EP1299206A1 - Procede et dispositif d'atomisation de masses metalliques fondues - Google Patents

Procede et dispositif d'atomisation de masses metalliques fondues

Info

Publication number
EP1299206A1
EP1299206A1 EP01984153A EP01984153A EP1299206A1 EP 1299206 A1 EP1299206 A1 EP 1299206A1 EP 01984153 A EP01984153 A EP 01984153A EP 01984153 A EP01984153 A EP 01984153A EP 1299206 A1 EP1299206 A1 EP 1299206A1
Authority
EP
European Patent Office
Prior art keywords
lance
melt
gas
hot gas
tundish
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP01984153A
Other languages
German (de)
English (en)
Inventor
Alfred Edlinger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tribovent Verfahrensentwicklung GmbH
Original Assignee
Tribovent Verfahrensentwicklung GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tribovent Verfahrensentwicklung GmbH filed Critical Tribovent Verfahrensentwicklung GmbH
Publication of EP1299206A1 publication Critical patent/EP1299206A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B3/00General features in the manufacture of pig-iron
    • C21B3/04Recovery of by-products, e.g. slag
    • C21B3/06Treatment of liquid slag
    • C21B3/08Cooling slag
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/10Alloys containing non-metals
    • C22C1/1036Alloys containing non-metals starting from a melt
    • C22C1/1042Alloys containing non-metals starting from a melt by atomising
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • B22F2009/0824Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid with a specific atomising fluid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • B22F2009/088Fluid nozzles, e.g. angle, distance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • B22F2009/0892Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid casting nozzle; controlling metal stream in or after the casting nozzle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B2400/00Treatment of slags originating from iron or steel processes
    • C21B2400/02Physical or chemical treatment of slags
    • C21B2400/022Methods of cooling or quenching molten slag
    • C21B2400/026Methods of cooling or quenching molten slag using air, inert gases or removable conductive bodies
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B2400/00Treatment of slags originating from iron or steel processes
    • C21B2400/05Apparatus features
    • C21B2400/062Jet nozzles or pressurised fluids for cooling, fragmenting or atomising slag
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B2400/00Treatment of slags originating from iron or steel processes
    • C21B2400/05Apparatus features
    • C21B2400/066Receptacle features where the slag is treated
    • C21B2400/072Tanks to collect the slag, e.g. water tank

