2)m-CONH2,
(CH2)m-CONHA oder (CH2)m-CONA2,
R9 H, A oder Benzyl,
U CO,
V NH, w fehlt, X CH oder N,
Y fehlt,
A Alkyl mit 1 , 2, 3, 4, 5 oder 6 C-Atomen oder CF3,
Ar Phenyl, n 1 oder 2, m 0, 1 oder 2, p 2, 3 oder 4 bedeuten, sowie ihre pharmazeutisch verträglichen Salze, Solvate und Stereoisomeren.
Verbindungen nach Anspruch 1 , worin
R1 H,
R2 CH2NH2, CH2NHCOA oder CH2NHCOOA,
R2', R2" jeweils unabhängig voneinander H,
R3, R4 zusammen (CH2)P, CO(CH2)p, COO(CH2)n, COOCH(A)-, COOCH(Ar)-, CONH(CH2)n, CH2CH(OR7)-(CH2)n-, CH2-0-(CH2)n, CH2-S-(CH2)n, CA2-0-(CH2)n, CA2-S-(CH2)n, CHAr-S-(CH2)n, (CH2)2NHCH2 oder (CH2)2-N(R8)-CH2, R5 S02NH2, S02NHA, CH2COOH, einfach durch S02NHA, S02NH2 oder S02A substituiertes Phenyl oder unsubstituiertes oder einfach durch CONH2 substituiertes 4-Pyridyl, R5' F,
R5",
R5'", R5'" H,
R7 H. A oder Ar,
R8 H, (CH2)n-COOH, (CH2)m-COOA, (CH2)m-COO-(CH2)n- Ar, (CHz^-COO-^Hs^-Het, (CH2)m-CONH2,
(CH2)m-CONHA oder (CH2)m-CONA2, R9 H, A oder Benzyl,
U CO,
V NH, w fehlt,
X CH,
Y fehlt,
A Alkyl mit 1 , 2, 3, 4, 5 oder 6 C-Atomen oder CF3,
Ar Phenyl, n 1 oder 2, m 0, 1 oder 2,
P 2, 3 oder 4 bedeuten, sowie ihre pharmazeutisch verträglichen Salze, Solvate und Stereo isomeren.
10. Verbindungen gemäß Anspruch 1
a) (2S)-1 -(2-Amino-3,5,6-trifluoropyridin-4-yl)-pyrrolidin-2- carbonsäure-(2'-sulfamoylbiphenyl-4-yl)-amid; b) (2S)-1 -(3-Amidinophenyl)-pyrrolidin-2-carbonsäure-(2'-tert.- butylsulfamoylbiphenyl-4-yl)-amid; c) (2S)-1 -(3-Amidinophenyl)-pyrrolidin-2-carbonsäure-(2'- sulfamoylbiphenyl-4-yl)-amid; d) (2S)-1 -(3-N-Hydroxy-amidinophenyl)-piperidin-2-carbonsäure- (2'-suifamoylbiphenyl-4-yl)-amid; e) (2R,S)-1-(3-Amidinophenyl)-piperidin-2-carbonsäure-(2'-tert.- butylsulfamoylbiphenyl-4-yl)-amid; f) (2R,S)-1-(3-Amidinophenyl)-5-oxo-pyrrolidin-2-carbonsäure-N- (2'-methansulfonylbiphenyl-4-yl)-amid; g) e) (2R,S)-1-(3-Amidinophenyi)-piperidin-2-carbonsäure-(2'- sulfamoylbiphenyl-4-yl)-amid;
sowie ihre pharmazeutisch verträglichen Salze, Solvate und Stereoisomeren.
1. Verfahren zur Herstellung von Verbindungen der Formel I nach Anspruch 1 sowie ihrer Salze, dadurch gekennzeichnet, daß man
sie aus einem ihrer funktioneilen Derivate durch Behandeln mit einem solvolysierenden und/oder hydrogenolysierenden Mittel in Freiheit setzt, indem man
i) eine Amidinogruppe aus ihrem Oxadiazolderivat oder Oxaz- olidinonderivat durch Hydrogenolyse und/oder Solvolyse freisetzt,
ii) eine konventionelle Aminoschutzgruppe durch Behandeln mit einem solvolysierenden oder hydrogenolysierenden Mittel durch Wasserstoff ersetzt oder eine durch eine konventionelle Schutzgruppe geschützte Amino- gruppe in Freiheit setzt,
und/oder
eine Base oder Säure der Formel I in eines ihrer Salze umwandelt.
12. Verbindungen der Formel I gemäß der Ansprüche 1 bis 10 sowie ihrer physiologisch unbedenklichen Salze und Solvate als Arzneimittel.
13. Arzneimittel nach Anspruch 12 als Inhibitoren des Koagulationsfaktors Xa.
14. Arzneimittel nach Anspruch 12 als Inhibitoren des Koagulationsfaktors Vlla.
15. Arzneimittel nach Anspruch 12, 13 oder 14 zur Behandlung von Thrombosen, myocardialem Infarkt, Arteriosklerose, Entzündungen, Apoplexie, Angina pectoris, Restenose nach Angioplastie, Claudica- tio intermittens, Tumoren, Tumorerkrankungen und/oder Tumormeta- stasen.
16. Pharmazeutische Zubereitung, enthaltend mindestens ein Arzneimittel gemäß einem der Ansprüche 12 bis 15 sowie gegebenenfalls Träger- und/oder Hilfsstoffe und gegebenenfalls andere Wirkstoffe.
17. Verwendung von Verbindungen gemäß der Ansprüche 1 bis 10 und/oder ihre physiologisch unbedenklichen Salze und Solvate zur Herstellung eines Arzneimittels zur Behandlung von Thrombosen, myocardialem Infarkt, Arteriosklerose, Entzündungen, Apoplexie, Angina pectoris, Restenose nach Angioplastie, Claudicatio intermittens, Tumoren, Tumorerkrankungen und/oder Tumormetastasen.
EP01953191A 2000-07-19 2001-07-03 Cyclische aminosäurederivate Withdrawn EP1301506A1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10035144 2000-07-19
DE10035144A DE10035144A1 (de) 2000-07-19 2000-07-19 Cyclische Aminosäurederivate
PCT/EP2001/007595 WO2002006269A1 (de) 2000-07-19 2001-07-03 Cyclische aminosäurederivate