Definitions

  • the invention relates to a method for atomizing metal melts, in which the liquid metal bath is sprayed from a tundish via an outlet opening with gas into a cooling space or with compacting the comminuted particles onto a surface to be coated with propellant gas, and to a device for carrying it out process.
  • the invention now aims to provide a method of the type mentioned at the beginning with which it is possible to atomize liquid metals efficiently and with significantly smaller devices while substantially reducing the amount of propellant gas required, at the same time achieving a much finer atomization and Possibility to offer the possibility of installing further components in the atomized metal melt.
  • the method according to the invention essentially consists in the liquid metal melt being introduced into the outlet opening via an annular gap.
  • hot gas with temperatures of 250 ° C to 1300 ° C and a supercritical pressure between 2 and 30 bar is expelled concentrically to the opening via a Laval nozzle, and that the hot gas with a radial, outwardly directed component or with a swirl is brought into contact with the melt pool at a speed exceeding the speed of sound.
  • hot gases are used at temperatures of 250 ° C to 1300 ° C and a supercritical pressure between 2 and 30 bar, which differs from the known processes, the viscosity of the propellant gas is increased significantly compared to known processes, which means that shear forces are more effective and a finer division of the molten metal into particularly small particles with a diameter dso of less than 10 ⁇ m can be achieved.
  • the metal melt does not freeze in the melt outlet due to the lower temperature difference.
  • the possibility is created by appropriately adjusting this annular gap to influence the inflow of the liquid melt, and thus the amount carried through in the unit of time, in a simple manner and in that the propellant gas is now introduced concentrically to the outlet opening, the possibility is created to use the component which determines the annular gap as a second concentric tube, as a suction tube for the suction of further substances.
  • a very important advantage here is the formation of monograin powder, the formation of which is promoted by the radial tearing open of the hollow cylindrical melt jacket. When the enamel jacket is torn open radially, uniform ligament formation occurs in the radial direction and, subsequently, extremely uniform droplet formation.
  • the monograin powder is ideal for use in powder metallurgy.
  • the flow conditions of the hot gas flowing out via the Lavalduse can also be set in such a way that an underexpanded propellant jet is created.
  • Vibration interference in the jet causes shear stresses to be introduced into the melt droplets, the frequency being correspondingly increased under increasingly supercritical conditions, as a result of which the distance of the Mach 'see nodes in the axial direction of the propellant gas jet is correspondingly reduced.
  • the fact that an underexpanded jet is ejected leads to an immediate expansion after exiting the nozzle.
  • the distance to a surface to be coated can be chosen to be extremely short in such a configuration, so that the size can be found with small-scale devices.
  • the hot gas is advantageously expelled here via a guide body, so that the effective outlet cross section of the Lavalduse can be adapted to the respective requirements by suitable adjustment of the guide body.
  • the use of a guide body also serves to give the outflowing hot gas a corresponding additional, radially outward flow component and / or a swirl.
  • the process according to the invention is advantageously carried out in such a way that a lance with the Lavalduse for the hot gas is guided concentrically in a tube with the formation of an annular space and that reactive gases such as CO, H2, 02 or H2O-Da pf, and / or inert gases, such as N2 or Ar, and / or carbides, such as. B. WC, TiC or VC, are sucked in.
  • the lower edge of the tube surrounding the lance with the Lavalduse defines the required annular gap for the access of the liquid metal melt, and an annular space for the suction of reactive gases and / or inert gases is simultaneously formed between the lance and the tube.
  • Such an embodiment enables a preferred method of operation, in which metal powder or additives such as SiC, Al2O3 or Y2O3 and / or carbides are added to the gas stream which is sucked in, as a result of which, with a particularly simple, constructive design of the device, a high degree of adjustability of the atomization method to different needs is ensured.
  • the radiant heat of the molten metal ejected with the hot propellant gas which is effectively atomized during the ejection, can be used to heat the hot gas, for which purpose the hot gas is preferably heated in a heat exchanger surrounding the ejected melt particles.
  • the desired jet geometry can be influenced in a simple manner by a corresponding axial adjustability of the hot gas nozzle or the guide body or by a corresponding exchange of the guide body and can be adapted to the selected substances.
  • the method according to the invention enables efficient atomization of all possible metal melts, alloys and in particular ferro alloys such as FeV, FeCr, FeW, FeTi or FeMo also being atomized.
  • a pressure of 1.5 to 25 bar can be maintained in the tundish, preferably a pressure of 1.5 to 10 bar being maintained in the cold room.
  • a melt saturated with compressed gas can be achieved, argon, for example, being used as the compressed gas.
  • the melt saturated with compressed gas leads to easier disintegration, so that overall a finer atomization is possible.
  • the gas can be introduced using tundish floor nozzles or using an immersed lance.
  • the device according to the invention for carrying out this method has a melt tundish and an immersion tube which plunges into the melt to form an annular gap surrounding the outlet opening for the melt, a lance also being provided for the ejection of propellant gas.
  • the device according to the invention is essentially characterized in that the height-adjustable lance carries a Laval nozzle, preferably in or in the flow direction, a guide body is arranged in a height-adjustable manner after the widening mouth region of the Laval nozzle, the clear cross-section between the nozzle and the Guide body in the axial direction towards the outlet end is increasingly larger than the narrowest cross section of the Lavalduse.
  • the guide body provided in or in the direction of flow next to the widening mouth area of the Lavalduse can be adjusted by its height adjustability to minimize the consumption of propellant gas.
  • the arrangement of a guide body is not absolutely necessary, and it has been shown that even without the guide body, efficient atomization can be achieved, with particularly good results being achieved if, as is a preferred development of the device according to the invention, the lance below the lower edge of the Dip tube opens into the outlet opening of the tundish.
  • the lance is height adjustable for this purpose.
  • the design is advantageously made such that the outside diameter of the lance is smaller than the inside diameter of the dip tube and the lance is sealingly guided through a cover of the dip tube and that a line for the supply of gases or / or reactive metal powder and / or additives opens into the space of the immersion tube surrounding the lance.
  • An adjustable throttle valve can be provided in the line for the supply of gases and / or reactive metal powder so that, if necessary, the space between the lance and the immersion tube can be kept under a corresponding negative pressure, as a result of which pulsating flows can also be achieved. The valve can also remain completely closed.
  • the guide body is advantageously designed as a cone with guide surfaces arranged on the jacket.
  • a pronounced radial component can be achieved with such a guide body if, as is in accordance with a preferred embodiment, the guide surfaces are curved in an S-shape and end in the direction of the circumference at the same angle to the tangent of the base circle of the conical body.
  • 1 denotes a melt tundish shown in cross section, in which a metal bath 2 is held in a molten state.
  • inductive heating as is indicated schematically by the windings 3, can be provided.
  • a tube 4 is immersed in the metal bath and defines an annular gap between the bottom of the tundish 1 and the lower edge of the tube.
  • This tube 4 is adjustable in the height direction in the direction of the double arrow 5, so that the amount of metal bath flowing out of the tundish 1 in each time unit can be regulated in a simple manner.
  • the tube 4 is closed with a cover 6, in which a lance 7 is sealingly guided in the direction of the double arrow 8 and is adjustable in the height direction.
  • the lance 7 has a Laval nozzle 9 at its outlet end for hot gas.
  • this design as a Laval nozzle in the narrowest cross-section of the Laval nozzle 9 results in exactly the speed of sound, the supersonic speed being achieved in the subsequent widening cross-section due to the rapid expansion.
  • a guide body 10 is now arranged, which is adjustable via a corresponding linkage 11 in the direction of the double arrow 12, also in the axial direction.
  • the beam shape can thus be influenced by appropriate adjustment of the guide body, it only being necessary to ensure that the respective effective cross section widens correspondingly in the axial direction following the narrowest point of the Lavalduse 9, so that the rapid expansion supersonic speed is achieved.
  • the propellant gas jet from the lance 7 now arrives in a subsequent cooling space 13, in which, for example, a target 14 can be arranged.
  • the propellant gas jet collides with the supersonic speed and corresponding viscosity due to its high temperature with the outflowing metal bath, so that rapid and efficient comminution takes place, which can be applied to the target 14 as a coating. If such a target 14 is not installed, the correspondingly comminuted metal powder can be drawn off via a lock 15 at the lower end of the cooling chamber 13.
  • the radiant heat of the solidifying metal droplets can be used in a heat exchanger 16 surrounding the cooling chamber, to which cold gas is supplied via a line 17 and from which hot gas is withdrawn via a line 18. If the temperature achieved in this way is sufficient for the desired purposes, this hot gas can be fed directly to the lance 7 via the line 18.
  • a further heating can be carried out using conventional Recuperative heat exchanger, not shown, can be achieved.
  • a ring line 19 can also be seen, through which fine particles can be suctioned off. These finest particles can be fed to a classifier 21 via line 20 and discharged as fine powder via a lock 22. The amount of very fine powder discharged thus no longer reaches the downward flow and thus has no influence on the solidification behavior of the droplets comminuted by the propellant gas jet.
  • the lance 7 is now guided, leaving an annular space 23 at a distance from the inner wall of the tube 4. Additional material can be drawn into this annular space via a line 24, with reactive gases such as CO, H2, N2, 02 or, in the event that partial oxidation of the metal particles is desired, also sucking in H2O vapor.
  • the amount drawn in can be determined by an adjustable throttle valve 25. A series of powdery materials that can flow with a gas flow can also be sucked into this line as doping from a storage container 26.
  • Metal powder, Sie, Al2O3 or also Y2O3 can primarily be sucked in as dispersible solids and can be introduced via line 24 into the annular space 23, from which they are sucked in via the hot gas flow and brought into rapid and intensive contact with the molten metal.
  • the lance 2 shows a modified embodiment of the propellant gas lance, in which the lance 7 opens below the lower edge of the dip tube 4 in the outlet opening of the tundish 1.
  • the lance has a Laval nozzle 9, it being possible to dispense with the arrangement of a guide body.
  • Inert gases such as nitrogen, argon and helium, are primarily considered as propellant gases, but depending on the task, reactive gases such as CO, H2, optionally mixed with water vapor, can also be used if oxidative atomization is desired.
  • the powders obtained are particularly suitable for use in sintering or powder metallurgy, for example for hot isostatic pressing, but also as feed material for MIM processes (metal injecting molding).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