Publications (1)

Publication Number Publication Date
EP1301506A1 true EP1301506A1 (de) 2003-04-16

Family

ID=7649481

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01953191A Withdrawn EP1301506A1 (de) 2000-07-19 2001-07-03 Cyclische aminosäurederivate

Country Status (6)

Country Link
US (1) US20030176465A1 (de)
EP (1) EP1301506A1 (de)
JP (1) JP2004523466A (de)
CA (1) CA2415964A1 (de)
DE (1) DE10035144A1 (de)
WO (1) WO2002006269A1 (de)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10102322A1 (de) 2001-01-19 2002-07-25 Merck Patent Gmbh Phenylderivate
WO2003105771A2 (en) 2002-06-17 2003-12-24 Merck & Co., Inc. 1-((5-aryl-1,2,4-oxadiazol-3-yl)benzyl)azetidine-3-carboxylates and 1-((5-aryl-1,2,4-oxadiazol-3-yl)benzyl)pyrrolidine-3-carboxylates as edg receptor agonists
DE10254336A1 (de) 2002-11-21 2004-06-03 Merck Patent Gmbh Carbonsäureamide
DE10325962A1 (de) * 2003-06-07 2004-12-23 Merck Patent Gmbh Aroylsemicarbazidderivate
JP5184891B2 (ja) 2005-01-07 2013-04-17 シンタ ファーマシューティカルズ コーポレーション 炎症及び免疫に関連する用途に用いる化合物
CN101583593A (zh) 2006-11-13 2009-11-18 辉瑞产品公司 二芳基、二吡啶基和芳基-吡啶基衍生物及其用途
WO2012025877A1 (en) 2010-08-24 2012-03-01 Actelion Pharmaceuticals Ltd Proline sulfonamide derivatives as orexin receptor antagonists

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IL115420A0 (en) * 1994-09-26 1995-12-31 Zeneca Ltd Aminoheterocyclic derivatives
AU3289299A (en) * 1998-02-19 1999-09-06 Tularik Inc. Antiviral agents
JP2003500382A (ja) * 1999-05-24 2003-01-07 シーオーアール セラピューティクス インコーポレイテッド Xa因子の阻害剤

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO0206269A1 *

Also Published As

Publication number Publication date
DE10035144A1 (de) 2002-01-31
WO2002006269A1 (de) 2002-01-24
JP2004523466A (ja) 2004-08-05
CA2415964A1 (en) 2003-01-17
US20030176465A1 (en) 2003-09-18

Similar Documents

Publication Publication Date Title
EP1341755A1 (de) Carbonsäureamidderivate und ihre verwendung in der behandlung von thromboembolischen erkrankungen und tumoren
DE10102322A1 (de) Phenylderivate
DE10112768A1 (de) Phenylderivate 3
WO2004002477A1 (de) 2-(phenyl)-2h-pyrazol-3-carbonsäure-n-4-(thioxo-heterocyclyl)-phenyl-amid derivate und entsprechende imino-heterocyclyl derivate sowie verwandte verbindungen als inhibitoren der koagulationsfaktoren xa und/oder viia zur behandlung bon thrombosen
DE10117823A1 (de) Oxalsäurederivate
WO2003039543A1 (de) Derivate des phenoxy-n-&#39;4-(isothiazolidin-1,1-dioxid-2yl)pheny!-valerian-säureamids und andere verbindungen als inhibitoren des koagulationsfaktors xa zur behandlung von thromboembolischen erkrankungen und tumoren
EP1301506A1 (de) Cyclische aminosäurederivate
EP1490056A1 (de) N-&#39;4-(2-imino-pyrrolidin-1-yl)phenyl)-acetemid-und entsprechende piperidinderivate als faktor xa inhibitoren zur behandlung von thromboembolischen erkrankungen
EP1414456B1 (de) Phenylderivate als faktor xa inhibitoren
EP1385818A2 (de) Biurethanderivate
WO2002008177A2 (de) N-substituierte-1-amino-1,1-dialkylcarbonsäurederivate
WO2004065369A1 (de) Carbonsäureamidderivate und ihre verwendung als faktor xa inhibitoren
WO2003093235A1 (de) Carbonsäureamide als inhibitoren des koagulationsfaktors xa
WO2001092219A1 (de) Glycinamide
DE10110325A1 (de) Phenylderivate 2
EP1309549A1 (de) Acetamidderivate und ihre verwendung als inhibitoren des koagulationsfaktors xa und viia
WO2003074479A1 (de) Semicarbazidderivate und ihre verwendung als antithrombotika
WO2001092214A1 (de) Carbaminsäureester als inhibitoren des faktors xa
EP1399449A1 (de) Kohlenhydratderivate
EP1309573A1 (de) Urethanderivate
DE10218974A1 (de) Carnonsäureamide
DE10236868A1 (de) Carbonsäureamide

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20021228

AK Designated contracting states

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20040202