L'invention concerne un procédé de pulvérisation de masses métalliques fondues, selon lequel le bain de métal fondu issu d'un avant-creuset est pulvérisé avec un gaz propulseur par un orifice de sortie avec du gaz dans une chambre de refroidissement ou sur une surface à recouvrir avec compactage des particules fractionnées. La masse de métal fondu liquide est introduite par une fente annulaire dans l'orifice de sortie, dans lequel du gaz chaud à des températures de 250 °C à 1300 °C est éjecté de manière concentrique par rapport à l'ouverture, à des températures de 250° à 1300 °C et à une pression surcritique entre 2 et 30 bar par une buse de Laval. Le gaz chaud est amené en contact avec le bain de fusion par une composante dirigée radialement vers l'extérieur ou par une hélice ayant une vitesse supérieure à la vitesse du son. Le dispositif correspondant présente un avant-creuset de masse fondue (1) et un tube plongeur (4) plongé dans la masse fondue (2) en formant une fente annulaire autour de l'orifice de sortie destiné à la masse fondue, (2) et une lance (7) destinée à l'éjection de gaz propulseur, la lance (7) réglable en hauteur porte une buse de Laval (9).
EP01984153A 2000-07-07 2001-07-06 Procede et dispositif d'atomisation de masses metalliques fondues Withdrawn EP1299206A1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
AT0116900A AT410640B (de) 2000-07-07 2000-07-07 Verfahren und vorrichtung zum zerstäuben von metallschmelzen
AT11692000 2000-07-07
PCT/AT2001/000225 WO2002004154A1 (fr) 2000-07-07 2001-07-06 Procede et dispositif d'atomisation de masses metalliques fondues

Publications (1)

Publication Number Publication Date
EP1299206A1 true EP1299206A1 (fr) 2003-04-09

Family

ID=3686507

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01984153A Withdrawn EP1299206A1 (fr) 2000-07-07 2001-07-06 Procede et dispositif d'atomisation de masses metalliques fondues

Country Status (8)

Country Link
US (1) US20020134198A1 (fr)
EP (1) EP1299206A1 (fr)
JP (1) JP2004502037A (fr)
AT (1) AT410640B (fr)
AU (1) AU2002218757A1 (fr)
IL (1) IL148383A0 (fr)
WO (1) WO2002004154A1 (fr)
ZA (1) ZA200201752B (fr)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PT1239983E (pt) * 1999-10-15 2004-02-27 Applikations U Tec F Ene Umw U Processo para a producao de um po
AT411362B (de) * 2002-08-29 2003-12-29 Tribovent Verfahrensentwicklg Verfahren zum zerstäuben und granulieren von schmelzen sowie vorrichtung zur durchführung dieses verfahrens
US7470307B2 (en) * 2005-03-29 2008-12-30 Climax Engineered Materials, Llc Metal powders and methods for producing the same
US8197885B2 (en) * 2008-01-11 2012-06-12 Climax Engineered Materials, Llc Methods for producing sodium/molybdenum power compacts
KR101143888B1 (ko) * 2009-12-15 2012-05-11 한국기계연구원 기계적 활성화법을 이용한 금속복합분말의 제조방법 및 이에 따라 제조되는 금속복합분말
KR101143887B1 (ko) * 2009-12-15 2012-05-11 한국기계연구원 가스분무법을 이용한 금속복합분말의 제조방법 및 이에 따라 제조되는 금속복합분말
WO2011074720A1 (fr) * 2009-12-15 2011-06-23 한국기계연구원 Procédé de production et dispositif de production d'une poudre métallique composite à l'aide du procédé de pulvérisation au gaz
KR100983947B1 (ko) 2010-05-26 2010-09-27 연규엽 구형미세마그네슘분말 제조장치
CN102847949B (zh) * 2012-09-27 2014-03-26 西北有色金属研究院 一种球形Ru-V粉末钎料的制备方法
GB2508200B (en) * 2012-11-23 2015-08-05 Siemens Vai Metals Tech Gmbh Slag granulation system and method of operation
DE102015107876A1 (de) 2015-05-19 2016-11-24 Technische Universität Bergakademie Freiberg Vorrichtung und Verfahren zum Zerstäuben von Schmelzen
CN106001587B (zh) * 2016-06-30 2019-09-10 安泰(霸州)特种粉业有限公司 制备铁基水雾化软磁合金粉用中间包及其制造方法
WO2018035599A1 (fr) 2016-08-24 2018-03-01 5N Plus Inc. Procédés de fabrication par atomisation de poudres de métal ou d'alliage à bas point de fusion
AT518979B1 (de) * 2016-11-15 2018-03-15 Radmat Ag Verfahren und Vorrichtung zur Aufarbeitung einer Eisenoxid und Phosphoroxide enthaltenden Schmelze
US11185919B2 (en) 2018-01-12 2021-11-30 Hammond Group, Inc. Methods and systems for forming mixtures of lead oxide and lead metal particles
EP3752304B1 (fr) 2018-02-15 2023-10-18 5n Plus Inc. Procédés de fabrication par atomisation de poudres de métal ou d'alliage à point de fusion élevé
CN113145853B (zh) * 2021-04-22 2023-04-18 鞍钢股份有限公司 一种球状金属粉的气雾化制备装置及方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH215365A (de) * 1938-11-11 1941-06-30 Glasfasern A G Verfahren und Vorrichtung zur Erzeugung von Fasern aus Glas, Schlacke oder ähnlichen in der Hitze plastischen Stoffen.
AT309962B (de) * 1971-05-13 1973-09-10 Mannesmann Ag Verfahren und Vorrichtung Herstellen von Metallpulver
DE2126856B2 (de) * 1971-05-27 1972-11-23 Mannesmann AG, 4000 Düsseldorf Verfahren und vorrichtung zum herstellen von metallpulver
GB1413651A (en) * 1971-11-04 1975-11-12 Singer A R E Atomising of metals
US4619845A (en) * 1985-02-22 1986-10-28 The United States Of America As Represented By The Secretary Of The Navy Method for generating fine sprays of molten metal for spray coating and powder making
DE3533964C1 (de) * 1985-09-24 1987-01-15 Alfred Prof Dipl-Ing Dr-I Walz Verfahren und Vorrichtung zum Herstellen von Feinstpulver in Kugelform
US4671994A (en) * 1986-02-10 1987-06-09 Materials Technology Corporation Method for producing fiber reinforced hollow microspheres
GB8622949D0 (en) * 1986-09-24 1986-10-29 Alcan Int Ltd Alloy composites
US5019686A (en) * 1988-09-20 1991-05-28 Alloy Metals, Inc. High-velocity flame spray apparatus and method of forming materials
DE4019563A1 (de) * 1990-06-15 1991-12-19 Mannesmann Ag Verfahren zur herstellung von metallpulver
DE4132693A1 (de) * 1991-10-01 1993-04-08 Messer Griesheim Gmbh Verfahren und vorrichtung zur herstellung von pulvern
DE4340102C2 (de) * 1993-11-22 1996-12-12 Mannesmann Ag Einrichtung zum Zerstäuben von Metallschmelzen, insbesondere zur Herstellung von Metallpulver oder Metallgegenständen
DE19758111C2 (de) * 1997-12-17 2001-01-25 Gunther Schulz Verfahren und Vorrichtung zur Herstellung feiner Pulver durch Zerstäubung von Schmelzen mit Gasen
AT406262B (de) * 1998-06-29 2000-03-27 Holderbank Financ Glarus Verfahren und vorrichtung zum granulieren und zerkleinern von flüssigen schlacken
AT407247B (de) * 1998-12-01 2001-01-25 Holderbank Financ Glarus Verfahren zum granulieren von flüssigen schlackenschmelzen sowie vorrichtung zur durchführung dieses verfahrens
AT408437B (de) * 2000-02-22 2001-11-26 Holderbank Financ Glarus Einrichtung zum zerstäuben von flüssigen schmelzen

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO0204154A1 *

Also Published As

Publication number Publication date
AT410640B (de) 2003-06-25
US20020134198A1 (en) 2002-09-26
AU2002218757A1 (en) 2002-01-21
JP2004502037A (ja) 2004-01-22
WO2002004154A1 (fr) 2002-01-17
ATA11692000A (de) 2002-11-15
ZA200201752B (en) 2003-06-02
IL148383A0 (en) 2002-09-12

Similar Documents

Publication Publication Date Title
EP1299206A1 (fr) Procede et dispositif d'atomisation de masses metalliques fondues
DE68917132T2 (de) Verfahren und vorrichtung zum zerstäuben einer metallschmelze.
EP1390152B1 (fr) Procede et dispositif de projection par gaz froid
DE69126296T2 (de) Verfahren und düse zum atomisieren von schmelze
DE69222125T2 (de) Atomisierung von schweren Kohlenwasserstoffen
DE19881316B4 (de) Verfahren und Vorrichtung zur Herstellung von Metallpulver durch Zerstäubung
AT409235B (de) Verfahren und vorrichtung zur herstellung von metallpulver
DE4102101A1 (de) Einrichtung zum herstellen von pulvern aus metallen
EP1474224B1 (fr) Procede de production de materiau particulaire
DE2126856B2 (de) Verfahren und vorrichtung zum herstellen von metallpulver
EP4034320B1 (fr) Dispositif d'atomisation d'un flux de fusion au moyen d'un gaz
DE2555715A1 (de) Verfahren und vorrichtung zur pulverherstellung durch verspruehen eines geschmolzenen materials
DE102005038453B4 (de) Verfahren und Vorrichtung zum thermischen Spritzen von Suspensionen
DE3505662A1 (de) Verfahren zum herstellen feinen pulvers aus geschmolzenem metall sowie vorrichtung zum zerstaeuben
DE4019563C2 (fr)
EP1051238B1 (fr) Procede pour granuler des bains de laitier liquides, ainsi que dispositif pour la mise en oeuvre de ce procede
DE69504346T2 (de) Verfahren zur zerstäubung einer dispergierbaren flüssigkeit
DD227355A5 (de) Verfahren und vorrichtung zur herstellung von kugelfoermigen metallischen partikeln
EP1506816B1 (fr) Buse de Laval pour la pulvérisation thermique et cinétique
EP1299566B1 (fr) Dispositif pour pulveriser et granuler des scories liquides
WO2008067868A1 (fr) Procédé de fabrication de particules en matériau fluide et installation pour projection de ces particules
CA2384120A1 (fr) Procede et dispositif d'atomisation de masses metalliques fondues
AT412093B (de) Vorrichtung zum zerstäuben von schmelzen
AT409265B (de) Vorrichtung zum zerstäuben von schmelzen
AT411230B (de) Verfahren zur herstellung von metallpulver aus spratzigen teilchen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20020321

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20070201